xref: /freebsd/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_misc.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 
26 #include "ar9300/ar9300.h"
27 #include "ar9300/ar9300reg.h"
28 #include "ar9300/ar9300phy.h"
29 #include "ar9300/ar9300desc.h"
30 
31 static u_int32_t ar9300_read_loc_timer(struct ath_hal *ah);
32 
33 void
34 ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
35 {
36     struct ath_hal_9300 *ahp = AH9300(ah);
37     *hangs = 0;
38 
39     if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
40         *hangs |= HAL_RIFS_BB_HANG_WAR;
41     }
42     if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
43         *hangs |= HAL_DFS_BB_HANG_WAR;
44     }
45     if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
46         == HAL_OK)
47     {
48         *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
49     }
50     if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
51         *hangs |= HAL_MAC_HANG_WAR;
52     }
53     if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
54         == HAL_OK)
55     {
56         *hangs |= HAL_PHYRESTART_CLR_WAR;
57     }
58 
59     ahp->ah_hang_wars = *hangs;
60 }
61 
62 /*
63  * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
64  * HT20, HT40, fast-clock, turbo mode, etc.
65  */
66 static u_int
67 ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
68 {
69 #if 0
70     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
71 
72     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
73         return (ath_hal_mac_usec(ah, clks) / 2);
74     } else {
75         return (ath_hal_mac_usec(ah, clks));
76     }
77 #endif
78     return (ath_hal_mac_usec(ah, clks));
79 }
80 
81 u_int
82 ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
83 {
84 #if 0
85     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
86 
87     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
88         return (ath_hal_mac_clks(ah, usecs) * 2);
89     } else {
90         return (ath_hal_mac_clks(ah, usecs));
91     }
92 #endif
93     return (ath_hal_mac_clks(ah, usecs));
94 }
95 
96 void
97 ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
98 {
99     struct ath_hal_9300 *ahp = AH9300(ah);
100 
101     OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
102 }
103 
104 HAL_BOOL
105 ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
106 {
107     struct ath_hal_9300 *ahp = AH9300(ah);
108 
109     OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
110     return AH_TRUE;
111 }
112 
113 void
114 ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
115 {
116     struct ath_hal_9300 *ahp = AH9300(ah);
117 
118     OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
119 }
120 
121 HAL_BOOL
122 ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
123 {
124     struct ath_hal_9300 *ahp = AH9300(ah);
125 
126     /* save it since it must be rewritten on reset */
127     OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
128 
129     OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
130     OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
131     return AH_TRUE;
132 }
133 
134 /*
135  * Attempt to change the cards operating regulatory domain to the given value
136  * Returns: A_EINVAL for an unsupported regulatory domain.
137  *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
138  */
139 HAL_BOOL
140 ar9300_set_regulatory_domain(struct ath_hal *ah,
141         u_int16_t reg_domain, HAL_STATUS *status)
142 {
143     HAL_STATUS ecode;
144 
145     if (AH_PRIVATE(ah)->ah_currentRD == 0) {
146         AH_PRIVATE(ah)->ah_currentRD = reg_domain;
147         return AH_TRUE;
148     }
149     ecode = HAL_EIO;
150 
151 #if 0
152 bad:
153 #endif
154     if (status) {
155         *status = ecode;
156     }
157     return AH_FALSE;
158 }
159 
160 /*
161  * Return the wireless modes (a,b,g,t) supported by hardware.
162  *
163  * This value is what is actually supported by the hardware
164  * and is unaffected by regulatory/country code settings.
165  *
166  */
167 u_int
168 ar9300_get_wireless_modes(struct ath_hal *ah)
169 {
170     return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
171 }
172 
173 /*
174  * Set the interrupt and GPIO values so the ISR can disable RF
175  * on a switch signal.  Assumes GPIO port and interrupt polarity
176  * are set prior to call.
177  */
178 void
179 ar9300_enable_rf_kill(struct ath_hal *ah)
180 {
181     /* TODO - can this really be above the hal on the GPIO interface for
182      * TODO - the client only?
183      */
184     struct ath_hal_9300    *ahp = AH9300(ah);
185 
186     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
187     	/* Check RF kill GPIO before set/clear RFSILENT bits. */
188     	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
189             OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
190                            AR_RFSILENT_FORCE);
191             OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
192         }
193         else {
194             OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
195                            AR_RFSILENT_FORCE);
196             OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
197         }
198     }
199     else {
200         /* Connect rfsilent_bb_l to baseband */
201         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
202             AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
203 
204         /* Set input mux for rfsilent_bb_l to GPIO #0 */
205         OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206             AR_GPIO_INPUT_MUX2_RFSILENT);
207         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
208             (ahp->ah_gpio_select & 0x0f) << 4);
209 
210         /*
211          * Configure the desired GPIO port for input and
212          * enable baseband rf silence
213          */
214         ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
215         OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
216     }
217 
218     /*
219      * If radio disable switch connection to GPIO bit x is enabled
220      * program GPIO interrupt.
221      * If rfkill bit on eeprom is 1, setupeeprommap routine has already
222      * verified that it is a later version of eeprom, it has a place for
223      * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
224      * connection is present.
225      */
226      /*
227       * RFKill uses polling not interrupt,
228       * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
229       */
230     if (ath_hal_hasrfkill_int(ah)) {
231         if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
232             /* switch already closed, set to interrupt upon open */
233             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
234         } else {
235             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
236         }
237     }
238 }
239 
240 /*
241  * Change the LED blinking pattern to correspond to the connectivity
242  */
243 void
244 ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
245 {
246     static const u_int32_t ledbits[8] = {
247         AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
248         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
249         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
250         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
251         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
252         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
253         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
254         AR_CFG_LED_ASSOC_NONE,
255     };
256 
257     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
258 }
259 
260 /*
261  * Sets the Power LED on the cardbus without affecting the Network LED.
262  */
263 void
264 ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
265 {
266     u_int32_t    val;
267 
268     val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
269     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
270 }
271 
272 /*
273  * Sets the Network LED on the cardbus without affecting the Power LED.
274  */
275 void
276 ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
277 {
278     u_int32_t    val;
279 
280     val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
281     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
282 }
283 
284 /*
285  * Change association related fields programmed into the hardware.
286  * Writing a valid BSSID to the hardware effectively enables the hardware
287  * to synchronize its TSF to the correct beacons and receive frames coming
288  * from that BSSID. It is called by the SME JOIN operation.
289  */
290 void
291 ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
292     u_int16_t assoc_id)
293 {
294     struct ath_hal_9300 *ahp = AH9300(ah);
295 
296     /* save bssid and assoc_id for restore on reset */
297     OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
298     ahp->ah_assoc_id = assoc_id;
299 
300     OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
301     OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
302                                  ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
303 }
304 
305 /*
306  * Get the current hardware tsf for stamlme
307  */
308 u_int64_t
309 ar9300_get_tsf64(struct ath_hal *ah)
310 {
311     u_int64_t tsf;
312 
313     /* XXX sync multi-word read? */
314     tsf = OS_REG_READ(ah, AR_TSF_U32);
315     tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
316     return tsf;
317 }
318 
319 void
320 ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
321 {
322     OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
323     OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
324 }
325 
326 /*
327  * Get the current hardware tsf for stamlme
328  */
329 u_int32_t
330 ar9300_get_tsf32(struct ath_hal *ah)
331 {
332     return OS_REG_READ(ah, AR_TSF_L32);
333 }
334 
335 u_int32_t
336 ar9300_get_tsf2_32(struct ath_hal *ah)
337 {
338     return OS_REG_READ(ah, AR_TSF2_L32);
339 }
340 
341 /*
342  * Reset the current hardware tsf for stamlme.
343  */
344 void
345 ar9300_reset_tsf(struct ath_hal *ah)
346 {
347     int count;
348 
349     count = 0;
350     while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
351         count++;
352         if (count > 10) {
353             HALDEBUG(ah, HAL_DEBUG_RESET,
354                 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
355             break;
356         }
357         OS_DELAY(10);
358     }
359     OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
360 }
361 
362 /*
363  * Set or clear hardware basic rate bit
364  * Set hardware basic rate set if basic rate is found
365  * and basic rate is equal or less than 2Mbps
366  */
367 void
368 ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
369 {
370     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
371     u_int32_t reg;
372     u_int8_t xset;
373     int i;
374 
375     if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
376         return;
377     }
378     xset = 0;
379     for (i = 0; i < rs->rs_count; i++) {
380         u_int8_t rset = rs->rs_rates[i];
381         /* Basic rate defined? */
382         if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
383             xset = rset;
384         }
385     }
386     /*
387      * Set the h/w bit to reflect whether or not the basic
388      * rate is found to be equal or less than 2Mbps.
389      */
390     reg = OS_REG_READ(ah, AR_STA_ID1);
391     if (xset && xset / 2 <= 2) {
392         OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
393     } else {
394         OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
395     }
396 }
397 
398 /*
399  * Grab a semi-random value from hardware registers - may not
400  * change often
401  */
402 u_int32_t
403 ar9300_get_random_seed(struct ath_hal *ah)
404 {
405     u_int32_t nf;
406 
407     nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
408     if (nf & 0x100) {
409         nf = 0 - ((nf ^ 0x1ff) + 1);
410     }
411     return (OS_REG_READ(ah, AR_TSF_U32) ^
412         OS_REG_READ(ah, AR_TSF_L32) ^ nf);
413 }
414 
415 /*
416  * Detect if our card is present
417  */
418 HAL_BOOL
419 ar9300_detect_card_present(struct ath_hal *ah)
420 {
421     u_int16_t mac_version, mac_rev;
422     u_int32_t v;
423 
424     /*
425      * Read the Silicon Revision register and compare that
426      * to what we read at attach time.  If the same, we say
427      * a card/device is present.
428      */
429     v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
430     if (v == 0xFF) {
431         /* new SREV format */
432         v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
433         /*
434          * Include 6-bit Chip Type (masked to 0) to differentiate
435          * from pre-Sowl versions
436          */
437         mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
438         mac_rev = MS(v, AR_SREV_REVISION2);
439     } else {
440         mac_version = MS(v, AR_SREV_VERSION);
441         mac_rev = v & AR_SREV_REVISION;
442     }
443     return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
444             AH_PRIVATE(ah)->ah_macRev == mac_rev);
445 }
446 
447 /*
448  * Update MIB Counters
449  */
450 void
451 ar9300_update_mib_mac_stats(struct ath_hal *ah)
452 {
453     struct ath_hal_9300 *ahp = AH9300(ah);
454     HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
455 
456     stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
457     stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
458     stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
459     stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
460     stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
461 }
462 
463 void
464 ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
465 {
466     struct ath_hal_9300 *ahp = AH9300(ah);
467     HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
468 
469     stats->ackrcv_bad = istats->ackrcv_bad;
470     stats->rts_bad    = istats->rts_bad;
471     stats->fcs_bad    = istats->fcs_bad;
472     stats->rts_good   = istats->rts_good;
473     stats->beacons    = istats->beacons;
474 }
475 
476 /*
477  * Detect if the HW supports spreading a CCK signal on channel 14
478  */
479 HAL_BOOL
480 ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
481 {
482     return AH_TRUE;
483 }
484 
485 /*
486  * Get the rssi of frame curently being received.
487  */
488 u_int32_t
489 ar9300_get_cur_rssi(struct ath_hal *ah)
490 {
491     /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
492     /* get combined RSSI */
493     return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
494 }
495 
496 #if ATH_GEN_RANDOMNESS
497 /*
498  * Get the rssi value from BB on ctl chain0.
499  */
500 u_int32_t
501 ar9300_get_rssi_chain0(struct ath_hal *ah)
502 {
503     /* get ctl chain0 RSSI */
504     return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
505 }
506 #endif
507 
508 u_int
509 ar9300_get_def_antenna(struct ath_hal *ah)
510 {
511     return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
512 }
513 
514 /* Setup coverage class */
515 void
516 ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
517 {
518 }
519 
520 void
521 ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
522 {
523     OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
524 }
525 
526 HAL_BOOL
527 ar9300_set_antenna_switch(struct ath_hal *ah,
528     HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
529     u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
530 {
531     struct ath_hal_9300 *ahp = AH9300(ah);
532 
533     /*
534      * Owl does not support diversity or changing antennas.
535      *
536      * Instead this API and function are defined differently for AR9300.
537      * To support Tablet PC's, this interface allows the system
538      * to dramatically reduce the TX power on a particular chain.
539      *
540      * Based on the value of (redefined) diversity_control, the
541      * reset code will decrease power on chain 0 or chain 1/2.
542      *
543      * Based on the value of bit 0 of antenna_switch_swap,
544      * the mapping between OID call and chain is defined as:
545      *  0:  map A -> 0, B -> 1;
546      *  1:  map A -> 1, B -> 0;
547      *
548      * NOTE:
549      *   The devices that use this OID should use a tx_chain_mask and
550      *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
551      *   used in order to ensure an active transmit antenna.  This
552      *   API will allow the host to turn off the only transmitting
553      *   antenna to ensure the antenna closest to the user's body is
554      *   powered-down.
