xref: /freebsd/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_misc.c (revision 0572ccaa4543b0abef8ef81e384c1d04de9f3da1)
1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 
26 #include "ar9300/ar9300.h"
27 #include "ar9300/ar9300reg.h"
28 #include "ar9300/ar9300phy.h"
29 
30 
31 void
32 ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
33 {
34     struct ath_hal_9300 *ahp = AH9300(ah);
35     *hangs = 0;
36 
37     if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
38         *hangs |= HAL_RIFS_BB_HANG_WAR;
39     }
40     if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
41         *hangs |= HAL_DFS_BB_HANG_WAR;
42     }
43     if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
44         == HAL_OK)
45     {
46         *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
47     }
48     if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
49         *hangs |= HAL_MAC_HANG_WAR;
50     }
51     if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
52         == HAL_OK)
53     {
54         *hangs |= HAL_PHYRESTART_CLR_WAR;
55     }
56 
57     ahp->ah_hang_wars = *hangs;
58 }
59 
60 /*
61  * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
62  * HT20, HT40, fast-clock, turbo mode, etc.
63  */
64 static u_int
65 ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
66 {
67 #if 0
68     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
69 
70     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
71         return (ath_hal_mac_usec(ah, clks) / 2);
72     } else {
73         return (ath_hal_mac_usec(ah, clks));
74     }
75 #endif
76     return (ath_hal_mac_usec(ah, clks));
77 }
78 
79 u_int
80 ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
81 {
82 #if 0
83     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
84 
85     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
86         return (ath_hal_mac_clks(ah, usecs) * 2);
87     } else {
88         return (ath_hal_mac_clks(ah, usecs));
89     }
90 #endif
91     return (ath_hal_mac_clks(ah, usecs));
92 }
93 
94 void
95 ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
96 {
97     struct ath_hal_9300 *ahp = AH9300(ah);
98 
99     OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
100 }
101 
102 HAL_BOOL
103 ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
104 {
105     struct ath_hal_9300 *ahp = AH9300(ah);
106 
107     OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
108     return AH_TRUE;
109 }
110 
111 void
112 ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
113 {
114     struct ath_hal_9300 *ahp = AH9300(ah);
115 
116     OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
117 }
118 
119 HAL_BOOL
120 ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
121 {
122     struct ath_hal_9300 *ahp = AH9300(ah);
123 
124     /* save it since it must be rewritten on reset */
125     OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
126 
127     OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
128     OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
129     return AH_TRUE;
130 }
131 
132 /*
133  * Attempt to change the cards operating regulatory domain to the given value
134  * Returns: A_EINVAL for an unsupported regulatory domain.
135  *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
136  */
137 HAL_BOOL
138 ar9300_set_regulatory_domain(struct ath_hal *ah,
139         u_int16_t reg_domain, HAL_STATUS *status)
140 {
141     HAL_STATUS ecode;
142 
143     if (AH_PRIVATE(ah)->ah_currentRD == 0) {
144         AH_PRIVATE(ah)->ah_currentRD = reg_domain;
145         return AH_TRUE;
146     }
147     ecode = HAL_EIO;
148 
149 #if 0
150 bad:
151 #endif
152     if (status) {
153         *status = ecode;
154     }
155     return AH_FALSE;
156 }
157 
158 /*
159  * Return the wireless modes (a,b,g,t) supported by hardware.
160  *
161  * This value is what is actually supported by the hardware
162  * and is unaffected by regulatory/country code settings.
163  *
164  */
165 u_int
166 ar9300_get_wireless_modes(struct ath_hal *ah)
167 {
168     return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
169 }
170 
171 /*
172  * Set the interrupt and GPIO values so the ISR can disable RF
173  * on a switch signal.  Assumes GPIO port and interrupt polarity
174  * are set prior to call.
175  */
176 void
177 ar9300_enable_rf_kill(struct ath_hal *ah)
178 {
179     /* TODO - can this really be above the hal on the GPIO interface for
180      * TODO - the client only?
181      */
182     struct ath_hal_9300    *ahp = AH9300(ah);
183 
184     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
185     	/* Check RF kill GPIO before set/clear RFSILENT bits. */
186     	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
187             OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
188                            AR_RFSILENT_FORCE);
189             OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
190         }
191         else {
192             OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
193                            AR_RFSILENT_FORCE);
194             OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
195         }
196     }
197     else {
198         /* Connect rfsilent_bb_l to baseband */
199         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
200             AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
201 
202         /* Set input mux for rfsilent_bb_l to GPIO #0 */
203         OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
204             AR_GPIO_INPUT_MUX2_RFSILENT);
205         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206             (ahp->ah_gpio_select & 0x0f) << 4);
207 
208         /*
209          * Configure the desired GPIO port for input and
210          * enable baseband rf silence
211          */
212         ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
213         OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
214     }
215 
216     /*
217      * If radio disable switch connection to GPIO bit x is enabled
218      * program GPIO interrupt.
219      * If rfkill bit on eeprom is 1, setupeeprommap routine has already
220      * verified that it is a later version of eeprom, it has a place for
221      * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
222      * connection is present.
223      */
224      /*
225       * RFKill uses polling not interrupt,
226       * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
227       */
228     if (ath_hal_hasrfkill_int(ah)) {
229         if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
230             /* switch already closed, set to interrupt upon open */
231             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
232         } else {
233             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
234         }
235     }
236 }
237 
238 /*
239  * Change the LED blinking pattern to correspond to the connectivity
240  */
241 void
242 ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
243 {
244     static const u_int32_t ledbits[8] = {
245         AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
246         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
247         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
248         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
249         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
250         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
251         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
252         AR_CFG_LED_ASSOC_NONE,
253     };
254 
255     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
256 }
257 
258 /*
259  * Sets the Power LED on the cardbus without affecting the Network LED.
260  */
261 void
262 ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
263 {
264     u_int32_t    val;
265 
266     val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
267     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
268 }
269 
270 /*
271  * Sets the Network LED on the cardbus without affecting the Power LED.
272  */
273 void
274 ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
275 {
276     u_int32_t    val;
277 
278     val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
279     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
280 }
281 
282 /*
283  * Change association related fields programmed into the hardware.
284  * Writing a valid BSSID to the hardware effectively enables the hardware
285  * to synchronize its TSF to the correct beacons and receive frames coming
286  * from that BSSID. It is called by the SME JOIN operation.
287  */
288 void
289 ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
290     u_int16_t assoc_id)
291 {
292     struct ath_hal_9300 *ahp = AH9300(ah);
293 
294     /* save bssid and assoc_id for restore on reset */
295     OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
296     ahp->ah_assoc_id = assoc_id;
297 
298     OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
299     OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
300                                  ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
301 }
302 
303 /*
304  * Get the current hardware tsf for stamlme
305  */
306 u_int64_t
307 ar9300_get_tsf64(struct ath_hal *ah)
308 {
309     u_int64_t tsf;
310 
311     /* XXX sync multi-word read? */
312     tsf = OS_REG_READ(ah, AR_TSF_U32);
313     tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
314     return tsf;
315 }
316 
317 void
318 ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
319 {
320     OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
321     OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
322 }
323 
324 /*
325  * Get the current hardware tsf for stamlme
326  */
327 u_int32_t
328 ar9300_get_tsf32(struct ath_hal *ah)
329 {
330     return OS_REG_READ(ah, AR_TSF_L32);
331 }
332 
333 u_int32_t
334 ar9300_get_tsf2_32(struct ath_hal *ah)
335 {
336     return OS_REG_READ(ah, AR_TSF2_L32);
337 }
338 
339 /*
340  * Reset the current hardware tsf for stamlme.
341  */
342 void
343 ar9300_reset_tsf(struct ath_hal *ah)
344 {
345     int count;
346 
347     count = 0;
348     while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
349         count++;
350         if (count > 10) {
351             HALDEBUG(ah, HAL_DEBUG_RESET,
352                 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
353             break;
354         }
355         OS_DELAY(10);
356     }
357     OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
358 }
359 
360 /*
361  * Set or clear hardware basic rate bit
362  * Set hardware basic rate set if basic rate is found
363  * and basic rate is equal or less than 2Mbps
364  */
365 void
366 ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
367 {
368     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
369     u_int32_t reg;
370     u_int8_t xset;
371     int i;
372 
373     if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
374         return;
375     }
376     xset = 0;
377     for (i = 0; i < rs->rs_count; i++) {
378         u_int8_t rset = rs->rs_rates[i];
379         /* Basic rate defined? */
380         if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
381             xset = rset;
382         }
383     }
384     /*
385      * Set the h/w bit to reflect whether or not the basic
386      * rate is found to be equal or less than 2Mbps.
387      */
388     reg = OS_REG_READ(ah, AR_STA_ID1);
389     if (xset && xset / 2 <= 2) {
390         OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
391     } else {
392         OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
393     }
394 }
395 
396 /*
397  * Grab a semi-random value from hardware registers - may not
398  * change often
399  */
400 u_int32_t
401 ar9300_get_random_seed(struct ath_hal *ah)
402 {
403     u_int32_t nf;
404 
405     nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
406     if (nf & 0x100) {
407         nf = 0 - ((nf ^ 0x1ff) + 1);
408     }
409     return (OS_REG_READ(ah, AR_TSF_U32) ^
410         OS_REG_READ(ah, AR_TSF_L32) ^ nf);
411 }
412 
413 /*
414  * Detect if our card is present
415  */
416 HAL_BOOL
417 ar9300_detect_card_present(struct ath_hal *ah)
418 {
419     u_int16_t mac_version, mac_rev;
420     u_int32_t v;
421 
422     /*
423      * Read the Silicon Revision register and compare that
424      * to what we read at attach time.  If the same, we say
425      * a card/device is present.
