xref: /freebsd/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_misc.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 
26 #include "ar9300/ar9300.h"
27 #include "ar9300/ar9300reg.h"
28 #include "ar9300/ar9300phy.h"
29 #include "ar9300/ar9300desc.h"
30 
31 static u_int32_t ar9300_read_loc_timer(struct ath_hal *ah);
32 
33 void
34 ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
35 {
36     struct ath_hal_9300 *ahp = AH9300(ah);
37     *hangs = 0;
38 
39     if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
40         *hangs |= HAL_RIFS_BB_HANG_WAR;
41     }
42     if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
43         *hangs |= HAL_DFS_BB_HANG_WAR;
44     }
45     if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
46         == HAL_OK)
47     {
48         *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
49     }
50     if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
51         *hangs |= HAL_MAC_HANG_WAR;
52     }
53     if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
54         == HAL_OK)
55     {
56         *hangs |= HAL_PHYRESTART_CLR_WAR;
57     }
58 
59     ahp->ah_hang_wars = *hangs;
60 }
61 
62 /*
63  * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
64  * HT20, HT40, fast-clock, turbo mode, etc.
65  */
66 static u_int
67 ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
68 {
69 #if 0
70     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
71 
72     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
73         return (ath_hal_mac_usec(ah, clks) / 2);
74     } else {
75         return (ath_hal_mac_usec(ah, clks));
76     }
77 #endif
78     return (ath_hal_mac_usec(ah, clks));
79 }
80 
81 u_int
82 ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
83 {
84 #if 0
85     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
86 
87     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
88         return (ath_hal_mac_clks(ah, usecs) * 2);
89     } else {
90         return (ath_hal_mac_clks(ah, usecs));
91     }
92 #endif
93     return (ath_hal_mac_clks(ah, usecs));
94 }
95 
96 void
97 ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
98 {
99     struct ath_hal_9300 *ahp = AH9300(ah);
100 
101     OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
102 }
103 
104 HAL_BOOL
105 ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
106 {
107     struct ath_hal_9300 *ahp = AH9300(ah);
108 
109     OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
110     return AH_TRUE;
111 }
112 
113 void
114 ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
115 {
116     struct ath_hal_9300 *ahp = AH9300(ah);
117 
118     OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
119 }
120 
121 HAL_BOOL
122 ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
123 {
124     struct ath_hal_9300 *ahp = AH9300(ah);
125 
126     /* save it since it must be rewritten on reset */
127     OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
128 
129     OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
130     OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
131     return AH_TRUE;
132 }
133 
134 /*
135  * Attempt to change the cards operating regulatory domain to the given value
136  * Returns: A_EINVAL for an unsupported regulatory domain.
137  *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
138  */
139 HAL_BOOL
140 ar9300_set_regulatory_domain(struct ath_hal *ah,
141         u_int16_t reg_domain, HAL_STATUS *status)
142 {
143     HAL_STATUS ecode;
144 
145     if (AH_PRIVATE(ah)->ah_currentRD == 0) {
146         AH_PRIVATE(ah)->ah_currentRD = reg_domain;
147         return AH_TRUE;
148     }
149     ecode = HAL_EIO;
150 
151 #if 0
152 bad:
153 #endif
154     if (status) {
155         *status = ecode;
156     }
157     return AH_FALSE;
158 }
159 
160 /*
161  * Return the wireless modes (a,b,g,t) supported by hardware.
162  *
163  * This value is what is actually supported by the hardware
164  * and is unaffected by regulatory/country code settings.
165  *
166  */
167 u_int
168 ar9300_get_wireless_modes(struct ath_hal *ah)
169 {
170     return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
171 }
172 
173 /*
174  * Set the interrupt and GPIO values so the ISR can disable RF
175  * on a switch signal.  Assumes GPIO port and interrupt polarity
176  * are set prior to call.
177  */
178 void
179 ar9300_enable_rf_kill(struct ath_hal *ah)
180 {
181     /* TODO - can this really be above the hal on the GPIO interface for
182      * TODO - the client only?
183      */
184     struct ath_hal_9300    *ahp = AH9300(ah);
185 
186     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
187     	/* Check RF kill GPIO before set/clear RFSILENT bits. */
188     	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
189             OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
190                            AR_RFSILENT_FORCE);
191             OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
192         }
193         else {
194             OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
195                            AR_RFSILENT_FORCE);
196             OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
197         }
198     }
199     else {
200         /* Connect rfsilent_bb_l to baseband */
201         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
202             AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
203 
204         /* Set input mux for rfsilent_bb_l to GPIO #0 */
205         OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206             AR_GPIO_INPUT_MUX2_RFSILENT);
207         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
208             (ahp->ah_gpio_select & 0x0f) << 4);
209 
210         /*
211          * Configure the desired GPIO port for input and
212          * enable baseband rf silence
213          */
214         ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
215         OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
216     }
217 
218     /*
219      * If radio disable switch connection to GPIO bit x is enabled
220      * program GPIO interrupt.
221      * If rfkill bit on eeprom is 1, setupeeprommap routine has already
222      * verified that it is a later version of eeprom, it has a place for
223      * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
224      * connection is present.
225      */
226      /*
227       * RFKill uses polling not interrupt,
228       * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
229       */
230     if (ath_hal_hasrfkill_int(ah)) {
231         if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
232             /* switch already closed, set to interrupt upon open */
233             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
234         } else {
235             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
236         }
237     }
238 }
239 
240 /*
241  * Change the LED blinking pattern to correspond to the connectivity
242  */
243 void
244 ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
245 {
246     static const u_int32_t ledbits[8] = {
247         AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
248         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
249         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
250         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
251         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
252         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
253         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
254         AR_CFG_LED_ASSOC_NONE,
255     };
256 
257     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
258 }
259 
260 /*
261  * Sets the Power LED on the cardbus without affecting the Network LED.
262  */
263 void
264 ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
265 {
266     u_int32_t    val;
267 
268     val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
269     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
270 }
271 
272 /*
273  * Sets the Network LED on the cardbus without affecting the Power LED.
274  */
275 void
276 ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
277 {
278     u_int32_t    val;
279 
280     val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
281     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
282 }
283 
284 /*
285  * Change association related fields programmed into the hardware.
286  * Writing a valid BSSID to the hardware effectively enables the hardware
287  * to synchronize its TSF to the correct beacons and receive frames coming
288  * from that BSSID. It is called by the SME JOIN operation.
289  */
290 void
291 ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
292     u_int16_t assoc_id)
293 {
294     struct ath_hal_9300 *ahp = AH9300(ah);
295 
296     /* save bssid and assoc_id for restore on reset */
297     OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
298     ahp->ah_assoc_id = assoc_id;
299 
300     OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
301     OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
302                                  ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
303 }
304 
305 /*
306  * Get the current hardware tsf for stamlme
307  */
308 u_int64_t
309 ar9300_get_tsf64(struct ath_hal *ah)
310 {
311     u_int64_t tsf;
312 
313     /* XXX sync multi-word read? */
314     tsf = OS_REG_READ(ah, AR_TSF_U32);
315     tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
316     return tsf;
317 }
318 
319 void
320 ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
321 {
322     OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
323     OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
324 }
325 
326 /*
327  * Get the current hardware tsf for stamlme
328  */
329 u_int32_t
330 ar9300_get_tsf32(struct ath_hal *ah)
331 {
332     return OS_REG_READ(ah, AR_TSF_L32);
333 }
334 
335 u_int32_t
336 ar9300_get_tsf2_32(struct ath_hal *ah)
337 {
338     return OS_REG_READ(ah, AR_TSF2_L32);
339 }
340 
341 /*
342  * Reset the current hardware tsf for stamlme.
343  */
344 void
345 ar9300_reset_tsf(struct ath_hal *ah)
346 {
347     int count;
348 
349     count = 0;
350     while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
351         count++;
352         if (count > 10) {
353             HALDEBUG(ah, HAL_DEBUG_RESET,
354                 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
355             break;
356         }
357         OS_DELAY(10);
358     }
359     OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
360 }
361 
362 /*
363  * Set or clear hardware basic rate bit
364  * Set hardware basic rate set if basic rate is found
365  * and basic rate is equal or less than 2Mbps
366  */
367 void
368 ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
369 {
370     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
371     u_int32_t reg;
372     u_int8_t xset;
373     int i;
374 
375     if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
376         return;
377     }
378     xset = 0;
379     for (i = 0; i < rs->rs_count; i++) {
380         u_int8_t rset = rs->rs_rates[i];
381         /* Basic rate defined? */
382         if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
383             xset = rset;
384         }
385     }
386     /*
387      * Set the h/w bit to reflect whether or not the basic
388      * rate is found to be equal or less than 2Mbps.
389      */
390     reg = OS_REG_READ(ah, AR_STA_ID1);
391     if (xset && xset / 2 <= 2) {
392         OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
393     } else {
394         OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
395     }
396 }
397 
398 /*
399  * Grab a semi-random value from hardware registers - may not
400  * change often
401  */
402 u_int32_t
403 ar9300_get_random_seed(struct ath_hal *ah)
404 {
405     u_int32_t nf;
406 
407     nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
408     if (nf & 0x100) {
409         nf = 0 - ((nf ^ 0x1ff) + 1);
410     }
411     return (OS_REG_READ(ah, AR_TSF_U32) ^
412         OS_REG_READ(ah, AR_TSF_L32) ^ nf);
413 }
414 
415 /*
416  * Detect if our card is present
417  */
418 HAL_BOOL
419 ar9300_detect_card_present(struct ath_hal *ah)
420 {
421     u_int16_t mac_version, mac_rev;
422     u_int32_t v;
423 
424     /*
425      * Read the Silicon Revision register and compare that
426      * to what we read at attach time.  If the same, we say
427      * a card/device is present.
428      */
429     v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
430     if (v == 0xFF) {
431         /* new SREV format */
432         v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
433         /*
434          * Include 6-bit Chip Type (masked to 0) to differentiate
435          * from pre-Sowl versions
436          */
437         mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
438         mac_rev = MS(v, AR_SREV_REVISION2);
439     } else {
440         mac_version = MS(v, AR_SREV_VERSION);
441         mac_rev = v & AR_SREV_REVISION;
442     }
443     return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
444             AH_PRIVATE(ah)->ah_macRev == mac_rev);
445 }
446 
447 /*
448  * Update MIB Counters
449  */
450 void
451 ar9300_update_mib_mac_stats(struct ath_hal *ah)
452 {
453     struct ath_hal_9300 *ahp = AH9300(ah);
454     HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
455 
456     stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
457     stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
458     stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
459     stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
460     stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
461 }
462 
463 void
464 ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
465 {
466     struct ath_hal_9300 *ahp = AH9300(ah);
467     HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
468 
469     stats->ackrcv_bad = istats->ackrcv_bad;
470     stats->rts_bad    = istats->rts_bad;
471     stats->fcs_bad    = istats->fcs_bad;
472     stats->rts_good   = istats->rts_good;
473     stats->beacons    = istats->beacons;
474 }
475 
476 /*
477  * Detect if the HW supports spreading a CCK signal on channel 14
478  */
479 HAL_BOOL
480 ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
481 {
482     return AH_TRUE;
483 }
484 
485 /*
486  * Get the rssi of frame curently being received.
487  */
488 u_int32_t
489 ar9300_get_cur_rssi(struct ath_hal *ah)
490 {
491     /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
492     /* get combined RSSI */
493     return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
494 }
495 
496 #if ATH_GEN_RANDOMNESS
497 /*
498  * Get the rssi value from BB on ctl chain0.
499  */
500 u_int32_t
501 ar9300_get_rssi_chain0(struct ath_hal *ah)
502 {
503     /* get ctl chain0 RSSI */
504     return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
505 }
506 #endif
507 
508 u_int
509 ar9300_get_def_antenna(struct ath_hal *ah)
510 {
511     return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
512 }
513 
514 /* Setup coverage class */
515 void
516 ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
517 {
518 }
519 
520 void
521 ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
522 {
523     OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
524 }
525 
526 HAL_BOOL
527 ar9300_set_antenna_switch(struct ath_hal *ah,
528     HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
529     u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
530 {
531     struct ath_hal_9300 *ahp = AH9300(ah);
532 
533     /*
534      * Owl does not support diversity or changing antennas.
535      *
536      * Instead this API and function are defined differently for AR9300.
537      * To support Tablet PC's, this interface allows the system
538      * to dramatically reduce the TX power on a particular chain.
539      *
540      * Based on the value of (redefined) diversity_control, the
541      * reset code will decrease power on chain 0 or chain 1/2.
542      *
543      * Based on the value of bit 0 of antenna_switch_swap,
544      * the mapping between OID call and chain is defined as:
545      *  0:  map A -> 0, B -> 1;
546      *  1:  map A -> 1, B -> 0;
547      *
548      * NOTE:
549      *   The devices that use this OID should use a tx_chain_mask and
550      *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
551      *   used in order to ensure an active transmit antenna.  This
552      *   API will allow the host to turn off the only transmitting
553      *   antenna to ensure the antenna closest to the user's body is
554      *   powered-down.
