xref: /freebsd/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_misc.c (revision 26a222dc0c048fc071b548eadad7b80405a1b126)
1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 
26 #include "ar9300/ar9300.h"
27 #include "ar9300/ar9300reg.h"
28 #include "ar9300/ar9300phy.h"
29 
30 
31 void
32 ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
33 {
34     struct ath_hal_9300 *ahp = AH9300(ah);
35     *hangs = 0;
36 
37     if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
38         *hangs |= HAL_RIFS_BB_HANG_WAR;
39     }
40     if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
41         *hangs |= HAL_DFS_BB_HANG_WAR;
42     }
43     if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
44         == HAL_OK)
45     {
46         *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
47     }
48     if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
49         *hangs |= HAL_MAC_HANG_WAR;
50     }
51     if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
52         == HAL_OK)
53     {
54         *hangs |= HAL_PHYRESTART_CLR_WAR;
55     }
56 
57     ahp->ah_hang_wars = *hangs;
58 }
59 
60 /*
61  * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
62  * HT20, HT40, fast-clock, turbo mode, etc.
63  */
64 static u_int
65 ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
66 {
67 #if 0
68     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
69 
70     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
71         return (ath_hal_mac_usec(ah, clks) / 2);
72     } else {
73         return (ath_hal_mac_usec(ah, clks));
74     }
75 #endif
76     return (ath_hal_mac_usec(ah, clks));
77 }
78 
79 u_int
80 ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
81 {
82 #if 0
83     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
84 
85     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
86         return (ath_hal_mac_clks(ah, usecs) * 2);
87     } else {
88         return (ath_hal_mac_clks(ah, usecs));
89     }
90 #endif
91     return (ath_hal_mac_clks(ah, usecs));
92 }
93 
94 void
95 ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
96 {
97     struct ath_hal_9300 *ahp = AH9300(ah);
98 
99     OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
100 }
101 
102 HAL_BOOL
103 ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
104 {
105     struct ath_hal_9300 *ahp = AH9300(ah);
106 
107     OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
108     return AH_TRUE;
109 }
110 
111 void
112 ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
113 {
114     struct ath_hal_9300 *ahp = AH9300(ah);
115 
116     OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
117 }
118 
119 HAL_BOOL
120 ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
121 {
122     struct ath_hal_9300 *ahp = AH9300(ah);
123 
124     /* save it since it must be rewritten on reset */
125     OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
126 
127     OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
128     OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
129     return AH_TRUE;
130 }
131 
132 /*
133  * Attempt to change the cards operating regulatory domain to the given value
134  * Returns: A_EINVAL for an unsupported regulatory domain.
135  *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
136  */
137 HAL_BOOL
138 ar9300_set_regulatory_domain(struct ath_hal *ah,
139         u_int16_t reg_domain, HAL_STATUS *status)
140 {
141     HAL_STATUS ecode;
142 
143     if (AH_PRIVATE(ah)->ah_currentRD == 0) {
144         AH_PRIVATE(ah)->ah_currentRD = reg_domain;
145         return AH_TRUE;
146     }
147     ecode = HAL_EIO;
148 
149 #if 0
150 bad:
151 #endif
152     if (status) {
153         *status = ecode;
154     }
155     return AH_FALSE;
156 }
157 
158 /*
159  * Return the wireless modes (a,b,g,t) supported by hardware.
160  *
161  * This value is what is actually supported by the hardware
162  * and is unaffected by regulatory/country code settings.
163  *
164  */
165 u_int
166 ar9300_get_wireless_modes(struct ath_hal *ah)
167 {
168     return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
169 }
170 
171 /*
172  * Set the interrupt and GPIO values so the ISR can disable RF
173  * on a switch signal.  Assumes GPIO port and interrupt polarity
174  * are set prior to call.
175  */
176 void
177 ar9300_enable_rf_kill(struct ath_hal *ah)
178 {
179     /* TODO - can this really be above the hal on the GPIO interface for
180      * TODO - the client only?
181      */
182     struct ath_hal_9300    *ahp = AH9300(ah);
183 
184     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
185     	/* Check RF kill GPIO before set/clear RFSILENT bits. */
186     	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
187             OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
188                            AR_RFSILENT_FORCE);
189             OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
190         }
191         else {
192             OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
193                            AR_RFSILENT_FORCE);
194             OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
195         }
196     }
197     else {
198         /* Connect rfsilent_bb_l to baseband */
199         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
200             AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
201 
202         /* Set input mux for rfsilent_bb_l to GPIO #0 */
203         OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
204             AR_GPIO_INPUT_MUX2_RFSILENT);
205         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206             (ahp->ah_gpio_select & 0x0f) << 4);
207 
208         /*
209          * Configure the desired GPIO port for input and
210          * enable baseband rf silence
211          */
212         ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
213         OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
214     }
215 
216     /*
217      * If radio disable switch connection to GPIO bit x is enabled
218      * program GPIO interrupt.
219      * If rfkill bit on eeprom is 1, setupeeprommap routine has already
220      * verified that it is a later version of eeprom, it has a place for
221      * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
222      * connection is present.
223      */
224      /*
225       * RFKill uses polling not interrupt,
226       * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
227       */
228     if (ath_hal_hasrfkill_int(ah)) {
229         if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
230             /* switch already closed, set to interrupt upon open */
231             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
232         } else {
233             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
234         }
235     }
236 }
237 
238 /*
239  * Change the LED blinking pattern to correspond to the connectivity
240  */
241 void
242 ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
243 {
244     static const u_int32_t ledbits[8] = {
245         AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
246         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
247         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
248         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
249         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
250         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
251         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
252         AR_CFG_LED_ASSOC_NONE,
253     };
254 
255     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
256 }
257 
258 /*
259  * Sets the Power LED on the cardbus without affecting the Network LED.
260  */
261 void
262 ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
263 {
264     u_int32_t    val;
265 
266     val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
267     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
268 }
269 
270 /*
271  * Sets the Network LED on the cardbus without affecting the Power LED.
272  */
273 void
274 ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
275 {
276     u_int32_t    val;
277 
278     val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
279     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
280 }
281 
282 /*
283  * Change association related fields programmed into the hardware.
284  * Writing a valid BSSID to the hardware effectively enables the hardware
285  * to synchronize its TSF to the correct beacons and receive frames coming
286  * from that BSSID. It is called by the SME JOIN operation.
287  */
288 void
289 ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
290     u_int16_t assoc_id)
291 {
292     struct ath_hal_9300 *ahp = AH9300(ah);
293 
294     /* save bssid and assoc_id for restore on reset */
295     OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
296     ahp->ah_assoc_id = assoc_id;
297 
298     OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
299     OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
300                                  ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
301 }
302 
303 /*
304  * Get the current hardware tsf for stamlme
305  */
306 u_int64_t
307 ar9300_get_tsf64(struct ath_hal *ah)
308 {
309     u_int64_t tsf;
310 
311     /* XXX sync multi-word read? */
312     tsf = OS_REG_READ(ah, AR_TSF_U32);
313     tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
314     return tsf;
315 }
316 
317 void
318 ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
319 {
320     OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
321     OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
322 }
323 
324 /*
325  * Get the current hardware tsf for stamlme
326  */
327 u_int32_t
328 ar9300_get_tsf32(struct ath_hal *ah)
329 {
330     return OS_REG_READ(ah, AR_TSF_L32);
331 }
332 
333 u_int32_t
334 ar9300_get_tsf2_32(struct ath_hal *ah)
335 {
336     return OS_REG_READ(ah, AR_TSF2_L32);
337 }
338 
339 /*
340  * Reset the current hardware tsf for stamlme.
341  */
342 void
343 ar9300_reset_tsf(struct ath_hal *ah)
344 {
345     int count;
346 
347     count = 0;
348     while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
349         count++;
350         if (count > 10) {
351             HALDEBUG(ah, HAL_DEBUG_RESET,
352                 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
353             break;
354         }
355         OS_DELAY(10);
356     }
357     OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
358 }
359 
360 /*
361  * Set or clear hardware basic rate bit
362  * Set hardware basic rate set if basic rate is found
363  * and basic rate is equal or less than 2Mbps
364  */
365 void
366 ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
367 {
368     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
369     u_int32_t reg;
370     u_int8_t xset;
371     int i;
372 
373     if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
374         return;
375     }
376     xset = 0;
377     for (i = 0; i < rs->rs_count; i++) {
378         u_int8_t rset = rs->rs_rates[i];
379         /* Basic rate defined? */
380         if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
381             xset = rset;
382         }
383     }
384     /*
385      * Set the h/w bit to reflect whether or not the basic
386      * rate is found to be equal or less than 2Mbps.
387      */
388     reg = OS_REG_READ(ah, AR_STA_ID1);
389     if (xset && xset / 2 <= 2) {
390         OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
391     } else {
392         OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
393     }
394 }
395 
396 /*
397  * Grab a semi-random value from hardware registers - may not
398  * change often
399  */
400 u_int32_t
401 ar9300_get_random_seed(struct ath_hal *ah)
402 {
403     u_int32_t nf;
404 
405     nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
406     if (nf & 0x100) {
407         nf = 0 - ((nf ^ 0x1ff) + 1);
408     }
409     return (OS_REG_READ(ah, AR_TSF_U32) ^
410         OS_REG_READ(ah, AR_TSF_L32) ^ nf);
411 }
412 
413 /*
414  * Detect if our card is present
415  */
416 HAL_BOOL
417 ar9300_detect_card_present(struct ath_hal *ah)
418 {
419     u_int16_t mac_version, mac_rev;
420     u_int32_t v;
421 
422     /*
423      * Read the Silicon Revision register and compare that
424      * to what we read at attach time.  If the same, we say
425      * a card/device is present.
426      */
427     v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
428     if (v == 0xFF) {
429         /* new SREV format */
430         v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
431         /*
432          * Include 6-bit Chip Type (masked to 0) to differentiate
433          * from pre-Sowl versions
434          */
435         mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
436         mac_rev = MS(v, AR_SREV_REVISION2);
437     } else {
438         mac_version = MS(v, AR_SREV_VERSION);
439         mac_rev = v & AR_SREV_REVISION;
440     }
441     return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
442             AH_PRIVATE(ah)->ah_macRev == mac_rev);
443 }
444 
445 /*
446  * Update MIB Counters
447  */
448 void
449 ar9300_update_mib_mac_stats(struct ath_hal *ah)
450 {
451     struct ath_hal_9300 *ahp = AH9300(ah);
452     HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
453 
454     stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
455     stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
456     stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
457     stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
458     stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
459 }
460 
461 void
462 ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
463 {
464     struct ath_hal_9300 *ahp = AH9300(ah);
465     HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
466 
467     stats->ackrcv_bad = istats->ackrcv_bad;
468     stats->rts_bad    = istats->rts_bad;
469     stats->fcs_bad    = istats->fcs_bad;
470     stats->rts_good   = istats->rts_good;
471     stats->beacons    = istats->beacons;
472 }
473 
474 /*
475  * Detect if the HW supports spreading a CCK signal on channel 14
476  */
477 HAL_BOOL
478 ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
479 {
480     return AH_TRUE;
481 }
482 
483 /*
484  * Get the rssi of frame curently being received.
485  */
486 u_int32_t
487 ar9300_get_cur_rssi(struct ath_hal *ah)
488 {
489     /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
490     /* get combined RSSI */
491     return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
492 }
493 
494 #if ATH_GEN_RANDOMNESS
495 /*
496  * Get the rssi value from BB on ctl chain0.
497  */
498 u_int32_t
499 ar9300_get_rssi_chain0(struct ath_hal *ah)
500 {
501     /* get ctl chain0 RSSI */
502     return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
503 }
504 #endif
505 
506 u_int
507 ar9300_get_def_antenna(struct ath_hal *ah)
508 {
509     return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
510 }
511 
512 /* Setup coverage class */
513 void
514 ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
515 {
516 }
517 
518 void
519 ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
520 {
521     OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
522 }
523 
524 HAL_BOOL
525 ar9300_set_antenna_switch(struct ath_hal *ah,
526     HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
527     u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
528 {
529     struct ath_hal_9300 *ahp = AH9300(ah);
530 
531     /*
532      * Owl does not support diversity or changing antennas.
533      *
534      * Instead this API and function are defined differently for AR9300.
535      * To support Tablet PC's, this interface allows the system
536      * to dramatically reduce the TX power on a particular chain.
537      *
538      * Based on the value of (redefined) diversity_control, the
539      * reset code will decrease power on chain 0 or chain 1/2.
540      *
541      * Based on the value of bit 0 of antenna_switch_swap,
542      * the mapping between OID call and chain is defined as:
543      *  0:  map A -> 0, B -> 1;
544      *  1:  map A -> 1, B -> 0;
545      *
546      * NOTE:
547      *   The devices that use this OID should use a tx_chain_mask and
548      *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
549      *   used in order to ensure an active transmit antenna.  This
550      *   API will allow the host to turn off the only transmitting
551      *   antenna to ensure the antenna closest to the user's body is
552      *   powered-down.