555      */
556     /*
557      * Set antenna control for use during reset sequence by
558      * ar9300_decrease_chain_power()
559      */
560     ahp->ah_diversity_control = settings;
561 
562     return AH_TRUE;
563 }
564 
565 HAL_BOOL
566 ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
567 {
568     return AH_TRUE;
569 }
570 
571 HAL_BOOL
572 ar9300_set_slot_time(struct ath_hal *ah, u_int us)
573 {
574     struct ath_hal_9300 *ahp = AH9300(ah);
575     if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
576         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
577         ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
578         return AH_FALSE;
579     } else {
580         /* convert to system clocks */
581         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
582         ahp->ah_slot_time = us;
583         return AH_TRUE;
584     }
585 }
586 
587 HAL_BOOL
588 ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
589 {
590     struct ath_hal_9300 *ahp = AH9300(ah);
591 
592     if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
593         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
594         ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
595         return AH_FALSE;
596     } else {
597         /* convert to system clocks */
598         OS_REG_RMW_FIELD(ah,
599             AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
600         ahp->ah_ack_timeout = us;
601         return AH_TRUE;
602     }
603 }
604 
605 u_int
606 ar9300_get_ack_timeout(struct ath_hal *ah)
607 {
608     u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
609     return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
610 }
611 
612 HAL_STATUS
613 ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
614                  u_int32_t next_start, HAL_QUIET_FLAG flag)
615 {
616 #define	TU_TO_USEC(_tu)		((_tu) << 10)
617     HAL_STATUS status = HAL_EIO;
618     u_int32_t tsf = 0, j, next_start_us = 0;
619     if (flag & HAL_QUIET_ENABLE) {
620         for (j = 0; j < 2; j++) {
621             next_start_us = TU_TO_USEC(next_start);
622             tsf = OS_REG_READ(ah, AR_TSF_L32);
623             if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
624                 next_start_us += tsf;
625             }
626             if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
627                 next_start_us +=
628                     ah->ah_config.ah_sw_beacon_response_time;
629             }
630             OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
631             OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
632             OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
633             OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
634             OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
635             if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
636                 status = HAL_OK;
637                 break;
638             }
639             HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
640                 "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
641             /* TSF shouldn't count twice or reg access is taking forever */
642             HALASSERT(j < 1);
643         }
644     } else {
645         OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
646         status = HAL_OK;
647     }
648 
649     return status;
650 #undef	TU_TO_USEC
651 }
652 #ifdef ATH_SUPPORT_DFS
653 void
654 ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
655 {
656     u32 reg1, reg2;
657 
658     reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
659     reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
660     AH9300(ah)->ah_cac_quiet_enabled = enable;
661 
662     if (enable) {
663         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
664                      reg1 | AR_PCU_FORCE_QUIET_COLL);
665         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
666                      reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
667     } else {
668         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
669                      reg1 & ~AR_PCU_FORCE_QUIET_COLL);
670         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
671                      reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
672     }
673 }
674 #endif /* ATH_SUPPORT_DFS */
675 
676 void
677 ar9300_set_pcu_config(struct ath_hal *ah)
678 {
679     ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
680 }
681 
682 HAL_STATUS
683 ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
684     u_int32_t capability, u_int32_t *result)
685 {
686     struct ath_hal_9300 *ahp = AH9300(ah);
687     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
688     struct ar9300_ani_state *ani;
689 
690     switch (type) {
691     case HAL_CAP_CIPHER:            /* cipher handled in hardware */
692         switch (capability) {
693         case HAL_CIPHER_AES_CCM:
694         case HAL_CIPHER_AES_OCB:
695         case HAL_CIPHER_TKIP:
696         case HAL_CIPHER_WEP:
697         case HAL_CIPHER_MIC:
698         case HAL_CIPHER_CLR:
699             return HAL_OK;
700         default:
701             return HAL_ENOTSUPP;
702         }
703     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
704         switch (capability) {
705         case 0:         /* hardware capability */
706             return HAL_OK;
707         case 1:
708             return (ahp->ah_sta_id1_defaults &
709                     AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
710         default:
711             return HAL_ENOTSUPP;
712         }
713     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
714         switch (capability) {
715         case 0: /* hardware capability */
716             return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
717         case 1: /* current setting */
718             return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
719                 HAL_ENXIO : HAL_OK;
720         default:
721             return HAL_ENOTSUPP;
722         }
723     case HAL_CAP_WME_TKIPMIC:
724         /* hardware can do TKIP MIC when WMM is turned on */
725         return HAL_OK;
726     case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
727         return HAL_OK;
728     case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
729         switch (capability) {
730         case 0:                 /* hardware capability */
731             return HAL_OK;
732         case 1:                 /* current setting */
733             return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
734                             AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
735                             HAL_OK : HAL_ENXIO;
736         }
737         return HAL_EINVAL;
738     case HAL_CAP_TPC:
739         switch (capability) {
740         case 0:                 /* hardware capability */
741             return HAL_OK;
742         case 1:
743             return ah->ah_config.ath_hal_desc_tpc ?
744                                HAL_OK : HAL_ENXIO;
745         }
746         return HAL_OK;
747     case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
748         return HAL_OK;
749     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
750         switch (capability) {
751         case 0:                 /* hardware capability */
752             return HAL_OK;
753         case 1:
754             if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
755                 /*
756                  * Owl and Merlin have problems in mcast key search.
757                  * Disable this cap. in Ad-hoc mode. see Bug 25776 and
758                  * 26802
759                  */
760                 return HAL_ENXIO;
761             } else {
762                 return (ahp->ah_sta_id1_defaults &
763                         AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
764             }
765         }
766         return HAL_EINVAL;
767     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
768         switch (capability) {
769         case 0:                 /* hardware capability */
770             return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
771         case 1:
772             return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
773                 HAL_OK : HAL_ENXIO;
774         }
775         return HAL_EINVAL;
776     case HAL_CAP_RFSILENT:      /* rfsilent support  */
777         if (capability == 3) {  /* rfkill interrupt */
778             /*
779              * XXX: Interrupt-based notification of RF Kill state
780              *      changes not working yet. Report that this feature
781              *      is not supported so that polling is used instead.
782              */
783             return (HAL_ENOTSUPP);
784         }
785         return ath_hal_getcapability(ah, type, capability, result);
786     case HAL_CAP_4ADDR_AGGR:
787         return HAL_OK;
788     case HAL_CAP_BB_RIFS_HANG:
789         return HAL_ENOTSUPP;
790     case HAL_CAP_BB_DFS_HANG:
791         return HAL_ENOTSUPP;
792     case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
793         /* Track chips that are known to have BB hangs related
794          * to rx_clear stuck low.
795          */
796         return HAL_ENOTSUPP;
797     case HAL_CAP_MAC_HANG:
798         /* Track chips that are known to have MAC hangs.
799          */
800         return HAL_OK;
801     case HAL_CAP_RIFS_RX_ENABLED:
802         /* Is RIFS RX currently enabled */
803         return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
804 #if 0
805     case HAL_CAP_ANT_CFG_2GHZ:
806         *result = p_cap->halNumAntCfg2Ghz;
807         return HAL_OK;
808     case HAL_CAP_ANT_CFG_5GHZ:
809         *result = p_cap->halNumAntCfg5Ghz;
810         return HAL_OK;
811     case HAL_CAP_RX_STBC:
812         *result = p_cap->hal_rx_stbc_support;
813         return HAL_OK;
814     case HAL_CAP_TX_STBC:
815         *result = p_cap->hal_tx_stbc_support;
816         return HAL_OK;
817 #endif
818     case HAL_CAP_LDPC:
819         *result = p_cap->halLDPCSupport;
820         return HAL_OK;
821     case HAL_CAP_DYNAMIC_SMPS:
822         return HAL_OK;
823     case HAL_CAP_DS:
824         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
825                 (p_cap->halTxChainMask & 0x3) != 0x3 ||
826                 (p_cap->halRxChainMask & 0x3) != 0x3) ?
827             HAL_ENOTSUPP : HAL_OK;
828     case HAL_CAP_TS:
829         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
830                 (p_cap->halTxChainMask & 0x7) != 0x7 ||
831                 (p_cap->halRxChainMask & 0x7) != 0x7) ?
832             HAL_ENOTSUPP : HAL_OK;
833     case HAL_CAP_OL_PWRCTRL:
834         return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
835             HAL_OK : HAL_ENOTSUPP;
836     case HAL_CAP_CRDC:
837 #if ATH_SUPPORT_CRDC
838         return (AR_SREV_WASP(ah) &&
839                 ah->ah_config.ath_hal_crdc_enable) ?
840                     HAL_OK : HAL_ENOTSUPP;
841 #else
842         return HAL_ENOTSUPP;
843 #endif
844 #if 0
845     case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
846         *result = (u_int32_t)(-1);
847         return HAL_OK;
848     case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
849         *result = (u_int32_t)(-1);
850         return HAL_OK;
851 #endif
852     case HAL_CAP_BB_PANIC_WATCHDOG:
853         return HAL_OK;
854     case HAL_CAP_PHYRESTART_CLR_WAR:
855         if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
856             (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
857         {
858             return HAL_OK;
859         }
860         else
861         {
862             return HAL_ENOTSUPP;
863         }
864     case HAL_CAP_ENTERPRISE_MODE:
865         *result = ahp->ah_enterprise_mode >> 16;
866         /*
867          * WAR for EV 77658 - Add delimiters to first sub-frame when using
868          * RTS/CTS with aggregation and non-enterprise Osprey.
869          *
870          * Bug fixed in AR9580/Peacock, Wasp1.1 and later
871          */
872         if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
873                 !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
874                 AR_SREV_WASP_10(ah))) {
875             *result |= AH_ENT_RTSCTS_DELIM_WAR;
876         }
877         return HAL_OK;
878     case HAL_CAP_LDPCWAR:
879         /* WAR for RIFS+LDPC issue is required for all chips currently
880          * supported by ar9300 HAL.
881          */
882         return HAL_OK;
883     case HAL_CAP_ENABLE_APM:
884         *result = p_cap->halApmEnable;
885         return HAL_OK;
886     case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
887         return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
888     case HAL_CAP_PCIE_LCR_OFFSET:
889         *result = p_cap->hal_pcie_lcr_offset;
890         return HAL_OK;
891     case HAL_CAP_SMARTANTENNA:
892         /* FIXME A request is pending with h/w team to add feature bit in
893          * caldata to detect if board has smart antenna or not, once added
894          * we need to fix his piece of code to read and return value without
895          * any compile flags
896          */
897 #if UMAC_SUPPORT_SMARTANTENNA
898         /* enable smart antenna for  Peacock, Wasp and scorpion
899            for future chips need to modify */
900         if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
901             return HAL_OK;
902         } else {
903             return HAL_ENOTSUPP;
904         }
905 #else
906         return HAL_ENOTSUPP;
907 #endif
908 
909 #ifdef ATH_TRAFFIC_FAST_RECOVER
910     case HAL_CAP_TRAFFIC_FAST_RECOVER:
911         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
912             return HAL_OK;
913         } else {
914             return HAL_ENOTSUPP;
915         }
916 #endif
917 
918     /* FreeBSD ANI */
919     case HAL_CAP_INTMIT:            /* interference mitigation */
920             switch (capability) {
921             case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
922                     return HAL_OK;
923             case HAL_CAP_INTMIT_ENABLE:
924                     return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
925                             HAL_OK : HAL_ENXIO;
926             case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
927             case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
928 //            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
929             case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
930             case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
931                     ani = ar9300_ani_get_current_state(ah);
932                     if (ani == AH_NULL)
933                             return HAL_ENXIO;
934                     switch (capability) {
935                     /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
936                     case 2: *result = ani->ofdm_noise_immunity_level; break;
937                     case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
938  //                   case 4: *result = ani->cck_weak_sig_threshold; break;
939                     case 5: *result = ani->firstep_level; break;
940                     case 6: *result = ani->spur_immunity_level; break;
941                     }
942                     return HAL_OK;
943             }
944             return HAL_EINVAL;
945     case HAL_CAP_ENFORCE_TXOP:
946         if (capability == 0)
947             return (HAL_OK);
948         if (capability != 1)
949             return (HAL_ENOTSUPP);
950         (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
951         return (HAL_OK);
952     case HAL_CAP_TOA_LOCATIONING:
953         if (capability == 0)
954             return HAL_OK;
955         if (capability == 2) {
956             *result = ar9300_read_loc_timer(ah);
957             return (HAL_OK);
958         }
959         return HAL_ENOTSUPP;
960     default:
961         return ath_hal_getcapability(ah, type, capability, result);
962     }
963 }
964 
965 HAL_BOOL
966 ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
967         u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
968 {
969     struct ath_hal_9300 *ahp = AH9300(ah);
970     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
971     u_int32_t v;
972 
973     switch (type) {
974     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
975         if (! p_cap->halTkipMicTxRxKeySupport)
976             return AH_FALSE;
977 
978         if (setting)
979             ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
980         else
981             ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
982 
983         OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
984         return AH_TRUE;
985 
986     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
987         if (setting) {
988             ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
989         } else {
990             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
991         }
992         return AH_TRUE;
993     case HAL_CAP_DIVERSITY:
994         v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
995         if (setting) {
996             v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
997         } else {
998             v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
999         }
1000         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1001         return AH_TRUE;
1002     case HAL_CAP_DIAG:              /* hardware diagnostic support */
1003         /*
1004          * NB: could split this up into virtual capabilities,
1005          *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
1006          *     seems worth the additional complexity.