555      */
556     /*
557      * Set antenna control for use during reset sequence by
558      * ar9300_decrease_chain_power()
559      */
560     ahp->ah_diversity_control = settings;
561 
562     return AH_TRUE;
563 }
564 
565 HAL_BOOL
566 ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
567 {
568     return AH_TRUE;
569 }
570 
571 HAL_BOOL
572 ar9300_set_slot_time(struct ath_hal *ah, u_int us)
573 {
574     struct ath_hal_9300 *ahp = AH9300(ah);
575     if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
576         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
577         ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
578         return AH_FALSE;
579     } else {
580         /* convert to system clocks */
581         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
582         ahp->ah_slot_time = us;
583         return AH_TRUE;
584     }
585 }
586 
587 HAL_BOOL
588 ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
589 {
590     struct ath_hal_9300 *ahp = AH9300(ah);
591 
592     if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
593         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
594         ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
595         return AH_FALSE;
596     } else {
597         /* convert to system clocks */
598         OS_REG_RMW_FIELD(ah,
599             AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
600         ahp->ah_ack_timeout = us;
601         return AH_TRUE;
602     }
603 }
604 
605 u_int
606 ar9300_get_ack_timeout(struct ath_hal *ah)
607 {
608     u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
609     return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
610 }
611 
612 HAL_STATUS
613 ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
614                  u_int32_t next_start, HAL_QUIET_FLAG flag)
615 {
616 #define	TU_TO_USEC(_tu)		((_tu) << 10)
617     HAL_STATUS status = HAL_EIO;
618     u_int32_t tsf = 0, j, next_start_us = 0;
619     if (flag & HAL_QUIET_ENABLE) {
620         for (j = 0; j < 2; j++) {
621             next_start_us = TU_TO_USEC(next_start);
622             tsf = OS_REG_READ(ah, AR_TSF_L32);
623             if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
624                 next_start_us += tsf;
625             }
626             if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
627                 next_start_us +=
628                     ah->ah_config.ah_sw_beacon_response_time;
629             }
630             OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
631             OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
632             OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
633             OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
634             OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
635             if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
636                 status = HAL_OK;
637                 break;
638             }
639             HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
640                 "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
641             /* TSF shouldn't count twice or reg access is taking forever */
642             HALASSERT(j < 1);
643         }
644     } else {
645         OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
646         status = HAL_OK;
647     }
648 
649     return status;
650 #undef	TU_TO_USEC
651 }
652 
653 //#ifdef ATH_SUPPORT_DFS
654 void
655 ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
656 {
657     uint32_t reg1, reg2;
658 
659     reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
660     reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
661     AH9300(ah)->ah_cac_quiet_enabled = enable;
662 
663     if (enable) {
664         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
665                      reg1 | AR_PCU_FORCE_QUIET_COLL);
666         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
667                      reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
668     } else {
669         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
670                      reg1 & ~AR_PCU_FORCE_QUIET_COLL);
671         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
672                      reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
673     }
674 }
675 //#endif /* ATH_SUPPORT_DFS */
676 
677 void
678 ar9300_set_pcu_config(struct ath_hal *ah)
679 {
680     ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
681 }
682 
683 HAL_STATUS
684 ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
685     u_int32_t capability, u_int32_t *result)
686 {
687     struct ath_hal_9300 *ahp = AH9300(ah);
688     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
689     struct ar9300_ani_state *ani;
690 
691     switch (type) {
692     case HAL_CAP_CIPHER:            /* cipher handled in hardware */
693         switch (capability) {
694         case HAL_CIPHER_AES_CCM:
695         case HAL_CIPHER_AES_OCB:
696         case HAL_CIPHER_TKIP:
697         case HAL_CIPHER_WEP:
698         case HAL_CIPHER_MIC:
699         case HAL_CIPHER_CLR:
700             return HAL_OK;
701         default:
702             return HAL_ENOTSUPP;
703         }
704     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
705         switch (capability) {
706         case 0:         /* hardware capability */
707             return HAL_OK;
708         case 1:
709             return (ahp->ah_sta_id1_defaults &
710                     AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
711         default:
712             return HAL_ENOTSUPP;
713         }
714     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
715         switch (capability) {
716         case 0: /* hardware capability */
717             return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
718         case 1: /* current setting */
719             return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
720                 HAL_ENXIO : HAL_OK;
721         default:
722             return HAL_ENOTSUPP;
723         }
724     case HAL_CAP_WME_TKIPMIC:
725         /* hardware can do TKIP MIC when WMM is turned on */
726         return HAL_OK;
727     case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
728         return HAL_OK;
729     case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
730         switch (capability) {
731         case 0:                 /* hardware capability */
732             return HAL_OK;
733         case 1:                 /* current setting */
734             return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
735                             AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
736                             HAL_OK : HAL_ENXIO;
737         }
738         return HAL_EINVAL;
739     case HAL_CAP_TPC:
740         switch (capability) {
741         case 0:                 /* hardware capability */
742             return HAL_OK;
743         case 1:
744             return ah->ah_config.ath_hal_desc_tpc ?
745                                HAL_OK : HAL_ENXIO;
746         }
747         return HAL_OK;
748     case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
749         return HAL_OK;
750     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
751         switch (capability) {
752         case 0:                 /* hardware capability */
753             return HAL_OK;
754         case 1:
755             if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
756                 /*
757                  * Owl and Merlin have problems in mcast key search.
758                  * Disable this cap. in Ad-hoc mode. see Bug 25776 and
759                  * 26802
760                  */
761                 return HAL_ENXIO;
762             } else {
763                 return (ahp->ah_sta_id1_defaults &
764                         AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
765             }
766         }
767         return HAL_EINVAL;
768     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
769         switch (capability) {
770         case 0:                 /* hardware capability */
771             return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
772         case 1:
773             return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
774                 HAL_OK : HAL_ENXIO;
775         }
776         return HAL_EINVAL;
777     case HAL_CAP_RFSILENT:      /* rfsilent support  */
778         if (capability == 3) {  /* rfkill interrupt */
779             /*
780              * XXX: Interrupt-based notification of RF Kill state
781              *      changes not working yet. Report that this feature
782              *      is not supported so that polling is used instead.
783              */
784             return (HAL_ENOTSUPP);
785         }
786         return ath_hal_getcapability(ah, type, capability, result);
787     case HAL_CAP_4ADDR_AGGR:
788         return HAL_OK;
789     case HAL_CAP_BB_RIFS_HANG:
790         return HAL_ENOTSUPP;
791     case HAL_CAP_BB_DFS_HANG:
792         return HAL_ENOTSUPP;
793     case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
794         /* Track chips that are known to have BB hangs related
795          * to rx_clear stuck low.
796          */
797         return HAL_ENOTSUPP;
798     case HAL_CAP_MAC_HANG:
799         /* Track chips that are known to have MAC hangs.
800          */
801         return HAL_OK;
802     case HAL_CAP_RIFS_RX_ENABLED:
803         /* Is RIFS RX currently enabled */
804         return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
805 #if 0
806     case HAL_CAP_ANT_CFG_2GHZ:
807         *result = p_cap->halNumAntCfg2Ghz;
808         return HAL_OK;
809     case HAL_CAP_ANT_CFG_5GHZ:
810         *result = p_cap->halNumAntCfg5Ghz;
811         return HAL_OK;
812     case HAL_CAP_RX_STBC:
813         *result = p_cap->hal_rx_stbc_support;
814         return HAL_OK;
815     case HAL_CAP_TX_STBC:
816         *result = p_cap->hal_tx_stbc_support;
817         return HAL_OK;
818 #endif
819     case HAL_CAP_LDPC:
820         *result = p_cap->halLDPCSupport;
821         return HAL_OK;
822     case HAL_CAP_DYNAMIC_SMPS:
823         return HAL_OK;
824     case HAL_CAP_DS:
825         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
826                 (p_cap->halTxChainMask & 0x3) != 0x3 ||
827                 (p_cap->halRxChainMask & 0x3) != 0x3) ?
828             HAL_ENOTSUPP : HAL_OK;
829     case HAL_CAP_TS:
830         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
831                 (p_cap->halTxChainMask & 0x7) != 0x7 ||
832                 (p_cap->halRxChainMask & 0x7) != 0x7) ?
833             HAL_ENOTSUPP : HAL_OK;
834     case HAL_CAP_OL_PWRCTRL:
835         return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
836             HAL_OK : HAL_ENOTSUPP;
837     case HAL_CAP_CRDC:
838 #if ATH_SUPPORT_CRDC
839         return (AR_SREV_WASP(ah) &&
840                 ah->ah_config.ath_hal_crdc_enable) ?
841                     HAL_OK : HAL_ENOTSUPP;
842 #else
843         return HAL_ENOTSUPP;
844 #endif
845 #if 0
846     case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
847         *result = (u_int32_t)(-1);
848         return HAL_OK;
849     case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
850         *result = (u_int32_t)(-1);
851         return HAL_OK;
852 #endif
853     case HAL_CAP_BB_PANIC_WATCHDOG:
854         return HAL_OK;
855     case HAL_CAP_PHYRESTART_CLR_WAR:
856         if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
857             (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
858         {
859             return HAL_OK;
860         }
861         else
862         {
863             return HAL_ENOTSUPP;
864         }
865     case HAL_CAP_ENTERPRISE_MODE:
866         *result = ahp->ah_enterprise_mode >> 16;
867         /*
868          * WAR for EV 77658 - Add delimiters to first sub-frame when using
869          * RTS/CTS with aggregation and non-enterprise Osprey.
870          *
871          * Bug fixed in AR9580/Peacock, Wasp1.1 and later
872          */
873         if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
874                 !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
875                 AR_SREV_WASP_10(ah))) {
876             *result |= AH_ENT_RTSCTS_DELIM_WAR;
877         }
878         return HAL_OK;
879     case HAL_CAP_LDPCWAR:
880         /* WAR for RIFS+LDPC issue is required for all chips currently
881          * supported by ar9300 HAL.
882          */
883         return HAL_OK;
884     case HAL_CAP_ENABLE_APM:
885         *result = p_cap->halApmEnable;
886         return HAL_OK;
887     case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
888         return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
889     case HAL_CAP_PCIE_LCR_OFFSET:
890         *result = p_cap->hal_pcie_lcr_offset;
891         return HAL_OK;
892     case HAL_CAP_SMARTANTENNA:
893         /* FIXME A request is pending with h/w team to add feature bit in
894          * caldata to detect if board has smart antenna or not, once added
895          * we need to fix his piece of code to read and return value without
896          * any compile flags
897          */
898 #if UMAC_SUPPORT_SMARTANTENNA
899         /* enable smart antenna for  Peacock, Wasp and scorpion
900            for future chips need to modify */
901         if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
902             return HAL_OK;
903         } else {
904             return HAL_ENOTSUPP;
905         }
906 #else
907         return HAL_ENOTSUPP;
908 #endif
909 
910 #ifdef ATH_TRAFFIC_FAST_RECOVER
911     case HAL_CAP_TRAFFIC_FAST_RECOVER:
912         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
913             return HAL_OK;
914         } else {
915             return HAL_ENOTSUPP;
916         }
917 #endif
918 
919     /* FreeBSD ANI */
920     case HAL_CAP_INTMIT:            /* interference mitigation */
921             switch (capability) {
922             case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
923                     return HAL_OK;
924             case HAL_CAP_INTMIT_ENABLE:
925                     return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
926                             HAL_OK : HAL_ENXIO;
927             case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
928             case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
929 //            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
930             case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
931             case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
932                     ani = ar9300_ani_get_current_state(ah);
933                     if (ani == AH_NULL)
934                             return HAL_ENXIO;
935                     switch (capability) {
936                     /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
937                     case 2: *result = ani->ofdm_noise_immunity_level; break;
938                     case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
939  //                   case 4: *result = ani->cck_weak_sig_threshold; break;
940                     case 5: *result = ani->firstep_level; break;
941                     case 6: *result = ani->spur_immunity_level; break;
942                     }
943                     return HAL_OK;
944             }
945             return HAL_EINVAL;
946     case HAL_CAP_ENFORCE_TXOP:
947         if (capability == 0)
948             return (HAL_OK);
949         if (capability != 1)
950             return (HAL_ENOTSUPP);
951         (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
952         return (HAL_OK);
953     case HAL_CAP_TOA_LOCATIONING:
954         if (capability == 0)
955             return HAL_OK;
956         if (capability == 2) {
957             *result = ar9300_read_loc_timer(ah);
958             return (HAL_OK);
959         }
960         return HAL_ENOTSUPP;
961     default:
962         return ath_hal_getcapability(ah, type, capability, result);
963     }
964 }
965 
966 HAL_BOOL
967 ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
968         u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
969 {
970     struct ath_hal_9300 *ahp = AH9300(ah);
971     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
972     u_int32_t v;
973 
974     switch (type) {
975     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
976         if (! p_cap->halTkipMicTxRxKeySupport)
977             return AH_FALSE;
978 
979         if (setting)
980             ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
981         else
982             ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
983 
984         OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
985         return AH_TRUE;
986 
987     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
988         if (setting) {
989             ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
990         } else {
991             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
992         }
993         return AH_TRUE;
994     case HAL_CAP_DIVERSITY:
995         v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
996         if (setting) {
997             v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
998         } else {
999             v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1000         }
1001         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1002         return AH_TRUE;
1003     case HAL_CAP_DIAG:              /* hardware diagnostic support */
1004         /*
1005          * NB: could split this up into virtual capabilities,
1006          *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
1007          *     seems worth the additional complexity.