426      */
427     v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
428     if (v == 0xFF) {
429         /* new SREV format */
430         v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
431         /*
432          * Include 6-bit Chip Type (masked to 0) to differentiate
433          * from pre-Sowl versions
434          */
435         mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
436         mac_rev = MS(v, AR_SREV_REVISION2);
437     } else {
438         mac_version = MS(v, AR_SREV_VERSION);
439         mac_rev = v & AR_SREV_REVISION;
440     }
441     return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
442             AH_PRIVATE(ah)->ah_macRev == mac_rev);
443 }
444 
445 /*
446  * Update MIB Counters
447  */
448 void
449 ar9300_update_mib_mac_stats(struct ath_hal *ah)
450 {
451     struct ath_hal_9300 *ahp = AH9300(ah);
452     HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
453 
454     stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
455     stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
456     stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
457     stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
458     stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
459 }
460 
461 void
462 ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
463 {
464     struct ath_hal_9300 *ahp = AH9300(ah);
465     HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
466 
467     stats->ackrcv_bad = istats->ackrcv_bad;
468     stats->rts_bad    = istats->rts_bad;
469     stats->fcs_bad    = istats->fcs_bad;
470     stats->rts_good   = istats->rts_good;
471     stats->beacons    = istats->beacons;
472 }
473 
474 /*
475  * Detect if the HW supports spreading a CCK signal on channel 14
476  */
477 HAL_BOOL
478 ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
479 {
480     return AH_TRUE;
481 }
482 
483 /*
484  * Get the rssi of frame curently being received.
485  */
486 u_int32_t
487 ar9300_get_cur_rssi(struct ath_hal *ah)
488 {
489     /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
490     /* get combined RSSI */
491     return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
492 }
493 
494 #if ATH_GEN_RANDOMNESS
495 /*
496  * Get the rssi value from BB on ctl chain0.
497  */
498 u_int32_t
499 ar9300_get_rssi_chain0(struct ath_hal *ah)
500 {
501     /* get ctl chain0 RSSI */
502     return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
503 }
504 #endif
505 
506 u_int
507 ar9300_get_def_antenna(struct ath_hal *ah)
508 {
509     return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
510 }
511 
512 /* Setup coverage class */
513 void
514 ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
515 {
516 }
517 
518 void
519 ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
520 {
521     OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
522 }
523 
524 HAL_BOOL
525 ar9300_set_antenna_switch(struct ath_hal *ah,
526     HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
527     u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
528 {
529     struct ath_hal_9300 *ahp = AH9300(ah);
530 
531     /*
532      * Owl does not support diversity or changing antennas.
533      *
534      * Instead this API and function are defined differently for AR9300.
535      * To support Tablet PC's, this interface allows the system
536      * to dramatically reduce the TX power on a particular chain.
537      *
538      * Based on the value of (redefined) diversity_control, the
539      * reset code will decrease power on chain 0 or chain 1/2.
540      *
541      * Based on the value of bit 0 of antenna_switch_swap,
542      * the mapping between OID call and chain is defined as:
543      *  0:  map A -> 0, B -> 1;
544      *  1:  map A -> 1, B -> 0;
545      *
546      * NOTE:
547      *   The devices that use this OID should use a tx_chain_mask and
548      *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
549      *   used in order to ensure an active transmit antenna.  This
550      *   API will allow the host to turn off the only transmitting
551      *   antenna to ensure the antenna closest to the user's body is
552      *   powered-down.
553      */
554     /*
555      * Set antenna control for use during reset sequence by
556      * ar9300_decrease_chain_power()
557      */
558     ahp->ah_diversity_control = settings;
559 
560     return AH_TRUE;
561 }
562 
563 HAL_BOOL
564 ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
565 {
566     return AH_TRUE;
567 }
568 
569 HAL_BOOL
570 ar9300_set_slot_time(struct ath_hal *ah, u_int us)
571 {
572     struct ath_hal_9300 *ahp = AH9300(ah);
573     if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
574         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
575         ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
576         return AH_FALSE;
577     } else {
578         /* convert to system clocks */
579         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
580         ahp->ah_slot_time = us;
581         return AH_TRUE;
582     }
583 }
584 
585 HAL_BOOL
586 ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
587 {
588     struct ath_hal_9300 *ahp = AH9300(ah);
589 
590     if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
591         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
592         ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
593         return AH_FALSE;
594     } else {
595         /* convert to system clocks */
596         OS_REG_RMW_FIELD(ah,
597             AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
598         ahp->ah_ack_timeout = us;
599         return AH_TRUE;
600     }
601 }
602 
603 u_int
604 ar9300_get_ack_timeout(struct ath_hal *ah)
605 {
606     u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
607     return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
608 }
609 
610 HAL_STATUS
611 ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
612                  u_int32_t next_start, HAL_QUIET_FLAG flag)
613 {
614 #define	TU_TO_USEC(_tu)		((_tu) << 10)
615     HAL_STATUS status = HAL_EIO;
616     u_int32_t tsf = 0, j, next_start_us = 0;
617     if (flag & HAL_QUIET_ENABLE) {
618         for (j = 0; j < 2; j++) {
619             next_start_us = TU_TO_USEC(next_start);
620             tsf = OS_REG_READ(ah, AR_TSF_L32);
621             if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
622                 next_start_us += tsf;
623             }
624             if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
625                 next_start_us +=
626                     ah->ah_config.ah_sw_beacon_response_time;
627             }
628             OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
629             OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
630             OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
631             OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
632             OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
633             if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
634                 status = HAL_OK;
635                 break;
636             }
637             HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
638                 "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
639             /* TSF shouldn't count twice or reg access is taking forever */
640             HALASSERT(j < 1);
641         }
642     } else {
643         OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
644         status = HAL_OK;
645     }
646 
647     return status;
648 #undef	TU_TO_USEC
649 }
650 #ifdef ATH_SUPPORT_DFS
651 void
652 ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
653 {
654     u32 reg1, reg2;
655 
656     reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
657     reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
658     AH9300(ah)->ah_cac_quiet_enabled = enable;
659 
660     if (enable) {
661         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
662                      reg1 | AR_PCU_FORCE_QUIET_COLL);
663         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
664                      reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
665     } else {
666         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
667                      reg1 & ~AR_PCU_FORCE_QUIET_COLL);
668         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
669                      reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
670     }
671 }
672 #endif /* ATH_SUPPORT_DFS */
673 
674 void
675 ar9300_set_pcu_config(struct ath_hal *ah)
676 {
677     ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
678 }
679 
680 HAL_STATUS
681 ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
682     u_int32_t capability, u_int32_t *result)
683 {
684     struct ath_hal_9300 *ahp = AH9300(ah);
685     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
686 
687     switch (type) {
688     case HAL_CAP_CIPHER:            /* cipher handled in hardware */
689         switch (capability) {
690         case HAL_CIPHER_AES_CCM:
691         case HAL_CIPHER_AES_OCB:
692         case HAL_CIPHER_TKIP:
693         case HAL_CIPHER_WEP:
694         case HAL_CIPHER_MIC:
695         case HAL_CIPHER_CLR:
696             return HAL_OK;
697         default:
698             return HAL_ENOTSUPP;
699         }
700     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
701         switch (capability) {
702         case 0:         /* hardware capability */
703             return HAL_OK;
704         case 1:
705             return (ahp->ah_sta_id1_defaults &
706                     AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
707         default:
708             return HAL_ENOTSUPP;
709         }
710     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
711         switch (capability) {
712         case 0: /* hardware capability */
713             return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
714         case 1: /* current setting */
715             return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
716                 HAL_ENXIO : HAL_OK;
717         default:
718             return HAL_ENOTSUPP;
719         }
720     case HAL_CAP_WME_TKIPMIC:
721         /* hardware can do TKIP MIC when WMM is turned on */
722         return HAL_OK;
723     case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
724         return HAL_OK;
725     case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
726         switch (capability) {
727         case 0:                 /* hardware capability */
728             return HAL_OK;
729         case 1:                 /* current setting */
730             return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
731                             AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
732                             HAL_OK : HAL_ENXIO;
733         }
734         return HAL_EINVAL;
735     case HAL_CAP_TPC:
736         switch (capability) {
737         case 0:                 /* hardware capability */
738             return HAL_OK;
739         case 1:
740             return ah->ah_config.ath_hal_desc_tpc ?
741                                HAL_OK : HAL_ENXIO;
742         }
743         return HAL_OK;
744     case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
745         return HAL_OK;
746     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
747         switch (capability) {
748         case 0:                 /* hardware capability */
749             return HAL_OK;
750         case 1:
751             if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
752                 /*
753                  * Owl and Merlin have problems in mcast key search.
754                  * Disable this cap. in Ad-hoc mode. see Bug 25776 and
755                  * 26802
756                  */
757                 return HAL_ENXIO;
758             } else {
759                 return (ahp->ah_sta_id1_defaults &
760                         AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
761             }
762         }
763         return HAL_EINVAL;
764     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
765         switch (capability) {
766         case 0:                 /* hardware capability */
767             return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
768         case 1:
769             return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
770                 HAL_OK : HAL_ENXIO;
771         }
772         return HAL_EINVAL;
773     case HAL_CAP_RFSILENT:      /* rfsilent support  */
774         if (capability == 3) {  /* rfkill interrupt */
775             /*
776              * XXX: Interrupt-based notification of RF Kill state
777              *      changes not working yet. Report that this feature
778              *      is not supported so that polling is used instead.
779              */
780             return (HAL_ENOTSUPP);
781         }
782         return ath_hal_getcapability(ah, type, capability, result);
783     case HAL_CAP_4ADDR_AGGR:
784         return HAL_OK;
785     case HAL_CAP_BB_RIFS_HANG:
786         return HAL_ENOTSUPP;
787     case HAL_CAP_BB_DFS_HANG:
788         return HAL_ENOTSUPP;
789     case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
790         /* Track chips that are known to have BB hangs related
791          * to rx_clear stuck low.