1007          */
1008 #ifdef AH_DEBUG
1009         AH_PRIVATE(ah)->ah_diagreg = setting;
1010 #else
1011         AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
1012 #endif
1013         OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1014         return AH_TRUE;
1015     case HAL_CAP_TPC:
1016         ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1017         return AH_TRUE;
1018     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1019         if (setting) {
1020             ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1021         } else {
1022             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1023         }
1024         return AH_TRUE;
1025     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1026         if (p_cap->halTsfAddSupport) {
1027             if (setting) {
1028                 ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1029             } else {
1030                 ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1031             }
1032             return AH_TRUE;
1033         }
1034         return AH_FALSE;
1035 
1036     /* FreeBSD interrupt mitigation / ANI */
1037     case HAL_CAP_INTMIT: {          /* interference mitigation */
1038             /* This maps the public ANI commands to the internal ANI commands */
1039             /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1040             static const HAL_ANI_CMD cmds[] = {
1041                     HAL_ANI_PRESENT,
1042                     HAL_ANI_MODE,
1043                     HAL_ANI_NOISE_IMMUNITY_LEVEL,
1044                     HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1045                     HAL_ANI_CCK_WEAK_SIGNAL_THR,
1046                     HAL_ANI_FIRSTEP_LEVEL,
1047                     HAL_ANI_SPUR_IMMUNITY_LEVEL,
1048             };
1049 #define N(a)    (sizeof(a) / sizeof(a[0]))
1050             return capability < N(cmds) ?
1051                     ar9300_ani_control(ah, cmds[capability], setting) :
1052                     AH_FALSE;
1053 #undef N
1054     }
1055 
1056     case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1057         ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1058         OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1059         return AH_TRUE;
1060 
1061     case HAL_CAP_ENFORCE_TXOP:
1062         if (capability != 1)
1063             return AH_FALSE;
1064         if (setting) {
1065             ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1066             OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1067         } else {
1068             ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1069             OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1070         }
1071         return AH_TRUE;
1072 
1073     case HAL_CAP_TOA_LOCATIONING:
1074         if (capability == 0)
1075             return AH_TRUE;
1076         if (capability == 1) {
1077             ar9300_update_loc_ctl_reg(ah, setting);
1078             return AH_TRUE;
1079         }
1080         return AH_FALSE;
1081         /* fall thru... */
1082     default:
1083         return ath_hal_setcapability(ah, type, capability, setting, status);
1084     }
1085 }
1086 
1087 #ifdef AH_DEBUG
1088 static void
1089 ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1090 {
1091     u_int32_t i = 0;
1092 
1093     /* Read 0x80d0 to trigger pcie analyzer */
1094     HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1095         "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1096 
1097     if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1098         struct ath_hal_9300 *ahp = AH9300(ah);
1099         u_int32_t tf, rf, rc, cc;
1100 
1101         tf = OS_REG_READ(ah, AR_TFCNT);
1102         rf = OS_REG_READ(ah, AR_RFCNT);
1103         rc = OS_REG_READ(ah, AR_RCCNT);
1104         cc = OS_REG_READ(ah, AR_CCCNT);
1105 
1106         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1107             "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1108         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1109             "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1110         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1111             "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1112         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1113             "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1114 
1115         ahp->last_tf = tf;
1116         ahp->last_rf = rf;
1117         ahp->last_rc = rc;
1118         ahp->last_cc = cc;
1119 
1120         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1121             "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1122         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1123             "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1124         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1125             "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1126         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1127             "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1128         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1129             "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1130         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1131             "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1132         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1133             "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1134         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1135             "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1136     }
1137 
1138     if (args & HAL_DIAG_PRINT_REG_ALL) {
1139         for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1140             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1141                 i, OS_REG_READ(ah, i));
1142         }
1143 
1144         for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1145             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1146                 i, OS_REG_READ(ah, i));
1147         }
1148 
1149         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1150             "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1151 
1152         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1153             "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1154 
1155         for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1156             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1157                 i, OS_REG_READ(ah, i));
1158         }
1159 
1160         for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1161             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1162                 i, OS_REG_READ(ah, i));
1163         }
1164 
1165         for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1166             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1167                 i, OS_REG_READ(ah, i));
1168         }
1169 
1170         for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1171             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1172                 i, OS_REG_READ(ah, i));
1173         }
1174 
1175         for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1176             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1177                 i, OS_REG_READ(ah, i));
1178         }
1179 
1180         for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1181             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1182                 i, OS_REG_READ(ah, i));
1183         }
1184 
1185         for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1186             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1187                 i, OS_REG_READ(ah, i));
1188         }
1189 
1190         for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1191             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1192                 i, OS_REG_READ(ah, i));
1193         }
1194 
1195         for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1196             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1197                 i, OS_REG_READ(ah, i));
1198         }
1199 
1200         for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1201             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1202                 i, OS_REG_READ(ah, i));
1203         }
1204 
1205         for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1206             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1207                 i, OS_REG_READ(ah, i));
1208         }
1209     }
1210 }
1211 #endif
1212 
1213 HAL_BOOL
1214 ar9300_get_diag_state(struct ath_hal *ah, int request,
1215         const void *args, u_int32_t argsize,
1216         void **result, u_int32_t *resultsize)
1217 {
1218     struct ath_hal_9300 *ahp = AH9300(ah);
1219     struct ar9300_ani_state *ani;
1220 
1221     (void) ahp;
1222     if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1223         return AH_TRUE;
1224     }
1225     switch (request) {
1226 #ifdef AH_PRIVATE_DIAG
1227     case HAL_DIAG_EEPROM:
1228         *result = &ahp->ah_eeprom;
1229         *resultsize = sizeof(ar9300_eeprom_t);
1230         return AH_TRUE;
1231 
1232 #if 0   /* XXX - TODO */
1233     case HAL_DIAG_EEPROM_EXP_11A:
1234     case HAL_DIAG_EEPROM_EXP_11B:
1235     case HAL_DIAG_EEPROM_EXP_11G:
1236         pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1237         *result = pe->p_channels;
1238         *resultsize = (*result == AH_NULL) ? 0 :
1239             roundup(sizeof(u_int16_t) * pe->num_channels,
1240             sizeof(u_int32_t)) +
1241                 sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1242         return AH_TRUE;
1243 #endif
1244     case HAL_DIAG_RFGAIN:
1245         *result = &ahp->ah_gain_values;
1246         *resultsize = sizeof(GAIN_VALUES);
1247         return AH_TRUE;
1248     case HAL_DIAG_RFGAIN_CURSTEP:
1249         *result = (void *) ahp->ah_gain_values.curr_step;
1250         *resultsize = (*result == AH_NULL) ?
1251                 0 : sizeof(GAIN_OPTIMIZATION_STEP);
1252         return AH_TRUE;
1253 #if 0   /* XXX - TODO */
1254     case HAL_DIAG_PCDAC:
1255         *result = ahp->ah_pcdac_table;
1256         *resultsize = ahp->ah_pcdac_table_size;
1257         return AH_TRUE;
1258 #endif
1259     case HAL_DIAG_ANI_CURRENT:
1260 
1261         ani = ar9300_ani_get_current_state(ah);
1262         if (ani == AH_NULL)
1263             return AH_FALSE;
1264         /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1265         /* XXX TODO: add all of these to the HAL ANI state structure */
1266         bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1267         /* XXX should this be OFDM or CCK noise immunity level? */
1268         ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1269         ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1270         ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1271         ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1272         /* mrc_cck_off */
1273         /* cck_noise_immunity_level */
1274 
1275         ahp->ext_ani_state.listenTime = ani->listen_time;
1276 
1277         *result = &ahp->ext_ani_state;
1278         *resultsize = sizeof(ahp->ext_ani_state);
1279 #if 0
1280         *result = ar9300_ani_get_current_state(ah);
1281         *resultsize = (*result == AH_NULL) ?
1282             0 : sizeof(struct ar9300_ani_state);
1283 #endif
1284         return AH_TRUE;
1285     case HAL_DIAG_ANI_STATS:
1286         *result = ar9300_ani_get_current_stats(ah);
1287         *resultsize = (*result == AH_NULL) ?
1288             0 : sizeof(HAL_ANI_STATS);
1289         return AH_TRUE;
1290     case HAL_DIAG_ANI_CMD:
1291         if (argsize != 2*sizeof(u_int32_t)) {
1292             return AH_FALSE;
1293         }
1294         ar9300_ani_control(
1295             ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1296         return AH_TRUE;
1297 #if 0
1298     case HAL_DIAG_TXCONT:
1299         /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1300         return AH_TRUE;
1301 #endif /* 0 */
1302 #endif /* AH_PRIVATE_DIAG */
1303     case HAL_DIAG_CHANNELS:
1304 #if 0
1305         *result = &(ahp->ah_priv.ah_channels[0]);
1306         *resultsize =
1307             sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1308 #endif
1309         return AH_TRUE;
1310 #ifdef AH_DEBUG
1311     case HAL_DIAG_PRINT_REG:
1312         ar9300_print_reg(ah, *((const u_int32_t *)args));
1313         return AH_TRUE;
1314 #endif
1315     default:
1316         break;
1317     }
1318 
1319     return AH_FALSE;
1320 }
1321 
1322 void
1323 ar9300_dma_reg_dump(struct ath_hal *ah)
1324 {
1325 #ifdef AH_DEBUG
1326 #define NUM_DMA_DEBUG_REGS  8
1327 #define NUM_QUEUES          10
1328 
1329     u_int32_t val[NUM_DMA_DEBUG_REGS];
1330     int       qcu_offset = 0, dcu_offset = 0;
1331     u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1332     int       i, j, k;
1333     int16_t nfarray[HAL_NUM_NF_READINGS];
1334 #ifdef	ATH_NF_PER_CHAN
1335     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1336 #endif	/* ATH_NF_PER_CHAN */
1337     HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1338 
1339      /* selecting DMA OBS 8 */
1340     OS_REG_WRITE(ah, AR_MACMISC,
1341         ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1342          (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1343 
1344     ath_hal_printf(ah, "Raw DMA Debug values:\n");
1345     for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1346         if (i % 4 == 0) {
1347             ath_hal_printf(ah, "\n");
1348         }
1349 
1350         val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1351         ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1352     }
1353 
1354     ath_hal_printf(ah, "\n\n");
1355     ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1356 
1357     for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1358         if (i == 8) {
1359             /* only 8 QCU entries in val[0] */
1360             qcu_offset = 0;
1361             qcu_base++;
1362         }
1363 
1364         if (i == 6) {
1365             /* only 6 DCU entries in val[4] */
1366             dcu_offset = 0;
1367             dcu_base++;
1368         }
1369 
1370         ath_hal_printf(ah,
1371             "%2d          %2x      %1x     %2x           %2x\n",
1372             i,
1373             (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1374             (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1375             val[2] & (0x7 << (i * 3)) >> (i * 3),
1376             (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1377     }
1378 
1379     ath_hal_printf(ah, "\n");
1380     ath_hal_printf(ah,
1381         "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1382         (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1383     ath_hal_printf(ah,
1384         "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1385         (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1386     ath_hal_printf(ah,
1387         "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1388         (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1389     ath_hal_printf(ah,
1390         "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1391         (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1392     ath_hal_printf(ah,
1393         "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1394         (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1395     ath_hal_printf(ah,
1396         "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1397         (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1398     ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1399     ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1400 
1401     ar9300_upload_noise_floor(ah, 1, nfarray);
1402     ath_hal_printf(ah, "2G:\n");
1403     ath_hal_printf(ah, "Min CCA Out:\n");
1404     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1405     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1406                    nfarray[0], nfarray[1], nfarray[2]);
1407     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1408                    nfarray[3], nfarray[4], nfarray[5]);
1409 
1410     ar9300_upload_noise_floor(ah, 0, nfarray);
1411     ath_hal_printf(ah, "5G:\n");
1412     ath_hal_printf(ah, "Min CCA Out:\n");
1413     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1414     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1415                    nfarray[0], nfarray[1], nfarray[2]);
1416     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1417                    nfarray[3], nfarray[4], nfarray[5]);
1418 
1419     for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1420         ath_hal_printf(ah, "%s Chain %d NF History:\n",
1421                        ((i < 3) ? "Control " : "Extension "), i%3);
1422         for (j = 0, k = h->base.curr_index;
1423              j < HAL_NF_CAL_HIST_LEN_FULL;
1424              j++, k++) {
1425             ath_hal_printf(ah, "Element %d: %d\n",
1426                 j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1427         }
1428         ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1429     }
1430 
1431     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1432     ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1433                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1434                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1435     reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1436     ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1437                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1438                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1439     ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1440                    MS(reg, AR_PHY_DESIRED_SZ_ADC),
1441                    MS(reg, AR_PHY_DESIRED_SZ_ADC));
1442     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1443     ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1444                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1445                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1446     reg = OS_REG_READ(ah, AR_PHY_AGC);
1447     ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1448                    MS(reg, AR_PHY_AGC_COARSE_HIGH),
1449                    MS(reg, AR_PHY_AGC_COARSE_HIGH));
1450     ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1451                    MS(reg, AR_PHY_AGC_COARSE_LOW),
1452                    MS(reg, AR_PHY_AGC_COARSE_LOW));