1008          */
1009 #ifdef AH_DEBUG
1010         AH_PRIVATE(ah)->ah_diagreg = setting;
1011 #else
1012         AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
1013 #endif
1014         OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1015         return AH_TRUE;
1016     case HAL_CAP_TPC:
1017         ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1018         return AH_TRUE;
1019     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1020         if (setting) {
1021             ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1022         } else {
1023             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1024         }
1025         return AH_TRUE;
1026     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1027         if (p_cap->halTsfAddSupport) {
1028             if (setting) {
1029                 ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1030             } else {
1031                 ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1032             }
1033             return AH_TRUE;
1034         }
1035         return AH_FALSE;
1036 
1037     /* FreeBSD interrupt mitigation / ANI */
1038     case HAL_CAP_INTMIT: {          /* interference mitigation */
1039             /* This maps the public ANI commands to the internal ANI commands */
1040             /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1041             static const HAL_ANI_CMD cmds[] = {
1042                     HAL_ANI_PRESENT,
1043                     HAL_ANI_MODE,
1044                     HAL_ANI_NOISE_IMMUNITY_LEVEL,
1045                     HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1046                     HAL_ANI_CCK_WEAK_SIGNAL_THR,
1047                     HAL_ANI_FIRSTEP_LEVEL,
1048                     HAL_ANI_SPUR_IMMUNITY_LEVEL,
1049             };
1050 #define N(a)    (sizeof(a) / sizeof(a[0]))
1051             return capability < N(cmds) ?
1052                     ar9300_ani_control(ah, cmds[capability], setting) :
1053                     AH_FALSE;
1054 #undef N
1055     }
1056 
1057     case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1058         ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1059         OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1060         return AH_TRUE;
1061 
1062     case HAL_CAP_ENFORCE_TXOP:
1063         if (capability != 1)
1064             return AH_FALSE;
1065         if (setting) {
1066             ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1067             OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1068         } else {
1069             ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1070             OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1071         }
1072         return AH_TRUE;
1073 
1074     case HAL_CAP_TOA_LOCATIONING:
1075         if (capability == 0)
1076             return AH_TRUE;
1077         if (capability == 1) {
1078             ar9300_update_loc_ctl_reg(ah, setting);
1079             return AH_TRUE;
1080         }
1081         return AH_FALSE;
1082         /* fall thru... */
1083     default:
1084         return ath_hal_setcapability(ah, type, capability, setting, status);
1085     }
1086 }
1087 
1088 #ifdef AH_DEBUG
1089 static void
1090 ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1091 {
1092     u_int32_t i = 0;
1093 
1094     /* Read 0x80d0 to trigger pcie analyzer */
1095     HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1096         "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1097 
1098     if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1099         struct ath_hal_9300 *ahp = AH9300(ah);
1100         u_int32_t tf, rf, rc, cc;
1101 
1102         tf = OS_REG_READ(ah, AR_TFCNT);
1103         rf = OS_REG_READ(ah, AR_RFCNT);
1104         rc = OS_REG_READ(ah, AR_RCCNT);
1105         cc = OS_REG_READ(ah, AR_CCCNT);
1106 
1107         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1108             "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1109         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1110             "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1111         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1112             "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1113         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1114             "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1115 
1116         ahp->last_tf = tf;
1117         ahp->last_rf = rf;
1118         ahp->last_rc = rc;
1119         ahp->last_cc = cc;
1120 
1121         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1122             "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1123         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1124             "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1125         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1126             "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1127         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1128             "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1129         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1130             "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1131         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1132             "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1133         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1134             "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1135         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1136             "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1137     }
1138 
1139     if (args & HAL_DIAG_PRINT_REG_ALL) {
1140         for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1141             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1142                 i, OS_REG_READ(ah, i));
1143         }
1144 
1145         for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1146             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1147                 i, OS_REG_READ(ah, i));
1148         }
1149 
1150         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1151             "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1152 
1153         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1154             "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1155 
1156         for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1157             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1158                 i, OS_REG_READ(ah, i));
1159         }
1160 
1161         for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1162             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1163                 i, OS_REG_READ(ah, i));
1164         }
1165 
1166         for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1167             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1168                 i, OS_REG_READ(ah, i));
1169         }
1170 
1171         for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1172             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1173                 i, OS_REG_READ(ah, i));
1174         }
1175 
1176         for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1177             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1178                 i, OS_REG_READ(ah, i));
1179         }
1180 
1181         for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1182             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1183                 i, OS_REG_READ(ah, i));
1184         }
1185 
1186         for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1187             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1188                 i, OS_REG_READ(ah, i));
1189         }
1190 
1191         for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1192             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1193                 i, OS_REG_READ(ah, i));
1194         }
1195 
1196         for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1197             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1198                 i, OS_REG_READ(ah, i));
1199         }
1200 
1201         for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1202             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1203                 i, OS_REG_READ(ah, i));
1204         }
1205 
1206         for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1207             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1208                 i, OS_REG_READ(ah, i));
1209         }
1210     }
1211 }
1212 #endif
1213 
1214 HAL_BOOL
1215 ar9300_get_diag_state(struct ath_hal *ah, int request,
1216         const void *args, u_int32_t argsize,
1217         void **result, u_int32_t *resultsize)
1218 {
1219     struct ath_hal_9300 *ahp = AH9300(ah);
1220     struct ar9300_ani_state *ani;
1221 
1222     (void) ahp;
1223     if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1224         return AH_TRUE;
1225     }
1226     switch (request) {
1227 #ifdef AH_PRIVATE_DIAG
1228     case HAL_DIAG_EEPROM:
1229         *result = &ahp->ah_eeprom;
1230         *resultsize = sizeof(ar9300_eeprom_t);
1231         return AH_TRUE;
1232 
1233 #if 0   /* XXX - TODO */
1234     case HAL_DIAG_EEPROM_EXP_11A:
1235     case HAL_DIAG_EEPROM_EXP_11B:
1236     case HAL_DIAG_EEPROM_EXP_11G:
1237         pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1238         *result = pe->p_channels;
1239         *resultsize = (*result == AH_NULL) ? 0 :
1240             roundup(sizeof(u_int16_t) * pe->num_channels,
1241             sizeof(u_int32_t)) +
1242                 sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1243         return AH_TRUE;
1244 #endif
1245     case HAL_DIAG_RFGAIN:
1246         *result = &ahp->ah_gain_values;
1247         *resultsize = sizeof(GAIN_VALUES);
1248         return AH_TRUE;
1249     case HAL_DIAG_RFGAIN_CURSTEP:
1250         *result = (void *) ahp->ah_gain_values.curr_step;
1251         *resultsize = (*result == AH_NULL) ?
1252                 0 : sizeof(GAIN_OPTIMIZATION_STEP);
1253         return AH_TRUE;
1254 #if 0   /* XXX - TODO */
1255     case HAL_DIAG_PCDAC:
1256         *result = ahp->ah_pcdac_table;
1257         *resultsize = ahp->ah_pcdac_table_size;
1258         return AH_TRUE;
1259 #endif
1260     case HAL_DIAG_ANI_CURRENT:
1261 
1262         ani = ar9300_ani_get_current_state(ah);
1263         if (ani == AH_NULL)
1264             return AH_FALSE;
1265         /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1266         bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1267         ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1268         ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1269         ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1270         ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1271         ahp->ext_ani_state.mrcCck = !! ani->mrc_cck_off;
1272         ahp->ext_ani_state.cckNoiseImmunityLevel = ani->cck_noise_immunity_level;
1273 
1274         ahp->ext_ani_state.listenTime = ani->listen_time;
1275 
1276         *result = &ahp->ext_ani_state;
1277         *resultsize = sizeof(ahp->ext_ani_state);
1278 #if 0
1279         *result = ar9300_ani_get_current_state(ah);
1280         *resultsize = (*result == AH_NULL) ?
1281             0 : sizeof(struct ar9300_ani_state);
1282 #endif
1283         return AH_TRUE;
1284     case HAL_DIAG_ANI_STATS:
1285         *result = ar9300_ani_get_current_stats(ah);
1286         *resultsize = (*result == AH_NULL) ?
1287             0 : sizeof(HAL_ANI_STATS);
1288         return AH_TRUE;
1289     case HAL_DIAG_ANI_CMD:
1290     {
1291         HAL_ANI_CMD savefunc = ahp->ah_ani_function;
1292         if (argsize != 2*sizeof(u_int32_t)) {
1293             return AH_FALSE;
1294         }
1295         /* temporarly allow all functions so we can override */
1296         ahp->ah_ani_function = HAL_ANI_ALL;
1297         ar9300_ani_control(
1298             ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1299         ahp->ah_ani_function = savefunc;
1300         return AH_TRUE;
1301     }
1302 #if 0
1303     case HAL_DIAG_TXCONT:
1304         /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1305         return AH_TRUE;
1306 #endif /* 0 */
1307 #endif /* AH_PRIVATE_DIAG */
1308     case HAL_DIAG_CHANNELS:
1309 #if 0
1310         *result = &(ahp->ah_priv.ah_channels[0]);
1311         *resultsize =
1312             sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1313 #endif
1314         return AH_TRUE;
1315 #ifdef AH_DEBUG
1316     case HAL_DIAG_PRINT_REG:
1317         ar9300_print_reg(ah, *((const u_int32_t *)args));
1318         return AH_TRUE;
1319 #endif
1320     default:
1321         break;
1322     }
1323 
1324     return AH_FALSE;
1325 }
1326 
1327 void
1328 ar9300_dma_reg_dump(struct ath_hal *ah)
1329 {
1330 #ifdef AH_DEBUG
1331 #define NUM_DMA_DEBUG_REGS  8
1332 #define NUM_QUEUES          10
1333 
1334     u_int32_t val[NUM_DMA_DEBUG_REGS];
1335     int       qcu_offset = 0, dcu_offset = 0;
1336     u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1337     int       i, j, k;
1338     int16_t nfarray[HAL_NUM_NF_READINGS];
1339 #ifdef	ATH_NF_PER_CHAN
1340     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1341 #endif	/* ATH_NF_PER_CHAN */
1342     HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1343 
1344      /* selecting DMA OBS 8 */
1345     OS_REG_WRITE(ah, AR_MACMISC,
1346         ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1347          (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1348 
1349     ath_hal_printf(ah, "Raw DMA Debug values:\n");
1350     for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1351         if (i % 4 == 0) {
1352             ath_hal_printf(ah, "\n");
1353         }
1354 
1355         val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1356         ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1357     }
1358 
1359     ath_hal_printf(ah, "\n\n");
1360     ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1361 
1362     for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1363         if (i == 8) {
1364             /* only 8 QCU entries in val[0] */
1365             qcu_offset = 0;
1366             qcu_base++;
1367         }
1368 
1369         if (i == 6) {
1370             /* only 6 DCU entries in val[4] */
1371             dcu_offset = 0;
1372             dcu_base++;
1373         }
1374 
1375         ath_hal_printf(ah,
1376             "%2d          %2x      %1x     %2x           %2x\n",
1377             i,
1378             (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1379             (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1380             val[2] & (0x7 << (i * 3)) >> (i * 3),
1381             (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1382     }
1383 
1384     ath_hal_printf(ah, "\n");
1385     ath_hal_printf(ah,
1386         "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1387         (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1388     ath_hal_printf(ah,
1389         "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1390         (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1391     ath_hal_printf(ah,
1392         "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1393         (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1394     ath_hal_printf(ah,
1395         "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1396         (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1397     ath_hal_printf(ah,
1398         "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1399         (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1400     ath_hal_printf(ah,
1401         "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1402         (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1403     ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1404     ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1405 
1406     ar9300_upload_noise_floor(ah, 1, nfarray);
1407     ath_hal_printf(ah, "2G:\n");
1408     ath_hal_printf(ah, "Min CCA Out:\n");
1409     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1410     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1411                    nfarray[0], nfarray[1], nfarray[2]);
1412     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1413                    nfarray[3], nfarray[4], nfarray[5]);
1414 
1415     ar9300_upload_noise_floor(ah, 0, nfarray);
1416     ath_hal_printf(ah, "5G:\n");
1417     ath_hal_printf(ah, "Min CCA Out:\n");
1418     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1419     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1420                    nfarray[0], nfarray[1], nfarray[2]);
1421     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1422                    nfarray[3], nfarray[4], nfarray[5]);
1423 
1424     for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1425         ath_hal_printf(ah, "%s Chain %d NF History:\n",
1426                        ((i < 3) ? "Control " : "Extension "), i%3);
1427         for (j = 0, k = h->base.curr_index;
1428              j < HAL_NF_CAL_HIST_LEN_FULL;
1429              j++, k++) {
1430             ath_hal_printf(ah, "Element %d: %d\n",
1431                 j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1432         }
1433         ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1434     }
1435 
1436     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1437     ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1438                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1439                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1440     reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1441     ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1442                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1443                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1444     ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1445                    MS(reg, AR_PHY_DESIRED_SZ_ADC),
1446                    MS(reg, AR_PHY_DESIRED_SZ_ADC));
1447     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1448     ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1449                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1450                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1451     reg = OS_REG_READ(ah, AR_PHY_AGC);
1452     ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1453                    MS(reg, AR_PHY_AGC_COARSE_HIGH),
1454                    MS(reg, AR_PHY_AGC_COARSE_HIGH));
1455     ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1456                    MS(reg, AR_PHY_AGC_COARSE_LOW),