553      */
554     /*
555      * Set antenna control for use during reset sequence by
556      * ar9300_decrease_chain_power()
557      */
558     ahp->ah_diversity_control = settings;
559 
560     return AH_TRUE;
561 }
562 
563 HAL_BOOL
564 ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
565 {
566     return AH_TRUE;
567 }
568 
569 HAL_BOOL
570 ar9300_set_slot_time(struct ath_hal *ah, u_int us)
571 {
572     struct ath_hal_9300 *ahp = AH9300(ah);
573     if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
574         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
575         ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
576         return AH_FALSE;
577     } else {
578         /* convert to system clocks */
579         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
580         ahp->ah_slot_time = us;
581         return AH_TRUE;
582     }
583 }
584 
585 HAL_BOOL
586 ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
587 {
588     struct ath_hal_9300 *ahp = AH9300(ah);
589 
590     if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
591         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
592         ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
593         return AH_FALSE;
594     } else {
595         /* convert to system clocks */
596         OS_REG_RMW_FIELD(ah,
597             AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
598         ahp->ah_ack_timeout = us;
599         return AH_TRUE;
600     }
601 }
602 
603 u_int
604 ar9300_get_ack_timeout(struct ath_hal *ah)
605 {
606     u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
607     return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
608 }
609 
610 HAL_STATUS
611 ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
612                  u_int32_t next_start, HAL_QUIET_FLAG flag)
613 {
614 #define	TU_TO_USEC(_tu)		((_tu) << 10)
615     HAL_STATUS status = HAL_EIO;
616     u_int32_t tsf = 0, j, next_start_us = 0;
617     if (flag & HAL_QUIET_ENABLE) {
618         for (j = 0; j < 2; j++) {
619             next_start_us = TU_TO_USEC(next_start);
620             tsf = OS_REG_READ(ah, AR_TSF_L32);
621             if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
622                 next_start_us += tsf;
623             }
624             if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
625                 next_start_us +=
626                     ah->ah_config.ah_sw_beacon_response_time;
627             }
628             OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
629             OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
630             OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
631             OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
632             OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
633             if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
634                 status = HAL_OK;
635                 break;
636             }
637             HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
638                 "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
639             /* TSF shouldn't count twice or reg access is taking forever */
640             HALASSERT(j < 1);
641         }
642     } else {
643         OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
644         status = HAL_OK;
645     }
646 
647     return status;
648 #undef	TU_TO_USEC
649 }
650 #ifdef ATH_SUPPORT_DFS
651 void
652 ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
653 {
654     u32 reg1, reg2;
655 
656     reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
657     reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
658     AH9300(ah)->ah_cac_quiet_enabled = enable;
659 
660     if (enable) {
661         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
662                      reg1 | AR_PCU_FORCE_QUIET_COLL);
663         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
664                      reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
665     } else {
666         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
667                      reg1 & ~AR_PCU_FORCE_QUIET_COLL);
668         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
669                      reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
670     }
671 }
672 #endif /* ATH_SUPPORT_DFS */
673 
674 void
675 ar9300_set_pcu_config(struct ath_hal *ah)
676 {
677     ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
678 }
679 
680 HAL_STATUS
681 ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
682     u_int32_t capability, u_int32_t *result)
683 {
684     struct ath_hal_9300 *ahp = AH9300(ah);
685     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
686     struct ar9300_ani_state *ani;
687 
688     switch (type) {
689     case HAL_CAP_CIPHER:            /* cipher handled in hardware */
690         switch (capability) {
691         case HAL_CIPHER_AES_CCM:
692         case HAL_CIPHER_AES_OCB:
693         case HAL_CIPHER_TKIP:
694         case HAL_CIPHER_WEP:
695         case HAL_CIPHER_MIC:
696         case HAL_CIPHER_CLR:
697             return HAL_OK;
698         default:
699             return HAL_ENOTSUPP;
700         }
701     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
702         switch (capability) {
703         case 0:         /* hardware capability */
704             return HAL_OK;
705         case 1:
706             return (ahp->ah_sta_id1_defaults &
707                     AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
708         default:
709             return HAL_ENOTSUPP;
710         }
711     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
712         switch (capability) {
713         case 0: /* hardware capability */
714             return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
715         case 1: /* current setting */
716             return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
717                 HAL_ENXIO : HAL_OK;
718         default:
719             return HAL_ENOTSUPP;
720         }
721     case HAL_CAP_WME_TKIPMIC:
722         /* hardware can do TKIP MIC when WMM is turned on */
723         return HAL_OK;
724     case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
725         return HAL_OK;
726     case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
727         switch (capability) {
728         case 0:                 /* hardware capability */
729             return HAL_OK;
730         case 1:                 /* current setting */
731             return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
732                             AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
733                             HAL_OK : HAL_ENXIO;
734         }
735         return HAL_EINVAL;
736     case HAL_CAP_TPC:
737         switch (capability) {
738         case 0:                 /* hardware capability */
739             return HAL_OK;
740         case 1:
741             return ah->ah_config.ath_hal_desc_tpc ?
742                                HAL_OK : HAL_ENXIO;
743         }
744         return HAL_OK;
745     case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
746         return HAL_OK;
747     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
748         switch (capability) {
749         case 0:                 /* hardware capability */
750             return HAL_OK;
751         case 1:
752             if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
753                 /*
754                  * Owl and Merlin have problems in mcast key search.
755                  * Disable this cap. in Ad-hoc mode. see Bug 25776 and
756                  * 26802
757                  */
758                 return HAL_ENXIO;
759             } else {
760                 return (ahp->ah_sta_id1_defaults &
761                         AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
762             }
763         }
764         return HAL_EINVAL;
765     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
766         switch (capability) {
767         case 0:                 /* hardware capability */
768             return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
769         case 1:
770             return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
771                 HAL_OK : HAL_ENXIO;
772         }
773         return HAL_EINVAL;
774     case HAL_CAP_RFSILENT:      /* rfsilent support  */
775         if (capability == 3) {  /* rfkill interrupt */
776             /*
777              * XXX: Interrupt-based notification of RF Kill state
778              *      changes not working yet. Report that this feature
779              *      is not supported so that polling is used instead.
780              */
781             return (HAL_ENOTSUPP);
782         }
783         return ath_hal_getcapability(ah, type, capability, result);
784     case HAL_CAP_4ADDR_AGGR:
785         return HAL_OK;
786     case HAL_CAP_BB_RIFS_HANG:
787         return HAL_ENOTSUPP;
788     case HAL_CAP_BB_DFS_HANG:
789         return HAL_ENOTSUPP;
790     case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
791         /* Track chips that are known to have BB hangs related
792          * to rx_clear stuck low.
793          */
794         return HAL_ENOTSUPP;
795     case HAL_CAP_MAC_HANG:
796         /* Track chips that are known to have MAC hangs.
797          */
798         return HAL_OK;
799     case HAL_CAP_RIFS_RX_ENABLED:
800         /* Is RIFS RX currently enabled */
801         return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
802 #if 0
803     case HAL_CAP_ANT_CFG_2GHZ:
804         *result = p_cap->halNumAntCfg2Ghz;
805         return HAL_OK;
806     case HAL_CAP_ANT_CFG_5GHZ:
807         *result = p_cap->halNumAntCfg5Ghz;
808         return HAL_OK;
809     case HAL_CAP_RX_STBC:
810         *result = p_cap->hal_rx_stbc_support;
811         return HAL_OK;
812     case HAL_CAP_TX_STBC:
813         *result = p_cap->hal_tx_stbc_support;
814         return HAL_OK;
815 #endif
816     case HAL_CAP_LDPC:
817         *result = p_cap->halLDPCSupport;
818         return HAL_OK;
819     case HAL_CAP_DYNAMIC_SMPS:
820         return HAL_OK;
821     case HAL_CAP_DS:
822         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
823                 (p_cap->halTxChainMask & 0x3) != 0x3 ||
824                 (p_cap->halRxChainMask & 0x3) != 0x3) ?
825             HAL_ENOTSUPP : HAL_OK;
826     case HAL_CAP_TS:
827         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
828                 (p_cap->halTxChainMask & 0x7) != 0x7 ||
829                 (p_cap->halRxChainMask & 0x7) != 0x7) ?
830             HAL_ENOTSUPP : HAL_OK;
831     case HAL_CAP_OL_PWRCTRL:
832         return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
833             HAL_OK : HAL_ENOTSUPP;
834     case HAL_CAP_CRDC:
835 #if ATH_SUPPORT_CRDC
836         return (AR_SREV_WASP(ah) &&
837                 ah->ah_config.ath_hal_crdc_enable) ?
838                     HAL_OK : HAL_ENOTSUPP;
839 #else
840         return HAL_ENOTSUPP;
841 #endif
842 #if 0
843     case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
844         *result = (u_int32_t)(-1);
845         return HAL_OK;
846     case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
847         *result = (u_int32_t)(-1);
848         return HAL_OK;
849 #endif
850     case HAL_CAP_BB_PANIC_WATCHDOG:
851         return HAL_OK;
852     case HAL_CAP_PHYRESTART_CLR_WAR:
853         if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
854             (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
855         {
856             return HAL_OK;
857         }
858         else
859         {
860             return HAL_ENOTSUPP;
861         }
862     case HAL_CAP_ENTERPRISE_MODE:
863         *result = ahp->ah_enterprise_mode >> 16;
864         /*
865          * WAR for EV 77658 - Add delimiters to first sub-frame when using
866          * RTS/CTS with aggregation and non-enterprise Osprey.
867          *
868          * Bug fixed in AR9580/Peacock, Wasp1.1 and later
869          */
870         if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
871                 !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
872                 AR_SREV_WASP_10(ah))) {
873             *result |= AH_ENT_RTSCTS_DELIM_WAR;
874         }
875         return HAL_OK;
876     case HAL_CAP_LDPCWAR:
877         /* WAR for RIFS+LDPC issue is required for all chips currently
878          * supported by ar9300 HAL.
879          */
880         return HAL_OK;
881     case HAL_CAP_ENABLE_APM:
882         *result = p_cap->halApmEnable;
883         return HAL_OK;
884     case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
885         return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
886     case HAL_CAP_PCIE_LCR_OFFSET:
887         *result = p_cap->hal_pcie_lcr_offset;
888         return HAL_OK;
889     case HAL_CAP_SMARTANTENNA:
890         /* FIXME A request is pending with h/w team to add feature bit in
891          * caldata to detect if board has smart antenna or not, once added
892          * we need to fix his piece of code to read and return value without
893          * any compile flags
894          */
895 #if UMAC_SUPPORT_SMARTANTENNA
896         /* enable smart antenna for  Peacock, Wasp and scorpion
897            for future chips need to modify */
898         if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
899             return HAL_OK;
900         } else {
901             return HAL_ENOTSUPP;
902         }
903 #else
904         return HAL_ENOTSUPP;
905 #endif
906 
907 #ifdef ATH_TRAFFIC_FAST_RECOVER
908     case HAL_CAP_TRAFFIC_FAST_RECOVER:
909         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
910             return HAL_OK;
911         } else {
912             return HAL_ENOTSUPP;
913         }
914 #endif
915 
916     /* FreeBSD ANI */
917     case HAL_CAP_INTMIT:            /* interference mitigation */
918             switch (capability) {
919             case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
920                     return HAL_OK;
921             case HAL_CAP_INTMIT_ENABLE:
922                     return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
923                             HAL_OK : HAL_ENXIO;
924             case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
925             case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
926 //            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
927             case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
928             case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
929                     ani = ar9300_ani_get_current_state(ah);
930                     if (ani == AH_NULL)
931                             return HAL_ENXIO;
932                     switch (capability) {
933                     /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
934                     case 2: *result = ani->ofdm_noise_immunity_level; break;
935                     case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
936  //                   case 4: *result = ani->cck_weak_sig_threshold; break;
937                     case 5: *result = ani->firstep_level; break;
938                     case 6: *result = ani->spur_immunity_level; break;
939                     }
940                     return HAL_OK;
941             }
942             return HAL_EINVAL;
943     default:
944         return ath_hal_getcapability(ah, type, capability, result);
945     }
946 }
947 
948 HAL_BOOL
949 ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
950         u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
951 {
952     struct ath_hal_9300 *ahp = AH9300(ah);
953     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
954     u_int32_t v;
955 
956     switch (type) {
957     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
958         if (! p_cap->halTkipMicTxRxKeySupport)
959             return AH_FALSE;
960 
961         if (setting)
962             ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
963         else
964             ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
965 
966         OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
967         return AH_TRUE;
968 
969     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
970         if (setting) {
971             ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
972         } else {
973             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
974         }
975         return AH_TRUE;
976     case HAL_CAP_DIVERSITY:
977         v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
978         if (setting) {
979             v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
980         } else {
981             v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
982         }
983         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
984         return AH_TRUE;
985     case HAL_CAP_DIAG:              /* hardware diagnostic support */
986         /*
987          * NB: could split this up into virtual capabilities,
988          *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
989          *     seems worth the additional complexity.