792          */
793         return HAL_ENOTSUPP;
794     case HAL_CAP_MAC_HANG:
795         /* Track chips that are known to have MAC hangs.
796          */
797         return HAL_OK;
798     case HAL_CAP_RIFS_RX_ENABLED:
799         /* Is RIFS RX currently enabled */
800         return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
801 #if 0
802     case HAL_CAP_ANT_CFG_2GHZ:
803         *result = p_cap->halNumAntCfg2Ghz;
804         return HAL_OK;
805     case HAL_CAP_ANT_CFG_5GHZ:
806         *result = p_cap->halNumAntCfg5Ghz;
807         return HAL_OK;
808     case HAL_CAP_RX_STBC:
809         *result = p_cap->hal_rx_stbc_support;
810         return HAL_OK;
811     case HAL_CAP_TX_STBC:
812         *result = p_cap->hal_tx_stbc_support;
813         return HAL_OK;
814 #endif
815     case HAL_CAP_LDPC:
816         *result = p_cap->halLDPCSupport;
817         return HAL_OK;
818     case HAL_CAP_DYNAMIC_SMPS:
819         return HAL_OK;
820     case HAL_CAP_DS:
821         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
822                 (p_cap->halTxChainMask & 0x3) != 0x3 ||
823                 (p_cap->halRxChainMask & 0x3) != 0x3) ?
824             HAL_ENOTSUPP : HAL_OK;
825     case HAL_CAP_TS:
826         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
827                 (p_cap->halTxChainMask & 0x7) != 0x7 ||
828                 (p_cap->halRxChainMask & 0x7) != 0x7) ?
829             HAL_ENOTSUPP : HAL_OK;
830     case HAL_CAP_OL_PWRCTRL:
831         return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
832             HAL_OK : HAL_ENOTSUPP;
833     case HAL_CAP_CRDC:
834 #if ATH_SUPPORT_CRDC
835         return (AR_SREV_WASP(ah) &&
836                 ah->ah_config.ath_hal_crdc_enable) ?
837                     HAL_OK : HAL_ENOTSUPP;
838 #else
839         return HAL_ENOTSUPP;
840 #endif
841 #if 0
842     case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
843         *result = (u_int32_t)(-1);
844         return HAL_OK;
845     case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
846         *result = (u_int32_t)(-1);
847         return HAL_OK;
848 #endif
849     case HAL_CAP_BB_PANIC_WATCHDOG:
850         return HAL_OK;
851     case HAL_CAP_PHYRESTART_CLR_WAR:
852         if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
853             (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
854         {
855             return HAL_OK;
856         }
857         else
858         {
859             return HAL_ENOTSUPP;
860         }
861     case HAL_CAP_ENTERPRISE_MODE:
862         *result = ahp->ah_enterprise_mode >> 16;
863         /*
864          * WAR for EV 77658 - Add delimiters to first sub-frame when using
865          * RTS/CTS with aggregation and non-enterprise Osprey.
866          *
867          * Bug fixed in AR9580/Peacock, Wasp1.1 and later
868          */
869         if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
870                 !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
871                 AR_SREV_WASP_10(ah))) {
872             *result |= AH_ENT_RTSCTS_DELIM_WAR;
873         }
874         return HAL_OK;
875     case HAL_CAP_LDPCWAR:
876         /* WAR for RIFS+LDPC issue is required for all chips currently
877          * supported by ar9300 HAL.
878          */
879         return HAL_OK;
880     case HAL_CAP_ENABLE_APM:
881         *result = p_cap->halApmEnable;
882         return HAL_OK;
883     case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
884         return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
885     case HAL_CAP_PCIE_LCR_OFFSET:
886         *result = p_cap->hal_pcie_lcr_offset;
887         return HAL_OK;
888     case HAL_CAP_SMARTANTENNA:
889         /* FIXME A request is pending with h/w team to add feature bit in
890          * caldata to detect if board has smart antenna or not, once added
891          * we need to fix his piece of code to read and return value without
892          * any compile flags
893          */
894 #if UMAC_SUPPORT_SMARTANTENNA
895         /* enable smart antenna for  Peacock, Wasp and scorpion
896            for future chips need to modify */
897         if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
898             return HAL_OK;
899         } else {
900             return HAL_ENOTSUPP;
901         }
902 #else
903         return HAL_ENOTSUPP;
904 #endif
905 
906 #ifdef ATH_TRAFFIC_FAST_RECOVER
907     case HAL_CAP_TRAFFIC_FAST_RECOVER:
908         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
909             return HAL_OK;
910         } else {
911             return HAL_ENOTSUPP;
912         }
913 #endif
914     default:
915         return ath_hal_getcapability(ah, type, capability, result);
916     }
917 }
918 
919 HAL_BOOL
920 ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
921         u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
922 {
923     struct ath_hal_9300 *ahp = AH9300(ah);
924     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
925     u_int32_t v;
926 
927     switch (type) {
928     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
929         if (! p_cap->halTkipMicTxRxKeySupport)
930             return AH_FALSE;
931 
932         if (setting)
933             ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
934         else
935             ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
936 
937         OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
938         return AH_TRUE;
939 
940     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
941         if (setting) {
942             ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
943         } else {
944             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
945         }
946         return AH_TRUE;
947     case HAL_CAP_DIVERSITY:
948         v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
949         if (setting) {
950             v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
951         } else {
952             v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
953         }
954         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
955         return AH_TRUE;
956     case HAL_CAP_DIAG:              /* hardware diagnostic support */
957         /*
958          * NB: could split this up into virtual capabilities,
959          *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
960          *     seems worth the additional complexity.
961          */
962 #ifdef AH_DEBUG
963         AH_PRIVATE(ah)->ah_diagreg = setting;
964 #else
965         AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
966 #endif
967         OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
968         return AH_TRUE;
969     case HAL_CAP_TPC:
970         ah->ah_config.ath_hal_desc_tpc = (setting != 0);
971         return AH_TRUE;
972     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
973         if (setting) {
974             ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
975         } else {
976             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
977         }
978         return AH_TRUE;
979     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
980         if (p_cap->halTsfAddSupport) {
981             if (setting) {
982                 ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
983             } else {
984                 ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
985             }
986             return AH_TRUE;
987         }
988         return AH_FALSE;
989     case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
990         ahp->rx_buf_size = setting & AR_DATABUF_MASK;
991         OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
992         return AH_TRUE;
993 
994         /* fall thru... */
995     default:
996         return ath_hal_setcapability(ah, type, capability, setting, status);
997     }
998 }
999 
1000 #ifdef AH_DEBUG
1001 static void
1002 ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1003 {
1004     u_int32_t i = 0;
1005 
1006     /* Read 0x80d0 to trigger pcie analyzer */
1007     HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1008         "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1009 
1010     if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1011         struct ath_hal_9300 *ahp = AH9300(ah);
1012         u_int32_t tf, rf, rc, cc;
1013 
1014         tf = OS_REG_READ(ah, AR_TFCNT);
1015         rf = OS_REG_READ(ah, AR_RFCNT);
1016         rc = OS_REG_READ(ah, AR_RCCNT);
1017         cc = OS_REG_READ(ah, AR_CCCNT);
1018 
1019         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1020             "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1021         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1022             "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1023         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1024             "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1025         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1026             "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1027 
1028         ahp->last_tf = tf;
1029         ahp->last_rf = rf;
1030         ahp->last_rc = rc;
1031         ahp->last_cc = cc;
1032 
1033         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1034             "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1035         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1036             "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1037         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1038             "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1039         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1040             "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1041         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1042             "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1043         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1044             "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1045         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1046             "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1047         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1048             "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1049     }
1050 
1051     if (args & HAL_DIAG_PRINT_REG_ALL) {
1052         for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1053             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1054                 i, OS_REG_READ(ah, i));
1055         }
1056 
1057         for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1058             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1059                 i, OS_REG_READ(ah, i));
1060         }
1061 
1062         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1063             "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1064 
1065         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1066             "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1067 
1068         for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1069             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1070                 i, OS_REG_READ(ah, i));
1071         }
1072 
1073         for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1074             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1075                 i, OS_REG_READ(ah, i));
1076         }
1077 
1078         for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1079             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1080                 i, OS_REG_READ(ah, i));
1081         }
1082 
1083         for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1084             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1085                 i, OS_REG_READ(ah, i));
1086         }
1087 
1088         for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1089             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1090                 i, OS_REG_READ(ah, i));
1091         }
1092 
1093         for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1094             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1095                 i, OS_REG_READ(ah, i));
1096         }
1097 
1098         for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1099             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1100                 i, OS_REG_READ(ah, i));
1101         }
1102 
1103         for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1104             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1105                 i, OS_REG_READ(ah, i));
1106         }
1107 
1108         for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1109             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1110                 i, OS_REG_READ(ah, i));
1111         }
1112 
1113         for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1114             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1115                 i, OS_REG_READ(ah, i));
1116         }
1117 
1118         for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1119             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1120                 i, OS_REG_READ(ah, i));
1121         }
1122     }
1123 }
1124 #endif
1125 
1126 HAL_BOOL
1127 ar9300_get_diag_state(struct ath_hal *ah, int request,
1128         const void *args, u_int32_t argsize,
1129         void **result, u_int32_t *resultsize)
1130 {
1131     struct ath_hal_9300 *ahp = AH9300(ah);
1132 
1133     (void) ahp;
1134     if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1135         return AH_TRUE;
1136     }
1137     switch (request) {
1138 #ifdef AH_PRIVATE_DIAG
1139     case HAL_DIAG_EEPROM:
1140         *result = &ahp->ah_eeprom;
1141         *resultsize = sizeof(ar9300_eeprom_t);
1142         return AH_TRUE;
1143 
1144 #if 0   /* XXX - TODO */
1145     case HAL_DIAG_EEPROM_EXP_11A:
1146     case HAL_DIAG_EEPROM_EXP_11B:
1147     case HAL_DIAG_EEPROM_EXP_11G:
1148         pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1149         *result = pe->p_channels;
1150         *resultsize = (*result == AH_NULL) ? 0 :
1151             roundup(sizeof(u_int16_t) * pe->num_channels,
1152             sizeof(u_int32_t)) +
1153                 sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1154         return AH_TRUE;
1155 #endif
1156     case HAL_DIAG_RFGAIN:
1157         *result = &ahp->ah_gain_values;
1158         *resultsize = sizeof(GAIN_VALUES);
1159         return AH_TRUE;
1160     case HAL_DIAG_RFGAIN_CURSTEP:
1161         *result = (void *) ahp->ah_gain_values.curr_step;
1162         *resultsize = (*result == AH_NULL) ?