1457                    MS(reg, AR_PHY_AGC_COARSE_LOW));
1458     ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1459                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1460                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1461     reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1462     ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1463                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1464     ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1465                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1466                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1467     ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1468                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1469                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1470     reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1471     ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1472                    MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1473     ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1474                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1475                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1476 
1477 
1478     /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1479     reg = OS_REG_READ(ah, 0xa360);
1480     reg &= ~0x00800000;
1481     OS_REG_WRITE(ah, 0xa360, reg);
1482 
1483     /* Step 2a: Set register 0xa364 to 0x1000 */
1484     reg = 0x1000;
1485     OS_REG_WRITE(ah, 0xa364, reg);
1486 
1487     /* Step 3a: Read bits 17:0 of register 0x9c20 */
1488     reg = OS_REG_READ(ah, 0x9c20);
1489     reg &= 0x0003ffff;
1490     ath_hal_printf(ah,
1491         "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1492         __func__, reg);
1493 
1494     /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1495     reg = OS_REG_READ(ah, 0xa360);
1496     reg &= ~0x00800000;
1497     OS_REG_WRITE(ah, 0xa360, reg);
1498 
1499     /* Step 2b: Set register 0xa364 to 0x1400 */
1500     reg = 0x1400;
1501     OS_REG_WRITE(ah, 0xa364, reg);
1502 
1503     /* Step 3b: Read bits 17:0 of register 0x9c20 */
1504     reg = OS_REG_READ(ah, 0x9c20);
1505     reg &= 0x0003ffff;
1506     ath_hal_printf(ah,
1507         "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1508         __func__, reg);
1509 
1510     /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1511     reg = OS_REG_READ(ah, 0xa360);
1512     reg &= ~0x00800000;
1513     OS_REG_WRITE(ah, 0xa360, reg);
1514 
1515     /* Step 2c: Set register 0xa364 to 0x3C00 */
1516     reg = 0x3c00;
1517     OS_REG_WRITE(ah, 0xa364, reg);
1518 
1519     /* Step 3c: Read bits 17:0 of register 0x9c20 */
1520     reg = OS_REG_READ(ah, 0x9c20);
1521     reg &= 0x0003ffff;
1522     ath_hal_printf(ah,
1523         "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1524         __func__, reg);
1525 
1526     /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1527     reg = OS_REG_READ(ah, 0xa360);
1528     reg &= ~0x001040000;
1529     OS_REG_WRITE(ah, 0xa360, reg);
1530 
1531     /* Step 2d: Set register 0xa364 to 0x5005D */
1532     reg = 0x5005D;
1533     OS_REG_WRITE(ah, 0xa364, reg);
1534 
1535     /* Step 3d: Read bits 17:0 of register 0xa368 */
1536     reg = OS_REG_READ(ah, 0xa368);
1537     reg &= 0x0003ffff;
1538     ath_hal_printf(ah,
1539         "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1540         __func__, reg);
1541 
1542     /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1543     reg = OS_REG_READ(ah, 0xa360);
1544     reg &= ~0x001040000;
1545     OS_REG_WRITE(ah, 0xa360, reg);
1546 
1547     /* Step 2e: Set register 0xa364 to 0x7005D */
1548     reg = 0x7005D;
1549     OS_REG_WRITE(ah, 0xa364, reg);
1550 
1551     /* Step 3e: Read bits 17:0 of register 0xa368 */
1552     reg = OS_REG_READ(ah, 0xa368);
1553     reg &= 0x0003ffff;
1554     ath_hal_printf(ah,
1555         "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1556        __func__, reg);
1557 
1558     /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1559     reg = OS_REG_READ(ah, 0xa360);
1560     reg &= ~0x001000000;
1561     reg |= 0x40000;
1562     OS_REG_WRITE(ah, 0xa360, reg);
1563 
1564     /* Step 2f: Set register 0xa364 to 0x3005D */
1565     reg = 0x3005D;
1566     OS_REG_WRITE(ah, 0xa364, reg);
1567 
1568     /* Step 3f: Read bits 17:0 of register 0xa368 */
1569     reg = OS_REG_READ(ah, 0xa368);
1570     reg &= 0x0003ffff;
1571     ath_hal_printf(ah,
1572         "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1573         __func__, reg);
1574 
1575     /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1576     reg = OS_REG_READ(ah, 0xa360);
1577     reg &= ~0x001000000;
1578     reg |= 0x40000;
1579     OS_REG_WRITE(ah, 0xa360, reg);
1580 
1581     /* Step 2g: Set register 0xa364 to 0x6005D */
1582     reg = 0x6005D;
1583     OS_REG_WRITE(ah, 0xa364, reg);
1584 
1585     /* Step 3g: Read bits 17:0 of register 0xa368 */
1586     reg = OS_REG_READ(ah, 0xa368);
1587     reg &= 0x0003ffff;
1588     ath_hal_printf(ah,
1589         "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1590         __func__, reg);
1591 #endif /* AH_DEBUG */
1592 }
1593 
1594 /*
1595  * Return the busy for rx_frame, rx_clear, and tx_frame
1596  */
1597 u_int32_t
1598 ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1599     u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1600 {
1601     struct ath_hal_9300 *ahp = AH9300(ah);
1602     u_int32_t good = 1;
1603 
1604     u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1605     u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1606     u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1607     u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1608 
1609     if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1610         /*
1611          * Cycle counter wrap (or initial call); it's not possible
1612          * to accurately calculate a value because the registers
1613          * right shift rather than wrap--so punt and return 0.
1614          */
1615         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1616             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1617         good = 0;
1618     } else {
1619         u_int32_t cc_d = cc - ahp->ah_cycles;
1620         u_int32_t rc_d = rc - ahp->ah_rx_clear;
1621         u_int32_t rf_d = rf - ahp->ah_rx_frame;
1622         u_int32_t tf_d = tf - ahp->ah_tx_frame;
1623 
1624         if (cc_d != 0) {
1625             *rxc_pcnt = rc_d * 100 / cc_d;
1626             *rxf_pcnt = rf_d * 100 / cc_d;
1627             *txf_pcnt = tf_d * 100 / cc_d;
1628         } else {
1629             good = 0;
1630         }
1631     }
1632 
1633     ahp->ah_cycles = cc;
1634     ahp->ah_rx_frame = rf;
1635     ahp->ah_rx_clear = rc;
1636     ahp->ah_tx_frame = tf;
1637 
1638     return good;
1639 }
1640 
1641 /*
1642  * Return approximation of extension channel busy over an time interval
1643  * 0% (clear) -> 100% (busy)
1644  * -1 for invalid estimate
1645  */
1646 uint32_t
1647 ar9300_get_11n_ext_busy(struct ath_hal *ah)
1648 {
1649     /*
1650      * Overflow condition to check before multiplying to get %
1651      * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1652      */
1653 #define OVERFLOW_LIMIT  0x28F5C28
1654 #define ERROR_CODE      -1
1655 
1656     struct ath_hal_9300 *ahp = AH9300(ah);
1657     u_int32_t busy = 0; /* percentage */
1658     int8_t busyper = 0;
1659     u_int32_t cycle_count, ctl_busy, ext_busy;
1660 
1661     /* cycle_count will always be the first to wrap; therefore, read it last
1662      * This sequence of reads is not atomic, and MIB counter wrap
1663      * could happen during it ?
1664      */
1665     ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1666     ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1667     cycle_count = OS_REG_READ(ah, AR_CCCNT);
1668 
1669     if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1670         (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1671     {
1672         /*
1673          * Cycle counter wrap (or initial call); it's not possible
1674          * to accurately calculate a value because the registers
1675          * right shift rather than wrap--so punt and return 0.
1676          */
1677         busyper = ERROR_CODE;
1678         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1679             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1680     } else {
1681         u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1682         u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1683 
1684         /*
1685          * Compute extension channel busy percentage
1686          * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1687          * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1688          * Will never happen, since (ext_busy_delta < cycle_delta) always,
1689          * and shift necessitated by large ext_busy_delta.
1690          * Due to timing difference to read the registers and counter overflow,
1691          * it may still happen that cycle_delta >> 7 = 0.
1692          *
1693          */
1694         if (cycle_delta) {
1695             if (ext_busy_delta > OVERFLOW_LIMIT) {
1696                 if (cycle_delta >> 7) {
1697                     busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1698                 } else {
1699                     busyper = ERROR_CODE;
1700                 }
1701             } else {
1702                 busy = (ext_busy_delta * 100) / cycle_delta;
1703             }
1704         } else {
1705             busyper = ERROR_CODE;
1706         }
1707 
1708         if (busy > 100) {
1709             busy = 100;
1710         }
1711         if ( busyper != ERROR_CODE ) {
1712             busyper = busy;
1713         }
1714     }
1715 
1716     ahp->ah_cycle_count = cycle_count;
1717     ahp->ah_ctl_busy = ctl_busy;
1718     ahp->ah_ext_busy = ext_busy;
1719 
1720     return busyper;
1721 #undef OVERFLOW_LIMIT
1722 #undef ERROR_CODE
1723 }
1724 
1725 /* BB Panic Watchdog declarations */
1726 #define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1727 #define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1728 
1729 void
1730 ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1731 {
1732 #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1733     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1734     u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1735     u_int32_t val, idle_count;
1736 
1737     if (idle_tmo_ms != 0) {
1738         /* enable IRQ, disable chip-reset for BB panic */
1739         val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1740             AR_PHY_BB_PANIC_CNTL2_MASK;
1741         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1742             (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1743         /* bound limit to 10 secs */
1744         if (idle_tmo_ms > 10000) {
1745             idle_tmo_ms = 10000;
1746         }
1747         if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1748             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1749         } else {
1750             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1751         }
1752         /*
1753          * enable panic in non-IDLE mode,
1754          * disable in IDLE mode,
1755          * set idle time-out
1756          */
1757 
1758         // EV92527 : Enable IDLE mode panic
1759 
1760         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1761                      AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1762                      AR_PHY_BB_PANIC_IDLE_ENABLE |
1763                      (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1764                      (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1765     } else {
1766         /* disable IRQ, disable chip-reset for BB panic */
1767         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1768             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1769             ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1770         /* disable panic in non-IDLE mode, disable in IDLE mode */
1771         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1772             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1773             ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1774     }
1775 
1776     HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1777              __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1778 #undef HAL_BB_PANIC_IDLE_TIME_OUT
1779 }
1780 
1781 
1782 void
1783 ar9300_handle_bb_panic(struct ath_hal *ah)
1784 {
1785     u_int32_t status;
1786     /*
1787      * we want to avoid printing in ISR context so we save
1788      * panic watchdog status to be printed later in DPC context
1789      */
1790     AH9300(ah)->ah_bb_panic_last_status = status =
1791         OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1792     /*
1793      * panic watchdog timer should reset on status read
1794      * but to make sure we write 0 to the watchdog status bit
1795      */
1796     OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1797 }
1798 
1799 int
1800 ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1801 {
1802     bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1803 
1804     /*
1805      * For signature 04000539 do not print anything.
1806      * This is a very common occurence as a compromise between
1807      * BB Panic and AH_FALSE detects (EV71009). It indicates
1808      * radar hang, which can be cleared by reprogramming
1809      * radar related register and does not requre a chip reset
1810      */
1811 
1812     /* Suppress BB Status mesg following signature */
1813     switch (bb_panic->status) {
1814         case 0x04000539:
1815         case 0x04008009:
1816         case 0x04000b09:
1817         case 0x1300000a:
1818         return -1;
1819     }
1820 
1821     bb_panic->tsf = ar9300_get_tsf32(ah);
1822     bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1823     bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1824     bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1825     bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1826     bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1827     bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1828     bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1829     bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1830     bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1831     bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1832     bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1833     bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1834     bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1835     bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1836                                         &bb_panic->rxc_pcnt,
1837                                         &bb_panic->rxf_pcnt,
1838                                         &bb_panic->txf_pcnt);
1839 
1840     if (ah->ah_config.ath_hal_show_bb_panic) {
1841         ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1842             "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1843         ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1844             "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1845             bb_panic->wd, bb_panic->det, bb_panic->rdar,
1846             bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1847             bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1848         ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1849             bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1850         ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1851             bb_panic->phy_gen_ctrl);
1852         if (bb_panic->cycles) {
1853             ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1854                 "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1855                 bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1856         }
1857         ath_hal_printf(ah, "==== BB update: done ====\n\n");
1858     }
1859 
1860     return 0; //The returned data will be stored for athstats to retrieve it
1861 }
1862 
1863 /* set the reason for HAL reset */
1864 void
1865 ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1866 {
1867     AH9300(ah)->ah_reset_reason = resetreason;
1868 }
1869 
1870 /*
1871  * Configure 20/40 operation
1872  *
1873  * 20/40 = joint rx clear (control and extension)
1874  * 20    = rx clear (control)
1875  *
1876  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1877  *         when changing from 20/40 => 20 only
1878  */
1879 void
1880 ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1881 {
1882     u_int32_t macmode;
1883 
1884     /* Configure MAC for 20/40 operation */
1885     if (mode == HAL_HT_MACMODE_2040 &&
1886         !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1887         macmode = AR_2040_JOINED_RX_CLEAR;
1888     } else {
1889         macmode = 0;
1890     }
1891     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1892 }
1893 
1894 /*
1895  * Get Rx clear (control/extension channel)
1896  *
1897  * Returns active low (busy) for ctrl/ext channel
1898  * Owl 2.0
1899  */
1900 HAL_HT_RXCLEAR
1901 ar9300_get_11n_rx_clear(struct ath_hal *ah)
1902 {
1903     HAL_HT_RXCLEAR rxclear = 0;
1904     u_int32_t val;
1905 
1906     val = OS_REG_READ(ah, AR_DIAG_SW);
1907 
1908     /* control channel */
1909     if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1910         rxclear |= HAL_RX_CLEAR_CTL_LOW;
1911     }
1912     /* extension channel */
1913     if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1914         rxclear |= HAL_RX_CLEAR_EXT_LOW;
1915     }
1916     return rxclear;
1917 }
1918 
1919 /*
1920  * Set Rx clear (control/extension channel)
1921  *
1922  * Useful for forcing the channel to appear busy for
1923  * debugging/diagnostics
1924  * Owl 2.0
1925  */
1926 void
1927 ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1928 {
1929     /* control channel */
1930     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1931         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1932     } else {
1933         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1934     }
1935     /* extension channel */
1936     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1937         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1938     } else {
1939         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1940     }
1941 }
1942 
1943 
1944 /*
1945  * HAL support code for force ppm tracking workaround.