1453     ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1454                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1455                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1456     reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1457     ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1458                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1459     ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1460                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1461                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1462     ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1463                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1464                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1465     reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1466     ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1467                    MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1468     ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1469                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1470                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1471 
1472 
1473     /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1474     reg = OS_REG_READ(ah, 0xa360);
1475     reg &= ~0x00800000;
1476     OS_REG_WRITE(ah, 0xa360, reg);
1477 
1478     /* Step 2a: Set register 0xa364 to 0x1000 */
1479     reg = 0x1000;
1480     OS_REG_WRITE(ah, 0xa364, reg);
1481 
1482     /* Step 3a: Read bits 17:0 of register 0x9c20 */
1483     reg = OS_REG_READ(ah, 0x9c20);
1484     reg &= 0x0003ffff;
1485     ath_hal_printf(ah,
1486         "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1487         __func__, reg);
1488 
1489     /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1490     reg = OS_REG_READ(ah, 0xa360);
1491     reg &= ~0x00800000;
1492     OS_REG_WRITE(ah, 0xa360, reg);
1493 
1494     /* Step 2b: Set register 0xa364 to 0x1400 */
1495     reg = 0x1400;
1496     OS_REG_WRITE(ah, 0xa364, reg);
1497 
1498     /* Step 3b: Read bits 17:0 of register 0x9c20 */
1499     reg = OS_REG_READ(ah, 0x9c20);
1500     reg &= 0x0003ffff;
1501     ath_hal_printf(ah,
1502         "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1503         __func__, reg);
1504 
1505     /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1506     reg = OS_REG_READ(ah, 0xa360);
1507     reg &= ~0x00800000;
1508     OS_REG_WRITE(ah, 0xa360, reg);
1509 
1510     /* Step 2c: Set register 0xa364 to 0x3C00 */
1511     reg = 0x3c00;
1512     OS_REG_WRITE(ah, 0xa364, reg);
1513 
1514     /* Step 3c: Read bits 17:0 of register 0x9c20 */
1515     reg = OS_REG_READ(ah, 0x9c20);
1516     reg &= 0x0003ffff;
1517     ath_hal_printf(ah,
1518         "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1519         __func__, reg);
1520 
1521     /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1522     reg = OS_REG_READ(ah, 0xa360);
1523     reg &= ~0x001040000;
1524     OS_REG_WRITE(ah, 0xa360, reg);
1525 
1526     /* Step 2d: Set register 0xa364 to 0x5005D */
1527     reg = 0x5005D;
1528     OS_REG_WRITE(ah, 0xa364, reg);
1529 
1530     /* Step 3d: Read bits 17:0 of register 0xa368 */
1531     reg = OS_REG_READ(ah, 0xa368);
1532     reg &= 0x0003ffff;
1533     ath_hal_printf(ah,
1534         "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1535         __func__, reg);
1536 
1537     /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1538     reg = OS_REG_READ(ah, 0xa360);
1539     reg &= ~0x001040000;
1540     OS_REG_WRITE(ah, 0xa360, reg);
1541 
1542     /* Step 2e: Set register 0xa364 to 0x7005D */
1543     reg = 0x7005D;
1544     OS_REG_WRITE(ah, 0xa364, reg);
1545 
1546     /* Step 3e: Read bits 17:0 of register 0xa368 */
1547     reg = OS_REG_READ(ah, 0xa368);
1548     reg &= 0x0003ffff;
1549     ath_hal_printf(ah,
1550         "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1551        __func__, reg);
1552 
1553     /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1554     reg = OS_REG_READ(ah, 0xa360);
1555     reg &= ~0x001000000;
1556     reg |= 0x40000;
1557     OS_REG_WRITE(ah, 0xa360, reg);
1558 
1559     /* Step 2f: Set register 0xa364 to 0x3005D */
1560     reg = 0x3005D;
1561     OS_REG_WRITE(ah, 0xa364, reg);
1562 
1563     /* Step 3f: Read bits 17:0 of register 0xa368 */
1564     reg = OS_REG_READ(ah, 0xa368);
1565     reg &= 0x0003ffff;
1566     ath_hal_printf(ah,
1567         "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1568         __func__, reg);
1569 
1570     /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1571     reg = OS_REG_READ(ah, 0xa360);
1572     reg &= ~0x001000000;
1573     reg |= 0x40000;
1574     OS_REG_WRITE(ah, 0xa360, reg);
1575 
1576     /* Step 2g: Set register 0xa364 to 0x6005D */
1577     reg = 0x6005D;
1578     OS_REG_WRITE(ah, 0xa364, reg);
1579 
1580     /* Step 3g: Read bits 17:0 of register 0xa368 */
1581     reg = OS_REG_READ(ah, 0xa368);
1582     reg &= 0x0003ffff;
1583     ath_hal_printf(ah,
1584         "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1585         __func__, reg);
1586 #endif /* AH_DEBUG */
1587 }
1588 
1589 /*
1590  * Return the busy for rx_frame, rx_clear, and tx_frame
1591  */
1592 u_int32_t
1593 ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1594     u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1595 {
1596     struct ath_hal_9300 *ahp = AH9300(ah);
1597     u_int32_t good = 1;
1598 
1599     u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1600     u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1601     u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1602     u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1603 
1604     if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1605         /*
1606          * Cycle counter wrap (or initial call); it's not possible
1607          * to accurately calculate a value because the registers
1608          * right shift rather than wrap--so punt and return 0.
1609          */
1610         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1611             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1612         good = 0;
1613     } else {
1614         u_int32_t cc_d = cc - ahp->ah_cycles;
1615         u_int32_t rc_d = rc - ahp->ah_rx_clear;
1616         u_int32_t rf_d = rf - ahp->ah_rx_frame;
1617         u_int32_t tf_d = tf - ahp->ah_tx_frame;
1618 
1619         if (cc_d != 0) {
1620             *rxc_pcnt = rc_d * 100 / cc_d;
1621             *rxf_pcnt = rf_d * 100 / cc_d;
1622             *txf_pcnt = tf_d * 100 / cc_d;
1623         } else {
1624             good = 0;
1625         }
1626     }
1627 
1628     ahp->ah_cycles = cc;
1629     ahp->ah_rx_frame = rf;
1630     ahp->ah_rx_clear = rc;
1631     ahp->ah_tx_frame = tf;
1632 
1633     return good;
1634 }
1635 
1636 /*
1637  * Return approximation of extension channel busy over an time interval
1638  * 0% (clear) -> 100% (busy)
1639  * -1 for invalid estimate
1640  */
1641 uint32_t
1642 ar9300_get_11n_ext_busy(struct ath_hal *ah)
1643 {
1644     /*
1645      * Overflow condition to check before multiplying to get %
1646      * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1647      */
1648 #define OVERFLOW_LIMIT  0x28F5C28
1649 #define ERROR_CODE      -1
1650 
1651     struct ath_hal_9300 *ahp = AH9300(ah);
1652     u_int32_t busy = 0; /* percentage */
1653     int8_t busyper = 0;
1654     u_int32_t cycle_count, ctl_busy, ext_busy;
1655 
1656     /* cycle_count will always be the first to wrap; therefore, read it last
1657      * This sequence of reads is not atomic, and MIB counter wrap
1658      * could happen during it ?
1659      */
1660     ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1661     ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1662     cycle_count = OS_REG_READ(ah, AR_CCCNT);
1663 
1664     if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1665         (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1666     {
1667         /*
1668          * Cycle counter wrap (or initial call); it's not possible
1669          * to accurately calculate a value because the registers
1670          * right shift rather than wrap--so punt and return 0.
1671          */
1672         busyper = ERROR_CODE;
1673         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1674             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1675     } else {
1676         u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1677         u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1678 
1679         /*
1680          * Compute extension channel busy percentage
1681          * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1682          * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1683          * Will never happen, since (ext_busy_delta < cycle_delta) always,
1684          * and shift necessitated by large ext_busy_delta.
1685          * Due to timing difference to read the registers and counter overflow,
1686          * it may still happen that cycle_delta >> 7 = 0.
1687          *
1688          */
1689         if (cycle_delta) {
1690             if (ext_busy_delta > OVERFLOW_LIMIT) {
1691                 if (cycle_delta >> 7) {
1692                     busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1693                 } else {
1694                     busyper = ERROR_CODE;
1695                 }
1696             } else {
1697                 busy = (ext_busy_delta * 100) / cycle_delta;
1698             }
1699         } else {
1700             busyper = ERROR_CODE;
1701         }
1702 
1703         if (busy > 100) {
1704             busy = 100;
1705         }
1706         if ( busyper != ERROR_CODE ) {
1707             busyper = busy;
1708         }
1709     }
1710 
1711     ahp->ah_cycle_count = cycle_count;
1712     ahp->ah_ctl_busy = ctl_busy;
1713     ahp->ah_ext_busy = ext_busy;
1714 
1715     return busyper;
1716 #undef OVERFLOW_LIMIT
1717 #undef ERROR_CODE
1718 }
1719 
1720 /* BB Panic Watchdog declarations */
1721 #define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1722 #define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1723 
1724 void
1725 ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1726 {
1727 #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1728     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1729     u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1730     u_int32_t val, idle_count;
1731 
1732     if (idle_tmo_ms != 0) {
1733         /* enable IRQ, disable chip-reset for BB panic */
1734         val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1735             AR_PHY_BB_PANIC_CNTL2_MASK;
1736         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1737             (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1738         /* bound limit to 10 secs */
1739         if (idle_tmo_ms > 10000) {
1740             idle_tmo_ms = 10000;
1741         }
1742         if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1743             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1744         } else {
1745             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1746         }
1747         /*
1748          * enable panic in non-IDLE mode,
1749          * disable in IDLE mode,
1750          * set idle time-out
1751          */
1752 
1753         // EV92527 : Enable IDLE mode panic
1754 
1755         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1756                      AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1757                      AR_PHY_BB_PANIC_IDLE_ENABLE |
1758                      (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1759                      (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1760     } else {
1761         /* disable IRQ, disable chip-reset for BB panic */
1762         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1763             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1764             ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1765         /* disable panic in non-IDLE mode, disable in IDLE mode */
1766         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1767             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1768             ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1769     }
1770 
1771     HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1772              __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1773 #undef HAL_BB_PANIC_IDLE_TIME_OUT
1774 }
1775 
1776 
1777 void
1778 ar9300_handle_bb_panic(struct ath_hal *ah)
1779 {
1780     u_int32_t status;
1781     /*
1782      * we want to avoid printing in ISR context so we save
1783      * panic watchdog status to be printed later in DPC context
1784      */
1785     AH9300(ah)->ah_bb_panic_last_status = status =
1786         OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1787     /*
1788      * panic watchdog timer should reset on status read
1789      * but to make sure we write 0 to the watchdog status bit
1790      */
1791     OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1792 }
1793 
1794 int
1795 ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1796 {
1797     bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1798 
1799     /*
1800      * For signature 04000539 do not print anything.
1801      * This is a very common occurence as a compromise between
1802      * BB Panic and AH_FALSE detects (EV71009). It indicates
1803      * radar hang, which can be cleared by reprogramming
1804      * radar related register and does not requre a chip reset
1805      */
1806 
1807     /* Suppress BB Status mesg following signature */
1808     switch (bb_panic->status) {
1809         case 0x04000539:
1810         case 0x04008009:
1811         case 0x04000b09:
1812         case 0x1300000a:
1813         return -1;
1814     }
1815 
1816     bb_panic->tsf = ar9300_get_tsf32(ah);
1817     bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1818     bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1819     bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1820     bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1821     bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1822     bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1823     bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1824     bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1825     bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1826     bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1827     bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1828     bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1829     bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1830     bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1831                                         &bb_panic->rxc_pcnt,
1832                                         &bb_panic->rxf_pcnt,
1833                                         &bb_panic->txf_pcnt);
1834 
1835     if (ah->ah_config.ath_hal_show_bb_panic) {
1836         ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1837             "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1838         ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1839             "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1840             bb_panic->wd, bb_panic->det, bb_panic->rdar,
1841             bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1842             bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1843         ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1844             bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1845         ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1846             bb_panic->phy_gen_ctrl);
1847         if (bb_panic->cycles) {
1848             ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1849                 "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1850                 bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1851         }
1852         ath_hal_printf(ah, "==== BB update: done ====\n\n");
1853     }
1854 
1855     return 0; //The returned data will be stored for athstats to retrieve it
1856 }
1857 
1858 /* set the reason for HAL reset */
1859 void
1860 ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1861 {
1862     AH9300(ah)->ah_reset_reason = resetreason;
1863 }
1864 
1865 /*
1866  * Configure 20/40 operation
1867  *
1868  * 20/40 = joint rx clear (control and extension)
1869  * 20    = rx clear (control)
1870  *
1871  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1872  *         when changing from 20/40 => 20 only
1873  */
1874 void
1875 ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1876 {
1877     u_int32_t macmode;
1878 
1879     /* Configure MAC for 20/40 operation */
1880     if (mode == HAL_HT_MACMODE_2040 &&
1881         !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1882         macmode = AR_2040_JOINED_RX_CLEAR;
1883     } else {
1884         macmode = 0;
1885     }
1886     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1887 }
1888 
1889 /*
1890  * Get Rx clear (control/extension channel)
1891  *
1892  * Returns active low (busy) for ctrl/ext channel
1893  * Owl 2.0
1894  */
1895 HAL_HT_RXCLEAR
1896 ar9300_get_11n_rx_clear(struct ath_hal *ah)
1897 {
1898     HAL_HT_RXCLEAR rxclear = 0;
1899     u_int32_t val;
1900 
1901     val = OS_REG_READ(ah, AR_DIAG_SW);
1902 
1903     /* control channel */
1904     if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1905         rxclear |= HAL_RX_CLEAR_CTL_LOW;
1906     }
1907     /* extension channel */
1908     if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1909         rxclear |= HAL_RX_CLEAR_EXT_LOW;
1910     }
1911     return rxclear;
1912 }
1913 
1914 /*
1915  * Set Rx clear (control/extension channel)
1916  *
1917  * Useful for forcing the channel to appear busy for
1918  * debugging/diagnostics
1919  * Owl 2.0
1920  */
1921 void
1922 ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1923 {
1924     /* control channel */
1925     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1926         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1927     } else {
1928         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1929     }
1930     /* extension channel */
1931     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1932         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1933     } else {
1934         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1935     }
1936 }
1937 
1938 
1939 /*
1940  * HAL support code for force ppm tracking workaround.