990          */
991 #ifdef AH_DEBUG
992         AH_PRIVATE(ah)->ah_diagreg = setting;
993 #else
994         AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
995 #endif
996         OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
997         return AH_TRUE;
998     case HAL_CAP_TPC:
999         ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1000         return AH_TRUE;
1001     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1002         if (setting) {
1003             ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1004         } else {
1005             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1006         }
1007         return AH_TRUE;
1008     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1009         if (p_cap->halTsfAddSupport) {
1010             if (setting) {
1011                 ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1012             } else {
1013                 ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1014             }
1015             return AH_TRUE;
1016         }
1017         return AH_FALSE;
1018 
1019     /* FreeBSD interrupt mitigation / ANI */
1020     case HAL_CAP_INTMIT: {          /* interference mitigation */
1021             /* This maps the public ANI commands to the internal ANI commands */
1022             /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1023             static const HAL_ANI_CMD cmds[] = {
1024                     HAL_ANI_PRESENT,
1025                     HAL_ANI_MODE,
1026                     HAL_ANI_NOISE_IMMUNITY_LEVEL,
1027                     HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1028                     HAL_ANI_CCK_WEAK_SIGNAL_THR,
1029                     HAL_ANI_FIRSTEP_LEVEL,
1030                     HAL_ANI_SPUR_IMMUNITY_LEVEL,
1031             };
1032 #define N(a)    (sizeof(a) / sizeof(a[0]))
1033             return capability < N(cmds) ?
1034                     ar9300_ani_control(ah, cmds[capability], setting) :
1035                     AH_FALSE;
1036 #undef N
1037     }
1038 
1039     case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1040         ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1041         OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1042         return AH_TRUE;
1043 
1044         /* fall thru... */
1045     default:
1046         return ath_hal_setcapability(ah, type, capability, setting, status);
1047     }
1048 }
1049 
1050 #ifdef AH_DEBUG
1051 static void
1052 ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1053 {
1054     u_int32_t i = 0;
1055 
1056     /* Read 0x80d0 to trigger pcie analyzer */
1057     HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1058         "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1059 
1060     if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1061         struct ath_hal_9300 *ahp = AH9300(ah);
1062         u_int32_t tf, rf, rc, cc;
1063 
1064         tf = OS_REG_READ(ah, AR_TFCNT);
1065         rf = OS_REG_READ(ah, AR_RFCNT);
1066         rc = OS_REG_READ(ah, AR_RCCNT);
1067         cc = OS_REG_READ(ah, AR_CCCNT);
1068 
1069         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1070             "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1071         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1072             "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1073         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1074             "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1075         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1076             "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1077 
1078         ahp->last_tf = tf;
1079         ahp->last_rf = rf;
1080         ahp->last_rc = rc;
1081         ahp->last_cc = cc;
1082 
1083         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1084             "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1085         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1086             "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1087         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1088             "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1089         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1090             "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1091         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1092             "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1093         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1094             "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1095         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1096             "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1097         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1098             "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1099     }
1100 
1101     if (args & HAL_DIAG_PRINT_REG_ALL) {
1102         for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1103             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1104                 i, OS_REG_READ(ah, i));
1105         }
1106 
1107         for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1108             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1109                 i, OS_REG_READ(ah, i));
1110         }
1111 
1112         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1113             "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1114 
1115         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1116             "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1117 
1118         for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1119             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1120                 i, OS_REG_READ(ah, i));
1121         }
1122 
1123         for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1124             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1125                 i, OS_REG_READ(ah, i));
1126         }
1127 
1128         for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1129             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1130                 i, OS_REG_READ(ah, i));
1131         }
1132 
1133         for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1134             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1135                 i, OS_REG_READ(ah, i));
1136         }
1137 
1138         for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1139             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1140                 i, OS_REG_READ(ah, i));
1141         }
1142 
1143         for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1144             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1145                 i, OS_REG_READ(ah, i));
1146         }
1147 
1148         for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1149             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1150                 i, OS_REG_READ(ah, i));
1151         }
1152 
1153         for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1154             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1155                 i, OS_REG_READ(ah, i));
1156         }
1157 
1158         for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1159             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1160                 i, OS_REG_READ(ah, i));
1161         }
1162 
1163         for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1164             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1165                 i, OS_REG_READ(ah, i));
1166         }
1167 
1168         for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1169             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1170                 i, OS_REG_READ(ah, i));
1171         }
1172     }
1173 }
1174 #endif
1175 
1176 HAL_BOOL
1177 ar9300_get_diag_state(struct ath_hal *ah, int request,
1178         const void *args, u_int32_t argsize,
1179         void **result, u_int32_t *resultsize)
1180 {
1181     struct ath_hal_9300 *ahp = AH9300(ah);
1182 
1183     (void) ahp;
1184     if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1185         return AH_TRUE;
1186     }
1187     switch (request) {
1188 #ifdef AH_PRIVATE_DIAG
1189     case HAL_DIAG_EEPROM:
1190         *result = &ahp->ah_eeprom;
1191         *resultsize = sizeof(ar9300_eeprom_t);
1192         return AH_TRUE;
1193 
1194 #if 0   /* XXX - TODO */
1195     case HAL_DIAG_EEPROM_EXP_11A:
1196     case HAL_DIAG_EEPROM_EXP_11B:
1197     case HAL_DIAG_EEPROM_EXP_11G:
1198         pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1199         *result = pe->p_channels;
1200         *resultsize = (*result == AH_NULL) ? 0 :
1201             roundup(sizeof(u_int16_t) * pe->num_channels,
1202             sizeof(u_int32_t)) +
1203                 sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1204         return AH_TRUE;
1205 #endif
1206     case HAL_DIAG_RFGAIN:
1207         *result = &ahp->ah_gain_values;
1208         *resultsize = sizeof(GAIN_VALUES);
1209         return AH_TRUE;
1210     case HAL_DIAG_RFGAIN_CURSTEP:
1211         *result = (void *) ahp->ah_gain_values.curr_step;
1212         *resultsize = (*result == AH_NULL) ?
1213                 0 : sizeof(GAIN_OPTIMIZATION_STEP);
1214         return AH_TRUE;
1215 #if 0   /* XXX - TODO */
1216     case HAL_DIAG_PCDAC:
1217         *result = ahp->ah_pcdac_table;
1218         *resultsize = ahp->ah_pcdac_table_size;
1219         return AH_TRUE;
1220 #endif
1221     case HAL_DIAG_ANI_CURRENT:
1222         *result = ar9300_ani_get_current_state(ah);
1223         *resultsize = (*result == AH_NULL) ?
1224             0 : sizeof(struct ar9300_ani_state);
1225         return AH_TRUE;
1226     case HAL_DIAG_ANI_STATS:
1227         *result = ar9300_ani_get_current_stats(ah);
1228         *resultsize = (*result == AH_NULL) ?
1229             0 : sizeof(struct ar9300_stats);
1230         return AH_TRUE;
1231     case HAL_DIAG_ANI_CMD:
1232         if (argsize != 2*sizeof(u_int32_t)) {
1233             return AH_FALSE;
1234         }
1235         ar9300_ani_control(
1236             ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1237         return AH_TRUE;
1238 #if 0
1239     case HAL_DIAG_TXCONT:
1240         /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1241         return AH_TRUE;
1242 #endif /* 0 */
1243 #endif /* AH_PRIVATE_DIAG */
1244     case HAL_DIAG_CHANNELS:
1245 #if 0
1246         *result = &(ahp->ah_priv.ah_channels[0]);
1247         *resultsize =
1248             sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1249 #endif
1250         return AH_TRUE;
1251 #ifdef AH_DEBUG
1252     case HAL_DIAG_PRINT_REG:
1253         ar9300_print_reg(ah, *((const u_int32_t *)args));
1254         return AH_TRUE;
1255 #endif
1256     default:
1257         break;
1258     }
1259 
1260     return AH_FALSE;
1261 }
1262 
1263 void
1264 ar9300_dma_reg_dump(struct ath_hal *ah)
1265 {
1266 #ifdef AH_DEBUG
1267 #define NUM_DMA_DEBUG_REGS  8
1268 #define NUM_QUEUES          10
1269 
1270     u_int32_t val[NUM_DMA_DEBUG_REGS];
1271     int       qcu_offset = 0, dcu_offset = 0;
1272     u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1273     int       i, j, k;
1274     int16_t nfarray[HAL_NUM_NF_READINGS];
1275 #ifdef	ATH_NF_PER_CHAN
1276     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1277 #endif	/* ATH_NF_PER_CHAN */
1278     HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1279 
1280      /* selecting DMA OBS 8 */
1281     OS_REG_WRITE(ah, AR_MACMISC,
1282         ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1283          (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1284 
1285     ath_hal_printf(ah, "Raw DMA Debug values:\n");
1286     for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1287         if (i % 4 == 0) {
1288             ath_hal_printf(ah, "\n");
1289         }
1290 
1291         val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1292         ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1293     }
1294 
1295     ath_hal_printf(ah, "\n\n");
1296     ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1297 
1298     for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1299         if (i == 8) {
1300             /* only 8 QCU entries in val[0] */
1301             qcu_offset = 0;
1302             qcu_base++;
1303         }
1304 
1305         if (i == 6) {
1306             /* only 6 DCU entries in val[4] */
1307             dcu_offset = 0;
1308             dcu_base++;
1309         }
1310 
1311         ath_hal_printf(ah,
1312             "%2d          %2x      %1x     %2x           %2x\n",
1313             i,
1314             (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1315             (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1316             val[2] & (0x7 << (i * 3)) >> (i * 3),
1317             (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1318     }
1319 
1320     ath_hal_printf(ah, "\n");
1321     ath_hal_printf(ah,
1322         "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1323         (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1324     ath_hal_printf(ah,
1325         "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1326         (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1327     ath_hal_printf(ah,
1328         "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1329         (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1330     ath_hal_printf(ah,
1331         "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1332         (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1333     ath_hal_printf(ah,
1334         "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1335         (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1336     ath_hal_printf(ah,
1337         "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1338         (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1339     ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1340     ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1341 
1342     ar9300_upload_noise_floor(ah, 1, nfarray);
1343     ath_hal_printf(ah, "2G:\n");
1344     ath_hal_printf(ah, "Min CCA Out:\n");
1345     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1346     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1347                    nfarray[0], nfarray[1], nfarray[2]);
1348     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1349                    nfarray[3], nfarray[4], nfarray[5]);
1350 
1351     ar9300_upload_noise_floor(ah, 0, nfarray);
1352     ath_hal_printf(ah, "5G:\n");
1353     ath_hal_printf(ah, "Min CCA Out:\n");
1354     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1355     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1356                    nfarray[0], nfarray[1], nfarray[2]);
1357     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1358                    nfarray[3], nfarray[4], nfarray[5]);
1359 
1360     for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1361         ath_hal_printf(ah, "%s Chain %d NF History:\n",
1362                        ((i < 3) ? "Control " : "Extension "), i%3);
1363         for (j = 0, k = h->base.curr_index;
1364              j < HAL_NF_CAL_HIST_LEN_FULL;
1365              j++, k++) {
1366             ath_hal_printf(ah, "Element %d: %d\n",
1367                 j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1368         }
1369         ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1370     }
1371 
1372     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1373     ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1374                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1375                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1376     reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1377     ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1378                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1379                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1380     ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1381                    MS(reg, AR_PHY_DESIRED_SZ_ADC),
1382                    MS(reg, AR_PHY_DESIRED_SZ_ADC));
1383     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1384     ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1385                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1386                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1387     reg = OS_REG_READ(ah, AR_PHY_AGC);
1388     ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1389                    MS(reg, AR_PHY_AGC_COARSE_HIGH),
1390                    MS(reg, AR_PHY_AGC_COARSE_HIGH));
1391     ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1392                    MS(reg, AR_PHY_AGC_COARSE_LOW),
1393                    MS(reg, AR_PHY_AGC_COARSE_LOW));
1394     ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1395                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1396                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1397     reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1398     ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1399                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1400     ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1401                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1402                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1403     ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1404                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1405                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1406     reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1407     ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1408                    MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1409     ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1410                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1411                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1412 
1413 
1414     /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1415     reg = OS_REG_READ(ah, 0xa360);
1416     reg &= ~0x00800000;
1417     OS_REG_WRITE(ah, 0xa360, reg);
1418 
1419     /* Step 2a: Set register 0xa364 to 0x1000 */
1420     reg = 0x1000;
1421     OS_REG_WRITE(ah, 0xa364, reg);
1422 
1423     /* Step 3a: Read bits 17:0 of register 0x9c20 */
1424     reg = OS_REG_READ(ah, 0x9c20);
1425     reg &= 0x0003ffff;
1426     ath_hal_printf(ah,
1427         "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1428         __func__, reg);
1429 
1430     /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1431     reg = OS_REG_READ(ah, 0xa360);
1432     reg &= ~0x00800000;
1433     OS_REG_WRITE(ah, 0xa360, reg);
1434 
1435     /* Step 2b: Set register 0xa364 to 0x1400 */
1436     reg = 0x1400;
1437     OS_REG_WRITE(ah, 0xa364, reg);
1438 
1439     /* Step 3b: Read bits 17:0 of register 0x9c20 */
1440     reg = OS_REG_READ(ah, 0x9c20);
1441     reg &= 0x0003ffff;
1442     ath_hal_printf(ah,
1443         "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1444         __func__, reg);
1445 
1446     /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1447     reg = OS_REG_READ(ah, 0xa360);
1448     reg &= ~0x00800000;
1449     OS_REG_WRITE(ah, 0xa360, reg);
1450 
1451     /* Step 2c: Set register 0xa364 to 0x3C00 */
1452     reg = 0x3c00;
1453     OS_REG_WRITE(ah, 0xa364, reg);
1454 
1455     /* Step 3c: Read bits 17:0 of register 0x9c20 */
1456     reg = OS_REG_READ(ah, 0x9c20);
1457     reg &= 0x0003ffff;
1458     ath_hal_printf(ah,
1459         "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1460         __func__, reg);
1461 
1462     /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1463     reg = OS_REG_READ(ah, 0xa360);
1464     reg &= ~0x001040000;
1465     OS_REG_WRITE(ah, 0xa360, reg);
1466 
1467     /* Step 2d: Set register 0xa364 to 0x5005D */
1468     reg = 0x5005D;
1469     OS_REG_WRITE(ah, 0xa364, reg);
1470 
1471     /* Step 3d: Read bits 17:0 of register 0xa368 */
1472     reg = OS_REG_READ(ah, 0xa368);
1473     reg &= 0x0003ffff;
1474     ath_hal_printf(ah,
1475         "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1476         __func__, reg);
1477 
1478     /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1479     reg = OS_REG_READ(ah, 0xa360);
1480     reg &= ~0x001040000;
1481     OS_REG_WRITE(ah, 0xa360, reg);
1482 
1483     /* Step 2e: Set register 0xa364 to 0x7005D */
1484     reg = 0x7005D;
1485     OS_REG_WRITE(ah, 0xa364, reg);
1486 
1487     /* Step 3e: Read bits 17:0 of register 0xa368 */
1488     reg = OS_REG_READ(ah, 0xa368);
1489     reg &= 0x0003ffff;
1490     ath_hal_printf(ah,
1491         "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1492        __func__, reg);
1493 
1494     /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1495     reg = OS_REG_READ(ah, 0xa360);
1496     reg &= ~0x001000000;
1497     reg |= 0x40000;
1498     OS_REG_WRITE(ah, 0xa360, reg);
1499 
1500     /* Step 2f: Set register 0xa364 to 0x3005D */
1501     reg = 0x3005D;
1502     OS_REG_WRITE(ah, 0xa364, reg);
1503 
1504     /* Step 3f: Read bits 17:0 of register 0xa368 */
1505     reg = OS_REG_READ(ah, 0xa368);
1506     reg &= 0x0003ffff;
1507     ath_hal_printf(ah,
1508         "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1509         __func__, reg);
1510 
1511     /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1512     reg = OS_REG_READ(ah, 0xa360);
1513     reg &= ~0x001000000;
1514     reg |= 0x40000;
1515     OS_REG_WRITE(ah, 0xa360, reg);
1516 
1517     /* Step 2g: Set register 0xa364 to 0x6005D */
1518     reg = 0x6005D;
1519     OS_REG_WRITE(ah, 0xa364, reg);
1520 
1521     /* Step 3g: Read bits 17:0 of register 0xa368 */
1522     reg = OS_REG_READ(ah, 0xa368);
1523     reg &= 0x0003ffff;
1524     ath_hal_printf(ah,
1525         "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1526         __func__, reg);
1527 #endif /* AH_DEBUG */
1528 }
1529 
1530 /*
1531  * Return the busy for rx_frame, rx_clear, and tx_frame
1532  */
1533 u_int32_t
1534 ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1535     u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1536 {
1537     struct ath_hal_9300 *ahp = AH9300(ah);
1538     u_int32_t good = 1;
1539 
1540     u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1541     u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1542     u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1543     u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1544 
1545     if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1546         /*
1547          * Cycle counter wrap (or initial call); it's not possible
1548          * to accurately calculate a value because the registers
1549          * right shift rather than wrap--so punt and return 0.