1946  */
1947 
1948 u_int32_t
1949 ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1950 {
1951     u_int32_t retval;
1952     u_int32_t off1;
1953     u_int32_t off2;
1954 
1955     if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1956         off1 = 0x2000;
1957         off2 = 0x1000;
1958     } else {
1959         off1 = 0x1000;
1960         off2 = 0x2000;
1961     }
1962 
1963     retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1964              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1965              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1966 
1967     return retval;
1968 }
1969 
1970 u_int32_t
1971 ar9300_ppm_force(struct ath_hal *ah)
1972 {
1973     u_int32_t data_fine;
1974     u_int32_t data4;
1975     //u_int32_t off1;
1976     //u_int32_t off2;
1977     HAL_BOOL signed_val = AH_FALSE;
1978 
1979 //    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1980 //        off1 = 0x2000;
1981 //        off2 = 0x1000;
1982 //    } else {
1983 //        off1 = 0x1000;
1984 //        off2 = 0x2000;
1985 //    }
1986     data_fine =
1987         AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1988         OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1989 
1990     /*
1991      * bit [11-0] is new ppm value. bit 11 is the signed bit.
1992      * So check value from bit[10:0].
1993      * Now get the abs val of the ppm value read in bit[0:11].
1994      * After that do bound check on abs value.
1995      * if value is off limit, CAP the value and and restore signed bit.
1996      */
1997     if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1998     {
1999         /* get the positive value */
2000         data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2001         signed_val = AH_TRUE;
2002     }
2003     if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
2004     {
2005         HALDEBUG(ah, HAL_DEBUG_REGIO,
2006             "%s Correcting ppm out of range %x\n",
2007             __func__, (data_fine & 0x7ff));
2008         data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
2009     }
2010     /*
2011      * Restore signed value if changed above.
2012      * Use typecast to avoid compilation errors
2013      */
2014     if (signed_val) {
2015         data_fine = (-(int32_t)data_fine) &
2016             AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2017     }
2018 
2019     /* write value */
2020     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
2021         ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2022     OS_REG_WRITE(ah, AR_PHY_TIMING2,
2023         data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
2024 
2025     return data_fine;
2026 }
2027 
2028 void
2029 ar9300_ppm_un_force(struct ath_hal *ah)
2030 {
2031     u_int32_t data4;
2032 
2033     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2034     OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2035 }
2036 
2037 u_int32_t
2038 ar9300_ppm_arm_trigger(struct ath_hal *ah)
2039 {
2040     u_int32_t val;
2041     u_int32_t ret;
2042 
2043     val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2044     ret = OS_REG_READ(ah, AR_TSF_L32);
2045     OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2046         val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2047 
2048     /* return low word of TSF at arm time */
2049     return ret;
2050 }
2051 
2052 int
2053 ar9300_ppm_get_trigger(struct ath_hal *ah)
2054 {
2055     if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2056         AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2057     {
2058         /* has not triggered yet, return AH_FALSE */
2059         return 0;
2060     }
2061 
2062     /* else triggered, return AH_TRUE */
2063     return 1;
2064 }
2065 
2066 void
2067 ar9300_mark_phy_inactive(struct ath_hal *ah)
2068 {
2069     OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2070 }
2071 
2072 /* DEBUG */
2073 u_int32_t
2074 ar9300_ppm_get_force_state(struct ath_hal *ah)
2075 {
2076     return
2077         OS_REG_READ(ah, AR_PHY_TIMING2) &
2078         (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2079 }
2080 
2081 /*
2082  * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2083  */
2084 HAL_BOOL
2085 ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2086 {
2087     /*
2088      * XXX FreeBSD todo: reimplement this
2089      */
2090 #if 0
2091     p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2092     p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2093     p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2094     p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2095     p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2096                            p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2097     p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2098                            p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2099 #endif
2100     return AH_FALSE;
2101 }
2102 
2103 void
2104 ar9300_clear_mib_counters(struct ath_hal *ah)
2105 {
2106     u_int32_t reg_val;
2107 
2108     reg_val = OS_REG_READ(ah, AR_MIBC);
2109     OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2110     OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2111 }
2112 
2113 
2114 /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2115 HAL_BOOL
2116 ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2117 {
2118     struct ath_hal_9300 *ahp = AH9300(ah);
2119     HAL_CHANNEL_INTERNAL *ichan =
2120       ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2121     HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2122     u_int32_t tmp = 0;
2123 
2124     if (enable) {
2125         if (ahp->ah_rifs_enabled == AH_TRUE) {
2126             return AH_TRUE;
2127         }
2128 
2129         OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2130         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2131                      ahp->ah_rifs_reg[1]);
2132 
2133         ahp->ah_rifs_enabled = AH_TRUE;
2134         OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2135     } else {
2136         if (ahp->ah_rifs_enabled == AH_TRUE) {
2137             ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2138                                               AR_PHY_SEARCH_START_DELAY);
2139             ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2140         }
2141         /* Change rifs init delay to 0 */
2142         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2143                      (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2144         tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2145         if (is_chan_2g) {
2146             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2147                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2148             } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2149                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2150             }
2151         } else {
2152             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2153                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2154             } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2155                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2156             }
2157         }
2158 
2159         ahp->ah_rifs_enabled = AH_FALSE;
2160     }
2161     return AH_TRUE;
2162 
2163 } /* ar9300_set_rifs_delay () */
2164 
2165 /* Set the current RIFS Rx setting */
2166 HAL_BOOL
2167 ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2168 {
2169     /* Non-Owl 11n chips */
2170     if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2171         if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2172             return ar9300_set_rifs_delay(ah, enable);
2173         }
2174         return AH_FALSE;
2175     }
2176 
2177     return AH_TRUE;
2178 } /* ar9300_set_11n_rx_rifs () */
2179 
2180 static hal_mac_hangs_t
2181 ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2182   hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2183 {
2184     int i = 0;
2185     hal_mac_hangs_t found_hangs = 0;
2186 
2187     if (hangs & dcu_chain_state) {
2188         for (i = 0; i < 6; i++) {
2189             if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2190                  hang_check.dcu_chain_state)
2191             {
2192                 found_hangs |= dcu_chain_state;
2193                 *dcu_chain = i;
2194             }
2195         }
2196         for (i = 0; i < 4; i++) {
2197             if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2198                   hang_check.dcu_chain_state)
2199             {
2200                 found_hangs |= dcu_chain_state;
2201                 *dcu_chain = i + 6;
2202             }
2203         }
2204     }
2205 
2206     if (hangs & dcu_complete_state) {
2207         if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2208             found_hangs |= dcu_complete_state;
2209         }
2210     }
2211 
2212     return found_hangs;
2213 
2214 } /* end - ar9300_compare_dbg_hang */
2215 
2216 #define NUM_STATUS_READS 50
2217 HAL_BOOL
2218 ar9300_detect_mac_hang(struct ath_hal *ah)
2219 {
2220     struct ath_hal_9300 *ahp = AH9300(ah);
2221     mac_dbg_regs_t mac_dbg;
2222     hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2223     hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2224     int i = 0;
2225     u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2226 
2227     if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2228         return AH_FALSE;
2229     }
2230 
2231     OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2232 
2233     mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2234     mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2235     mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2236 
2237     HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2238             mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2239             mac_dbg.dma_dbg_6);
2240 
2241     if (hang_sig1 !=
2242             ar9300_compare_dbg_hang(ah, mac_dbg,
2243                  hang_sig1_val, hang_sig1, &dcu_chain))
2244     {
2245         HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2246         return AH_FALSE;
2247     }
2248 
2249     shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2250     shift_val *= 5;
2251 
2252     for (i = 1; i <= NUM_STATUS_READS; i++) {
2253         if (dcu_chain < 6) {
2254             mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2255             current_dcu_chain_state =
2256                      ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2257         } else {
2258             mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2259             current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2260         }
2261         mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2262 
2263         if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2264             || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2265             return AH_FALSE;
2266         }
2267     }
2268     HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2269              ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2270     ahp->ah_hang[MAC_HANG_SIG1]++;
2271     return AH_TRUE;
2272 
2273 } /* end - ar9300_detect_mac_hang */
2274 
2275 /* Determine if the baseband is hung by reading the Observation Bus Register */
2276 HAL_BOOL
2277 ar9300_detect_bb_hang(struct ath_hal *ah)
2278 {
2279 #define N(a) (sizeof(a) / sizeof(a[0]))
2280     struct ath_hal_9300 *ahp = AH9300(ah);
2281     u_int32_t hang_sig = 0;
2282     int i = 0;
2283     /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2284      *
2285      * 4 known BB hang signatures -
2286      * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2287      * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2288      * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2289      * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2290      *     Rx State (bits 20-24) is 0x7.
2291      */
2292     hal_hw_hang_check_t hang_list [] =
2293     {
2294      /* Offset        Reg Value   Reg Mask    Hang Offset */
2295        {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2296        {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2297        {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2298        {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2299     };
2300 
2301     if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2302                                HAL_DFS_BB_HANG_WAR |
2303                                HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2304         return AH_FALSE;
2305     }
2306 
2307     hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2308     for (i = 1; i <= NUM_STATUS_READS; i++) {
2309         if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2310             return AH_FALSE;
2311         }
2312     }
2313 
2314     for (i = 0; i < N(hang_list); i++) {
2315         if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2316             ahp->ah_hang[hang_list[i].hang_offset]++;
2317             HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2318                      "sig3count=%d sig4count=%d\n", __func__,
2319                      ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2320                      ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2321             return AH_TRUE;
2322         }
2323     }
2324 
2325     HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2326                               "<0x806c>=0x%x\n", __func__, hang_sig);
2327 
2328     return AH_FALSE;
2329 
2330 #undef N
2331 } /* end - ar9300_detect_bb_hang () */
2332 
2333 #undef NUM_STATUS_READS
2334 
2335 HAL_STATUS
2336 ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2337 {
2338     struct ath_hal_9300     *ahp = AH9300(ah);
2339     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2340     HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2341     const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2342     u_int16_t               ant_config;
2343     u_int32_t               hal_num_ant_config;
2344 
2345     hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2346         p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2347 
2348     if (cfg < hal_num_ant_config) {
2349         if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2350             OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2351             return HAL_OK;
2352         }
2353     }
2354 
2355     return HAL_EINVAL;
2356 }
2357 
2358 /*
2359  * Functions to get/set DCS mode
2360  */
2361 void
2362 ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2363 {
2364     AH9300(ah)->ah_dcs_enable = mode;
2365 }
2366 
2367 u_int32_t
2368 ar9300_get_dcs_mode(struct ath_hal *ah)
2369 {
2370     return AH9300(ah)->ah_dcs_enable;
2371 }
2372 
2373 #if ATH_BT_COEX
2374 void
2375 ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2376 {
2377     struct ath_hal_9300 *ahp = AH9300(ah);
2378 
2379     ahp->ah_bt_module = btinfo->bt_module;
2380     ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2381     ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2382     ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2383     ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2384     ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2385     ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2386     ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2387 }
2388 
2389 void
2390 ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2391 {
2392     struct ath_hal_9300 *ahp = AH9300(ah);
2393     HAL_BOOL rx_clear_polarity;
2394 
2395     /*
2396      * For Kiwi and Osprey, the polarity of rx_clear is active high.