1941  */
1942 
1943 u_int32_t
1944 ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1945 {
1946     u_int32_t retval;
1947     u_int32_t off1;
1948     u_int32_t off2;
1949 
1950     if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1951         off1 = 0x2000;
1952         off2 = 0x1000;
1953     } else {
1954         off1 = 0x1000;
1955         off2 = 0x2000;
1956     }
1957 
1958     retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1959              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1960              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1961 
1962     return retval;
1963 }
1964 
1965 u_int32_t
1966 ar9300_ppm_force(struct ath_hal *ah)
1967 {
1968     u_int32_t data_fine;
1969     u_int32_t data4;
1970     //u_int32_t off1;
1971     //u_int32_t off2;
1972     HAL_BOOL signed_val = AH_FALSE;
1973 
1974 //    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1975 //        off1 = 0x2000;
1976 //        off2 = 0x1000;
1977 //    } else {
1978 //        off1 = 0x1000;
1979 //        off2 = 0x2000;
1980 //    }
1981     data_fine =
1982         AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1983         OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1984 
1985     /*
1986      * bit [11-0] is new ppm value. bit 11 is the signed bit.
1987      * So check value from bit[10:0].
1988      * Now get the abs val of the ppm value read in bit[0:11].
1989      * After that do bound check on abs value.
1990      * if value is off limit, CAP the value and and restore signed bit.
1991      */
1992     if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1993     {
1994         /* get the positive value */
1995         data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1996         signed_val = AH_TRUE;
1997     }
1998     if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
1999     {
2000         HALDEBUG(ah, HAL_DEBUG_REGIO,
2001             "%s Correcting ppm out of range %x\n",
2002             __func__, (data_fine & 0x7ff));
2003         data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
2004     }
2005     /*
2006      * Restore signed value if changed above.
2007      * Use typecast to avoid compilation errors
2008      */
2009     if (signed_val) {
2010         data_fine = (-(int32_t)data_fine) &
2011             AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2012     }
2013 
2014     /* write value */
2015     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
2016         ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2017     OS_REG_WRITE(ah, AR_PHY_TIMING2,
2018         data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
2019 
2020     return data_fine;
2021 }
2022 
2023 void
2024 ar9300_ppm_un_force(struct ath_hal *ah)
2025 {
2026     u_int32_t data4;
2027 
2028     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2029     OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2030 }
2031 
2032 u_int32_t
2033 ar9300_ppm_arm_trigger(struct ath_hal *ah)
2034 {
2035     u_int32_t val;
2036     u_int32_t ret;
2037 
2038     val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2039     ret = OS_REG_READ(ah, AR_TSF_L32);
2040     OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2041         val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2042 
2043     /* return low word of TSF at arm time */
2044     return ret;
2045 }
2046 
2047 int
2048 ar9300_ppm_get_trigger(struct ath_hal *ah)
2049 {
2050     if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2051         AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2052     {
2053         /* has not triggered yet, return AH_FALSE */
2054         return 0;
2055     }
2056 
2057     /* else triggered, return AH_TRUE */
2058     return 1;
2059 }
2060 
2061 void
2062 ar9300_mark_phy_inactive(struct ath_hal *ah)
2063 {
2064     OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2065 }
2066 
2067 /* DEBUG */
2068 u_int32_t
2069 ar9300_ppm_get_force_state(struct ath_hal *ah)
2070 {
2071     return
2072         OS_REG_READ(ah, AR_PHY_TIMING2) &
2073         (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2074 }
2075 
2076 /*
2077  * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2078  */
2079 HAL_BOOL
2080 ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2081 {
2082     /*
2083      * XXX FreeBSD todo: reimplement this
2084      */
2085 #if 0
2086     p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2087     p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2088     p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2089     p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2090     p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2091                            p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2092     p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2093                            p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2094 #endif
2095     return AH_FALSE;
2096 }
2097 
2098 void
2099 ar9300_clear_mib_counters(struct ath_hal *ah)
2100 {
2101     u_int32_t reg_val;
2102 
2103     reg_val = OS_REG_READ(ah, AR_MIBC);
2104     OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2105     OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2106 }
2107 
2108 
2109 /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2110 HAL_BOOL
2111 ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2112 {
2113     struct ath_hal_9300 *ahp = AH9300(ah);
2114     HAL_CHANNEL_INTERNAL *ichan =
2115       ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2116     HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2117     u_int32_t tmp = 0;
2118 
2119     if (enable) {
2120         if (ahp->ah_rifs_enabled == AH_TRUE) {
2121             return AH_TRUE;
2122         }
2123 
2124         OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2125         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2126                      ahp->ah_rifs_reg[1]);
2127 
2128         ahp->ah_rifs_enabled = AH_TRUE;
2129         OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2130     } else {
2131         if (ahp->ah_rifs_enabled == AH_TRUE) {
2132             ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2133                                               AR_PHY_SEARCH_START_DELAY);
2134             ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2135         }
2136         /* Change rifs init delay to 0 */
2137         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2138                      (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2139         tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2140         if (is_chan_2g) {
2141             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2142                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2143             } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2144                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2145             }
2146         } else {
2147             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2148                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2149             } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2150                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2151             }
2152         }
2153 
2154         ahp->ah_rifs_enabled = AH_FALSE;
2155     }
2156     return AH_TRUE;
2157 
2158 } /* ar9300_set_rifs_delay () */
2159 
2160 /* Set the current RIFS Rx setting */
2161 HAL_BOOL
2162 ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2163 {
2164     /* Non-Owl 11n chips */
2165     if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2166         if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2167             return ar9300_set_rifs_delay(ah, enable);
2168         }
2169         return AH_FALSE;
2170     }
2171 
2172     return AH_TRUE;
2173 } /* ar9300_set_11n_rx_rifs () */
2174 
2175 static hal_mac_hangs_t
2176 ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2177   hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2178 {
2179     int i = 0;
2180     hal_mac_hangs_t found_hangs = 0;
2181 
2182     if (hangs & dcu_chain_state) {
2183         for (i = 0; i < 6; i++) {
2184             if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2185                  hang_check.dcu_chain_state)
2186             {
2187                 found_hangs |= dcu_chain_state;
2188                 *dcu_chain = i;
2189             }
2190         }
2191         for (i = 0; i < 4; i++) {
2192             if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2193                   hang_check.dcu_chain_state)
2194             {
2195                 found_hangs |= dcu_chain_state;
2196                 *dcu_chain = i + 6;
2197             }
2198         }
2199     }
2200 
2201     if (hangs & dcu_complete_state) {
2202         if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2203             found_hangs |= dcu_complete_state;
2204         }
2205     }
2206 
2207     return found_hangs;
2208 
2209 } /* end - ar9300_compare_dbg_hang */
2210 
2211 #define NUM_STATUS_READS 50
2212 HAL_BOOL
2213 ar9300_detect_mac_hang(struct ath_hal *ah)
2214 {
2215     struct ath_hal_9300 *ahp = AH9300(ah);
2216     mac_dbg_regs_t mac_dbg;
2217     hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2218     hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2219     int i = 0;
2220     u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2221 
2222     if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2223         return AH_FALSE;
2224     }
2225 
2226     OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2227 
2228     mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2229     mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2230     mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2231 
2232     HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2233             mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2234             mac_dbg.dma_dbg_6);
2235 
2236     if (hang_sig1 !=
2237             ar9300_compare_dbg_hang(ah, mac_dbg,
2238                  hang_sig1_val, hang_sig1, &dcu_chain))
2239     {
2240         HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2241         return AH_FALSE;
2242     }
2243 
2244     shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2245     shift_val *= 5;
2246 
2247     for (i = 1; i <= NUM_STATUS_READS; i++) {
2248         if (dcu_chain < 6) {
2249             mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2250             current_dcu_chain_state =
2251                      ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2252         } else {
2253             mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2254             current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2255         }
2256         mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2257 
2258         if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2259             || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2260             return AH_FALSE;
2261         }
2262     }
2263     HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2264              ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2265     ahp->ah_hang[MAC_HANG_SIG1]++;
2266     return AH_TRUE;
2267 
2268 } /* end - ar9300_detect_mac_hang */
2269 
2270 /* Determine if the baseband is hung by reading the Observation Bus Register */
2271 HAL_BOOL
2272 ar9300_detect_bb_hang(struct ath_hal *ah)
2273 {
2274 #define N(a) (sizeof(a) / sizeof(a[0]))
2275     struct ath_hal_9300 *ahp = AH9300(ah);
2276     u_int32_t hang_sig = 0;
2277     int i = 0;
2278     /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2279      *
2280      * 4 known BB hang signatures -
2281      * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2282      * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2283      * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2284      * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2285      *     Rx State (bits 20-24) is 0x7.
2286      */
2287     hal_hw_hang_check_t hang_list [] =
2288     {
2289      /* Offset        Reg Value   Reg Mask    Hang Offset */
2290        {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2291        {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2292        {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2293        {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2294     };
2295 
2296     if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2297                                HAL_DFS_BB_HANG_WAR |
2298                                HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2299         return AH_FALSE;
2300     }
2301 
2302     hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2303     for (i = 1; i <= NUM_STATUS_READS; i++) {
2304         if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2305             return AH_FALSE;
2306         }
2307     }
2308 
2309     for (i = 0; i < N(hang_list); i++) {
2310         if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2311             ahp->ah_hang[hang_list[i].hang_offset]++;
2312             HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2313                      "sig3count=%d sig4count=%d\n", __func__,
2314                      ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2315                      ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2316             return AH_TRUE;
2317         }
2318     }
2319 
2320     HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2321                               "<0x806c>=0x%x\n", __func__, hang_sig);
2322 
2323     return AH_FALSE;
2324 
2325 #undef N
2326 } /* end - ar9300_detect_bb_hang () */
2327 
2328 #undef NUM_STATUS_READS
2329 
2330 HAL_STATUS
2331 ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2332 {
2333     struct ath_hal_9300     *ahp = AH9300(ah);
2334     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2335     HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2336     const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2337     u_int16_t               ant_config;
2338     u_int32_t               hal_num_ant_config;
2339 
2340     hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2341         p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2342 
2343     if (cfg < hal_num_ant_config) {
2344         if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2345             OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2346             return HAL_OK;
2347         }
2348     }
2349 
2350     return HAL_EINVAL;
2351 }
2352 
2353 /*
2354  * Functions to get/set DCS mode
2355  */
2356 void
2357 ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2358 {
2359     AH9300(ah)->ah_dcs_enable = mode;
2360 }
2361 
2362 u_int32_t
2363 ar9300_get_dcs_mode(struct ath_hal *ah)
2364 {
2365     return AH9300(ah)->ah_dcs_enable;
2366 }
2367 
2368 #if ATH_BT_COEX
2369 void
2370 ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2371 {
2372     struct ath_hal_9300 *ahp = AH9300(ah);
2373 
2374     ahp->ah_bt_module = btinfo->bt_module;
2375     ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2376     ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2377     ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2378     ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2379     ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2380     ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2381     ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2382 }
2383 
2384 void
2385 ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2386 {
2387     struct ath_hal_9300 *ahp = AH9300(ah);
2388     HAL_BOOL rx_clear_polarity;
2389 
2390     /*
2391      * For Kiwi and Osprey, the polarity of rx_clear is active high.