1550          */
1551         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1552             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1553         good = 0;
1554     } else {
1555         u_int32_t cc_d = cc - ahp->ah_cycles;
1556         u_int32_t rc_d = rc - ahp->ah_rx_clear;
1557         u_int32_t rf_d = rf - ahp->ah_rx_frame;
1558         u_int32_t tf_d = tf - ahp->ah_tx_frame;
1559 
1560         if (cc_d != 0) {
1561             *rxc_pcnt = rc_d * 100 / cc_d;
1562             *rxf_pcnt = rf_d * 100 / cc_d;
1563             *txf_pcnt = tf_d * 100 / cc_d;
1564         } else {
1565             good = 0;
1566         }
1567     }
1568 
1569     ahp->ah_cycles = cc;
1570     ahp->ah_rx_frame = rf;
1571     ahp->ah_rx_clear = rc;
1572     ahp->ah_tx_frame = tf;
1573 
1574     return good;
1575 }
1576 
1577 /*
1578  * Return approximation of extension channel busy over an time interval
1579  * 0% (clear) -> 100% (busy)
1580  * -1 for invalid estimate
1581  */
1582 uint32_t
1583 ar9300_get_11n_ext_busy(struct ath_hal *ah)
1584 {
1585     /*
1586      * Overflow condition to check before multiplying to get %
1587      * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1588      */
1589 #define OVERFLOW_LIMIT  0x28F5C28
1590 #define ERROR_CODE      -1
1591 
1592     struct ath_hal_9300 *ahp = AH9300(ah);
1593     u_int32_t busy = 0; /* percentage */
1594     int8_t busyper = 0;
1595     u_int32_t cycle_count, ctl_busy, ext_busy;
1596 
1597     /* cycle_count will always be the first to wrap; therefore, read it last
1598      * This sequence of reads is not atomic, and MIB counter wrap
1599      * could happen during it ?
1600      */
1601     ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1602     ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1603     cycle_count = OS_REG_READ(ah, AR_CCCNT);
1604 
1605     if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1606         (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1607     {
1608         /*
1609          * Cycle counter wrap (or initial call); it's not possible
1610          * to accurately calculate a value because the registers
1611          * right shift rather than wrap--so punt and return 0.
1612          */
1613         busyper = ERROR_CODE;
1614         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1615             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1616     } else {
1617         u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1618         u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1619 
1620         /*
1621          * Compute extension channel busy percentage
1622          * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1623          * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1624          * Will never happen, since (ext_busy_delta < cycle_delta) always,
1625          * and shift necessitated by large ext_busy_delta.
1626          * Due to timing difference to read the registers and counter overflow,
1627          * it may still happen that cycle_delta >> 7 = 0.
1628          *
1629          */
1630         if (cycle_delta) {
1631             if (ext_busy_delta > OVERFLOW_LIMIT) {
1632                 if (cycle_delta >> 7) {
1633                     busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1634                 } else {
1635                     busyper = ERROR_CODE;
1636                 }
1637             } else {
1638                 busy = (ext_busy_delta * 100) / cycle_delta;
1639             }
1640         } else {
1641             busyper = ERROR_CODE;
1642         }
1643 
1644         if (busy > 100) {
1645             busy = 100;
1646         }
1647         if ( busyper != ERROR_CODE ) {
1648             busyper = busy;
1649         }
1650     }
1651 
1652     ahp->ah_cycle_count = cycle_count;
1653     ahp->ah_ctl_busy = ctl_busy;
1654     ahp->ah_ext_busy = ext_busy;
1655 
1656     return busyper;
1657 #undef OVERFLOW_LIMIT
1658 #undef ERROR_CODE
1659 }
1660 
1661 /* BB Panic Watchdog declarations */
1662 #define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1663 #define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1664 
1665 void
1666 ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1667 {
1668 #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1669     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1670     u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1671     u_int32_t val, idle_count;
1672 
1673     if (idle_tmo_ms != 0) {
1674         /* enable IRQ, disable chip-reset for BB panic */
1675         val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1676             AR_PHY_BB_PANIC_CNTL2_MASK;
1677         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1678             (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1679         /* bound limit to 10 secs */
1680         if (idle_tmo_ms > 10000) {
1681             idle_tmo_ms = 10000;
1682         }
1683         if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1684             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1685         } else {
1686             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1687         }
1688         /*
1689          * enable panic in non-IDLE mode,
1690          * disable in IDLE mode,
1691          * set idle time-out
1692          */
1693 
1694         // EV92527 : Enable IDLE mode panic
1695 
1696         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1697                      AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1698                      AR_PHY_BB_PANIC_IDLE_ENABLE |
1699                      (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1700                      (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1701     } else {
1702         /* disable IRQ, disable chip-reset for BB panic */
1703         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1704             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1705             ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1706         /* disable panic in non-IDLE mode, disable in IDLE mode */
1707         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1708             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1709             ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1710     }
1711 
1712     HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1713              __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1714 #undef HAL_BB_PANIC_IDLE_TIME_OUT
1715 }
1716 
1717 
1718 void
1719 ar9300_handle_bb_panic(struct ath_hal *ah)
1720 {
1721     u_int32_t status;
1722     /*
1723      * we want to avoid printing in ISR context so we save
1724      * panic watchdog status to be printed later in DPC context
1725      */
1726     AH9300(ah)->ah_bb_panic_last_status = status =
1727         OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1728     /*
1729      * panic watchdog timer should reset on status read
1730      * but to make sure we write 0 to the watchdog status bit
1731      */
1732     OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1733 }
1734 
1735 int
1736 ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1737 {
1738     bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1739 
1740     /*
1741      * For signature 04000539 do not print anything.
1742      * This is a very common occurence as a compromise between
1743      * BB Panic and AH_FALSE detects (EV71009). It indicates
1744      * radar hang, which can be cleared by reprogramming
1745      * radar related register and does not requre a chip reset
1746      */
1747 
1748     /* Suppress BB Status mesg following signature */
1749     switch (bb_panic->status) {
1750         case 0x04000539:
1751         case 0x04008009:
1752         case 0x04000b09:
1753         case 0x1300000a:
1754         return -1;
1755     }
1756 
1757     bb_panic->tsf = ar9300_get_tsf32(ah);
1758     bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1759     bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1760     bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1761     bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1762     bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1763     bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1764     bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1765     bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1766     bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1767     bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1768     bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1769     bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1770     bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1771     bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1772                                         &bb_panic->rxc_pcnt,
1773                                         &bb_panic->rxf_pcnt,
1774                                         &bb_panic->txf_pcnt);
1775 
1776     if (ah->ah_config.ath_hal_show_bb_panic) {
1777         ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1778             "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1779         ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1780             "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1781             bb_panic->wd, bb_panic->det, bb_panic->rdar,
1782             bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1783             bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1784         ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1785             bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1786         ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1787             bb_panic->phy_gen_ctrl);
1788         if (bb_panic->cycles) {
1789             ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1790                 "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1791                 bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1792         }
1793         ath_hal_printf(ah, "==== BB update: done ====\n\n");
1794     }
1795 
1796     return 0; //The returned data will be stored for athstats to retrieve it
1797 }
1798 
1799 /* set the reason for HAL reset */
1800 void
1801 ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1802 {
1803     AH9300(ah)->ah_reset_reason = resetreason;
1804 }
1805 
1806 /*
1807  * Configure 20/40 operation
1808  *
1809  * 20/40 = joint rx clear (control and extension)
1810  * 20    = rx clear (control)
1811  *
1812  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1813  *         when changing from 20/40 => 20 only
1814  */
1815 void
1816 ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1817 {
1818     u_int32_t macmode;
1819 
1820     /* Configure MAC for 20/40 operation */
1821     if (mode == HAL_HT_MACMODE_2040 &&
1822         !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1823         macmode = AR_2040_JOINED_RX_CLEAR;
1824     } else {
1825         macmode = 0;
1826     }
1827     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1828 }
1829 
1830 /*
1831  * Get Rx clear (control/extension channel)
1832  *
1833  * Returns active low (busy) for ctrl/ext channel
1834  * Owl 2.0
1835  */
1836 HAL_HT_RXCLEAR
1837 ar9300_get_11n_rx_clear(struct ath_hal *ah)
1838 {
1839     HAL_HT_RXCLEAR rxclear = 0;
1840     u_int32_t val;
1841 
1842     val = OS_REG_READ(ah, AR_DIAG_SW);
1843 
1844     /* control channel */
1845     if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1846         rxclear |= HAL_RX_CLEAR_CTL_LOW;
1847     }
1848     /* extension channel */
1849     if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1850         rxclear |= HAL_RX_CLEAR_EXT_LOW;
1851     }
1852     return rxclear;
1853 }
1854 
1855 /*
1856  * Set Rx clear (control/extension channel)
1857  *
1858  * Useful for forcing the channel to appear busy for
1859  * debugging/diagnostics
1860  * Owl 2.0
1861  */
1862 void
1863 ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1864 {
1865     /* control channel */
1866     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1867         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1868     } else {
1869         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1870     }
1871     /* extension channel */
1872     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1873         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1874     } else {
1875         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1876     }
1877 }
1878 
1879 
1880 /*
1881  * HAL support code for force ppm tracking workaround.