2397      * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2398      */
2399     rx_clear_polarity = !btconf->bt_rxclear_polarity;
2400 
2401     ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2402         SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2403         SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2404         SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2405         SM(btconf->bt_mode, AR_BT_MODE) |
2406         SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2407         SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2408         SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2409         SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2410 
2411     ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2412 
2413     if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2414         /* Enable ACK to go out even though BT has higher priority. */
2415         ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2416     }
2417 }
2418 
2419 void
2420 ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2421 {
2422     struct ath_hal_9300 *ahp = AH9300(ah);
2423 
2424     /* clear the old value, then set the new value */
2425     ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2426     ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2427 }
2428 
2429 void
2430 ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2431 {
2432     struct ath_hal_9300 *ahp = AH9300(ah);
2433 
2434     ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2435     ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2436     ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2437     ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2438 
2439     switch (stomp_type) {
2440     case HAL_BT_COEX_STOMP_ALL:
2441         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2442         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2443         break;
2444     case HAL_BT_COEX_STOMP_LOW:
2445         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2446         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2447         break;
2448     case HAL_BT_COEX_STOMP_ALL_FORCE:
2449         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2450         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2451         break;
2452     case HAL_BT_COEX_STOMP_LOW_FORCE:
2453         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2454         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2455         break;
2456     case HAL_BT_COEX_STOMP_NONE:
2457     case HAL_BT_COEX_NO_STOMP:
2458         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2459         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2460         break;
2461     default:
2462         /* There is a force_weight from registry */
2463         ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2464         ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2465         break;
2466     }
2467 }
2468 
2469 void
2470 ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2471 {
2472     struct ath_hal_9300 *ahp = AH9300(ah);
2473 
2474     /* clear the old value, then set the new value */
2475     ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2476     ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2477 }
2478 
2479 static void
2480 ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2481 {
2482     struct ath_hal_9300 *ahp = AH9300(ah);
2483 #if ATH_ANT_DIV_COMB
2484     //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2485     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2486 #endif
2487 
2488     HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: called, value=%d\n", __func__, value);
2489 
2490     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2491     {
2492         if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2493         {
2494             /* Config antenna diversity */
2495 #if ATH_ANT_DIV_COMB
2496             ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2497 #endif
2498         }
2499     }
2500 }
2501 
2502 
2503 void
2504 ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2505     u_int32_t value)
2506 {
2507     struct ath_hal_9300 *ahp = AH9300(ah);
2508     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2509 
2510     switch (type) {
2511         case HAL_BT_COEX_SET_ACK_PWR:
2512             if (value) {
2513                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2514             } else {
2515                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2516             }
2517             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2518                 ahpriv->ah_extraTxPow, 0);
2519             break;
2520 
2521         case HAL_BT_COEX_ANTENNA_DIVERSITY:
2522             if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
2523                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2524                 if (value) {
2525                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2526                 }
2527                 else {
2528                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2529                 }
2530                 ar9300_bt_coex_antenna_diversity(ah, value);
2531             }
2532             break;
2533         case HAL_BT_COEX_LOWER_TX_PWR:
2534             if (value) {
2535                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2536             }
2537             else {
2538                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2539             }
2540             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2541                                       ahpriv->ah_extraTxPow, 0);
2542             break;
2543 #if ATH_SUPPORT_MCI
2544         case HAL_BT_COEX_MCI_MAX_TX_PWR:
2545             if ((ah->ah_config.ath_hal_mci_config &
2546                  ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2547             {
2548                 if (value) {
2549                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2550                     ahp->ah_mci_concur_tx_en = AH_TRUE;
2551                 }
2552                 else {
2553                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2554                     ahp->ah_mci_concur_tx_en = AH_FALSE;
2555                 }
2556                 ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2557                                           ahpriv->ah_extraTxPow, 0);
2558             }
2559             HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2560                      ahp->ah_mci_concur_tx_en);
2561             break;
2562         case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2563             if (value) {
2564                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2565             }
2566             else {
2567                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2568             }
2569             break;
2570 #endif
2571         default:
2572             break;
2573     }
2574 }
2575 
2576 void
2577 ar9300_bt_coex_disable(struct ath_hal *ah)
2578 {
2579     struct ath_hal_9300 *ahp = AH9300(ah);
2580 
2581     /* Always drive rx_clear_external output as 0 */
2582     ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2583         HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2584 
2585     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2586         OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2587         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2588     }
2589 
2590     OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2591     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2592     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2593     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2594     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2595     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2596     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2597     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2598 
2599     ahp->ah_bt_coex_enabled = AH_FALSE;
2600 }
2601 
2602 int
2603 ar9300_bt_coex_enable(struct ath_hal *ah)
2604 {
2605     struct ath_hal_9300 *ahp = AH9300(ah);
2606 
2607     /* Program coex mode and weight registers to actually enable coex */
2608     OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2609     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2610     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2611     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2612     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2613     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2614     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2615     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2616 
2617     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2618         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2619     } else {
2620         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2621     }
2622 
2623     OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2624     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2625         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2626     } else {
2627         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2628     }
2629 
2630     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2631         /* For 3-wire, configure the desired GPIO port for rx_clear */
2632         ath_hal_gpioCfgOutput(ah,
2633             ahp->ah_wlan_active_gpio_select,
2634             HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2635     }
2636     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2637         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2638     {
2639         /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2640         ath_hal_gpioCfgOutput(ah,
2641             ahp->ah_wlan_active_gpio_select,
2642             HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2643     }
2644 
2645     /*
2646      * Enable a weak pull down on BT_ACTIVE.
2647      * When BT device is disabled, BT_ACTIVE might be floating.
2648      */
2649     OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2650         (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2651         (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2652 
2653     ahp->ah_bt_coex_enabled = AH_TRUE;
2654 
2655     return 0;
2656 }
2657 
2658 u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2659 {
2660     return 0;
2661 }
2662 
2663 u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2664 {
2665     return bOn;
2666 }
2667 
2668 void
2669 ar9300_init_bt_coex(struct ath_hal *ah)
2670 {
2671     struct ath_hal_9300 *ahp = AH9300(ah);
2672 
2673     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2674         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2675                    (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2676                     AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2677 
2678         /*
2679          * Set input mux for bt_prority_async and
2680          * bt_active_async to GPIO pins
2681          */
2682         OS_REG_RMW_FIELD(ah,
2683             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2684             AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2685             ahp->ah_bt_active_gpio_select);
2686         OS_REG_RMW_FIELD(ah,
2687             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2688             AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2689             ahp->ah_bt_priority_gpio_select);
2690 
2691         /* Configure the desired GPIO ports for input */
2692         ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2693         ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2694 
2695         if (ahp->ah_bt_coex_enabled) {
2696             ar9300_bt_coex_enable(ah);
2697         } else {
2698             ar9300_bt_coex_disable(ah);
2699         }
2700     }
2701     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2702         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2703     {
2704         /* 2-wire */
2705         if (ahp->ah_bt_coex_enabled) {
2706             /* Connect bt_active_async to baseband */
2707             OS_REG_CLR_BIT(ah,
2708                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2709                 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2710                  AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2711             OS_REG_SET_BIT(ah,
2712                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2713                 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2714 
2715             /*
2716              * Set input mux for bt_prority_async and
2717              * bt_active_async to GPIO pins
2718              */
2719             OS_REG_RMW_FIELD(ah,
2720                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2721                 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2722                 ahp->ah_bt_active_gpio_select);
2723 
2724             /* Configure the desired GPIO ports for input */
2725             ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2726 
2727             /* Enable coexistence on initialization */
2728             ar9300_bt_coex_enable(ah);
2729         }
2730     }
2731 #if ATH_SUPPORT_MCI
2732     else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2733         if (ahp->ah_bt_coex_enabled) {
2734             ar9300_mci_bt_coex_enable(ah);
2735         }
2736         else {
2737             ar9300_mci_bt_coex_disable(ah);
2738         }
2739     }
2740 #endif /* ATH_SUPPORT_MCI */
2741 }
2742 
2743 #endif /* ATH_BT_COEX */
2744 
2745 HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2746 {
2747     u_int32_t val;
2748     int wasp_mm_rev;
2749 
2750 #define AR_SOC_RST_REVISION_ID      0xB8060090
2751 #define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2752     wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2753             AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2754             AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2755 #undef AR_SOC_RST_REVISION_ID
2756 #undef REG_READ
2757 
2758     /*
2759      * Azimuth (ProxySTA) Mode is only supported correctly by
2760      * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2761      *
2762      * Enable this feature for Scorpion at this time. The silicon
2763      * still needs to be validated.
2764      */
2765     if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2766         !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2767         !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2768           ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2769            (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2770             wasp_mm_rev >= 0 /* 1 */))))
2771     {
2772         HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2773                 "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2774                 __func__, AH_PRIVATE((ah))->ah_macVersion,
2775                 AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2776         return HAL_ENOTSUPP;
2777     }
2778 
2779     OS_REG_WRITE(ah,
2780         AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2781 
2782     /* turn on mode bit[24] for proxy sta */
2783     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2784         OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2785 
2786     val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2787     if (enable) {
2788         val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2789                AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2790                AR_AZIMUTH_BA_USES_AD1;
2791         /* turn off filter pass hold (bit 9) */
2792         val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2793     } else {
2794         val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2795                  AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2796                  AR_AZIMUTH_BA_USES_AD1);
2797     }
2798     OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2799 
2800     /* enable promiscous mode */
2801     OS_REG_WRITE(ah, AR_RX_FILTER,
2802         OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2803     /* enable promiscous in azimuth mode */
2804     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2805     OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2806 
2807     /* turn on filter pass hold (bit 9) */
2808     OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2809         OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2810 
2811     return HAL_OK;
2812 }
2813 
2814 #if 0
2815 void ar9300_mat_enable(struct ath_hal *ah, int enable)
2816 {
2817     /*
2818      * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2819      * mitigation and turn on key search always for better performance.
2820      */
2821     struct ath_hal_9300 *ahp = AH9300(ah);
2822     struct ath_hal_private *ap = AH_PRIVATE(ah);
2823 
2824     ahp->ah_intr_mitigation_rx = !enable;
2825     if (ahp->ah_intr_mitigation_rx) {
2826         /*
2827          * Enable Interrupt Mitigation for Rx.
2828          * If no build-specific limits for the rx interrupt mitigation
2829          * timer have been specified, use conservative defaults.
2830          */
2831         #ifndef AH_RIMT_VAL_LAST
2832             #define AH_RIMT_LAST_MICROSEC 500
2833         #endif
2834         #ifndef AH_RIMT_VAL_FIRST
2835             #define AH_RIMT_FIRST_MICROSEC 2000
2836         #endif
2837         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2838         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2839     } else {
2840         OS_REG_WRITE(ah, AR_RIMT, 0);
2841     }
2842 
2843     ahp->ah_enable_keysearch_always = !!enable;
2844     ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2845 }
2846 #endif
2847 
2848 void ar9300_enable_tpc(struct ath_hal *ah)
2849 {
2850     u_int32_t val = 0;
2851 
2852     ah->ah_config.ath_hal_desc_tpc = 1;
2853 
2854     /* Enable TPC */
2855     OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2856 
2857     /*
2858      * Disable per chain power reduction since we are already
2859      * accounting for this in our calculations
2860      */
2861     val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2862     if (AR_SREV_WASP(ah)) {
2863         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2864                          val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2865     } else {
2866         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2867                          val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2868     }
2869 }
2870 
2871 
2872 /*
2873  * ar9300_force_tsf_sync
2874  * This function forces the TSF sync to the given bssid, this is implemented
2875  * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2876  * mode of operation, where we sync the TSF to RootAP TSF values
2877  */
2878 void
2879 ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2880     u_int16_t assoc_id)
2881 {
2882     ar9300_set_operating_mode(ah, HAL_M_STA);
2883     ar9300_write_associd(ah, bssid, assoc_id);
2884 }
2885 
2886 void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2887 {
2888     struct ath_hal_9300 *ahp = AH9300(ah);
2889     u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2890     u_int32_t           temp_powertx_rate9_reg_val;
2891     int8_t              olpc_power_offset = 0;
2892     int8_t              tmp_olpc_val = 0;
2893     HAL_RSSI_TX_POWER   old_greentx_status;
2894     u_int8_t            target_power_val_t[ar9300_rate_size];
2895     int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2896 
2897     if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2898         !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2899         return;
2900     }
2901 
2902     old_greentx_status = AH9300(ah)->green_tx_status;
2903     if (ahp->ah_hw_green_tx_enable) {
2904         tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2905         tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2906     } else {
2907         tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2908         tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2909     }
2910 
2911     if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2912         && (rssi > tmp_rss1_thr1))
2913     {
2914         if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2915             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2916         }
2917     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2918         && (rssi > tmp_rss1_thr2))
2919     {
2920         if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2921             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2922         }
2923     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2924         if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2925             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2926         }
2927     }
2928 
2929     /* If status is not change, don't do anything */
2930     if (old_greentx_status == AH9300(ah)->green_tx_status) {
2931         return;
2932     }
2933 
2934     /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2935     if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2936         && AR_SREV_POSEIDON(ah))
2937     {
2938         if (ahp->ah_hw_green_tx_enable) {
2939             switch (AH9300(ah)->green_tx_status) {
2940             case HAL_RSSI_TX_POWER_SHORT:
2941                 /* 1. TxPower Config */
2942                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2943                     sizeof(target_power_val_t));
2944                 /* 1.1 Store OLPC Delta Calibration Offset*/
2945                 olpc_power_offset = 0;
2946                 /* 2. Store OB/DB */
2947                 /* 3. Store TPC settting */
2948                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2949                                     SM(14, AR_TPC_CTS) |
2950                                     SM(14, AR_TPC_CHIRP) |
2951                                     SM(14, AR_TPC_RPT));
2952                 /* 4. Store BB_powertx_rate9 value */
2953                 temp_powertx_rate9_reg_val =
2954                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2955                 break;
2956             case HAL_RSSI_TX_POWER_MIDDLE:
2957                 /* 1. TxPower Config */
2958                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2959                     sizeof(target_power_val_t));
2960                 /* 1.1 Store OLPC Delta Calibration Offset*/
2961                 olpc_power_offset = 0;
2962                 /* 2. Store OB/DB */
2963                 /* 3. Store TPC settting */
2964                 temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2965                                     SM(18, AR_TPC_CTS) |
2966                                     SM(18, AR_TPC_CHIRP) |
2967                                     SM(18, AR_TPC_RPT));
2968                 /* 4. Store BB_powertx_rate9 value */
2969                 temp_powertx_rate9_reg_val =
2970                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2971                 break;
2972             case HAL_RSSI_TX_POWER_LONG:
2973             default:
2974                 /* 1. TxPower Config */
2975                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2976                     sizeof(target_power_val_t));
2977                 /* 1.1 Store OLPC Delta Calibration Offset*/
2978                 olpc_power_offset = 0;
2979                 /* 2. Store OB/DB1/DB2 */
2980                 /* 3. Store TPC settting */
2981                 temp_tcp_reg_val =
2982                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2983                 /* 4. Store BB_powertx_rate9 value */
2984                 temp_powertx_rate9_reg_val =
2985                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2986                 break;
2987             }
2988         } else {
2989             switch (AH9300(ah)->green_tx_status) {
2990             case HAL_RSSI_TX_POWER_SHORT:
2991                 /* 1. TxPower Config */
2992                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2993                     sizeof(target_power_val_t));
2994                 /* 1.1 Store OLPC Delta Calibration Offset*/
2995                 olpc_power_offset =
2996                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2997                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2998                 /* 2. Store OB/DB */
2999                 temp_obdb_reg_val =
3000                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3001                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3002                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3003                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3004                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3005                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3006                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3007                     AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3008                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3009                     AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3010                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3011                     AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3012                 /* 3. Store TPC settting */
3013                 temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
3014                                     SM(6, AR_TPC_CTS) |
3015                                     SM(6, AR_TPC_CHIRP) |
3016                                     SM(6, AR_TPC_RPT));
3017                 /* 4. Store BB_powertx_rate9 value */
3018                 temp_powertx_rate9_reg_val =
3019                     WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
3020                 break;
3021             case HAL_RSSI_TX_POWER_MIDDLE:
3022                 /* 1. TxPower Config */
3023                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
3024                     sizeof(target_power_val_t));
3025                 /* 1.1 Store OLPC Delta Calibration Offset*/
3026                 olpc_power_offset =
3027                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
3028                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3029                 /* 2. Store OB/DB */
3030                 temp_obdb_reg_val =
3031                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3032                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3033                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3034                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3035                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3036                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3037                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3038                         AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3039                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3040                         AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3041                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3042                         AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3043                 /* 3. Store TPC settting */
3044                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3045                                     SM(14, AR_TPC_CTS) |
3046                                     SM(14, AR_TPC_CHIRP) |
3047                                     SM(14, AR_TPC_RPT));
3048                 /* 4. Store BB_powertx_rate9 value */
3049                 temp_powertx_rate9_reg_val =
3050                     WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3051                 break;
3052             case HAL_RSSI_TX_POWER_LONG:
3053             default:
3054                 /* 1. TxPower Config */
3055                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3056                     sizeof(target_power_val_t));
3057                 /* 1.1 Store OLPC Delta Calibration Offset*/
3058                 olpc_power_offset =
3059                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3060                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3061                 /* 2. Store OB/DB1/DB2 */
3062                 temp_obdb_reg_val =
3063                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3064                 /* 3. Store TPC settting */
3065                 temp_tcp_reg_val =
3066                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3067                 /* 4. Store BB_powertx_rate9 value */
3068                 temp_powertx_rate9_reg_val =
3069                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3070                 break;
3071             }
3072         }
3073         /* 1.1 Do OLPC Delta Calibration Offset */
3074         tmp_olpc_val =
3075             (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3076         tmp_olpc_val += olpc_power_offset;
3077         OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3078             (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3079             AR_PHY_TPC_OLPC_GAIN_DELTA);
3080 
3081         /* 1.2 TxPower Config */
3082         ar9300_transmit_power_reg_write(ah, target_power_val_t);
3083         /* 2. Config OB/DB */
3084         if (!ahp->ah_hw_green_tx_enable) {
3085             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3086         }
3087         /* 3. config TPC settting */
3088         OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3089         /* 4. config BB_powertx_rate9 value */
3090         OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3091     }
3092 }
3093 
3094 #if 0
3095 void
3096 ar9300_get_vow_stats(
3097     struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3098 {
3099     if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3100         p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3101     }
3102     if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3103         p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3104     }
3105     if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3106         p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3107     }
3108     if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3109         p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3110     }
3111     if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3112         p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3113     }
3114 }
3115 #endif
3116 
3117 /*
3118  * ar9300_is_skip_paprd_by_greentx
3119  *
3120  * This function check if we need to skip PAPRD tuning
3121  * when GreenTx in specific state.