2392      * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2393      */
2394     rx_clear_polarity = !btconf->bt_rxclear_polarity;
2395 
2396     ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2397         SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2398         SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2399         SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2400         SM(btconf->bt_mode, AR_BT_MODE) |
2401         SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2402         SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2403         SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2404         SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2405 
2406     ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2407 
2408     if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2409         /* Enable ACK to go out even though BT has higher priority. */
2410         ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2411     }
2412 }
2413 
2414 void
2415 ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2416 {
2417     struct ath_hal_9300 *ahp = AH9300(ah);
2418 
2419     /* clear the old value, then set the new value */
2420     ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2421     ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2422 }
2423 
2424 void
2425 ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2426 {
2427     struct ath_hal_9300 *ahp = AH9300(ah);
2428 
2429     ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2430     ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2431     ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2432     ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2433 
2434     switch (stomp_type) {
2435     case HAL_BT_COEX_STOMP_ALL:
2436         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2437         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2438         break;
2439     case HAL_BT_COEX_STOMP_LOW:
2440         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2441         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2442         break;
2443     case HAL_BT_COEX_STOMP_ALL_FORCE:
2444         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2445         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2446         break;
2447     case HAL_BT_COEX_STOMP_LOW_FORCE:
2448         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2449         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2450         break;
2451     case HAL_BT_COEX_STOMP_NONE:
2452     case HAL_BT_COEX_NO_STOMP:
2453         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2454         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2455         break;
2456     default:
2457         /* There is a force_weight from registry */
2458         ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2459         ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2460         break;
2461     }
2462 }
2463 
2464 void
2465 ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2466 {
2467     struct ath_hal_9300 *ahp = AH9300(ah);
2468 
2469     /* clear the old value, then set the new value */
2470     ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2471     ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2472 }
2473 
2474 static void
2475 ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2476 {
2477     struct ath_hal_9300 *ahp = AH9300(ah);
2478 #if ATH_ANT_DIV_COMB
2479     //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2480     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2481 #endif
2482 
2483     HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: called, value=%d\n", __func__, value);
2484 
2485     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2486     {
2487         if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2488         {
2489             /* Config antenna diversity */
2490 #if ATH_ANT_DIV_COMB
2491             ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2492 #endif
2493         }
2494     }
2495 }
2496 
2497 
2498 void
2499 ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2500     u_int32_t value)
2501 {
2502     struct ath_hal_9300 *ahp = AH9300(ah);
2503     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2504 
2505     switch (type) {
2506         case HAL_BT_COEX_SET_ACK_PWR:
2507             if (value) {
2508                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2509             } else {
2510                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2511             }
2512             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2513                 ahpriv->ah_extraTxPow, 0);
2514             break;
2515 
2516         case HAL_BT_COEX_ANTENNA_DIVERSITY:
2517             if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
2518                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2519                 if (value) {
2520                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2521                 }
2522                 else {
2523                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2524                 }
2525                 ar9300_bt_coex_antenna_diversity(ah, value);
2526             }
2527             break;
2528         case HAL_BT_COEX_LOWER_TX_PWR:
2529             if (value) {
2530                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2531             }
2532             else {
2533                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2534             }
2535             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2536                                       ahpriv->ah_extraTxPow, 0);
2537             break;
2538 #if ATH_SUPPORT_MCI
2539         case HAL_BT_COEX_MCI_MAX_TX_PWR:
2540             if ((ah->ah_config.ath_hal_mci_config &
2541                  ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2542             {
2543                 if (value) {
2544                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2545                     ahp->ah_mci_concur_tx_en = AH_TRUE;
2546                 }
2547                 else {
2548                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2549                     ahp->ah_mci_concur_tx_en = AH_FALSE;
2550                 }
2551                 ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2552                                           ahpriv->ah_extraTxPow, 0);
2553             }
2554             HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2555                      ahp->ah_mci_concur_tx_en);
2556             break;
2557         case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2558             if (value) {
2559                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2560             }
2561             else {
2562                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2563             }
2564             break;
2565 #endif
2566         default:
2567             break;
2568     }
2569 }
2570 
2571 void
2572 ar9300_bt_coex_disable(struct ath_hal *ah)
2573 {
2574     struct ath_hal_9300 *ahp = AH9300(ah);
2575 
2576     /* Always drive rx_clear_external output as 0 */
2577     ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2578         HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2579 
2580     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2581         OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2582         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2583     }
2584 
2585     OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2586     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2587     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2588     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2589     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2590     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2591     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2592     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2593 
2594     ahp->ah_bt_coex_enabled = AH_FALSE;
2595 }
2596 
2597 int
2598 ar9300_bt_coex_enable(struct ath_hal *ah)
2599 {
2600     struct ath_hal_9300 *ahp = AH9300(ah);
2601 
2602     /* Program coex mode and weight registers to actually enable coex */
2603     OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2604     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2605     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2606     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2607     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2608     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2609     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2610     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2611 
2612     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2613         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2614     } else {
2615         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2616     }
2617 
2618     OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2619     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2620         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2621     } else {
2622         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2623     }
2624 
2625     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2626         /* For 3-wire, configure the desired GPIO port for rx_clear */
2627         ath_hal_gpioCfgOutput(ah,
2628             ahp->ah_wlan_active_gpio_select,
2629             HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2630     }
2631     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2632         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2633     {
2634         /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2635         ath_hal_gpioCfgOutput(ah,
2636             ahp->ah_wlan_active_gpio_select,
2637             HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2638     }
2639 
2640     /*
2641      * Enable a weak pull down on BT_ACTIVE.
2642      * When BT device is disabled, BT_ACTIVE might be floating.
2643      */
2644     OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2645         (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2646         (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2647 
2648     ahp->ah_bt_coex_enabled = AH_TRUE;
2649 
2650     return 0;
2651 }
2652 
2653 u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2654 {
2655     return 0;
2656 }
2657 
2658 u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2659 {
2660     return bOn;
2661 }
2662 
2663 void
2664 ar9300_init_bt_coex(struct ath_hal *ah)
2665 {
2666     struct ath_hal_9300 *ahp = AH9300(ah);
2667 
2668     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2669         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2670                    (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2671                     AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2672 
2673         /*
2674          * Set input mux for bt_prority_async and
2675          * bt_active_async to GPIO pins
2676          */
2677         OS_REG_RMW_FIELD(ah,
2678             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2679             AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2680             ahp->ah_bt_active_gpio_select);
2681         OS_REG_RMW_FIELD(ah,
2682             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2683             AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2684             ahp->ah_bt_priority_gpio_select);
2685 
2686         /* Configure the desired GPIO ports for input */
2687         ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2688         ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2689 
2690         if (ahp->ah_bt_coex_enabled) {
2691             ar9300_bt_coex_enable(ah);
2692         } else {
2693             ar9300_bt_coex_disable(ah);
2694         }
2695     }
2696     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2697         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2698     {
2699         /* 2-wire */
2700         if (ahp->ah_bt_coex_enabled) {
2701             /* Connect bt_active_async to baseband */
2702             OS_REG_CLR_BIT(ah,
2703                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2704                 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2705                  AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2706             OS_REG_SET_BIT(ah,
2707                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2708                 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2709 
2710             /*
2711              * Set input mux for bt_prority_async and
2712              * bt_active_async to GPIO pins
2713              */
2714             OS_REG_RMW_FIELD(ah,
2715                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2716                 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2717                 ahp->ah_bt_active_gpio_select);
2718 
2719             /* Configure the desired GPIO ports for input */
2720             ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2721 
2722             /* Enable coexistence on initialization */
2723             ar9300_bt_coex_enable(ah);
2724         }
2725     }
2726 #if ATH_SUPPORT_MCI
2727     else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2728         if (ahp->ah_bt_coex_enabled) {
2729             ar9300_mci_bt_coex_enable(ah);
2730         }
2731         else {
2732             ar9300_mci_bt_coex_disable(ah);
2733         }
2734     }
2735 #endif /* ATH_SUPPORT_MCI */
2736 }
2737 
2738 #endif /* ATH_BT_COEX */
2739 
2740 HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2741 {
2742     u_int32_t val;
2743     int wasp_mm_rev;
2744 
2745 #define AR_SOC_RST_REVISION_ID      0xB8060090
2746 #define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2747     wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2748             AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2749             AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2750 #undef AR_SOC_RST_REVISION_ID
2751 #undef REG_READ
2752 
2753     /*
2754      * Azimuth (ProxySTA) Mode is only supported correctly by
2755      * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2756      *
2757      * Enable this feature for Scorpion at this time. The silicon
2758      * still needs to be validated.
2759      */
2760     if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2761         !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2762         !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2763           ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2764            (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2765             wasp_mm_rev >= 0 /* 1 */))))
2766     {
2767         HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2768                 "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2769                 __func__, AH_PRIVATE((ah))->ah_macVersion,
2770                 AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2771         return HAL_ENOTSUPP;
2772     }
2773 
2774     OS_REG_WRITE(ah,
2775         AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2776 
2777     /* turn on mode bit[24] for proxy sta */
2778     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2779         OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2780 
2781     val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2782     if (enable) {
2783         val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2784                AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2785                AR_AZIMUTH_BA_USES_AD1;
2786         /* turn off filter pass hold (bit 9) */
2787         val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2788     } else {
2789         val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2790                  AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2791                  AR_AZIMUTH_BA_USES_AD1);
2792     }
2793     OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2794 
2795     /* enable promiscous mode */
2796     OS_REG_WRITE(ah, AR_RX_FILTER,
2797         OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2798     /* enable promiscous in azimuth mode */
2799     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2800     OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2801 
2802     /* turn on filter pass hold (bit 9) */
2803     OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2804         OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2805 
2806     return HAL_OK;
2807 }
2808 
2809 #if 0
2810 void ar9300_mat_enable(struct ath_hal *ah, int enable)
2811 {
2812     /*
2813      * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2814      * mitigation and turn on key search always for better performance.
2815      */
2816     struct ath_hal_9300 *ahp = AH9300(ah);
2817     struct ath_hal_private *ap = AH_PRIVATE(ah);
2818 
2819     ahp->ah_intr_mitigation_rx = !enable;
2820     if (ahp->ah_intr_mitigation_rx) {
2821         /*
2822          * Enable Interrupt Mitigation for Rx.
2823          * If no build-specific limits for the rx interrupt mitigation
2824          * timer have been specified, use conservative defaults.
2825          */
2826         #ifndef AH_RIMT_VAL_LAST
2827             #define AH_RIMT_LAST_MICROSEC 500
2828         #endif
2829         #ifndef AH_RIMT_VAL_FIRST
2830             #define AH_RIMT_FIRST_MICROSEC 2000
2831         #endif
2832         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2833         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2834     } else {
2835         OS_REG_WRITE(ah, AR_RIMT, 0);
2836     }
2837 
2838     ahp->ah_enable_keysearch_always = !!enable;
2839     ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2840 }
2841 #endif
2842 
2843 void ar9300_enable_tpc(struct ath_hal *ah)
2844 {
2845     u_int32_t val = 0;
2846 
2847     ah->ah_config.ath_hal_desc_tpc = 1;
2848 
2849     /* Enable TPC */
2850     OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2851 
2852     /*
2853      * Disable per chain power reduction since we are already
2854      * accounting for this in our calculations
2855      */
2856     val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2857     if (AR_SREV_WASP(ah)) {
2858         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2859                          val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2860     } else {
2861         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2862                          val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2863     }
2864 }
2865 
2866 
2867 /*
2868  * ar9300_force_tsf_sync
2869  * This function forces the TSF sync to the given bssid, this is implemented
2870  * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2871  * mode of operation, where we sync the TSF to RootAP TSF values
2872  */
2873 void
2874 ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2875     u_int16_t assoc_id)
2876 {
2877     ar9300_set_operating_mode(ah, HAL_M_STA);
2878     ar9300_write_associd(ah, bssid, assoc_id);
2879 }
2880 
2881 void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2882 {
2883     struct ath_hal_9300 *ahp = AH9300(ah);
2884     u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2885     u_int32_t           temp_powertx_rate9_reg_val;
2886     int8_t              olpc_power_offset = 0;
2887     int8_t              tmp_olpc_val = 0;
2888     HAL_RSSI_TX_POWER   old_greentx_status;
2889     u_int8_t            target_power_val_t[ar9300_rate_size];
2890     int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2891 
2892     if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2893         !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2894         return;
2895     }
2896 
2897     old_greentx_status = AH9300(ah)->green_tx_status;
2898     if (ahp->ah_hw_green_tx_enable) {
2899         tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2900         tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2901     } else {
2902         tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2903         tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2904     }
2905 
2906     if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2907         && (rssi > tmp_rss1_thr1))
2908     {
2909         if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2910             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2911         }
2912     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2913         && (rssi > tmp_rss1_thr2))
2914     {
2915         if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2916             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2917         }
2918     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2919         if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2920             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2921         }
2922     }
2923 
2924     /* If status is not change, don't do anything */
2925     if (old_greentx_status == AH9300(ah)->green_tx_status) {
2926         return;
2927     }
2928 
2929     /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2930     if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2931         && AR_SREV_POSEIDON(ah))
2932     {
2933         if (ahp->ah_hw_green_tx_enable) {
2934             switch (AH9300(ah)->green_tx_status) {
2935             case HAL_RSSI_TX_POWER_SHORT:
2936                 /* 1. TxPower Config */
2937                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2938                     sizeof(target_power_val_t));
2939                 /* 1.1 Store OLPC Delta Calibration Offset*/
2940                 olpc_power_offset = 0;
2941                 /* 2. Store OB/DB */
2942                 /* 3. Store TPC settting */
2943                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2944                                     SM(14, AR_TPC_CTS) |
2945                                     SM(14, AR_TPC_CHIRP) |
2946                                     SM(14, AR_TPC_RPT));
2947                 /* 4. Store BB_powertx_rate9 value */
2948                 temp_powertx_rate9_reg_val =
2949                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2950                 break;
2951             case HAL_RSSI_TX_POWER_MIDDLE:
2952                 /* 1. TxPower Config */
2953                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2954                     sizeof(target_power_val_t));
2955                 /* 1.1 Store OLPC Delta Calibration Offset*/
2956                 olpc_power_offset = 0;
2957                 /* 2. Store OB/DB */
2958                 /* 3. Store TPC settting */
2959                 temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2960                                     SM(18, AR_TPC_CTS) |
2961                                     SM(18, AR_TPC_CHIRP) |
2962                                     SM(18, AR_TPC_RPT));
2963                 /* 4. Store BB_powertx_rate9 value */
2964                 temp_powertx_rate9_reg_val =
2965                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2966                 break;
2967             case HAL_RSSI_TX_POWER_LONG:
2968             default:
2969                 /* 1. TxPower Config */
2970                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2971                     sizeof(target_power_val_t));
2972                 /* 1.1 Store OLPC Delta Calibration Offset*/
2973                 olpc_power_offset = 0;
2974                 /* 2. Store OB/DB1/DB2 */
2975                 /* 3. Store TPC settting */
2976                 temp_tcp_reg_val =
2977                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2978                 /* 4. Store BB_powertx_rate9 value */
2979                 temp_powertx_rate9_reg_val =
2980                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2981                 break;
2982             }
2983         } else {
2984             switch (AH9300(ah)->green_tx_status) {
2985             case HAL_RSSI_TX_POWER_SHORT:
2986                 /* 1. TxPower Config */
2987                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2988                     sizeof(target_power_val_t));
2989                 /* 1.1 Store OLPC Delta Calibration Offset*/
2990                 olpc_power_offset =
2991                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2992                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2993                 /* 2. Store OB/DB */
2994                 temp_obdb_reg_val =
2995                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2996                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2997                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2998                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2999                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3000                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3001                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3002                     AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3003                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3004                     AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3005                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3006                     AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3007                 /* 3. Store TPC settting */
3008                 temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
3009                                     SM(6, AR_TPC_CTS) |
3010                                     SM(6, AR_TPC_CHIRP) |
3011                                     SM(6, AR_TPC_RPT));
3012                 /* 4. Store BB_powertx_rate9 value */
3013                 temp_powertx_rate9_reg_val =
3014                     WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
3015                 break;
3016             case HAL_RSSI_TX_POWER_MIDDLE:
3017                 /* 1. TxPower Config */
3018                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
3019                     sizeof(target_power_val_t));
3020                 /* 1.1 Store OLPC Delta Calibration Offset*/
3021                 olpc_power_offset =
3022                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
3023                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3024                 /* 2. Store OB/DB */
3025                 temp_obdb_reg_val =
3026                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3027                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3028                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3029                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3030                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3031                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3032                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3033                         AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3034                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3035                         AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3036                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3037                         AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3038                 /* 3. Store TPC settting */
3039                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3040                                     SM(14, AR_TPC_CTS) |
3041                                     SM(14, AR_TPC_CHIRP) |
3042                                     SM(14, AR_TPC_RPT));
3043                 /* 4. Store BB_powertx_rate9 value */
3044                 temp_powertx_rate9_reg_val =
3045                     WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3046                 break;
3047             case HAL_RSSI_TX_POWER_LONG:
3048             default:
3049                 /* 1. TxPower Config */
3050                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3051                     sizeof(target_power_val_t));
3052                 /* 1.1 Store OLPC Delta Calibration Offset*/
3053                 olpc_power_offset =
3054                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3055                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3056                 /* 2. Store OB/DB1/DB2 */
3057                 temp_obdb_reg_val =
3058                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3059                 /* 3. Store TPC settting */
3060                 temp_tcp_reg_val =
3061                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3062                 /* 4. Store BB_powertx_rate9 value */
3063                 temp_powertx_rate9_reg_val =
3064                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3065                 break;
3066             }
3067         }
3068         /* 1.1 Do OLPC Delta Calibration Offset */
3069         tmp_olpc_val =
3070             (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3071         tmp_olpc_val += olpc_power_offset;
3072         OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3073             (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3074             AR_PHY_TPC_OLPC_GAIN_DELTA);
3075 
3076         /* 1.2 TxPower Config */
3077         ar9300_transmit_power_reg_write(ah, target_power_val_t);
3078         /* 2. Config OB/DB */
3079         if (!ahp->ah_hw_green_tx_enable) {
3080             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3081         }
3082         /* 3. config TPC settting */
3083         OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3084         /* 4. config BB_powertx_rate9 value */
3085         OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3086     }
3087 }
3088 
3089 #if 0
3090 void
3091 ar9300_get_vow_stats(
3092     struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3093 {
3094     if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3095         p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3096     }
3097     if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3098         p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3099     }
3100     if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3101         p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3102     }
3103     if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3104         p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3105     }
3106     if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3107         p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3108     }
3109 }
3110 #endif
3111 
3112 /*
3113  * ar9300_is_skip_paprd_by_greentx
3114  *
3115  * This function check if we need to skip PAPRD tuning
3116  * when GreenTx in specific state.