1163                 0 : sizeof(GAIN_OPTIMIZATION_STEP);
1164         return AH_TRUE;
1165 #if 0   /* XXX - TODO */
1166     case HAL_DIAG_PCDAC:
1167         *result = ahp->ah_pcdac_table;
1168         *resultsize = ahp->ah_pcdac_table_size;
1169         return AH_TRUE;
1170 #endif
1171     case HAL_DIAG_ANI_CURRENT:
1172         *result = ar9300_ani_get_current_state(ah);
1173         *resultsize = (*result == AH_NULL) ?
1174             0 : sizeof(struct ar9300_ani_state);
1175         return AH_TRUE;
1176     case HAL_DIAG_ANI_STATS:
1177         *result = ar9300_ani_get_current_stats(ah);
1178         *resultsize = (*result == AH_NULL) ?
1179             0 : sizeof(struct ar9300_stats);
1180         return AH_TRUE;
1181     case HAL_DIAG_ANI_CMD:
1182         if (argsize != 2*sizeof(u_int32_t)) {
1183             return AH_FALSE;
1184         }
1185         ar9300_ani_control(
1186             ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1187         return AH_TRUE;
1188 #if 0
1189     case HAL_DIAG_TXCONT:
1190         /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1191         return AH_TRUE;
1192 #endif /* 0 */
1193 #endif /* AH_PRIVATE_DIAG */
1194     case HAL_DIAG_CHANNELS:
1195 #if 0
1196         *result = &(ahp->ah_priv.ah_channels[0]);
1197         *resultsize =
1198             sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1199 #endif
1200         return AH_TRUE;
1201 #ifdef AH_DEBUG
1202     case HAL_DIAG_PRINT_REG:
1203         ar9300_print_reg(ah, *((const u_int32_t *)args));
1204         return AH_TRUE;
1205 #endif
1206     default:
1207         break;
1208     }
1209 
1210     return AH_FALSE;
1211 }
1212 
1213 void
1214 ar9300_dma_reg_dump(struct ath_hal *ah)
1215 {
1216 #ifdef AH_DEBUG
1217 #define NUM_DMA_DEBUG_REGS  8
1218 #define NUM_QUEUES          10
1219 
1220     u_int32_t val[NUM_DMA_DEBUG_REGS];
1221     int       qcu_offset = 0, dcu_offset = 0;
1222     u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1223     int       i, j, k;
1224     int16_t nfarray[HAL_NUM_NF_READINGS];
1225 #ifdef	ATH_NF_PER_CHAN
1226     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1227 #endif	/* ATH_NF_PER_CHAN */
1228     HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1229 
1230      /* selecting DMA OBS 8 */
1231     OS_REG_WRITE(ah, AR_MACMISC,
1232         ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1233          (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1234 
1235     ath_hal_printf(ah, "Raw DMA Debug values:\n");
1236     for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1237         if (i % 4 == 0) {
1238             ath_hal_printf(ah, "\n");
1239         }
1240 
1241         val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1242         ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1243     }
1244 
1245     ath_hal_printf(ah, "\n\n");
1246     ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1247 
1248     for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1249         if (i == 8) {
1250             /* only 8 QCU entries in val[0] */
1251             qcu_offset = 0;
1252             qcu_base++;
1253         }
1254 
1255         if (i == 6) {
1256             /* only 6 DCU entries in val[4] */
1257             dcu_offset = 0;
1258             dcu_base++;
1259         }
1260 
1261         ath_hal_printf(ah,
1262             "%2d          %2x      %1x     %2x           %2x\n",
1263             i,
1264             (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1265             (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1266             val[2] & (0x7 << (i * 3)) >> (i * 3),
1267             (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1268     }
1269 
1270     ath_hal_printf(ah, "\n");
1271     ath_hal_printf(ah,
1272         "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1273         (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1274     ath_hal_printf(ah,
1275         "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1276         (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1277     ath_hal_printf(ah,
1278         "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1279         (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1280     ath_hal_printf(ah,
1281         "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1282         (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1283     ath_hal_printf(ah,
1284         "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1285         (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1286     ath_hal_printf(ah,
1287         "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1288         (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1289     ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1290     ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1291 
1292     ar9300_upload_noise_floor(ah, 1, nfarray);
1293     ath_hal_printf(ah, "2G:\n");
1294     ath_hal_printf(ah, "Min CCA Out:\n");
1295     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1296     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1297                    nfarray[0], nfarray[1], nfarray[2]);
1298     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1299                    nfarray[3], nfarray[4], nfarray[5]);
1300 
1301     ar9300_upload_noise_floor(ah, 0, nfarray);
1302     ath_hal_printf(ah, "5G:\n");
1303     ath_hal_printf(ah, "Min CCA Out:\n");
1304     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1305     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1306                    nfarray[0], nfarray[1], nfarray[2]);
1307     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1308                    nfarray[3], nfarray[4], nfarray[5]);
1309 
1310     for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1311         ath_hal_printf(ah, "%s Chain %d NF History:\n",
1312                        ((i < 3) ? "Control " : "Extension "), i%3);
1313         for (j = 0, k = h->base.curr_index;
1314              j < HAL_NF_CAL_HIST_LEN_FULL;
1315              j++, k++) {
1316             ath_hal_printf(ah, "Element %d: %d\n",
1317                 j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1318         }
1319         ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1320     }
1321 
1322     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1323     ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1324                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1325                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1326     reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1327     ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1328                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1329                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1330     ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1331                    MS(reg, AR_PHY_DESIRED_SZ_ADC),
1332                    MS(reg, AR_PHY_DESIRED_SZ_ADC));
1333     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1334     ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1335                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1336                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1337     reg = OS_REG_READ(ah, AR_PHY_AGC);
1338     ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1339                    MS(reg, AR_PHY_AGC_COARSE_HIGH),
1340                    MS(reg, AR_PHY_AGC_COARSE_HIGH));
1341     ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1342                    MS(reg, AR_PHY_AGC_COARSE_LOW),
1343                    MS(reg, AR_PHY_AGC_COARSE_LOW));
1344     ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1345                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1346                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1347     reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1348     ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1349                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1350     ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1351                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1352                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1353     ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1354                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1355                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1356     reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1357     ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1358                    MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1359     ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1360                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1361                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1362 
1363 
1364     /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1365     reg = OS_REG_READ(ah, 0xa360);
1366     reg &= ~0x00800000;
1367     OS_REG_WRITE(ah, 0xa360, reg);
1368 
1369     /* Step 2a: Set register 0xa364 to 0x1000 */
1370     reg = 0x1000;
1371     OS_REG_WRITE(ah, 0xa364, reg);
1372 
1373     /* Step 3a: Read bits 17:0 of register 0x9c20 */
1374     reg = OS_REG_READ(ah, 0x9c20);
1375     reg &= 0x0003ffff;
1376     ath_hal_printf(ah,
1377         "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1378         __func__, reg);
1379 
1380     /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1381     reg = OS_REG_READ(ah, 0xa360);
1382     reg &= ~0x00800000;
1383     OS_REG_WRITE(ah, 0xa360, reg);
1384 
1385     /* Step 2b: Set register 0xa364 to 0x1400 */
1386     reg = 0x1400;
1387     OS_REG_WRITE(ah, 0xa364, reg);
1388 
1389     /* Step 3b: Read bits 17:0 of register 0x9c20 */
1390     reg = OS_REG_READ(ah, 0x9c20);
1391     reg &= 0x0003ffff;
1392     ath_hal_printf(ah,
1393         "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1394         __func__, reg);
1395 
1396     /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1397     reg = OS_REG_READ(ah, 0xa360);
1398     reg &= ~0x00800000;
1399     OS_REG_WRITE(ah, 0xa360, reg);
1400 
1401     /* Step 2c: Set register 0xa364 to 0x3C00 */
1402     reg = 0x3c00;
1403     OS_REG_WRITE(ah, 0xa364, reg);
1404 
1405     /* Step 3c: Read bits 17:0 of register 0x9c20 */
1406     reg = OS_REG_READ(ah, 0x9c20);
1407     reg &= 0x0003ffff;
1408     ath_hal_printf(ah,
1409         "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1410         __func__, reg);
1411 
1412     /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1413     reg = OS_REG_READ(ah, 0xa360);
1414     reg &= ~0x001040000;
1415     OS_REG_WRITE(ah, 0xa360, reg);
1416 
1417     /* Step 2d: Set register 0xa364 to 0x5005D */
1418     reg = 0x5005D;
1419     OS_REG_WRITE(ah, 0xa364, reg);
1420 
1421     /* Step 3d: Read bits 17:0 of register 0xa368 */
1422     reg = OS_REG_READ(ah, 0xa368);
1423     reg &= 0x0003ffff;
1424     ath_hal_printf(ah,
1425         "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1426         __func__, reg);
1427 
1428     /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1429     reg = OS_REG_READ(ah, 0xa360);
1430     reg &= ~0x001040000;
1431     OS_REG_WRITE(ah, 0xa360, reg);
1432 
1433     /* Step 2e: Set register 0xa364 to 0x7005D */
1434     reg = 0x7005D;
1435     OS_REG_WRITE(ah, 0xa364, reg);
1436 
1437     /* Step 3e: Read bits 17:0 of register 0xa368 */
1438     reg = OS_REG_READ(ah, 0xa368);
1439     reg &= 0x0003ffff;
1440     ath_hal_printf(ah,
1441         "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1442        __func__, reg);
1443 
1444     /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1445     reg = OS_REG_READ(ah, 0xa360);
1446     reg &= ~0x001000000;
1447     reg |= 0x40000;
1448     OS_REG_WRITE(ah, 0xa360, reg);
1449 
1450     /* Step 2f: Set register 0xa364 to 0x3005D */
1451     reg = 0x3005D;
1452     OS_REG_WRITE(ah, 0xa364, reg);
1453 
1454     /* Step 3f: Read bits 17:0 of register 0xa368 */
1455     reg = OS_REG_READ(ah, 0xa368);
1456     reg &= 0x0003ffff;
1457     ath_hal_printf(ah,
1458         "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1459         __func__, reg);
1460 
1461     /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1462     reg = OS_REG_READ(ah, 0xa360);
1463     reg &= ~0x001000000;
1464     reg |= 0x40000;
1465     OS_REG_WRITE(ah, 0xa360, reg);
1466 
1467     /* Step 2g: Set register 0xa364 to 0x6005D */
1468     reg = 0x6005D;
1469     OS_REG_WRITE(ah, 0xa364, reg);
1470 
1471     /* Step 3g: Read bits 17:0 of register 0xa368 */
1472     reg = OS_REG_READ(ah, 0xa368);
1473     reg &= 0x0003ffff;
1474     ath_hal_printf(ah,
1475         "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1476         __func__, reg);
1477 #endif /* AH_DEBUG */
1478 }
1479 
1480 /*
1481  * Return the busy for rx_frame, rx_clear, and tx_frame
1482  */
1483 u_int32_t
1484 ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1485     u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1486 {
1487     struct ath_hal_9300 *ahp = AH9300(ah);
1488     u_int32_t good = 1;
1489 
1490     u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1491     u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1492     u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1493     u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1494 
1495     if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1496         /*
1497          * Cycle counter wrap (or initial call); it's not possible
1498          * to accurately calculate a value because the registers
1499          * right shift rather than wrap--so punt and return 0.