1882  */
1883 
1884 u_int32_t
1885 ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1886 {
1887     u_int32_t retval;
1888     u_int32_t off1;
1889     u_int32_t off2;
1890 
1891     if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1892         off1 = 0x2000;
1893         off2 = 0x1000;
1894     } else {
1895         off1 = 0x1000;
1896         off2 = 0x2000;
1897     }
1898 
1899     retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1900              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1901              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1902 
1903     return retval;
1904 }
1905 
1906 u_int32_t
1907 ar9300_ppm_force(struct ath_hal *ah)
1908 {
1909     u_int32_t data_fine;
1910     u_int32_t data4;
1911     //u_int32_t off1;
1912     //u_int32_t off2;
1913     HAL_BOOL signed_val = AH_FALSE;
1914 
1915 //    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1916 //        off1 = 0x2000;
1917 //        off2 = 0x1000;
1918 //    } else {
1919 //        off1 = 0x1000;
1920 //        off2 = 0x2000;
1921 //    }
1922     data_fine =
1923         AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1924         OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1925 
1926     /*
1927      * bit [11-0] is new ppm value. bit 11 is the signed bit.
1928      * So check value from bit[10:0].
1929      * Now get the abs val of the ppm value read in bit[0:11].
1930      * After that do bound check on abs value.
1931      * if value is off limit, CAP the value and and restore signed bit.
1932      */
1933     if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1934     {
1935         /* get the positive value */
1936         data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1937         signed_val = AH_TRUE;
1938     }
1939     if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
1940     {
1941         HALDEBUG(ah, HAL_DEBUG_REGIO,
1942             "%s Correcting ppm out of range %x\n",
1943             __func__, (data_fine & 0x7ff));
1944         data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
1945     }
1946     /*
1947      * Restore signed value if changed above.
1948      * Use typecast to avoid compilation errors
1949      */
1950     if (signed_val) {
1951         data_fine = (-(int32_t)data_fine) &
1952             AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1953     }
1954 
1955     /* write value */
1956     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
1957         ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1958     OS_REG_WRITE(ah, AR_PHY_TIMING2,
1959         data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
1960 
1961     return data_fine;
1962 }
1963 
1964 void
1965 ar9300_ppm_un_force(struct ath_hal *ah)
1966 {
1967     u_int32_t data4;
1968 
1969     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
1970     OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
1971 }
1972 
1973 u_int32_t
1974 ar9300_ppm_arm_trigger(struct ath_hal *ah)
1975 {
1976     u_int32_t val;
1977     u_int32_t ret;
1978 
1979     val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
1980     ret = OS_REG_READ(ah, AR_TSF_L32);
1981     OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
1982         val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
1983 
1984     /* return low word of TSF at arm time */
1985     return ret;
1986 }
1987 
1988 int
1989 ar9300_ppm_get_trigger(struct ath_hal *ah)
1990 {
1991     if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
1992         AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
1993     {
1994         /* has not triggered yet, return AH_FALSE */
1995         return 0;
1996     }
1997 
1998     /* else triggered, return AH_TRUE */
1999     return 1;
2000 }
2001 
2002 void
2003 ar9300_mark_phy_inactive(struct ath_hal *ah)
2004 {
2005     OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2006 }
2007 
2008 /* DEBUG */
2009 u_int32_t
2010 ar9300_ppm_get_force_state(struct ath_hal *ah)
2011 {
2012     return
2013         OS_REG_READ(ah, AR_PHY_TIMING2) &
2014         (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2015 }
2016 
2017 /*
2018  * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2019  */
2020 HAL_BOOL
2021 ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2022 {
2023     /*
2024      * XXX FreeBSD todo: reimplement this
2025      */
2026 #if 0
2027     p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2028     p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2029     p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2030     p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2031     p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2032                            p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2033     p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2034                            p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2035 #endif
2036     return AH_FALSE;
2037 }
2038 
2039 void
2040 ar9300_clear_mib_counters(struct ath_hal *ah)
2041 {
2042     u_int32_t reg_val;
2043 
2044     reg_val = OS_REG_READ(ah, AR_MIBC);
2045     OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2046     OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2047 }
2048 
2049 
2050 /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2051 HAL_BOOL
2052 ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2053 {
2054     struct ath_hal_9300 *ahp = AH9300(ah);
2055     HAL_CHANNEL_INTERNAL *ichan =
2056       ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2057     HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2058     u_int32_t tmp = 0;
2059 
2060     if (enable) {
2061         if (ahp->ah_rifs_enabled == AH_TRUE) {
2062             return AH_TRUE;
2063         }
2064 
2065         OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2066         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2067                      ahp->ah_rifs_reg[1]);
2068 
2069         ahp->ah_rifs_enabled = AH_TRUE;
2070         OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2071     } else {
2072         if (ahp->ah_rifs_enabled == AH_TRUE) {
2073             ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2074                                               AR_PHY_SEARCH_START_DELAY);
2075             ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2076         }
2077         /* Change rifs init delay to 0 */
2078         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2079                      (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2080         tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2081         if (is_chan_2g) {
2082             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2083                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2084             } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2085                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2086             }
2087         } else {
2088             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2089                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2090             } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2091                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2092             }
2093         }
2094 
2095         ahp->ah_rifs_enabled = AH_FALSE;
2096     }
2097     return AH_TRUE;
2098 
2099 } /* ar9300_set_rifs_delay () */
2100 
2101 /* Set the current RIFS Rx setting */
2102 HAL_BOOL
2103 ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2104 {
2105     /* Non-Owl 11n chips */
2106     if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2107         if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2108             return ar9300_set_rifs_delay(ah, enable);
2109         }
2110         return AH_FALSE;
2111     }
2112 
2113     return AH_TRUE;
2114 } /* ar9300_set_11n_rx_rifs () */
2115 
2116 static hal_mac_hangs_t
2117 ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2118   hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2119 {
2120     int i = 0;
2121     hal_mac_hangs_t found_hangs = 0;
2122 
2123     if (hangs & dcu_chain_state) {
2124         for (i = 0; i < 6; i++) {
2125             if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2126                  hang_check.dcu_chain_state)
2127             {
2128                 found_hangs |= dcu_chain_state;
2129                 *dcu_chain = i;
2130             }
2131         }
2132         for (i = 0; i < 4; i++) {
2133             if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2134                   hang_check.dcu_chain_state)
2135             {
2136                 found_hangs |= dcu_chain_state;
2137                 *dcu_chain = i + 6;
2138             }
2139         }
2140     }
2141 
2142     if (hangs & dcu_complete_state) {
2143         if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2144             found_hangs |= dcu_complete_state;
2145         }
2146     }
2147 
2148     return found_hangs;
2149 
2150 } /* end - ar9300_compare_dbg_hang */
2151 
2152 #define NUM_STATUS_READS 50
2153 HAL_BOOL
2154 ar9300_detect_mac_hang(struct ath_hal *ah)
2155 {
2156     struct ath_hal_9300 *ahp = AH9300(ah);
2157     mac_dbg_regs_t mac_dbg;
2158     hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2159     hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2160     int i = 0;
2161     u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2162 
2163     if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2164         return AH_FALSE;
2165     }
2166 
2167     OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2168 
2169     mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2170     mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2171     mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2172 
2173     HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2174             mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2175             mac_dbg.dma_dbg_6);
2176 
2177     if (hang_sig1 !=
2178             ar9300_compare_dbg_hang(ah, mac_dbg,
2179                  hang_sig1_val, hang_sig1, &dcu_chain))
2180     {
2181         HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2182         return AH_FALSE;
2183     }
2184 
2185     shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2186     shift_val *= 5;
2187 
2188     for (i = 1; i <= NUM_STATUS_READS; i++) {
2189         if (dcu_chain < 6) {
2190             mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2191             current_dcu_chain_state =
2192                      ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2193         } else {
2194             mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2195             current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2196         }
2197         mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2198 
2199         if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2200             || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2201             return AH_FALSE;
2202         }
2203     }
2204     HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2205              ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2206     ahp->ah_hang[MAC_HANG_SIG1]++;
2207     return AH_TRUE;
2208 
2209 } /* end - ar9300_detect_mac_hang */
2210 
2211 /* Determine if the baseband is hung by reading the Observation Bus Register */
2212 HAL_BOOL
2213 ar9300_detect_bb_hang(struct ath_hal *ah)
2214 {
2215 #define N(a) (sizeof(a) / sizeof(a[0]))
2216     struct ath_hal_9300 *ahp = AH9300(ah);
2217     u_int32_t hang_sig = 0;
2218     int i = 0;
2219     /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2220      *
2221      * 4 known BB hang signatures -
2222      * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2223      * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2224      * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2225      * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2226      *     Rx State (bits 20-24) is 0x7.
2227      */
2228     hal_hw_hang_check_t hang_list [] =
2229     {
2230      /* Offset        Reg Value   Reg Mask    Hang Offset */
2231        {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2232        {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2233        {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2234        {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2235     };
2236 
2237     if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2238                                HAL_DFS_BB_HANG_WAR |
2239                                HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2240         return AH_FALSE;
2241     }
2242 
2243     hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2244     for (i = 1; i <= NUM_STATUS_READS; i++) {
2245         if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2246             return AH_FALSE;
2247         }
2248     }
2249 
2250     for (i = 0; i < N(hang_list); i++) {
2251         if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2252             ahp->ah_hang[hang_list[i].hang_offset]++;
2253             HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2254                      "sig3count=%d sig4count=%d\n", __func__,
2255                      ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2256                      ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2257             return AH_TRUE;
2258         }
2259     }
2260 
2261     HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2262                               "<0x806c>=0x%x\n", __func__, hang_sig);
2263 
2264     return AH_FALSE;
2265 
2266 #undef N
2267 } /* end - ar9300_detect_bb_hang () */
2268 
2269 #undef NUM_STATUS_READS
2270 
2271 HAL_STATUS
2272 ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2273 {
2274     struct ath_hal_9300     *ahp = AH9300(ah);
2275     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2276     HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2277     const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2278     u_int16_t               ant_config;
2279     u_int32_t               hal_num_ant_config;
2280 
2281     hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2282         p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2283 
2284     if (cfg < hal_num_ant_config) {
2285         if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2286             OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2287             return HAL_OK;
2288         }
2289     }
2290 
2291     return HAL_EINVAL;
2292 }
2293 
2294 /*
2295  * Functions to get/set DCS mode
2296  */
2297 void
2298 ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2299 {
2300     AH9300(ah)->ah_dcs_enable = mode;
2301 }
2302 
2303 u_int32_t
2304 ar9300_get_dcs_mode(struct ath_hal *ah)
2305 {
2306     return AH9300(ah)->ah_dcs_enable;
2307 }
2308 
2309 #if ATH_BT_COEX
2310 void
2311 ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2312 {
2313     struct ath_hal_9300 *ahp = AH9300(ah);
2314 
2315     ahp->ah_bt_module = btinfo->bt_module;
2316     ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2317     ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2318     ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2319     ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2320     ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2321     ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2322     ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2323 }
2324 
2325 void
2326 ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2327 {
2328     struct ath_hal_9300 *ahp = AH9300(ah);
2329     HAL_BOOL rx_clear_polarity;
2330 
2331     /*
2332      * For Kiwi and Osprey, the polarity of rx_clear is active high.