3117  */
3118 HAL_BOOL
3119 ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3120 {
3121     if (AR_SREV_POSEIDON(ah) &&
3122         ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3123         ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3124          (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3125     {
3126         return AH_TRUE;
3127     }
3128     return AH_FALSE;
3129 }
3130 
3131 void
3132 ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3133 {
3134     unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3135     unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3136     unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3137     unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3138     unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3139     struct ath_hal_9300 *ahp = AH9300(ah);
3140 
3141     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3142         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3143                              AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3144         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3145                              AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3146         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3147                              AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3148         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3149                              AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3150         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3151                              AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3152     }
3153 }
3154 
3155 void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3156 {
3157     struct ath_hal_9300 *ahp = AH9300(ah);
3158 
3159     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3160         if ((value == 0) || (value == 1)) {
3161             OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3162                              AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3163         }
3164     }
3165 }
3166 
3167 void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3168 {
3169     OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3170 }
3171 
3172 int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3173 {
3174     int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3175 
3176     /* RSSI format is 8.4.  Ignore lowest four bits */
3177     val = val >> 4;
3178     return val;
3179 }
3180 
3181 void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3182                                         u_int32_t rssi_threshold)
3183 {
3184     struct ath_hal_9300 *ahp = AH9300(ah);
3185 
3186     OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3187 
3188     /* save value for restoring after chip reset */
3189     ahp->ah_beacon_rssi_threshold = rssi_threshold;
3190 }
3191 
3192 void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3193 {
3194     OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3195 }
3196 
3197 void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3198 {
3199     if (on) {
3200         OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3201                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3202     }
3203     else {
3204         OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3205                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3206     }
3207 }
3208 /*
3209  * Gets the contents of the specified key cache entry.
3210  */
3211 HAL_BOOL
3212 ar9300_print_keycache(struct ath_hal *ah)
3213 {
3214 
3215     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3216     u_int32_t key0, key1, key2, key3, key4;
3217     u_int32_t mac_hi, mac_lo;
3218     u_int16_t entry = 0;
3219     u_int32_t valid = 0;
3220     u_int32_t key_type;
3221 
3222     ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3223 
3224     for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3225         key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3226         key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3227         key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3228         key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3229         key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3230 
3231         key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3232 
3233         mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3234         mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3235 
3236         if (mac_hi & AR_KEYTABLE_VALID) {
3237             valid = 1;
3238         } else {
3239             valid = 0;
3240         }
3241 
3242         if ((mac_hi != 0) && (mac_lo != 0)) {
3243             mac_hi &= ~0x8000;
3244             mac_hi <<= 1;
3245             mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3246             mac_lo <<= 1;
3247         }
3248 
3249         ath_hal_printf(ah,
3250             "%03d    "
3251             "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3252             "   %02d     %02d    "
3253             "%02x:%02x:%02x:%02x:%02x:%02x \n",
3254             entry,
3255             (key0 << 24) >> 24, (key0 << 16) >> 24,
3256             (key0 << 8) >> 24, key0 >> 24,
3257             (key1 << 24) >> 24, (key1 << 16) >> 24,
3258             //(key1 << 8) >> 24, key1 >> 24,
3259             (key2 << 24) >> 24, (key2 << 16) >> 24,
3260             (key2 << 8) >> 24, key2 >> 24,
3261             (key3 << 24) >> 24, (key3 << 16) >> 24,
3262             //(key3 << 8) >> 24, key3 >> 24,
3263             (key4 << 24) >> 24, (key4 << 16) >> 24,
3264             (key4 << 8) >> 24, key4 >> 24,
3265             valid, key_type,
3266             (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3267             (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3268     }
3269 
3270     return AH_TRUE;
3271 }
3272 
3273 /* enable/disable smart antenna mode */
3274 HAL_BOOL
3275 ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3276 {
3277     struct ath_hal_9300 *ahp = AH9300(ah);
3278 
3279     if (enable) {
3280         OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3281     } else {
3282         OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3283     }
3284 
3285     /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3286      * and swcom2 with 0
3287      * FIXME Ideally these registers need to be made read from caldata.
3288      * Until the calibration team gets them, keep them along with board
3289      * configuration.
3290      */
3291     if (enable && AR_SREV_SCORPION(ah) &&
3292            (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3293 
3294        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3295        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3296     }
3297 
3298     ahp->ah_smartantenna_enable = enable;
3299     return 1;
3300 }
3301 
3302 #ifdef ATH_TX99_DIAG
3303 #ifndef ATH_SUPPORT_HTC
3304 void
3305 ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3306     u_int32_t txpower)
3307 {
3308 #define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3309     static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3310     int32_t i;
3311 
3312     /* The max power is limited to 63 */
3313     if (txpower <= AR9300_MAX_RATE_POWER) {
3314         for (i = 0; i < ar9300_rate_size; i++) {
3315             p_pwr_array[i] = txpower;
3316         }
3317     } else {
3318         for (i = 0; i < ar9300_rate_size; i++) {
3319             p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3320         }
3321     }
3322 
3323     OS_REG_WRITE(ah, 0xa458, 0);
3324 
3325     /* Write the OFDM power per rate set */
3326     /* 6 (LSB), 9, 12, 18 (MSB) */
3327     OS_REG_WRITE(ah, 0xa3c0,
3328         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3329           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3330           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3331           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3332     );
3333     /* 24 (LSB), 36, 48, 54 (MSB) */
3334     OS_REG_WRITE(ah, 0xa3c4,
3335         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3336           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3337           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3338           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3339     );
3340 
3341     /* Write the CCK power per rate set */
3342     /* 1L (LSB), reserved, 2L, 2S (MSB) */
3343     OS_REG_WRITE(ah, 0xa3c8,
3344         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3345           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3346           /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3347           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3348     );
3349     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3350     OS_REG_WRITE(ah, 0xa3cc,
3351         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3352           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3353           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3354           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3355     );
3356 
3357     /* Write the HT20 power per rate set */
3358     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3359     OS_REG_WRITE(ah, 0xa3d0,
3360         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3361           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3362           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3363           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3364     );
3365 
3366     /* 6 (LSB), 7, 12, 13 (MSB) */
3367     OS_REG_WRITE(ah, 0xa3d4,
3368         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3369           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3370           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3371           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3372     );
3373 
3374     /* 14 (LSB), 15, 20, 21 */
3375     OS_REG_WRITE(ah, 0xa3e4,
3376         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3377           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3378           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3379           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3380     );
3381 
3382     /* Mixed HT20 and HT40 rates */
3383     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3384     OS_REG_WRITE(ah, 0xa3e8,
3385         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3386           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3387           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3388           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3389     );
3390 
3391     /* Write the HT40 power per rate set */
3392     /* correct PAR difference between HT40 and HT20/LEGACY */
3393     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3394     OS_REG_WRITE(ah, 0xa3d8,
3395         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3396           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3397           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3398           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3399     );
3400 
3401     /* 6 (LSB), 7, 12, 13 (MSB) */
3402     OS_REG_WRITE(ah, 0xa3dc,
3403         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3404           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3405           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3406           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3407     );
3408 
3409     /* 14 (LSB), 15, 20, 21 */
3410     OS_REG_WRITE(ah, 0xa3ec,
3411         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3412           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3413           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3414           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3415     );
3416 #undef PWR_MAS
3417 }
3418 
3419 void
3420 ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3421 {
3422     if (tx_chainmask == 0x5) {
3423         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3424             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3425     }
3426     OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3427     OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3428 
3429     OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3430     if (tx_chainmask == 0x5) {
3431         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3432             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3433     }
3434 }
3435 
3436 void
3437 ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3438     int chtype)
3439 {
3440     OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3441     OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3442     OS_REG_WRITE(ah, 0xa350,
3443         (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3444 
3445     /* 11G mode */
3446     if (!chtype) {
3447         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3448             OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3449         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3450             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3451                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3452             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3453                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3454                         | (0x1 << 26)  | (0x7 << 24))
3455                         & ~(0x1 << 22));
3456         } else {
3457             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3458                 OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3459             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3460                 (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3461                         | (0x1 << 26)  | (0x7 << 24))
3462                         & ~(0x1 << 22));
3463         }
3464 
3465         /* chain zero */
3466         if ((tx_chain_mask & 0x01) == 0x01) {
3467             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3468                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3469                       | (0x1 << 31) | (0x5 << 15)
3470                       | (0x3 << 9)) & ~(0x1 << 27)
3471                       & ~(0x1 << 12));
3472             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3473                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3474                       | (0x1 << 12) | (0x1 << 10)
3475                       | (0x1 << 9)  | (0x1 << 8)
3476                       | (0x1 << 7)) & ~(0x1 << 11));
3477             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3478                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3479                       | (0x1 << 29) | (0x1 << 25)
3480                       | (0x1 << 23) | (0x1 << 19)
3481                       | (0x1 << 10) | (0x1 << 9)
3482                       | (0x1 << 8)  | (0x1 << 3))
3483                       & ~(0x1 << 28)& ~(0x1 << 24)
3484                       & ~(0x1 << 22)& ~(0x1 << 7));
3485             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3486                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3487                       | (0x1 << 23))& ~(0x1 << 21));
3488             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3489                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3490                       | (0x1 << 12) | (0x1 << 10)
3491                       | (0x1 << 9)  | (0x1 << 8)
3492                       | (0x1 << 6)  | (0x1 << 5)
3493                       | (0x1 << 4)  | (0x1 << 3)
3494                       | (0x1 << 2));
3495             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3496                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3497         }
3498         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3499             /* chain one */
3500             if ((tx_chain_mask & 0x02) == 0x02 ) {
3501                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3502                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3503                           | (0x1 << 31) | (0x5 << 15)
3504                           | (0x3 << 9)) & ~(0x1 << 27)
3505                           & ~(0x1 << 12));
3506                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3507                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3508                           | (0x1 << 12) | (0x1 << 10)
3509                           | (0x1 << 9)  | (0x1 << 8)
3510                           | (0x1 << 7)) & ~(0x1 << 11));
3511                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3512                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3513                           | (0x1 << 29) | (0x1 << 25)
3514                           | (0x1 << 23) | (0x1 << 19)
3515                           | (0x1 << 10) | (0x1 << 9)
3516                           | (0x1 << 8)  | (0x1 << 3))
3517                           & ~(0x1 << 28)& ~(0x1 << 24)
3518                           & ~(0x1 << 22)& ~(0x1 << 7));
3519                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3520                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3521                           | (0x1 << 23))& ~(0x1 << 21));
3522                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3523                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3524                           | (0x1 << 12) | (0x1 << 10)
3525                           | (0x1 << 9)  | (0x1 << 8)
3526                           | (0x1 << 6)  | (0x1 << 5)
3527                           | (0x1 << 4)  | (0x1 << 3)
3528                           | (0x1 << 2));
3529                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3530                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3531             }
3532         }
3533         if (AR_SREV_OSPREY(ah)) {
3534             /* chain two */
3535             if ((tx_chain_mask & 0x04) == 0x04 ) {
3536                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3537                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3538                           | (0x1 << 31) | (0x5 << 15)
3539                           | (0x3 << 9)) & ~(0x1 << 27)
3540                           & ~(0x1 << 12));
3541                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3542                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3543                           | (0x1 << 12) | (0x1 << 10)
3544                           | (0x1 << 9)  | (0x1 << 8)
3545                           | (0x1 << 7)) & ~(0x1 << 11));
3546                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3547                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3548                           | (0x1 << 29) | (0x1 << 25)
3549                           | (0x1 << 23) | (0x1 << 19)
3550                           | (0x1 << 10) | (0x1 << 9)
3551                           | (0x1 << 8)  | (0x1 << 3))
3552                           & ~(0x1 << 28)& ~(0x1 << 24)