1500          */
1501         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1502             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1503         good = 0;
1504     } else {
1505         u_int32_t cc_d = cc - ahp->ah_cycles;
1506         u_int32_t rc_d = rc - ahp->ah_rx_clear;
1507         u_int32_t rf_d = rf - ahp->ah_rx_frame;
1508         u_int32_t tf_d = tf - ahp->ah_tx_frame;
1509 
1510         if (cc_d != 0) {
1511             *rxc_pcnt = rc_d * 100 / cc_d;
1512             *rxf_pcnt = rf_d * 100 / cc_d;
1513             *txf_pcnt = tf_d * 100 / cc_d;
1514         } else {
1515             good = 0;
1516         }
1517     }
1518 
1519     ahp->ah_cycles = cc;
1520     ahp->ah_rx_frame = rf;
1521     ahp->ah_rx_clear = rc;
1522     ahp->ah_tx_frame = tf;
1523 
1524     return good;
1525 }
1526 
1527 /*
1528  * Return approximation of extension channel busy over an time interval
1529  * 0% (clear) -> 100% (busy)
1530  * -1 for invalid estimate
1531  */
1532 uint32_t
1533 ar9300_get_11n_ext_busy(struct ath_hal *ah)
1534 {
1535     /*
1536      * Overflow condition to check before multiplying to get %
1537      * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1538      */
1539 #define OVERFLOW_LIMIT  0x28F5C28
1540 #define ERROR_CODE      -1
1541 
1542     struct ath_hal_9300 *ahp = AH9300(ah);
1543     u_int32_t busy = 0; /* percentage */
1544     int8_t busyper = 0;
1545     u_int32_t cycle_count, ctl_busy, ext_busy;
1546 
1547     /* cycle_count will always be the first to wrap; therefore, read it last
1548      * This sequence of reads is not atomic, and MIB counter wrap
1549      * could happen during it ?
1550      */
1551     ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1552     ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1553     cycle_count = OS_REG_READ(ah, AR_CCCNT);
1554 
1555     if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1556         (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1557     {
1558         /*
1559          * Cycle counter wrap (or initial call); it's not possible
1560          * to accurately calculate a value because the registers
1561          * right shift rather than wrap--so punt and return 0.
1562          */
1563         busyper = ERROR_CODE;
1564         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1565             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1566     } else {
1567         u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1568         u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1569 
1570         /*
1571          * Compute extension channel busy percentage
1572          * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1573          * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1574          * Will never happen, since (ext_busy_delta < cycle_delta) always,
1575          * and shift necessitated by large ext_busy_delta.
1576          * Due to timing difference to read the registers and counter overflow,
1577          * it may still happen that cycle_delta >> 7 = 0.
1578          *
1579          */
1580         if (cycle_delta) {
1581             if (ext_busy_delta > OVERFLOW_LIMIT) {
1582                 if (cycle_delta >> 7) {
1583                     busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1584                 } else {
1585                     busyper = ERROR_CODE;
1586                 }
1587             } else {
1588                 busy = (ext_busy_delta * 100) / cycle_delta;
1589             }
1590         } else {
1591             busyper = ERROR_CODE;
1592         }
1593 
1594         if (busy > 100) {
1595             busy = 100;
1596         }
1597         if ( busyper != ERROR_CODE ) {
1598             busyper = busy;
1599         }
1600     }
1601 
1602     ahp->ah_cycle_count = cycle_count;
1603     ahp->ah_ctl_busy = ctl_busy;
1604     ahp->ah_ext_busy = ext_busy;
1605 
1606     return busyper;
1607 #undef OVERFLOW_LIMIT
1608 #undef ERROR_CODE
1609 }
1610 
1611 /* BB Panic Watchdog declarations */
1612 #define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1613 #define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1614 
1615 void
1616 ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1617 {
1618 #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1619     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1620     u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1621     u_int32_t val, idle_count;
1622 
1623     if (idle_tmo_ms != 0) {
1624         /* enable IRQ, disable chip-reset for BB panic */
1625         val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1626             AR_PHY_BB_PANIC_CNTL2_MASK;
1627         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1628             (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1629         /* bound limit to 10 secs */
1630         if (idle_tmo_ms > 10000) {
1631             idle_tmo_ms = 10000;
1632         }
1633         if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1634             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1635         } else {
1636             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1637         }
1638         /*
1639          * enable panic in non-IDLE mode,
1640          * disable in IDLE mode,
1641          * set idle time-out
1642          */
1643 
1644         // EV92527 : Enable IDLE mode panic
1645 
1646         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1647                      AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1648                      AR_PHY_BB_PANIC_IDLE_ENABLE |
1649                      (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1650                      (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1651     } else {
1652         /* disable IRQ, disable chip-reset for BB panic */
1653         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1654             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1655             ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1656         /* disable panic in non-IDLE mode, disable in IDLE mode */
1657         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1658             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1659             ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1660     }
1661 
1662     HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1663              __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1664 #undef HAL_BB_PANIC_IDLE_TIME_OUT
1665 }
1666 
1667 
1668 void
1669 ar9300_handle_bb_panic(struct ath_hal *ah)
1670 {
1671     u_int32_t status;
1672     /*
1673      * we want to avoid printing in ISR context so we save
1674      * panic watchdog status to be printed later in DPC context
1675      */
1676     AH9300(ah)->ah_bb_panic_last_status = status =
1677         OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1678     /*
1679      * panic watchdog timer should reset on status read
1680      * but to make sure we write 0 to the watchdog status bit
1681      */
1682     OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1683 }
1684 
1685 int
1686 ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1687 {
1688     bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1689 
1690     /*
1691      * For signature 04000539 do not print anything.