2333      * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2334      */
2335     rx_clear_polarity = !btconf->bt_rxclear_polarity;
2336 
2337     ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2338         SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2339         SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2340         SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2341         SM(btconf->bt_mode, AR_BT_MODE) |
2342         SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2343         SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2344         SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2345         SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2346 
2347     ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2348 
2349     if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2350         /* Enable ACK to go out even though BT has higher priority. */
2351         ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2352     }
2353 }
2354 
2355 void
2356 ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2357 {
2358     struct ath_hal_9300 *ahp = AH9300(ah);
2359 
2360     /* clear the old value, then set the new value */
2361     ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2362     ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2363 }
2364 
2365 void
2366 ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2367 {
2368     struct ath_hal_9300 *ahp = AH9300(ah);
2369 
2370     ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2371     ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2372     ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2373     ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2374 
2375     switch (stomp_type) {
2376     case HAL_BT_COEX_STOMP_ALL:
2377         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2378         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2379         break;
2380     case HAL_BT_COEX_STOMP_LOW:
2381         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2382         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2383         break;
2384     case HAL_BT_COEX_STOMP_ALL_FORCE:
2385         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2386         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2387         break;
2388     case HAL_BT_COEX_STOMP_LOW_FORCE:
2389         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2390         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2391         break;
2392     case HAL_BT_COEX_STOMP_NONE:
2393     case HAL_BT_COEX_NO_STOMP:
2394         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2395         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2396         break;
2397     default:
2398         /* There is a force_weight from registry */
2399         ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2400         ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2401         break;
2402     }
2403 }
2404 
2405 void
2406 ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2407 {
2408     struct ath_hal_9300 *ahp = AH9300(ah);
2409 
2410     /* clear the old value, then set the new value */
2411     ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2412     ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2413 }
2414 
2415 static void
2416 ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2417 {
2418     struct ath_hal_9300 *ahp = AH9300(ah);
2419 #if ATH_ANT_DIV_COMB
2420     //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2421     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2422 #endif
2423 
2424     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2425     {
2426         if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2427         {
2428             /* Config antenna diversity */
2429 #if ATH_ANT_DIV_COMB
2430             ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2431 #endif
2432         }
2433     }
2434 }
2435 
2436 
2437 void
2438 ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2439     u_int32_t value)
2440 {
2441     struct ath_hal_9300 *ahp = AH9300(ah);
2442     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2443 
2444     switch (type) {
2445         case HAL_BT_COEX_SET_ACK_PWR:
2446             if (value) {
2447                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2448             } else {
2449                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2450             }
2451             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2452                 ahpriv->ah_extraTxPow, 0);
2453             break;
2454 
2455         case HAL_BT_COEX_ANTENNA_DIVERSITY:
2456             if (AR_SREV_POSEIDON(ah)) {
2457                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2458                 if (value) {
2459                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2460                 }
2461                 else {
2462                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2463                 }
2464                 ar9300_bt_coex_antenna_diversity(ah, value);
2465             }
2466             break;
2467         case HAL_BT_COEX_LOWER_TX_PWR:
2468             if (value) {
2469                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2470             }
2471             else {
2472                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2473             }
2474             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2475                                       ahpriv->ah_extraTxPow, 0);
2476             break;
2477 #if ATH_SUPPORT_MCI
2478         case HAL_BT_COEX_MCI_MAX_TX_PWR:
2479             if ((ah->ah_config.ath_hal_mci_config &
2480                  ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2481             {
2482                 if (value) {
2483                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2484                     ahp->ah_mci_concur_tx_en = AH_TRUE;
2485                 }
2486                 else {
2487                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2488                     ahp->ah_mci_concur_tx_en = AH_FALSE;
2489                 }
2490                 ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2491                                           ahpriv->ah_extraTxPow, 0);
2492             }
2493             HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2494                      ahp->ah_mci_concur_tx_en);
2495             break;
2496         case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2497             if (value) {
2498                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2499             }
2500             else {
2501                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2502             }
2503             break;
2504 #endif
2505         default:
2506             break;
2507     }
2508 }
2509 
2510 void
2511 ar9300_bt_coex_disable(struct ath_hal *ah)
2512 {
2513     struct ath_hal_9300 *ahp = AH9300(ah);
2514 
2515     /* Always drive rx_clear_external output as 0 */
2516     ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2517         HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2518 
2519     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2520         OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2521         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2522     }
2523 
2524     OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2525     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2526     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2527     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2528     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2529     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2530     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2531     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2532 
2533     ahp->ah_bt_coex_enabled = AH_FALSE;
2534 }
2535 
2536 int
2537 ar9300_bt_coex_enable(struct ath_hal *ah)
2538 {
2539     struct ath_hal_9300 *ahp = AH9300(ah);
2540 
2541     /* Program coex mode and weight registers to actually enable coex */
2542     OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2543     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2544     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2545     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2546     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2547     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2548     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2549     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2550 
2551     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2552         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2553     } else {
2554         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2555     }
2556 
2557     OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2558     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2559         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2560     } else {
2561         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2562     }
2563 
2564     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2565         /* For 3-wire, configure the desired GPIO port for rx_clear */
2566         ath_hal_gpioCfgOutput(ah,
2567             ahp->ah_wlan_active_gpio_select,
2568             HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2569     }
2570     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2571         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2572     {
2573         /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2574         ath_hal_gpioCfgOutput(ah,
2575             ahp->ah_wlan_active_gpio_select,
2576             HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2577     }
2578 
2579     /*
2580      * Enable a weak pull down on BT_ACTIVE.
2581      * When BT device is disabled, BT_ACTIVE might be floating.
2582      */
2583     OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2584         (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2585         (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2586 
2587     ahp->ah_bt_coex_enabled = AH_TRUE;
2588 
2589     return 0;
2590 }
2591 
2592 u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2593 {
2594     return 0;
2595 }
2596 
2597 u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2598 {
2599     return bOn;
2600 }
2601 
2602 void
2603 ar9300_init_bt_coex(struct ath_hal *ah)
2604 {
2605     struct ath_hal_9300 *ahp = AH9300(ah);
2606 
2607     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2608         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2609                    (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2610                     AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2611 
2612         /*
2613          * Set input mux for bt_prority_async and
2614          * bt_active_async to GPIO pins
2615          */
2616         OS_REG_RMW_FIELD(ah,
2617             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2618             AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2619             ahp->ah_bt_active_gpio_select);
2620         OS_REG_RMW_FIELD(ah,
2621             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2622             AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2623             ahp->ah_bt_priority_gpio_select);
2624 
2625         /* Configure the desired GPIO ports for input */
2626         ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2627         ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2628 
2629         if (ahp->ah_bt_coex_enabled) {
2630             ar9300_bt_coex_enable(ah);
2631         } else {
2632             ar9300_bt_coex_disable(ah);
2633         }
2634     }
2635     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2636         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2637     {
2638         /* 2-wire */
2639         if (ahp->ah_bt_coex_enabled) {
2640             /* Connect bt_active_async to baseband */
2641             OS_REG_CLR_BIT(ah,
2642                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2643                 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2644                  AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2645             OS_REG_SET_BIT(ah,
2646                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2647                 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2648 
2649             /*
2650              * Set input mux for bt_prority_async and
2651              * bt_active_async to GPIO pins
2652              */
2653             OS_REG_RMW_FIELD(ah,
2654                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2655                 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2656                 ahp->ah_bt_active_gpio_select);
2657 
2658             /* Configure the desired GPIO ports for input */
2659             ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2660 
2661             /* Enable coexistence on initialization */
2662             ar9300_bt_coex_enable(ah);
2663         }
2664     }
2665 #if ATH_SUPPORT_MCI
2666     else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2667         if (ahp->ah_bt_coex_enabled) {
2668             ar9300_mci_bt_coex_enable(ah);
2669         }
2670         else {
2671             ar9300_mci_bt_coex_disable(ah);
2672         }
2673     }
2674 #endif /* ATH_SUPPORT_MCI */
2675 }
2676 
2677 #endif /* ATH_BT_COEX */
2678 
2679 HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2680 {
2681     u_int32_t val;
2682     int wasp_mm_rev;
2683 
2684 #define AR_SOC_RST_REVISION_ID      0xB8060090
2685 #define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2686     wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2687             AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2688             AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2689 #undef AR_SOC_RST_REVISION_ID
2690 #undef REG_READ
2691 
2692     /*
2693      * Azimuth (ProxySTA) Mode is only supported correctly by
2694      * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2695      *
2696      * Enable this feature for Scorpion at this time. The silicon
2697      * still needs to be validated.
2698      */
2699     if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2700         !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2701         !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2702           ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2703            (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2704             wasp_mm_rev >= 0 /* 1 */))))
2705     {
2706         HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2707                 "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2708                 __func__, AH_PRIVATE((ah))->ah_macVersion,
2709                 AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2710         return HAL_ENOTSUPP;
2711     }
2712 
2713     OS_REG_WRITE(ah,
2714         AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2715 
2716     /* turn on mode bit[24] for proxy sta */
2717     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2718         OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2719 
2720     val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2721     if (enable) {
2722         val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2723                AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2724                AR_AZIMUTH_BA_USES_AD1;
2725         /* turn off filter pass hold (bit 9) */
2726         val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2727     } else {
2728         val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2729                  AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2730                  AR_AZIMUTH_BA_USES_AD1);
2731     }
2732     OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2733 
2734     /* enable promiscous mode */
2735     OS_REG_WRITE(ah, AR_RX_FILTER,
2736         OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2737     /* enable promiscous in azimuth mode */
2738     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2739     OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2740 
2741     /* turn on filter pass hold (bit 9) */
2742     OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2743         OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2744 
2745     return HAL_OK;
2746 }
2747 
2748 #if 0
2749 void ar9300_mat_enable(struct ath_hal *ah, int enable)
2750 {
2751     /*
2752      * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2753      * mitigation and turn on key search always for better performance.
2754      */
2755     struct ath_hal_9300 *ahp = AH9300(ah);
2756     struct ath_hal_private *ap = AH_PRIVATE(ah);
2757 
2758     ahp->ah_intr_mitigation_rx = !enable;
2759     if (ahp->ah_intr_mitigation_rx) {
2760         /*
2761          * Enable Interrupt Mitigation for Rx.
2762          * If no build-specific limits for the rx interrupt mitigation
2763          * timer have been specified, use conservative defaults.
2764          */
2765         #ifndef AH_RIMT_VAL_LAST
2766             #define AH_RIMT_LAST_MICROSEC 500
2767         #endif
2768         #ifndef AH_RIMT_VAL_FIRST
2769             #define AH_RIMT_FIRST_MICROSEC 2000
2770         #endif
2771         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2772         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2773     } else {
2774         OS_REG_WRITE(ah, AR_RIMT, 0);
2775     }
2776 
2777     ahp->ah_enable_keysearch_always = !!enable;
2778     ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2779 }
2780 #endif
2781 
2782 void ar9300_enable_tpc(struct ath_hal *ah)
2783 {
2784     u_int32_t val = 0;
2785 
2786     ah->ah_config.ath_hal_desc_tpc = 1;
2787 
2788     /* Enable TPC */
2789     OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2790 
2791     /*
2792      * Disable per chain power reduction since we are already
2793      * accounting for this in our calculations
2794      */
2795     val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2796     if (AR_SREV_WASP(ah)) {
2797         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2798                          val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2799     } else {
2800         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2801                          val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2802     }
2803 }
2804 
2805 
2806 /*
2807  * ar9300_force_tsf_sync
2808  * This function forces the TSF sync to the given bssid, this is implemented
2809  * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2810  * mode of operation, where we sync the TSF to RootAP TSF values
2811  */
2812 void
2813 ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2814     u_int16_t assoc_id)
2815 {
2816     ar9300_set_operating_mode(ah, HAL_M_STA);
2817     ar9300_write_associd(ah, bssid, assoc_id);
2818 }
2819 
2820 void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2821 {
2822     struct ath_hal_9300 *ahp = AH9300(ah);
2823     u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2824     u_int32_t           temp_powertx_rate9_reg_val;
2825     int8_t              olpc_power_offset = 0;
2826     int8_t              tmp_olpc_val = 0;
2827     HAL_RSSI_TX_POWER   old_greentx_status;
2828     u_int8_t            target_power_val_t[ar9300_rate_size];
2829     int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2830 
2831     if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2832         !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2833         return;
2834     }
2835 
2836     old_greentx_status = AH9300(ah)->green_tx_status;
2837     if (ahp->ah_hw_green_tx_enable) {
2838         tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2839         tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2840     } else {
2841         tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2842         tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2843     }
2844 
2845     if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2846         && (rssi > tmp_rss1_thr1))
2847     {
2848         if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2849             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2850         }
2851     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2852         && (rssi > tmp_rss1_thr2))
2853     {
2854         if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2855             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2856         }
2857     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2858         if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2859             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2860         }
2861     }
2862 
2863     /* If status is not change, don't do anything */
2864     if (old_greentx_status == AH9300(ah)->green_tx_status) {
2865         return;
2866     }
2867 
2868     /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2869     if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2870         && AR_SREV_POSEIDON(ah))
2871     {
2872         if (ahp->ah_hw_green_tx_enable) {
2873             switch (AH9300(ah)->green_tx_status) {
2874             case HAL_RSSI_TX_POWER_SHORT:
2875                 /* 1. TxPower Config */
2876                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2877                     sizeof(target_power_val_t));
2878                 /* 1.1 Store OLPC Delta Calibration Offset*/
2879                 olpc_power_offset = 0;
2880                 /* 2. Store OB/DB */
2881                 /* 3. Store TPC settting */
2882                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2883                                     SM(14, AR_TPC_CTS) |
2884                                     SM(14, AR_TPC_CHIRP) |
2885                                     SM(14, AR_TPC_RPT));
2886                 /* 4. Store BB_powertx_rate9 value */
2887                 temp_powertx_rate9_reg_val =
2888                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2889                 break;
2890             case HAL_RSSI_TX_POWER_MIDDLE:
2891                 /* 1. TxPower Config */
2892                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2893                     sizeof(target_power_val_t));
2894                 /* 1.1 Store OLPC Delta Calibration Offset*/
2895                 olpc_power_offset = 0;
2896                 /* 2. Store OB/DB */
2897                 /* 3. Store TPC settting */
2898                 temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2899                                     SM(18, AR_TPC_CTS) |
2900                                     SM(18, AR_TPC_CHIRP) |
2901                                     SM(18, AR_TPC_RPT));
2902                 /* 4. Store BB_powertx_rate9 value */
2903                 temp_powertx_rate9_reg_val =
2904                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2905                 break;
2906             case HAL_RSSI_TX_POWER_LONG:
2907             default:
2908                 /* 1. TxPower Config */
2909                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2910                     sizeof(target_power_val_t));
2911                 /* 1.1 Store OLPC Delta Calibration Offset*/
2912                 olpc_power_offset = 0;
2913                 /* 2. Store OB/DB1/DB2 */
2914                 /* 3. Store TPC settting */
2915                 temp_tcp_reg_val =
2916                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2917                 /* 4. Store BB_powertx_rate9 value */
2918                 temp_powertx_rate9_reg_val =
2919                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2920                 break;
2921             }
2922         } else {
2923             switch (AH9300(ah)->green_tx_status) {
2924             case HAL_RSSI_TX_POWER_SHORT:
2925                 /* 1. TxPower Config */
2926                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2927                     sizeof(target_power_val_t));
2928                 /* 1.1 Store OLPC Delta Calibration Offset*/
2929                 olpc_power_offset =
2930                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2931                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2932                 /* 2. Store OB/DB */
2933                 temp_obdb_reg_val =
2934                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2935                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2936                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2937                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2938                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2939                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2940                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2941                     AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2942                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2943                     AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2944                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2945                     AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2946                 /* 3. Store TPC settting */
2947                 temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
2948                                     SM(6, AR_TPC_CTS) |
2949                                     SM(6, AR_TPC_CHIRP) |
2950                                     SM(6, AR_TPC_RPT));
2951                 /* 4. Store BB_powertx_rate9 value */
2952                 temp_powertx_rate9_reg_val =
2953                     WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
2954                 break;
2955             case HAL_RSSI_TX_POWER_MIDDLE:
2956                 /* 1. TxPower Config */
2957                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
2958                     sizeof(target_power_val_t));
2959                 /* 1.1 Store OLPC Delta Calibration Offset*/
2960                 olpc_power_offset =
2961                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
2962                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2963                 /* 2. Store OB/DB */
2964                 temp_obdb_reg_val =
2965                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2966                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2967                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2968                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2969                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2970                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2971                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2972                         AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2973                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2974                         AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2975                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2976                         AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2977                 /* 3. Store TPC settting */
2978                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2979                                     SM(14, AR_TPC_CTS) |
2980                                     SM(14, AR_TPC_CHIRP) |
2981                                     SM(14, AR_TPC_RPT));
2982                 /* 4. Store BB_powertx_rate9 value */
2983                 temp_powertx_rate9_reg_val =
2984                     WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
2985                 break;
2986             case HAL_RSSI_TX_POWER_LONG:
2987             default:
2988                 /* 1. TxPower Config */
2989                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2990                     sizeof(target_power_val_t));
2991                 /* 1.1 Store OLPC Delta Calibration Offset*/
2992                 olpc_power_offset =
2993                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
2994                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2995                 /* 2. Store OB/DB1/DB2 */
2996                 temp_obdb_reg_val =
2997                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2998                 /* 3. Store TPC settting */
2999                 temp_tcp_reg_val =
3000                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3001                 /* 4. Store BB_powertx_rate9 value */
3002                 temp_powertx_rate9_reg_val =
3003                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3004                 break;
3005             }
3006         }
3007         /* 1.1 Do OLPC Delta Calibration Offset */
3008         tmp_olpc_val =
3009             (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3010         tmp_olpc_val += olpc_power_offset;
3011         OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3012             (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3013             AR_PHY_TPC_OLPC_GAIN_DELTA);
3014 
3015         /* 1.2 TxPower Config */
3016         ar9300_transmit_power_reg_write(ah, target_power_val_t);
3017         /* 2. Config OB/DB */
3018         if (!ahp->ah_hw_green_tx_enable) {
3019             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3020         }
3021         /* 3. config TPC settting */
3022         OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3023         /* 4. config BB_powertx_rate9 value */
3024         OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3025     }
3026 }
3027 
3028 #if 0
3029 void
3030 ar9300_get_vow_stats(
3031     struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3032 {
3033     if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3034         p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3035     }
3036     if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3037         p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3038     }
3039     if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3040         p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3041     }
3042     if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3043         p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3044     }
3045     if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3046         p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3047     }
3048 }
3049 #endif
3050 
3051 /*
3052  * ar9300_is_skip_paprd_by_greentx
3053  *
3054  * This function check if we need to skip PAPRD tuning
3055  * when GreenTx in specific state.