3553                           & ~(0x1 << 22)& ~(0x1 << 7));
3554                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3555                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3556                           | (0x1 << 23))& ~(0x1 << 21));
3557                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3558                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3559                           | (0x1 << 12) | (0x1 << 10)
3560                           | (0x1 << 9)  | (0x1 << 8)
3561                           | (0x1 << 6)  | (0x1 << 5)
3562                           | (0x1 << 4)  | (0x1 << 3)
3563                           | (0x1 << 2));
3564                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3565                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3566             }
3567         }
3568 
3569         OS_REG_WRITE(ah, 0xa28c, 0x11111);
3570         OS_REG_WRITE(ah, 0xa288, 0x111);
3571     } else {
3572         /* chain zero */
3573         if ((tx_chain_mask & 0x01) == 0x01) {
3574             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3575                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3576                       | (0x1 << 31) | (0x1 << 27)
3577                       | (0x3 << 23) | (0x1 << 19)
3578                       | (0x1 << 15) | (0x3 << 9))
3579                       & ~(0x1 << 12));
3580             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3581                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3582                       | (0x1 << 12) | (0x1 << 10)
3583                       | (0x1 << 9)  | (0x1 << 8)
3584                       | (0x1 << 7)  | (0x1 << 3)
3585                       | (0x1 << 2)  | (0x1 << 1))
3586                       & ~(0x1 << 11)& ~(0x1 << 0));
3587             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3588                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3589                       | (0x1 << 29) | (0x1 << 25)
3590                       | (0x1 << 23) | (0x1 << 19)
3591                       | (0x1 << 10) | (0x1 << 9)
3592                       | (0x1 << 8)  | (0x1 << 3))
3593                       & ~(0x1 << 28)& ~(0x1 << 24)
3594                       & ~(0x1 << 22)& ~(0x1 << 7));
3595             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3596                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3597                       | (0x1 << 23))& ~(0x1 << 21));
3598             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3599                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3600                       | (0x3 << 3)  | (0x3 << 0));
3601             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3602                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3603                       | (0x3 << 29) | (0x3 << 26)
3604                       | (0x2 << 23) | (0x2 << 20)
3605                       | (0x2 << 17))& ~(0x1 << 14));
3606             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3607                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3608                       | (0x1 << 12) | (0x1 << 10)
3609                       | (0x1 << 9)  | (0x1 << 8)
3610                       | (0x1 << 6)  | (0x1 << 5)
3611                       | (0x1 << 4)  | (0x1 << 3)
3612                       | (0x1 << 2));
3613             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3614                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3615             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3616                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3617                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3618                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3619                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3620                           | (0x1 << 26) | (0x7 << 24)
3621                           | (0x3 << 22));
3622             } else {
3623                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3624                     OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3625                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3626                     OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3627                           | (0x1 << 26) | (0x7 << 24)
3628                           | (0x3 << 22));
3629             }
3630 
3631             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3632                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3633                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3634                           | (0x1 << 3)  | (0x1 << 2)
3635                           | (0x1 << 1)) & ~(0x1 << 0));
3636                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3637                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3638                           | (0x1 << 19) | (0x1 << 3));
3639                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3640                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3641             }
3642             if (AR_SREV_OSPREY(ah)) {
3643                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3644                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3645                           | (0x1 << 3)  | (0x1 << 2)
3646                           | (0x1 << 1)) & ~(0x1 << 0));
3647                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3648                     OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3649                           | (0x1 << 19) | (0x1 << 3));
3650                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3651                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3652             }
3653         }
3654         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3655             /* chain one */
3656             if ((tx_chain_mask & 0x02) == 0x02 ) {
3657                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3658                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3659                           | (0x1 << 3)  | (0x1 << 2)
3660                           | (0x1 << 1)) & ~(0x1 << 0));
3661                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3662                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3663                           | (0x1 << 19) | (0x1 << 3));
3664                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3665                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3666                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3667                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3668                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3669                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3670                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3671                               | (0x1 << 26) | (0x7 << 24)
3672                               | (0x3 << 22));
3673                 } else {
3674                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3675                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3676                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3677                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3678                               | (0x1 << 26) | (0x7 << 24)
3679                               | (0x3 << 22));
3680                 }
3681 
3682                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3683                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3684                           | (0x1 << 31) | (0x1 << 27)
3685                           | (0x3 << 23) | (0x1 << 19)
3686                           | (0x1 << 15) | (0x3 << 9))
3687                           & ~(0x1 << 12));
3688                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3689                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3690                           | (0x1 << 12) | (0x1 << 10)
3691                           | (0x1 << 9)  | (0x1 << 8)
3692                           | (0x1 << 7)  | (0x1 << 3)
3693                           | (0x1 << 2)  | (0x1 << 1))
3694                           & ~(0x1 << 11)& ~(0x1 << 0));
3695                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3696                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3697                           | (0x1 << 29) | (0x1 << 25)
3698                           | (0x1 << 23) | (0x1 << 19)
3699                           | (0x1 << 10) | (0x1 << 9)
3700                           | (0x1 << 8)  | (0x1 << 3))
3701                           & ~(0x1 << 28)& ~(0x1 << 24)
3702                           & ~(0x1 << 22)& ~(0x1 << 7));
3703                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3704                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3705                           | (0x1 << 23))& ~(0x1 << 21));
3706                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3707                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3708                           | (0x3 << 3)  | (0x3 << 0));
3709                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3710                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3711                           | (0x3 << 29) | (0x3 << 26)
3712                           | (0x2 << 23) | (0x2 << 20)
3713                           | (0x2 << 17))& ~(0x1 << 14));
3714                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3715                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3716                           | (0x1 << 12) | (0x1 << 10)
3717                           | (0x1 << 9)  | (0x1 << 8)
3718                           | (0x1 << 6)  | (0x1 << 5)
3719                           | (0x1 << 4)  | (0x1 << 3)
3720                           | (0x1 << 2));
3721                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3722                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3723 
3724                 if (AR_SREV_OSPREY(ah)) {
3725                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3726                         (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3727                               | (0x1 << 3)  | (0x1 << 2)
3728                               | (0x1 << 1)) & ~(0x1 << 0));
3729                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3730                         OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3731                               | (0x1 << 19) | (0x1 << 3));
3732                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3733                         OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3734                 }
3735             }
3736         }
3737         if (AR_SREV_OSPREY(ah)) {
3738             /* chain two */
3739             if ((tx_chain_mask & 0x04) == 0x04 ) {
3740                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3741                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3742                           | (0x1 << 3)  | (0x1 << 2)
3743                           | (0x1 << 1)) & ~(0x1 << 0));
3744                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3745                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3746                           | (0x1 << 19) | (0x1 << 3));
3747                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3748                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3749                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3750                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3751                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3752                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3753                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3754                               | (0x1 << 26) | (0x7 << 24)
3755                               | (0x3 << 22));
3756                 } else {
3757                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3758                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3759                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3760                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3761                               | (0x1 << 26) | (0x7 << 24)
3762                               | (0x3 << 22));
3763                 }
3764 
3765                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3766                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3767                           | (0x1 << 3)  | (0x1 << 2)
3768                           | (0x1 << 1)) & ~(0x1 << 0));
3769                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3770                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3771                           | (0x1 << 19) | (0x1 << 3));
3772                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3773                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3774 
3775                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3776                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3777                           | (0x1 << 31) | (0x1 << 27)
3778                           | (0x3 << 23) | (0x1 << 19)
3779                           | (0x1 << 15) | (0x3 << 9))
3780                           & ~(0x1 << 12));
3781                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3782                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3783                           | (0x1 << 12) | (0x1 << 10)
3784                           | (0x1 << 9)  | (0x1 << 8)
3785                           | (0x1 << 7)  | (0x1 << 3)
3786                           | (0x1 << 2)  | (0x1 << 1))
3787                           & ~(0x1 << 11)& ~(0x1 << 0));
3788                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3789                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3790                           | (0x1 << 29) | (0x1 << 25)
3791                           | (0x1 << 23) | (0x1 << 19)
3792                           | (0x1 << 10) | (0x1 << 9)
3793                           | (0x1 << 8)  | (0x1 << 3))
3794                           & ~(0x1 << 28)& ~(0x1 << 24)
3795                           & ~(0x1 << 22)& ~(0x1 << 7));
3796                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3797                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3798                           | (0x1 << 23))& ~(0x1 << 21));
3799                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3800                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3801                           | (0x3 << 3)  | (0x3 << 0));
3802                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3803                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3804                           | (0x3 << 29) | (0x3 << 26)
3805                           | (0x2 << 23) | (0x2 << 20)
3806                           | (0x2 << 17))& ~(0x1 << 14));
3807                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3808                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3809                           | (0x1 << 12) | (0x1 << 10)
3810                           | (0x1 << 9)  | (0x1 << 8)
3811                           | (0x1 << 6)  | (0x1 << 5)
3812                           | (0x1 << 4)  | (0x1 << 3)
3813                           | (0x1 << 2));
3814                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3815                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3816             }
3817         }
3818 
3819         OS_REG_WRITE(ah, 0xa28c, 0x22222);
3820         OS_REG_WRITE(ah, 0xa288, 0x222);
3821     }
3822 }
3823 
3824 void
3825 ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3826 {
3827     u_int32_t val;
3828     u_int32_t qnum = (u_int32_t)data;
3829 
3830     /* Disable AGC to A2 */
3831     OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3832     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3833 
3834     OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3835     /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3836     OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3837     OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3838     OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3839     /* 200 ok for HT20, 400 ok for HT40 */
3840     OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3841     OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3842 
3843     /* set QCU modes to early termination */
3844     val = OS_REG_READ(ah, AR_QMISC(qnum));
3845     OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3846 }
3847 
3848 void
3849 ar9300_tx99_stop(struct ath_hal *ah)
3850 {
3851     /* this should follow the setting of start */
3852     OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3853     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3854 }
3855 #endif /* ATH_TX99_DIAG */
3856 #endif /* ATH_SUPPORT_HTC */
3857 
3858 HAL_BOOL
3859 ar9300Get3StreamSignature(struct ath_hal *ah)
3860 {
3861     return AH_FALSE;
3862 }
3863 
3864 HAL_BOOL
3865 ar9300ForceVCS(struct ath_hal *ah)
3866 {
3867    return AH_FALSE;
3868 }
3869 
3870 HAL_BOOL
3871 ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3872 {
3873    return AH_FALSE;
3874 }
3875 
3876 static u_int32_t
3877 ar9300_read_loc_timer(struct ath_hal *ah)
3878 {
3879 
3880     return OS_REG_READ(ah, AR_LOC_TIMER_REG);
3881 }
3882 
3883 HAL_BOOL
3884 ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3885 {
3886     struct ath_hal_9300 *ahp = AH9300(ah);
3887     ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3888     u_int8_t *ctl_index;
3889     u_int32_t offset = 0;
3890 
3891     if (!ctl_array)
3892         return AH_FALSE;
3893 
3894     /* copy 2G ctl freqbin and power data */
3895     ctl_index = p_eep_data->ctl_index_2g;
3896     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3897                 OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3898                 OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3899     offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3900             ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3901 
3902 
3903     /* copy 2G ctl freqbin and power data */
3904     ctl_index = p_eep_data->ctl_index_5g;
3905     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3906                 OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3907                 OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3908 
3909     return AH_FALSE;
3910 }
3911 
3912 void
3913 ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3914 {
3915     struct ath_hal_9300 *ahp = AH9300(ah);
3916 
3917     /* optional txchainmask should be subset of primary txchainmask */
3918     if ((mask & ahp->ah_tx_chainmask) != mask) {
3919         ahp->ah_tx_chainmaskopt = 0;
3920         ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3921         return;
3922     }
3923 
3924     ahp->ah_tx_chainmaskopt = mask;
3925 }
3926