1692      * This is a very common occurence as a compromise between
1693      * BB Panic and AH_FALSE detects (EV71009). It indicates
1694      * radar hang, which can be cleared by reprogramming
1695      * radar related register and does not requre a chip reset
1696      */
1697 
1698     /* Suppress BB Status mesg following signature */
1699     switch (bb_panic->status) {
1700 		case 0x04000539:
1701 		case 0x04008009:
1702 		case 0x04000b09:
1703 		case 0x1300000a:
1704         return -1;
1705     }
1706 
1707     bb_panic->tsf = ar9300_get_tsf32(ah);
1708     bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1709     bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1710     bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1711     bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1712     bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1713     bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1714     bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1715     bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1716     bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1717     bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1718     bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1719     bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1720     bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1721     bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1722                                         &bb_panic->rxc_pcnt,
1723                                         &bb_panic->rxf_pcnt,
1724                                         &bb_panic->txf_pcnt);
1725 
1726     if (ah->ah_config.ath_hal_show_bb_panic) {
1727         ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1728             "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1729         ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1730             "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1731             bb_panic->wd, bb_panic->det, bb_panic->rdar,
1732             bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1733             bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1734         ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1735             bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1736         ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1737             bb_panic->phy_gen_ctrl);
1738         if (bb_panic->cycles) {
1739             ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1740                 "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1741                 bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1742         }
1743         ath_hal_printf(ah, "==== BB update: done ====\n\n");
1744     }
1745 
1746     return 0; //The returned data will be stored for athstats to retrieve it
1747 }
1748 
1749 /* set the reason for HAL reset */
1750 void
1751 ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1752 {
1753     AH9300(ah)->ah_reset_reason = resetreason;
1754 }
1755 
1756 /*
1757  * Configure 20/40 operation
1758  *
1759  * 20/40 = joint rx clear (control and extension)
1760  * 20    = rx clear (control)
1761  *
1762  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1763  *         when changing from 20/40 => 20 only
1764  */
1765 void
1766 ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1767 {
1768     u_int32_t macmode;
1769 
1770     /* Configure MAC for 20/40 operation */
1771     if (mode == HAL_HT_MACMODE_2040 &&
1772         !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1773         macmode = AR_2040_JOINED_RX_CLEAR;
1774     } else {
1775         macmode = 0;
1776     }
1777     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1778 }
1779 
1780 /*
1781  * Get Rx clear (control/extension channel)
1782  *
1783  * Returns active low (busy) for ctrl/ext channel
1784  * Owl 2.0
1785  */
1786 HAL_HT_RXCLEAR
1787 ar9300_get_11n_rx_clear(struct ath_hal *ah)
1788 {
1789     HAL_HT_RXCLEAR rxclear = 0;
1790     u_int32_t val;
1791 
1792     val = OS_REG_READ(ah, AR_DIAG_SW);
1793 
1794     /* control channel */
1795     if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1796         rxclear |= HAL_RX_CLEAR_CTL_LOW;
1797     }
1798     /* extension channel */
1799     if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1800         rxclear |= HAL_RX_CLEAR_EXT_LOW;
1801     }
1802     return rxclear;
1803 }
1804 
1805 /*
1806  * Set Rx clear (control/extension channel)
1807  *
1808  * Useful for forcing the channel to appear busy for
1809  * debugging/diagnostics
1810  * Owl 2.0
1811  */
1812 void
1813 ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1814 {
1815     /* control channel */
1816     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1817         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1818     } else {
1819         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1820     }
1821     /* extension channel */
1822     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1823         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1824     } else {
1825         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1826     }
1827 }
1828 
1829 
1830 /*
1831  * HAL support code for force ppm tracking workaround.
1832  */
1833 
1834 u_int32_t
1835 ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1836 {
1837     u_int32_t retval;
1838     u_int32_t off1;
1839     u_int32_t off2;
1840 
1841     if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1842         off1 = 0x2000;
1843         off2 = 0x1000;
1844     } else {
1845         off1 = 0x1000;
1846         off2 = 0x2000;
1847     }
1848 
1849     retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1850              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1851              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1852 
1853     return retval;
1854 }
1855 
1856 u_int32_t
1857 ar9300_ppm_force(struct ath_hal *ah)
1858 {
1859     u_int32_t data_fine;
1860     u_int32_t data4;
1861     //u_int32_t off1;
1862     //u_int32_t off2;
1863     HAL_BOOL signed_val = AH_FALSE;
1864 
1865 //    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1866 //        off1 = 0x2000;
1867 //        off2 = 0x1000;
1868 //    } else {
1869 //        off1 = 0x1000;
1870 //        off2 = 0x2000;
1871 //    }
1872     data_fine =
1873         AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1874         OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1875 
1876     /*
1877      * bit [11-0] is new ppm value. bit 11 is the signed bit.
1878      * So check value from bit[10:0].
1879      * Now get the abs val of the ppm value read in bit[0:11].
1880      * After that do bound check on abs value.
1881      * if value is off limit, CAP the value and and restore signed bit.
1882      */
1883     if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1884     {
1885         /* get the positive value */
1886         data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1887         signed_val = AH_TRUE;
1888     }
1889     if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
1890     {
1891         HALDEBUG(ah, HAL_DEBUG_REGIO,
1892             "%s Correcting ppm out of range %x\n",
1893             __func__, (data_fine & 0x7ff));
1894         data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
1895     }
1896     /*
1897      * Restore signed value if changed above.
1898      * Use typecast to avoid compilation errors
1899      */
1900     if (signed_val) {
1901         data_fine = (-(int32_t)data_fine) &
1902             AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1903     }
1904 
1905     /* write value */
1906     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
1907         ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1908     OS_REG_WRITE(ah, AR_PHY_TIMING2,
1909         data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
1910 
1911     return data_fine;
1912 }
1913 
1914 void
1915 ar9300_ppm_un_force(struct ath_hal *ah)
1916 {
1917     u_int32_t data4;
1918 
1919     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
1920     OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
1921 }
1922 
1923 u_int32_t
1924 ar9300_ppm_arm_trigger(struct ath_hal *ah)
1925 {
1926     u_int32_t val;
1927     u_int32_t ret;
1928 
1929     val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
1930     ret = OS_REG_READ(ah, AR_TSF_L32);
1931     OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
1932         val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
1933 
1934     /* return low word of TSF at arm time */
1935     return ret;
1936 }
1937 
1938 int
1939 ar9300_ppm_get_trigger(struct ath_hal *ah)
1940 {
1941     if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
1942         AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
1943     {
1944         /* has not triggered yet, return AH_FALSE */
1945         return 0;
1946     }
1947 
1948     /* else triggered, return AH_TRUE */
1949     return 1;
1950 }
1951 
1952 void
1953 ar9300_mark_phy_inactive(struct ath_hal *ah)
1954 {
1955     OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1956 }
1957 
1958 /* DEBUG */
1959 u_int32_t
1960 ar9300_ppm_get_force_state(struct ath_hal *ah)
1961 {
1962     return
1963         OS_REG_READ(ah, AR_PHY_TIMING2) &
1964         (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1965 }
1966 
1967 /*
1968  * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
1969  */
1970 HAL_BOOL
1971 ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
1972 {
1973     /*
1974      * XXX FreeBSD todo: reimplement this
1975      */
1976 #if 0
1977     p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
1978     p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
1979     p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
1980     p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
1981     p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
1982                            p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
1983     p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
1984                            p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
1985 #endif
1986     return AH_FALSE;
1987 }
1988 
1989 void
1990 ar9300_clear_mib_counters(struct ath_hal *ah)
1991 {
1992     u_int32_t reg_val;
1993 
1994     reg_val = OS_REG_READ(ah, AR_MIBC);
1995     OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
1996     OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
1997 }
1998 
1999 
2000 /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2001 HAL_BOOL
2002 ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2003 {
2004     struct ath_hal_9300 *ahp = AH9300(ah);
2005     HAL_CHANNEL_INTERNAL *ichan =
2006       ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2007     HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2008     u_int32_t tmp = 0;
2009 
2010     if (enable) {
2011         if (ahp->ah_rifs_enabled == AH_TRUE) {
2012             return AH_TRUE;
2013         }
2014 
2015         OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2016         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2017                      ahp->ah_rifs_reg[1]);
2018 
2019         ahp->ah_rifs_enabled = AH_TRUE;
2020         OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2021     } else {
2022         if (ahp->ah_rifs_enabled == AH_TRUE) {
2023             ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2024                                               AR_PHY_SEARCH_START_DELAY);
2025             ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2026         }
2027         /* Change rifs init delay to 0 */
2028         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2029                      (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2030         tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2031         if (is_chan_2g) {
2032             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2033                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2034             } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2035                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2036             }
2037         } else {
2038             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2039                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2040             } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2041                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2042             }
2043         }
2044 
2045         ahp->ah_rifs_enabled = AH_FALSE;
2046     }
2047     return AH_TRUE;
2048 
2049 } /* ar9300_set_rifs_delay () */
2050 
2051 /* Set the current RIFS Rx setting */
2052 HAL_BOOL
2053 ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2054 {
2055     /* Non-Owl 11n chips */
2056     if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2057         if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2058             return ar9300_set_rifs_delay(ah, enable);
2059         }
2060         return AH_FALSE;
2061     }
2062 
2063     return AH_TRUE;
2064 } /* ar9300_set_11n_rx_rifs () */
2065 
2066 static hal_mac_hangs_t
2067 ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2068   hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2069 {
2070     int i = 0;
2071     hal_mac_hangs_t found_hangs = 0;
2072 
2073     if (hangs & dcu_chain_state) {
2074         for (i = 0; i < 6; i++) {
2075             if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2076                  hang_check.dcu_chain_state)
2077             {
2078                 found_hangs |= dcu_chain_state;
2079                 *dcu_chain = i;
2080             }
2081         }
2082         for (i = 0; i < 4; i++) {
2083             if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2084                   hang_check.dcu_chain_state)
2085             {
2086                 found_hangs |= dcu_chain_state;
2087                 *dcu_chain = i + 6;
2088             }
2089         }
2090     }
2091 
2092     if (hangs & dcu_complete_state) {
2093         if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2094             found_hangs |= dcu_complete_state;
2095         }
2096     }
2097 
2098     return found_hangs;
2099 
2100 } /* end - ar9300_compare_dbg_hang */
2101 
2102 #define NUM_STATUS_READS 50
2103 HAL_BOOL
2104 ar9300_detect_mac_hang(struct ath_hal *ah)
2105 {
2106     struct ath_hal_9300 *ahp = AH9300(ah);
2107     mac_dbg_regs_t mac_dbg;
2108     hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2109     hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2110     int i = 0;
2111     u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2112 
2113     if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2114         return AH_FALSE;
2115     }
2116 
2117     OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2118 
2119     mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2120     mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2121     mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2122 
2123     HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2124             mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2125             mac_dbg.dma_dbg_6);
2126 
2127     if (hang_sig1 !=
2128             ar9300_compare_dbg_hang(ah, mac_dbg,
2129                  hang_sig1_val, hang_sig1, &dcu_chain))
2130     {
2131         HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2132         return AH_FALSE;
2133     }
2134 
2135     shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2136     shift_val *= 5;
2137 
2138     for (i = 1; i <= NUM_STATUS_READS; i++) {
2139         if (dcu_chain < 6) {
2140             mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2141             current_dcu_chain_state =
2142                      ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2143         } else {
2144             mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2145             current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2146         }
2147         mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2148 
2149         if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2150             || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2151             return AH_FALSE;
2152         }
2153     }
2154     HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2155              ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2156     ahp->ah_hang[MAC_HANG_SIG1]++;
2157     return AH_TRUE;
2158 
2159 } /* end - ar9300_detect_mac_hang */
2160 
2161 /* Determine if the baseband is hung by reading the Observation Bus Register */
2162 HAL_BOOL
2163 ar9300_detect_bb_hang(struct ath_hal *ah)
2164 {
2165 #define N(a) (sizeof(a) / sizeof(a[0]))
2166     struct ath_hal_9300 *ahp = AH9300(ah);
2167     u_int32_t hang_sig = 0;
2168     int i = 0;
2169     /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2170      *
2171      * 4 known BB hang signatures -
2172      * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2173      * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2174      * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2175      * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2176      *     Rx State (bits 20-24) is 0x7.