3056  */
3057 HAL_BOOL
3058 ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3059 {
3060     if (AR_SREV_POSEIDON(ah) &&
3061         ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3062         ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3063          (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3064     {
3065         return AH_TRUE;
3066     }
3067     return AH_FALSE;
3068 }
3069 
3070 void
3071 ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3072 {
3073     unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3074     unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3075     unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3076     unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3077     unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3078     struct ath_hal_9300 *ahp = AH9300(ah);
3079 
3080     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3081         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3082                              AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3083         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3084                              AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3085         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3086                              AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3087         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3088                              AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3089         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3090                              AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3091     }
3092 }
3093 
3094 void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3095 {
3096     struct ath_hal_9300 *ahp = AH9300(ah);
3097 
3098     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3099         if ((value == 0) || (value == 1)) {
3100             OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3101                              AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3102         }
3103     }
3104 }
3105 
3106 void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3107 {
3108     OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3109 }
3110 
3111 int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3112 {
3113     int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3114 
3115     /* RSSI format is 8.4.  Ignore lowest four bits */
3116     val = val >> 4;
3117     return val;
3118 }
3119 
3120 void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3121                                         u_int32_t rssi_threshold)
3122 {
3123     struct ath_hal_9300 *ahp = AH9300(ah);
3124 
3125     OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3126 
3127     /* save value for restoring after chip reset */
3128     ahp->ah_beacon_rssi_threshold = rssi_threshold;
3129 }
3130 
3131 void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3132 {
3133     OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3134 }
3135 
3136 void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3137 {
3138     if (on) {
3139         OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3140                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3141     }
3142     else {
3143         OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3144                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3145     }
3146 }
3147 /*
3148  * Gets the contents of the specified key cache entry.
3149  */
3150 HAL_BOOL
3151 ar9300_print_keycache(struct ath_hal *ah)
3152 {
3153 
3154     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3155     u_int32_t key0, key1, key2, key3, key4;
3156     u_int32_t mac_hi, mac_lo;
3157     u_int16_t entry = 0;
3158     u_int32_t valid = 0;
3159     u_int32_t key_type;
3160 
3161     ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3162 
3163     for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3164         key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3165         key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3166         key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3167         key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3168         key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3169 
3170         key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3171 
3172         mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3173         mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3174 
3175         if (mac_hi & AR_KEYTABLE_VALID) {
3176             valid = 1;
3177         } else {
3178             valid = 0;
3179         }
3180 
3181         if ((mac_hi != 0) && (mac_lo != 0)) {
3182             mac_hi &= ~0x8000;
3183             mac_hi <<= 1;
3184             mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3185             mac_lo <<= 1;
3186         }
3187 
3188         ath_hal_printf(ah,
3189             "%03d    "
3190             "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3191             "   %02d     %02d    "
3192             "%02x:%02x:%02x:%02x:%02x:%02x \n",
3193             entry,
3194             (key0 << 24) >> 24, (key0 << 16) >> 24,
3195             (key0 << 8) >> 24, key0 >> 24,
3196             (key1 << 24) >> 24, (key1 << 16) >> 24,
3197             //(key1 << 8) >> 24, key1 >> 24,
3198             (key2 << 24) >> 24, (key2 << 16) >> 24,
3199             (key2 << 8) >> 24, key2 >> 24,
3200             (key3 << 24) >> 24, (key3 << 16) >> 24,
3201             //(key3 << 8) >> 24, key3 >> 24,
3202             (key4 << 24) >> 24, (key4 << 16) >> 24,
3203             (key4 << 8) >> 24, key4 >> 24,
3204             valid, key_type,
3205             (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3206             (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3207     }
3208 
3209     return AH_TRUE;
3210 }
3211 
3212 /* enable/disable smart antenna mode */
3213 HAL_BOOL
3214 ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3215 {
3216     struct ath_hal_9300 *ahp = AH9300(ah);
3217 
3218     if (enable) {
3219         OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3220     } else {
3221         OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3222     }
3223 
3224     /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3225      * and swcom2 with 0
3226      * FIXME Ideally these registers need to be made read from caldata.
3227      * Until the calibration team gets them, keep them along with board
3228      * configuration.
3229      */
3230     if (enable && AR_SREV_SCORPION(ah) &&
3231            (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3232 
3233        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3234        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3235     }
3236 
3237     ahp->ah_smartantenna_enable = enable;
3238     return 1;
3239 }
3240 
3241 #ifdef ATH_TX99_DIAG
3242 #ifndef ATH_SUPPORT_HTC
3243 void
3244 ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3245     u_int32_t txpower)
3246 {
3247 #define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3248     static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3249     int32_t i;
3250 
3251     /* The max power is limited to 63 */
3252     if (txpower <= AR9300_MAX_RATE_POWER) {
3253         for (i = 0; i < ar9300_rate_size; i++) {
3254             p_pwr_array[i] = txpower;
3255         }
3256     } else {
3257         for (i = 0; i < ar9300_rate_size; i++) {
3258             p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3259         }
3260     }
3261 
3262     OS_REG_WRITE(ah, 0xa458, 0);
3263 
3264     /* Write the OFDM power per rate set */
3265     /* 6 (LSB), 9, 12, 18 (MSB) */
3266     OS_REG_WRITE(ah, 0xa3c0,
3267         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3268           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3269           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3270           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3271     );
3272     /* 24 (LSB), 36, 48, 54 (MSB) */
3273     OS_REG_WRITE(ah, 0xa3c4,
3274         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3275           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3276           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3277           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3278     );
3279 
3280     /* Write the CCK power per rate set */
3281     /* 1L (LSB), reserved, 2L, 2S (MSB) */
3282     OS_REG_WRITE(ah, 0xa3c8,
3283         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3284           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3285           /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3286           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3287     );
3288     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3289     OS_REG_WRITE(ah, 0xa3cc,
3290         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3291           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3292           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3293           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3294     );
3295 
3296     /* Write the HT20 power per rate set */
3297     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3298     OS_REG_WRITE(ah, 0xa3d0,
3299         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3300           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3301           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3302           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3303     );
3304 
3305     /* 6 (LSB), 7, 12, 13 (MSB) */
3306     OS_REG_WRITE(ah, 0xa3d4,
3307         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3308           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3309           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3310           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3311     );
3312 
3313     /* 14 (LSB), 15, 20, 21 */
3314     OS_REG_WRITE(ah, 0xa3e4,
3315         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3316           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3317           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3318           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3319     );
3320 
3321     /* Mixed HT20 and HT40 rates */
3322     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3323     OS_REG_WRITE(ah, 0xa3e8,
3324         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3325           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3326           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3327           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3328     );
3329 
3330     /* Write the HT40 power per rate set */
3331     /* correct PAR difference between HT40 and HT20/LEGACY */
3332     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3333     OS_REG_WRITE(ah, 0xa3d8,
3334         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3335           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3336           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3337           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3338     );
3339 
3340     /* 6 (LSB), 7, 12, 13 (MSB) */
3341     OS_REG_WRITE(ah, 0xa3dc,
3342         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3343           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3344           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3345           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3346     );
3347 
3348     /* 14 (LSB), 15, 20, 21 */
3349     OS_REG_WRITE(ah, 0xa3ec,
3350         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3351           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3352           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3353           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3354     );
3355 #undef PWR_MAS
3356 }
3357 
3358 void
3359 ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3360 {
3361     if (tx_chainmask == 0x5) {
3362         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3363             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3364     }
3365     OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3366     OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3367 
3368     OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3369     if (tx_chainmask == 0x5) {
3370         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3371             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3372     }
3373 }
3374 
3375 void
3376 ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3377     int chtype)
3378 {
3379     OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3380     OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3381     OS_REG_WRITE(ah, 0xa350,
3382         (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3383 
3384     /* 11G mode */
3385     if (!chtype) {
3386         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3387             OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3388         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3389             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3390                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3391             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3392                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3393                         | (0x1 << 26)  | (0x7 << 24))
3394                         & ~(0x1 << 22));
3395         } else {
3396             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3397                 OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3398             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3399                 (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3400                         | (0x1 << 26)  | (0x7 << 24))
3401                         & ~(0x1 << 22));
3402         }
3403 
3404         /* chain zero */
3405         if ((tx_chain_mask & 0x01) == 0x01) {
3406             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3407                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3408                       | (0x1 << 31) | (0x5 << 15)
3409                       | (0x3 << 9)) & ~(0x1 << 27)
3410                       & ~(0x1 << 12));
3411             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3412                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3413                       | (0x1 << 12) | (0x1 << 10)
3414                       | (0x1 << 9)  | (0x1 << 8)
3415                       | (0x1 << 7)) & ~(0x1 << 11));
3416             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3417                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3418                       | (0x1 << 29) | (0x1 << 25)
3419                       | (0x1 << 23) | (0x1 << 19)
3420                       | (0x1 << 10) | (0x1 << 9)
3421                       | (0x1 << 8)  | (0x1 << 3))
3422                       & ~(0x1 << 28)& ~(0x1 << 24)
3423                       & ~(0x1 << 22)& ~(0x1 << 7));
3424             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3425                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3426                       | (0x1 << 23))& ~(0x1 << 21));
3427             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3428                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3429                       | (0x1 << 12) | (0x1 << 10)
3430                       | (0x1 << 9)  | (0x1 << 8)
3431                       | (0x1 << 6)  | (0x1 << 5)
3432                       | (0x1 << 4)  | (0x1 << 3)
3433                       | (0x1 << 2));
3434             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3435                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3436         }
3437         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3438             /* chain one */
3439             if ((tx_chain_mask & 0x02) == 0x02 ) {
3440                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3441                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3442                           | (0x1 << 31) | (0x5 << 15)
3443                           | (0x3 << 9)) & ~(0x1 << 27)
3444                           & ~(0x1 << 12));
3445                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3446                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3447                           | (0x1 << 12) | (0x1 << 10)
3448                           | (0x1 << 9)  | (0x1 << 8)
3449                           | (0x1 << 7)) & ~(0x1 << 11));
3450                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3451                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3452                           | (0x1 << 29) | (0x1 << 25)
3453                           | (0x1 << 23) | (0x1 << 19)
3454                           | (0x1 << 10) | (0x1 << 9)
3455                           | (0x1 << 8)  | (0x1 << 3))
3456                           & ~(0x1 << 28)& ~(0x1 << 24)
3457                           & ~(0x1 << 22)& ~(0x1 << 7));
3458                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3459                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3460                           | (0x1 << 23))& ~(0x1 << 21));
3461                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3462                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3463                           | (0x1 << 12) | (0x1 << 10)
3464                           | (0x1 << 9)  | (0x1 << 8)
3465                           | (0x1 << 6)  | (0x1 << 5)
3466                           | (0x1 << 4)  | (0x1 << 3)
3467                           | (0x1 << 2));
3468                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3469                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3470             }
3471         }
3472         if (AR_SREV_OSPREY(ah)) {
3473             /* chain two */
3474             if ((tx_chain_mask & 0x04) == 0x04 ) {
3475                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3476                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3477                           | (0x1 << 31) | (0x5 << 15)
3478                           | (0x3 << 9)) & ~(0x1 << 27)
3479                           & ~(0x1 << 12));
3480                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3481                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3482                           | (0x1 << 12) | (0x1 << 10)
3483                           | (0x1 << 9)  | (0x1 << 8)
3484                           | (0x1 << 7)) & ~(0x1 << 11));
3485                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3486                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3487                           | (0x1 << 29) | (0x1 << 25)
3488                           | (0x1 << 23) | (0x1 << 19)
3489                           | (0x1 << 10) | (0x1 << 9)
3490                           | (0x1 << 8)  | (0x1 << 3))