3122  */
3123 HAL_BOOL
3124 ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3125 {
3126     if (AR_SREV_POSEIDON(ah) &&
3127         ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3128         ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3129          (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3130     {
3131         return AH_TRUE;
3132     }
3133     return AH_FALSE;
3134 }
3135 
3136 void
3137 ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3138 {
3139     unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3140     unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3141     unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3142     unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3143     unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3144     struct ath_hal_9300 *ahp = AH9300(ah);
3145 
3146     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3147         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3148                              AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3149         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3150                              AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3151         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3152                              AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3153         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3154                              AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3155         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3156                              AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3157     }
3158 }
3159 
3160 void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3161 {
3162     struct ath_hal_9300 *ahp = AH9300(ah);
3163 
3164     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3165         if ((value == 0) || (value == 1)) {
3166             OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3167                              AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3168         }
3169     }
3170 }
3171 
3172 void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3173 {
3174     OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3175 }
3176 
3177 int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3178 {
3179     int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3180 
3181     /* RSSI format is 8.4.  Ignore lowest four bits */
3182     val = val >> 4;
3183     return val;
3184 }
3185 
3186 void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3187                                         u_int32_t rssi_threshold)
3188 {
3189     struct ath_hal_9300 *ahp = AH9300(ah);
3190 
3191     OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3192 
3193     /* save value for restoring after chip reset */
3194     ahp->ah_beacon_rssi_threshold = rssi_threshold;
3195 }
3196 
3197 void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3198 {
3199     OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3200 }
3201 
3202 void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3203 {
3204     if (on) {
3205         OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3206                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3207     }
3208     else {
3209         OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3210                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3211     }
3212 }
3213 /*
3214  * Gets the contents of the specified key cache entry.
3215  */
3216 HAL_BOOL
3217 ar9300_print_keycache(struct ath_hal *ah)
3218 {
3219 
3220     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3221     u_int32_t key0, key1, key2, key3, key4;
3222     u_int32_t mac_hi, mac_lo;
3223     u_int16_t entry = 0;
3224     u_int32_t valid = 0;
3225     u_int32_t key_type;
3226 
3227     ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3228 
3229     for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3230         key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3231         key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3232         key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3233         key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3234         key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3235 
3236         key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3237 
3238         mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3239         mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3240 
3241         if (mac_hi & AR_KEYTABLE_VALID) {
3242             valid = 1;
3243         } else {
3244             valid = 0;
3245         }
3246 
3247         if ((mac_hi != 0) && (mac_lo != 0)) {
3248             mac_hi &= ~0x8000;
3249             mac_hi <<= 1;
3250             mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3251             mac_lo <<= 1;
3252         }
3253 
3254         ath_hal_printf(ah,
3255             "%03d    "
3256             "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3257             "   %02d     %02d    "
3258             "%02x:%02x:%02x:%02x:%02x:%02x \n",
3259             entry,
3260             (key0 << 24) >> 24, (key0 << 16) >> 24,
3261             (key0 << 8) >> 24, key0 >> 24,
3262             (key1 << 24) >> 24, (key1 << 16) >> 24,
3263             //(key1 << 8) >> 24, key1 >> 24,
3264             (key2 << 24) >> 24, (key2 << 16) >> 24,
3265             (key2 << 8) >> 24, key2 >> 24,
3266             (key3 << 24) >> 24, (key3 << 16) >> 24,
3267             //(key3 << 8) >> 24, key3 >> 24,
3268             (key4 << 24) >> 24, (key4 << 16) >> 24,
3269             (key4 << 8) >> 24, key4 >> 24,
3270             valid, key_type,
3271             (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3272             (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3273     }
3274 
3275     return AH_TRUE;
3276 }
3277 
3278 /* enable/disable smart antenna mode */
3279 HAL_BOOL
3280 ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3281 {
3282     struct ath_hal_9300 *ahp = AH9300(ah);
3283 
3284     if (enable) {
3285         OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3286     } else {
3287         OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3288     }
3289 
3290     /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3291      * and swcom2 with 0
3292      * FIXME Ideally these registers need to be made read from caldata.
3293      * Until the calibration team gets them, keep them along with board
3294      * configuration.
3295      */
3296     if (enable && AR_SREV_SCORPION(ah) &&
3297            (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3298 
3299        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3300        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3301     }
3302 
3303     ahp->ah_smartantenna_enable = enable;
3304     return 1;
3305 }
3306 
3307 #ifdef ATH_TX99_DIAG
3308 #ifndef ATH_SUPPORT_HTC
3309 void
3310 ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3311     u_int32_t txpower)
3312 {
3313 #define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3314     static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3315     int32_t i;
3316 
3317     /* The max power is limited to 63 */
3318     if (txpower <= AR9300_MAX_RATE_POWER) {
3319         for (i = 0; i < ar9300_rate_size; i++) {
3320             p_pwr_array[i] = txpower;
3321         }
3322     } else {
3323         for (i = 0; i < ar9300_rate_size; i++) {
3324             p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3325         }
3326     }
3327 
3328     OS_REG_WRITE(ah, 0xa458, 0);
3329 
3330     /* Write the OFDM power per rate set */
3331     /* 6 (LSB), 9, 12, 18 (MSB) */
3332     OS_REG_WRITE(ah, 0xa3c0,
3333         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3334           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3335           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3336           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3337     );
3338     /* 24 (LSB), 36, 48, 54 (MSB) */
3339     OS_REG_WRITE(ah, 0xa3c4,
3340         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3341           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3342           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3343           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3344     );
3345 
3346     /* Write the CCK power per rate set */
3347     /* 1L (LSB), reserved, 2L, 2S (MSB) */
3348     OS_REG_WRITE(ah, 0xa3c8,
3349         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3350           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3351           /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3352           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3353     );
3354     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3355     OS_REG_WRITE(ah, 0xa3cc,
3356         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3357           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3358           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3359           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3360     );
3361 
3362     /* Write the HT20 power per rate set */
3363     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3364     OS_REG_WRITE(ah, 0xa3d0,
3365         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3366           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3367           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3368           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3369     );
3370 
3371     /* 6 (LSB), 7, 12, 13 (MSB) */
3372     OS_REG_WRITE(ah, 0xa3d4,
3373         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3374           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3375           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3376           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3377     );
3378 
3379     /* 14 (LSB), 15, 20, 21 */
3380     OS_REG_WRITE(ah, 0xa3e4,
3381         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3382           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3383           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3384           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3385     );
3386 
3387     /* Mixed HT20 and HT40 rates */
3388     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3389     OS_REG_WRITE(ah, 0xa3e8,
3390         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3391           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3392           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3393           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3394     );
3395 
3396     /* Write the HT40 power per rate set */
3397     /* correct PAR difference between HT40 and HT20/LEGACY */
3398     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3399     OS_REG_WRITE(ah, 0xa3d8,
3400         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3401           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3402           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3403           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3404     );
3405 
3406     /* 6 (LSB), 7, 12, 13 (MSB) */
3407     OS_REG_WRITE(ah, 0xa3dc,
3408         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3409           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3410           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3411           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3412     );
3413 
3414     /* 14 (LSB), 15, 20, 21 */
3415     OS_REG_WRITE(ah, 0xa3ec,
3416         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3417           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3418           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3419           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3420     );
3421 #undef PWR_MAS
3422 }
3423 
3424 void
3425 ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3426 {
3427     if (tx_chainmask == 0x5) {
3428         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3429             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3430     }
3431     OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3432     OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3433 
3434     OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3435     if (tx_chainmask == 0x5) {
3436         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3437             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3438     }
3439 }
3440 
3441 void
3442 ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3443     int chtype)
3444 {
3445     OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3446     OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3447     OS_REG_WRITE(ah, 0xa350,
3448         (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3449 
3450     /* 11G mode */
3451     if (!chtype) {
3452         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3453             OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3454         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3455             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3456                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3457             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3458                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3459                         | (0x1 << 26)  | (0x7 << 24))
3460                         & ~(0x1 << 22));
3461         } else {
3462             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3463                 OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3464             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3465                 (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3466                         | (0x1 << 26)  | (0x7 << 24))
3467                         & ~(0x1 << 22));
3468         }
3469 
3470         /* chain zero */
3471         if ((tx_chain_mask & 0x01) == 0x01) {
3472             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3473                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3474                       | (0x1 << 31) | (0x5 << 15)
3475                       | (0x3 << 9)) & ~(0x1 << 27)
3476                       & ~(0x1 << 12));
3477             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3478                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3479                       | (0x1 << 12) | (0x1 << 10)
3480                       | (0x1 << 9)  | (0x1 << 8)
3481                       | (0x1 << 7)) & ~(0x1 << 11));
3482             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3483                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3484                       | (0x1 << 29) | (0x1 << 25)
3485                       | (0x1 << 23) | (0x1 << 19)
3486                       | (0x1 << 10) | (0x1 << 9)
3487                       | (0x1 << 8)  | (0x1 << 3))
3488                       & ~(0x1 << 28)& ~(0x1 << 24)
3489                       & ~(0x1 << 22)& ~(0x1 << 7));
3490             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3491                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3492                       | (0x1 << 23))& ~(0x1 << 21));
3493             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3494                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3495                       | (0x1 << 12) | (0x1 << 10)
3496                       | (0x1 << 9)  | (0x1 << 8)
3497                       | (0x1 << 6)  | (0x1 << 5)
3498                       | (0x1 << 4)  | (0x1 << 3)
3499                       | (0x1 << 2));
3500             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3501                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3502         }
3503         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3504             /* chain one */
3505             if ((tx_chain_mask & 0x02) == 0x02 ) {
3506                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3507                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3508                           | (0x1 << 31) | (0x5 << 15)
3509                           | (0x3 << 9)) & ~(0x1 << 27)
3510                           & ~(0x1 << 12));
3511                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3512                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3513                           | (0x1 << 12) | (0x1 << 10)
3514                           | (0x1 << 9)  | (0x1 << 8)
3515                           | (0x1 << 7)) & ~(0x1 << 11));
3516                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3517                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3518                           | (0x1 << 29) | (0x1 << 25)
3519                           | (0x1 << 23) | (0x1 << 19)
3520                           | (0x1 << 10) | (0x1 << 9)
3521                           | (0x1 << 8)  | (0x1 << 3))
3522                           & ~(0x1 << 28)& ~(0x1 << 24)
3523                           & ~(0x1 << 22)& ~(0x1 << 7));
3524                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3525                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3526                           | (0x1 << 23))& ~(0x1 << 21));
3527                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3528                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3529                           | (0x1 << 12) | (0x1 << 10)
3530                           | (0x1 << 9)  | (0x1 << 8)
3531                           | (0x1 << 6)  | (0x1 << 5)
3532                           | (0x1 << 4)  | (0x1 << 3)
3533                           | (0x1 << 2));
3534                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3535                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3536             }
3537         }
3538         if (AR_SREV_OSPREY(ah)) {
3539             /* chain two */
3540             if ((tx_chain_mask & 0x04) == 0x04 ) {
3541                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3542                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3543                           | (0x1 << 31) | (0x5 << 15)
3544                           | (0x3 << 9)) & ~(0x1 << 27)
3545                           & ~(0x1 << 12));
3546                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3547                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3548                           | (0x1 << 12) | (0x1 << 10)
3549                           | (0x1 << 9)  | (0x1 << 8)
3550                           | (0x1 << 7)) & ~(0x1 << 11));
3551                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3552                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3553                           | (0x1 << 29) | (0x1 << 25)
3554                           | (0x1 << 23) | (0x1 << 19)
3555                           | (0x1 << 10) | (0x1 << 9)
3556                           | (0x1 << 8)  | (0x1 << 3))
3557                           & ~(0x1 << 28)& ~(0x1 << 24)