2177      */
2178     hal_hw_hang_check_t hang_list [] =
2179     {
2180      /* Offset        Reg Value   Reg Mask    Hang Offset */
2181        {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2182        {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2183        {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2184        {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2185     };
2186 
2187     if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2188                                HAL_DFS_BB_HANG_WAR |
2189                                HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2190         return AH_FALSE;
2191     }
2192 
2193     hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2194     for (i = 1; i <= NUM_STATUS_READS; i++) {
2195         if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2196             return AH_FALSE;
2197         }
2198     }
2199 
2200     for (i = 0; i < N(hang_list); i++) {
2201         if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2202             ahp->ah_hang[hang_list[i].hang_offset]++;
2203             HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2204                      "sig3count=%d sig4count=%d\n", __func__,
2205                      ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2206                      ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2207             return AH_TRUE;
2208         }
2209     }
2210 
2211     HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2212                               "<0x806c>=0x%x\n", __func__, hang_sig);
2213 
2214     return AH_FALSE;
2215 
2216 #undef N
2217 } /* end - ar9300_detect_bb_hang () */
2218 
2219 #undef NUM_STATUS_READS
2220 
2221 HAL_STATUS
2222 ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2223 {
2224     struct ath_hal_9300     *ahp = AH9300(ah);
2225     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2226     HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2227     const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2228     u_int16_t               ant_config;
2229     u_int32_t               hal_num_ant_config;
2230 
2231     hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2232         p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2233 
2234     if (cfg < hal_num_ant_config) {
2235         if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2236             OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2237             return HAL_OK;
2238         }
2239     }
2240 
2241     return HAL_EINVAL;
2242 }
2243 
2244 /*
2245  * Functions to get/set DCS mode
2246  */
2247 void
2248 ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2249 {
2250     AH9300(ah)->ah_dcs_enable = mode;
2251 }
2252 
2253 u_int32_t
2254 ar9300_get_dcs_mode(struct ath_hal *ah)
2255 {
2256     return AH9300(ah)->ah_dcs_enable;
2257 }
2258 
2259 #if ATH_BT_COEX
2260 void
2261 ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2262 {
2263     struct ath_hal_9300 *ahp = AH9300(ah);
2264 
2265     ahp->ah_bt_module = btinfo->bt_module;
2266     ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2267     ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2268     ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2269     ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2270     ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2271     ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2272     ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2273 }
2274 
2275 void
2276 ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2277 {
2278     struct ath_hal_9300 *ahp = AH9300(ah);
2279     HAL_BOOL rx_clear_polarity;
2280 
2281     /*
2282      * For Kiwi and Osprey, the polarity of rx_clear is active high.
2283      * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2284      */
2285     rx_clear_polarity = !btconf->bt_rxclear_polarity;
2286 
2287     ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2288         SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2289         SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2290         SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2291         SM(btconf->bt_mode, AR_BT_MODE) |
2292         SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2293         SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2294         SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2295         SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2296 
2297     ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2298 
2299     if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2300         /* Enable ACK to go out even though BT has higher priority. */
2301         ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2302     }
2303 }
2304 
2305 void
2306 ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2307 {
2308     struct ath_hal_9300 *ahp = AH9300(ah);
2309 
2310     /* clear the old value, then set the new value */
2311     ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2312     ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2313 }
2314 
2315 void
2316 ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2317 {
2318     struct ath_hal_9300 *ahp = AH9300(ah);
2319 
2320     ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2321     ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2322     ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2323     ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2324 
2325     switch (stomp_type) {
2326     case HAL_BT_COEX_STOMP_ALL:
2327         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2328         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2329         break;
2330     case HAL_BT_COEX_STOMP_LOW:
2331         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2332         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2333         break;
2334     case HAL_BT_COEX_STOMP_ALL_FORCE:
2335         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2336         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2337         break;
2338     case HAL_BT_COEX_STOMP_LOW_FORCE:
2339         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2340         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2341         break;
2342     case HAL_BT_COEX_STOMP_NONE:
2343     case HAL_BT_COEX_NO_STOMP:
2344         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2345         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2346         break;
2347     default:
2348         /* There is a force_weight from registry */
2349         ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2350         ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2351         break;
2352     }
2353 }
2354 
2355 void
2356 ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2357 {
2358     struct ath_hal_9300 *ahp = AH9300(ah);
2359 
2360     /* clear the old value, then set the new value */
2361     ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2362     ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2363 }
2364 
2365 static void
2366 ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2367 {
2368     struct ath_hal_9300 *ahp = AH9300(ah);
2369 #if ATH_ANT_DIV_COMB
2370     //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2371     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2372 #endif
2373 
2374     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2375     {
2376         if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2377         {
2378             /* Config antenna diversity */
2379 #if ATH_ANT_DIV_COMB
2380             ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2381 #endif
2382         }
2383     }
2384 }
2385 
2386 
2387 void
2388 ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2389     u_int32_t value)
2390 {
2391     struct ath_hal_9300 *ahp = AH9300(ah);
2392     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2393 
2394     switch (type) {
2395         case HAL_BT_COEX_SET_ACK_PWR:
2396             if (value) {
2397                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2398             } else {
2399                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2400             }
2401             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2402                 ahpriv->ah_extraTxPow, 0);
2403             break;
2404 
2405         case HAL_BT_COEX_ANTENNA_DIVERSITY:
2406             if (AR_SREV_POSEIDON(ah)) {
2407                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2408                 if (value) {
2409                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2410                 }
2411                 else {
2412                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2413                 }
2414                 ar9300_bt_coex_antenna_diversity(ah, value);
2415             }
2416             break;
2417         case HAL_BT_COEX_LOWER_TX_PWR:
2418             if (value) {
2419                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2420             }
2421             else {
2422                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2423             }
2424             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2425                                       ahpriv->ah_extraTxPow, 0);
2426             break;
2427 #if ATH_SUPPORT_MCI
2428         case HAL_BT_COEX_MCI_MAX_TX_PWR:
2429             if ((ah->ah_config.ath_hal_mci_config &
2430                  ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2431             {
2432                 if (value) {
2433                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2434                     ahp->ah_mci_concur_tx_en = AH_TRUE;
2435                 }
2436                 else {
2437                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2438                     ahp->ah_mci_concur_tx_en = AH_FALSE;
2439                 }
2440                 ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2441                                           ahpriv->ah_extraTxPow, 0);
2442             }
2443             HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2444                      ahp->ah_mci_concur_tx_en);
2445             break;
2446         case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2447             if (value) {
2448                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2449             }
2450             else {
2451                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2452             }
2453             break;
2454 #endif
2455         default:
2456             break;
2457     }
2458 }
2459 
2460 void
2461 ar9300_bt_coex_disable(struct ath_hal *ah)
2462 {
2463     struct ath_hal_9300 *ahp = AH9300(ah);
2464 
2465     /* Always drive rx_clear_external output as 0 */
2466     ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2467         HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2468 
2469     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2470         OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2471         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2472     }
2473 
2474     OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2475     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2476     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2477     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2478     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2479     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2480     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2481     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2482 
2483     ahp->ah_bt_coex_enabled = AH_FALSE;
2484 }
2485 
2486 int
2487 ar9300_bt_coex_enable(struct ath_hal *ah)
2488 {
2489     struct ath_hal_9300 *ahp = AH9300(ah);
2490 
2491     /* Program coex mode and weight registers to actually enable coex */
2492     OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2493     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2494     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2495     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2496     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2497     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2498     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2499     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2500 
2501     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2502         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2503     } else {
2504         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2505     }
2506 
2507     OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2508     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2509         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2510     } else {
2511         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2512     }
2513 
2514     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2515         /* For 3-wire, configure the desired GPIO port for rx_clear */
2516         ath_hal_gpioCfgOutput(ah,
2517             ahp->ah_wlan_active_gpio_select,
2518             HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2519     }
2520     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2521         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2522     {
2523         /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2524         ath_hal_gpioCfgOutput(ah,
2525             ahp->ah_wlan_active_gpio_select,
2526             HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2527     }
2528 
2529     /*
2530      * Enable a weak pull down on BT_ACTIVE.
2531      * When BT device is disabled, BT_ACTIVE might be floating.