3491                           & ~(0x1 << 28)& ~(0x1 << 24)
3492                           & ~(0x1 << 22)& ~(0x1 << 7));
3493                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3494                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3495                           | (0x1 << 23))& ~(0x1 << 21));
3496                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3497                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3498                           | (0x1 << 12) | (0x1 << 10)
3499                           | (0x1 << 9)  | (0x1 << 8)
3500                           | (0x1 << 6)  | (0x1 << 5)
3501                           | (0x1 << 4)  | (0x1 << 3)
3502                           | (0x1 << 2));
3503                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3504                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3505             }
3506         }
3507 
3508         OS_REG_WRITE(ah, 0xa28c, 0x11111);
3509         OS_REG_WRITE(ah, 0xa288, 0x111);
3510     } else {
3511         /* chain zero */
3512         if ((tx_chain_mask & 0x01) == 0x01) {
3513             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3514                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3515                       | (0x1 << 31) | (0x1 << 27)
3516                       | (0x3 << 23) | (0x1 << 19)
3517                       | (0x1 << 15) | (0x3 << 9))
3518                       & ~(0x1 << 12));
3519             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3520                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3521                       | (0x1 << 12) | (0x1 << 10)
3522                       | (0x1 << 9)  | (0x1 << 8)
3523                       | (0x1 << 7)  | (0x1 << 3)
3524                       | (0x1 << 2)  | (0x1 << 1))
3525                       & ~(0x1 << 11)& ~(0x1 << 0));
3526             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3527                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3528                       | (0x1 << 29) | (0x1 << 25)
3529                       | (0x1 << 23) | (0x1 << 19)
3530                       | (0x1 << 10) | (0x1 << 9)
3531                       | (0x1 << 8)  | (0x1 << 3))
3532                       & ~(0x1 << 28)& ~(0x1 << 24)
3533                       & ~(0x1 << 22)& ~(0x1 << 7));
3534             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3535                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3536                       | (0x1 << 23))& ~(0x1 << 21));
3537             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3538                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3539                       | (0x3 << 3)  | (0x3 << 0));
3540             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3541                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3542                       | (0x3 << 29) | (0x3 << 26)
3543                       | (0x2 << 23) | (0x2 << 20)
3544                       | (0x2 << 17))& ~(0x1 << 14));
3545             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3546                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3547                       | (0x1 << 12) | (0x1 << 10)
3548                       | (0x1 << 9)  | (0x1 << 8)
3549                       | (0x1 << 6)  | (0x1 << 5)
3550                       | (0x1 << 4)  | (0x1 << 3)
3551                       | (0x1 << 2));
3552             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3553                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3554             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3555                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3556                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3557                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3558                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3559                           | (0x1 << 26) | (0x7 << 24)
3560                           | (0x3 << 22));
3561             } else {
3562                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3563                     OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3564                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3565                     OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3566                           | (0x1 << 26) | (0x7 << 24)
3567                           | (0x3 << 22));
3568             }
3569 
3570             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3571                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3572                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3573                           | (0x1 << 3)  | (0x1 << 2)
3574                           | (0x1 << 1)) & ~(0x1 << 0));
3575                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3576                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3577                           | (0x1 << 19) | (0x1 << 3));
3578                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3579                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3580             }
3581             if (AR_SREV_OSPREY(ah)) {
3582                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3583                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3584                           | (0x1 << 3)  | (0x1 << 2)
3585                           | (0x1 << 1)) & ~(0x1 << 0));
3586                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3587                     OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3588                           | (0x1 << 19) | (0x1 << 3));
3589                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3590                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3591             }
3592         }
3593         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3594             /* chain one */
3595             if ((tx_chain_mask & 0x02) == 0x02 ) {
3596                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3597                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3598                           | (0x1 << 3)  | (0x1 << 2)
3599                           | (0x1 << 1)) & ~(0x1 << 0));
3600                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3601                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3602                           | (0x1 << 19) | (0x1 << 3));
3603                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3604                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3605                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3606                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3607                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3608                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3609                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3610                               | (0x1 << 26) | (0x7 << 24)
3611                               | (0x3 << 22));
3612                 } else {
3613                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3614                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3615                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3616                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3617                               | (0x1 << 26) | (0x7 << 24)
3618                               | (0x3 << 22));
3619                 }
3620 
3621                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3622                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3623                           | (0x1 << 31) | (0x1 << 27)
3624                           | (0x3 << 23) | (0x1 << 19)
3625                           | (0x1 << 15) | (0x3 << 9))
3626                           & ~(0x1 << 12));
3627                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3628                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3629                           | (0x1 << 12) | (0x1 << 10)
3630                           | (0x1 << 9)  | (0x1 << 8)
3631                           | (0x1 << 7)  | (0x1 << 3)
3632                           | (0x1 << 2)  | (0x1 << 1))
3633                           & ~(0x1 << 11)& ~(0x1 << 0));
3634                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3635                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3636                           | (0x1 << 29) | (0x1 << 25)
3637                           | (0x1 << 23) | (0x1 << 19)
3638                           | (0x1 << 10) | (0x1 << 9)
3639                           | (0x1 << 8)  | (0x1 << 3))
3640                           & ~(0x1 << 28)& ~(0x1 << 24)
3641                           & ~(0x1 << 22)& ~(0x1 << 7));
3642                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3643                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3644                           | (0x1 << 23))& ~(0x1 << 21));
3645                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3646                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3647                           | (0x3 << 3)  | (0x3 << 0));
3648                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3649                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3650                           | (0x3 << 29) | (0x3 << 26)
3651                           | (0x2 << 23) | (0x2 << 20)
3652                           | (0x2 << 17))& ~(0x1 << 14));
3653                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3654                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3655                           | (0x1 << 12) | (0x1 << 10)
3656                           | (0x1 << 9)  | (0x1 << 8)
3657                           | (0x1 << 6)  | (0x1 << 5)
3658                           | (0x1 << 4)  | (0x1 << 3)
3659                           | (0x1 << 2));
3660                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3661                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3662 
3663                 if (AR_SREV_OSPREY(ah)) {
3664                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3665                         (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3666                               | (0x1 << 3)  | (0x1 << 2)
3667                               | (0x1 << 1)) & ~(0x1 << 0));
3668                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3669                         OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3670                               | (0x1 << 19) | (0x1 << 3));
3671                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3672                         OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3673                 }
3674             }
3675         }
3676         if (AR_SREV_OSPREY(ah)) {
3677             /* chain two */
3678             if ((tx_chain_mask & 0x04) == 0x04 ) {
3679                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3680                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3681                           | (0x1 << 3)  | (0x1 << 2)
3682                           | (0x1 << 1)) & ~(0x1 << 0));
3683                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3684                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3685                           | (0x1 << 19) | (0x1 << 3));
3686                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3687                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3688                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3689                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3690                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3691                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3692                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3693                               | (0x1 << 26) | (0x7 << 24)
3694                               | (0x3 << 22));
3695                 } else {
3696                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3697                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3698                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3699                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3700                               | (0x1 << 26) | (0x7 << 24)
3701                               | (0x3 << 22));
3702                 }
3703 
3704                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3705                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3706                           | (0x1 << 3)  | (0x1 << 2)
3707                           | (0x1 << 1)) & ~(0x1 << 0));
3708                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3709                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3710                           | (0x1 << 19) | (0x1 << 3));
3711                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3712                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3713 
3714                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3715                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3716                           | (0x1 << 31) | (0x1 << 27)
3717                           | (0x3 << 23) | (0x1 << 19)
3718                           | (0x1 << 15) | (0x3 << 9))
3719                           & ~(0x1 << 12));
3720                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3721                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3722                           | (0x1 << 12) | (0x1 << 10)
3723                           | (0x1 << 9)  | (0x1 << 8)
3724                           | (0x1 << 7)  | (0x1 << 3)
3725                           | (0x1 << 2)  | (0x1 << 1))
3726                           & ~(0x1 << 11)& ~(0x1 << 0));
3727                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3728                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3729                           | (0x1 << 29) | (0x1 << 25)
3730                           | (0x1 << 23) | (0x1 << 19)
3731                           | (0x1 << 10) | (0x1 << 9)
3732                           | (0x1 << 8)  | (0x1 << 3))
3733                           & ~(0x1 << 28)& ~(0x1 << 24)
3734                           & ~(0x1 << 22)& ~(0x1 << 7));
3735                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3736                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3737                           | (0x1 << 23))& ~(0x1 << 21));
3738                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3739                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3740                           | (0x3 << 3)  | (0x3 << 0));
3741                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3742                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3743                           | (0x3 << 29) | (0x3 << 26)
3744                           | (0x2 << 23) | (0x2 << 20)
3745                           | (0x2 << 17))& ~(0x1 << 14));
3746                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3747                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3748                           | (0x1 << 12) | (0x1 << 10)
3749                           | (0x1 << 9)  | (0x1 << 8)
3750                           | (0x1 << 6)  | (0x1 << 5)
3751                           | (0x1 << 4)  | (0x1 << 3)
3752                           | (0x1 << 2));
3753                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3754                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3755             }
3756         }
3757 
3758         OS_REG_WRITE(ah, 0xa28c, 0x22222);
3759         OS_REG_WRITE(ah, 0xa288, 0x222);
3760     }
3761 }
3762 
3763 void
3764 ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3765 {
3766     u_int32_t val;
3767     u_int32_t qnum = (u_int32_t)data;
3768 
3769     /* Disable AGC to A2 */
3770     OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3771     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3772 
3773     OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3774     /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3775     OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3776     OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3777     OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3778     /* 200 ok for HT20, 400 ok for HT40 */
3779     OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3780     OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3781 
3782     /* set QCU modes to early termination */
3783     val = OS_REG_READ(ah, AR_QMISC(qnum));
3784     OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3785 }
3786 
3787 void
3788 ar9300_tx99_stop(struct ath_hal *ah)
3789 {
3790     /* this should follow the setting of start */
3791     OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3792     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3793 }
3794 #endif /* ATH_TX99_DIAG */
3795 #endif /* ATH_SUPPORT_HTC */
3796 
3797 HAL_BOOL
3798 ar9300Get3StreamSignature(struct ath_hal *ah)
3799 {
3800     return AH_FALSE;
3801 }
3802 
3803 HAL_BOOL
3804 ar9300ForceVCS(struct ath_hal *ah)
3805 {
3806    return AH_FALSE;
3807 }
3808 
3809 HAL_BOOL
3810 ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3811 {
3812    return AH_FALSE;
3813 }
3814 
3815 HAL_BOOL
3816 ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3817 {
3818     struct ath_hal_9300 *ahp = AH9300(ah);
3819     ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3820     u_int8_t *ctl_index;
3821     u_int32_t offset = 0;
3822 
3823     if (!ctl_array)
3824         return AH_FALSE;
3825 
3826     /* copy 2G ctl freqbin and power data */
3827     ctl_index = p_eep_data->ctl_index_2g;
3828     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3829                 OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3830                 OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3831     offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3832             ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3833 
3834 
3835     /* copy 2G ctl freqbin and power data */
3836     ctl_index = p_eep_data->ctl_index_5g;
3837     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3838                 OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3839                 OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3840 
3841     return AH_FALSE;
3842 }
3843 
3844 void
3845 ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3846 {
3847     struct ath_hal_9300 *ahp = AH9300(ah);
3848 
3849     /* optional txchainmask should be subset of primary txchainmask */
3850     if ((mask & ahp->ah_tx_chainmask) != mask) {
3851         ahp->ah_tx_chainmaskopt = 0;
3852         ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3853         return;
3854     }
3855 
3856     ahp->ah_tx_chainmaskopt = mask;
3857 }
3858