3558                           & ~(0x1 << 22)& ~(0x1 << 7));
3559                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3560                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3561                           | (0x1 << 23))& ~(0x1 << 21));
3562                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3563                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3564                           | (0x1 << 12) | (0x1 << 10)
3565                           | (0x1 << 9)  | (0x1 << 8)
3566                           | (0x1 << 6)  | (0x1 << 5)
3567                           | (0x1 << 4)  | (0x1 << 3)
3568                           | (0x1 << 2));
3569                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3570                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3571             }
3572         }
3573 
3574         OS_REG_WRITE(ah, 0xa28c, 0x11111);
3575         OS_REG_WRITE(ah, 0xa288, 0x111);
3576     } else {
3577         /* chain zero */
3578         if ((tx_chain_mask & 0x01) == 0x01) {
3579             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3580                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3581                       | (0x1 << 31) | (0x1 << 27)
3582                       | (0x3 << 23) | (0x1 << 19)
3583                       | (0x1 << 15) | (0x3 << 9))
3584                       & ~(0x1 << 12));
3585             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3586                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3587                       | (0x1 << 12) | (0x1 << 10)
3588                       | (0x1 << 9)  | (0x1 << 8)
3589                       | (0x1 << 7)  | (0x1 << 3)
3590                       | (0x1 << 2)  | (0x1 << 1))
3591                       & ~(0x1 << 11)& ~(0x1 << 0));
3592             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3593                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3594                       | (0x1 << 29) | (0x1 << 25)
3595                       | (0x1 << 23) | (0x1 << 19)
3596                       | (0x1 << 10) | (0x1 << 9)
3597                       | (0x1 << 8)  | (0x1 << 3))
3598                       & ~(0x1 << 28)& ~(0x1 << 24)
3599                       & ~(0x1 << 22)& ~(0x1 << 7));
3600             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3601                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3602                       | (0x1 << 23))& ~(0x1 << 21));
3603             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3604                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3605                       | (0x3 << 3)  | (0x3 << 0));
3606             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3607                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3608                       | (0x3 << 29) | (0x3 << 26)
3609                       | (0x2 << 23) | (0x2 << 20)
3610                       | (0x2 << 17))& ~(0x1 << 14));
3611             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3612                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3613                       | (0x1 << 12) | (0x1 << 10)
3614                       | (0x1 << 9)  | (0x1 << 8)
3615                       | (0x1 << 6)  | (0x1 << 5)
3616                       | (0x1 << 4)  | (0x1 << 3)
3617                       | (0x1 << 2));
3618             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3619                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3620             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3621                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3622                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3623                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3624                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3625                           | (0x1 << 26) | (0x7 << 24)
3626                           | (0x3 << 22));
3627             } else {
3628                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3629                     OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3630                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3631                     OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3632                           | (0x1 << 26) | (0x7 << 24)
3633                           | (0x3 << 22));
3634             }
3635 
3636             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3637                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3638                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3639                           | (0x1 << 3)  | (0x1 << 2)
3640                           | (0x1 << 1)) & ~(0x1 << 0));
3641                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3642                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3643                           | (0x1 << 19) | (0x1 << 3));
3644                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3645                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3646             }
3647             if (AR_SREV_OSPREY(ah)) {
3648                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3649                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3650                           | (0x1 << 3)  | (0x1 << 2)
3651                           | (0x1 << 1)) & ~(0x1 << 0));
3652                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3653                     OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3654                           | (0x1 << 19) | (0x1 << 3));
3655                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3656                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3657             }
3658         }
3659         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3660             /* chain one */
3661             if ((tx_chain_mask & 0x02) == 0x02 ) {
3662                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3663                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3664                           | (0x1 << 3)  | (0x1 << 2)
3665                           | (0x1 << 1)) & ~(0x1 << 0));
3666                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3667                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3668                           | (0x1 << 19) | (0x1 << 3));
3669                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3670                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3671                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3672                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3673                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3674                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3675                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3676                               | (0x1 << 26) | (0x7 << 24)
3677                               | (0x3 << 22));
3678                 } else {
3679                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3680                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3681                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3682                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3683                               | (0x1 << 26) | (0x7 << 24)
3684                               | (0x3 << 22));
3685                 }
3686 
3687                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3688                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3689                           | (0x1 << 31) | (0x1 << 27)
3690                           | (0x3 << 23) | (0x1 << 19)
3691                           | (0x1 << 15) | (0x3 << 9))
3692                           & ~(0x1 << 12));
3693                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3694                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3695                           | (0x1 << 12) | (0x1 << 10)
3696                           | (0x1 << 9)  | (0x1 << 8)
3697                           | (0x1 << 7)  | (0x1 << 3)
3698                           | (0x1 << 2)  | (0x1 << 1))
3699                           & ~(0x1 << 11)& ~(0x1 << 0));
3700                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3701                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3702                           | (0x1 << 29) | (0x1 << 25)
3703                           | (0x1 << 23) | (0x1 << 19)
3704                           | (0x1 << 10) | (0x1 << 9)
3705                           | (0x1 << 8)  | (0x1 << 3))
3706                           & ~(0x1 << 28)& ~(0x1 << 24)
3707                           & ~(0x1 << 22)& ~(0x1 << 7));
3708                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3709                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3710                           | (0x1 << 23))& ~(0x1 << 21));
3711                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3712                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3713                           | (0x3 << 3)  | (0x3 << 0));
3714                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3715                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3716                           | (0x3 << 29) | (0x3 << 26)
3717                           | (0x2 << 23) | (0x2 << 20)
3718                           | (0x2 << 17))& ~(0x1 << 14));
3719                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3720                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3721                           | (0x1 << 12) | (0x1 << 10)
3722                           | (0x1 << 9)  | (0x1 << 8)
3723                           | (0x1 << 6)  | (0x1 << 5)
3724                           | (0x1 << 4)  | (0x1 << 3)
3725                           | (0x1 << 2));
3726                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3727                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3728 
3729                 if (AR_SREV_OSPREY(ah)) {
3730                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3731                         (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3732                               | (0x1 << 3)  | (0x1 << 2)
3733                               | (0x1 << 1)) & ~(0x1 << 0));
3734                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3735                         OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3736                               | (0x1 << 19) | (0x1 << 3));
3737                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3738                         OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3739                 }
3740             }
3741         }
3742         if (AR_SREV_OSPREY(ah)) {
3743             /* chain two */
3744             if ((tx_chain_mask & 0x04) == 0x04 ) {
3745                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3746                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3747                           | (0x1 << 3)  | (0x1 << 2)
3748                           | (0x1 << 1)) & ~(0x1 << 0));
3749                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3750                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3751                           | (0x1 << 19) | (0x1 << 3));
3752                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3753                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3754                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3755                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3756                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3757                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3758                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3759                               | (0x1 << 26) | (0x7 << 24)
3760                               | (0x3 << 22));
3761                 } else {
3762                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3763                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3764                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3765                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3766                               | (0x1 << 26) | (0x7 << 24)
3767                               | (0x3 << 22));
3768                 }
3769 
3770                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3771                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3772                           | (0x1 << 3)  | (0x1 << 2)
3773                           | (0x1 << 1)) & ~(0x1 << 0));
3774                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3775                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3776                           | (0x1 << 19) | (0x1 << 3));
3777                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3778                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3779 
3780                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3781                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3782                           | (0x1 << 31) | (0x1 << 27)
3783                           | (0x3 << 23) | (0x1 << 19)
3784                           | (0x1 << 15) | (0x3 << 9))
3785                           & ~(0x1 << 12));
3786                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3787                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3788                           | (0x1 << 12) | (0x1 << 10)
3789                           | (0x1 << 9)  | (0x1 << 8)
3790                           | (0x1 << 7)  | (0x1 << 3)
3791                           | (0x1 << 2)  | (0x1 << 1))
3792                           & ~(0x1 << 11)& ~(0x1 << 0));
3793                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3794                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3795                           | (0x1 << 29) | (0x1 << 25)
3796                           | (0x1 << 23) | (0x1 << 19)
3797                           | (0x1 << 10) | (0x1 << 9)
3798                           | (0x1 << 8)  | (0x1 << 3))
3799                           & ~(0x1 << 28)& ~(0x1 << 24)
3800                           & ~(0x1 << 22)& ~(0x1 << 7));
3801                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3802                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3803                           | (0x1 << 23))& ~(0x1 << 21));
3804                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3805                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3806                           | (0x3 << 3)  | (0x3 << 0));
3807                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3808                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3809                           | (0x3 << 29) | (0x3 << 26)
3810                           | (0x2 << 23) | (0x2 << 20)
3811                           | (0x2 << 17))& ~(0x1 << 14));
3812                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3813                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3814                           | (0x1 << 12) | (0x1 << 10)
3815                           | (0x1 << 9)  | (0x1 << 8)
3816                           | (0x1 << 6)  | (0x1 << 5)
3817                           | (0x1 << 4)  | (0x1 << 3)
3818                           | (0x1 << 2));
3819                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3820                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3821             }
3822         }
3823 
3824         OS_REG_WRITE(ah, 0xa28c, 0x22222);
3825         OS_REG_WRITE(ah, 0xa288, 0x222);
3826     }
3827 }
3828 
3829 void
3830 ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3831 {
3832     u_int32_t val;
3833     u_int32_t qnum = (u_int32_t)data;
3834 
3835     /* Disable AGC to A2 */
3836     OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3837     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3838 
3839     OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3840     /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3841     OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3842     OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3843     OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3844     /* 200 ok for HT20, 400 ok for HT40 */
3845     OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3846     OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3847 
3848     /* set QCU modes to early termination */
3849     val = OS_REG_READ(ah, AR_QMISC(qnum));
3850     OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3851 }
3852 
3853 void
3854 ar9300_tx99_stop(struct ath_hal *ah)
3855 {
3856     /* this should follow the setting of start */
3857     OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3858     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3859 }
3860 #endif /* ATH_TX99_DIAG */
3861 #endif /* ATH_SUPPORT_HTC */
3862 
3863 HAL_BOOL
3864 ar9300Get3StreamSignature(struct ath_hal *ah)
3865 {
3866     return AH_FALSE;
3867 }
3868 
3869 HAL_BOOL
3870 ar9300ForceVCS(struct ath_hal *ah)
3871 {
3872    return AH_FALSE;
3873 }
3874 
3875 HAL_BOOL
3876 ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3877 {
3878    return AH_FALSE;
3879 }
3880 
3881 static u_int32_t
3882 ar9300_read_loc_timer(struct ath_hal *ah)
3883 {
3884 
3885     return OS_REG_READ(ah, AR_LOC_TIMER_REG);
3886 }
3887 
3888 HAL_BOOL
3889 ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3890 {
3891     struct ath_hal_9300 *ahp = AH9300(ah);
3892     ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3893     u_int8_t *ctl_index;
3894     u_int32_t offset = 0;
3895 
3896     if (!ctl_array)
3897         return AH_FALSE;
3898 
3899     /* copy 2G ctl freqbin and power data */
3900     ctl_index = p_eep_data->ctl_index_2g;
3901     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3902                 OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3903                 OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3904     offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3905             ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3906 
3907 
3908     /* copy 2G ctl freqbin and power data */
3909     ctl_index = p_eep_data->ctl_index_5g;
3910     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3911                 OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3912                 OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3913 
3914     return AH_FALSE;
3915 }
3916 
3917 void
3918 ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3919 {
3920     struct ath_hal_9300 *ahp = AH9300(ah);
3921 
3922     /* optional txchainmask should be subset of primary txchainmask */
3923     if ((mask & ahp->ah_tx_chainmask) != mask) {
3924         ahp->ah_tx_chainmaskopt = 0;
3925         ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3926         return;
3927     }
3928 
3929     ahp->ah_tx_chainmaskopt = mask;
3930 }
3931