2532      */
2533     OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2534         (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2535         (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2536 
2537     ahp->ah_bt_coex_enabled = AH_TRUE;
2538 
2539     return 0;
2540 }
2541 
2542 u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2543 {
2544     return 0;
2545 }
2546 
2547 u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2548 {
2549     return bOn;
2550 }
2551 
2552 void
2553 ar9300_init_bt_coex(struct ath_hal *ah)
2554 {
2555     struct ath_hal_9300 *ahp = AH9300(ah);
2556 
2557     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2558         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2559                    (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2560                     AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2561 
2562         /*
2563          * Set input mux for bt_prority_async and
2564          * bt_active_async to GPIO pins
2565          */
2566         OS_REG_RMW_FIELD(ah,
2567             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2568             AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2569             ahp->ah_bt_active_gpio_select);
2570         OS_REG_RMW_FIELD(ah,
2571             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2572             AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2573             ahp->ah_bt_priority_gpio_select);
2574 
2575         /* Configure the desired GPIO ports for input */
2576         ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2577         ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2578 
2579         if (ahp->ah_bt_coex_enabled) {
2580             ar9300_bt_coex_enable(ah);
2581         } else {
2582             ar9300_bt_coex_disable(ah);
2583         }
2584     }
2585     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2586         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2587     {
2588         /* 2-wire */
2589         if (ahp->ah_bt_coex_enabled) {
2590             /* Connect bt_active_async to baseband */
2591             OS_REG_CLR_BIT(ah,
2592                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2593                 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2594                  AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2595             OS_REG_SET_BIT(ah,
2596                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2597                 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2598 
2599             /*
2600              * Set input mux for bt_prority_async and
2601              * bt_active_async to GPIO pins
2602              */
2603             OS_REG_RMW_FIELD(ah,
2604                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2605                 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2606                 ahp->ah_bt_active_gpio_select);
2607 
2608             /* Configure the desired GPIO ports for input */
2609             ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2610 
2611             /* Enable coexistence on initialization */
2612             ar9300_bt_coex_enable(ah);
2613         }
2614     }
2615 #if ATH_SUPPORT_MCI
2616     else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2617         if (ahp->ah_bt_coex_enabled) {
2618             ar9300_mci_bt_coex_enable(ah);
2619         }
2620         else {
2621             ar9300_mci_bt_coex_disable(ah);
2622         }
2623     }
2624 #endif /* ATH_SUPPORT_MCI */
2625 }
2626 
2627 #endif /* ATH_BT_COEX */
2628 
2629 HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2630 {
2631     u_int32_t val;
2632     int wasp_mm_rev;
2633 
2634 #define AR_SOC_RST_REVISION_ID      0xB8060090
2635 #define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2636     wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2637             AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2638             AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2639 #undef AR_SOC_RST_REVISION_ID
2640 #undef REG_READ
2641 
2642     /*
2643      * Azimuth (ProxySTA) Mode is only supported correctly by
2644      * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2645      *
2646      * Enable this feature for Scorpion at this time. The silicon
2647      * still needs to be validated.
2648      */
2649     if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2650         !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2651         !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2652           ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2653            (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2654             wasp_mm_rev >= 0 /* 1 */))))
2655     {
2656         HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2657                 "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2658                 __func__, AH_PRIVATE((ah))->ah_macVersion,
2659                 AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2660         return HAL_ENOTSUPP;
2661     }
2662 
2663     OS_REG_WRITE(ah,
2664         AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2665 
2666     /* turn on mode bit[24] for proxy sta */
2667     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2668         OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2669 
2670     val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2671     if (enable) {
2672         val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2673                AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2674                AR_AZIMUTH_BA_USES_AD1;
2675         /* turn off filter pass hold (bit 9) */
2676         val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2677     } else {
2678         val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2679                  AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2680                  AR_AZIMUTH_BA_USES_AD1);
2681     }
2682     OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2683 
2684     /* enable promiscous mode */
2685     OS_REG_WRITE(ah, AR_RX_FILTER,
2686         OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2687     /* enable promiscous in azimuth mode */
2688     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2689     OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2690 
2691     /* turn on filter pass hold (bit 9) */
2692     OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2693         OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2694 
2695     return HAL_OK;
2696 }
2697 
2698 #if 0
2699 void ar9300_mat_enable(struct ath_hal *ah, int enable)
2700 {
2701     /*
2702      * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2703      * mitigation and turn on key search always for better performance.
2704      */
2705     struct ath_hal_9300 *ahp = AH9300(ah);
2706     struct ath_hal_private *ap = AH_PRIVATE(ah);
2707 
2708     ahp->ah_intr_mitigation_rx = !enable;
2709     if (ahp->ah_intr_mitigation_rx) {
2710         /*
2711          * Enable Interrupt Mitigation for Rx.
2712          * If no build-specific limits for the rx interrupt mitigation
2713          * timer have been specified, use conservative defaults.
2714          */
2715         #ifndef AH_RIMT_VAL_LAST
2716             #define AH_RIMT_LAST_MICROSEC 500
2717         #endif
2718         #ifndef AH_RIMT_VAL_FIRST
2719             #define AH_RIMT_FIRST_MICROSEC 2000
2720         #endif
2721         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2722         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2723     } else {
2724         OS_REG_WRITE(ah, AR_RIMT, 0);
2725     }
2726 
2727     ahp->ah_enable_keysearch_always = !!enable;
2728     ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2729 }
2730 #endif
2731 
2732 void ar9300_enable_tpc(struct ath_hal *ah)
2733 {
2734     u_int32_t val = 0;
2735 
2736     ah->ah_config.ath_hal_desc_tpc = 1;
2737 
2738     /* Enable TPC */
2739     OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2740 
2741     /*
2742      * Disable per chain power reduction since we are already
2743      * accounting for this in our calculations
2744      */
2745     val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2746     if (AR_SREV_WASP(ah)) {
2747         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2748                          val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2749     } else {
2750         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2751                          val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2752     }
2753 }
2754 
2755 
2756 /*
2757  * ar9300_force_tsf_sync
2758  * This function forces the TSF sync to the given bssid, this is implemented
2759  * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2760  * mode of operation, where we sync the TSF to RootAP TSF values
2761  */
2762 void
2763 ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2764     u_int16_t assoc_id)
2765 {
2766     ar9300_set_operating_mode(ah, HAL_M_STA);
2767     ar9300_write_associd(ah, bssid, assoc_id);
2768 }
2769 
2770 void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2771 {
2772     struct ath_hal_9300 *ahp = AH9300(ah);
2773     u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2774     u_int32_t           temp_powertx_rate9_reg_val;
2775     int8_t              olpc_power_offset = 0;
2776     int8_t              tmp_olpc_val = 0;
2777     HAL_RSSI_TX_POWER   old_greentx_status;
2778     u_int8_t            target_power_val_t[ar9300_rate_size];
2779     int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2780 
2781     if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2782         !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2783         return;
2784     }
2785 
2786     old_greentx_status = AH9300(ah)->green_tx_status;
2787     if (ahp->ah_hw_green_tx_enable) {
2788         tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2789         tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2790     } else {
2791         tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2792         tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2793     }
2794 
2795     if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2796         && (rssi > tmp_rss1_thr1))
2797     {
2798         if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2799             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2800         }
2801     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2802         && (rssi > tmp_rss1_thr2))
2803     {
2804         if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2805             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2806         }
2807     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2808         if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2809             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2810         }
2811     }
2812 
2813     /* If status is not change, don't do anything */
2814     if (old_greentx_status == AH9300(ah)->green_tx_status) {
2815         return;
2816     }
2817 
2818     /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2819     if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2820         && AR_SREV_POSEIDON(ah))
2821     {
2822         if (ahp->ah_hw_green_tx_enable) {
2823             switch (AH9300(ah)->green_tx_status) {
2824             case HAL_RSSI_TX_POWER_SHORT:
2825                 /* 1. TxPower Config */
2826                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2827                     sizeof(target_power_val_t));
2828                 /* 1.1 Store OLPC Delta Calibration Offset*/
2829                 olpc_power_offset = 0;
2830                 /* 2. Store OB/DB */
2831                 /* 3. Store TPC settting */
2832                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2833                                     SM(14, AR_TPC_CTS) |
2834                                     SM(14, AR_TPC_CHIRP) |
2835                                     SM(14, AR_TPC_RPT));
2836                 /* 4. Store BB_powertx_rate9 value */
2837                 temp_powertx_rate9_reg_val =
2838                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2839                 break;
2840             case HAL_RSSI_TX_POWER_MIDDLE:
2841                 /* 1. TxPower Config */
2842                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2843                     sizeof(target_power_val_t));
2844                 /* 1.1 Store OLPC Delta Calibration Offset*/
2845                 olpc_power_offset = 0;
2846                 /* 2. Store OB/DB */
2847                 /* 3. Store TPC settting */
2848                 temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2849                                     SM(18, AR_TPC_CTS) |
2850                                     SM(18, AR_TPC_CHIRP) |
2851                                     SM(18, AR_TPC_RPT));
2852                 /* 4. Store BB_powertx_rate9 value */
2853                 temp_powertx_rate9_reg_val =
2854                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2855                 break;
2856             case HAL_RSSI_TX_POWER_LONG:
2857             default:
2858                 /* 1. TxPower Config */
2859                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2860                     sizeof(target_power_val_t));
2861                 /* 1.1 Store OLPC Delta Calibration Offset*/
2862                 olpc_power_offset = 0;
2863                 /* 2. Store OB/DB1/DB2 */
2864                 /* 3. Store TPC settting */
2865                 temp_tcp_reg_val =
2866                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2867                 /* 4. Store BB_powertx_rate9 value */
2868                 temp_powertx_rate9_reg_val =
2869                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2870                 break;
2871             }
2872         } else {
2873             switch (AH9300(ah)->green_tx_status) {
2874             case HAL_RSSI_TX_POWER_SHORT:
2875                 /* 1. TxPower Config */
2876                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2877                     sizeof(target_power_val_t));
2878                 /* 1.1 Store OLPC Delta Calibration Offset*/
2879                 olpc_power_offset =
2880                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2881                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2882                 /* 2. Store OB/DB */
2883                 temp_obdb_reg_val =
2884                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2885                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2886                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2887                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2888                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2889                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2890                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2891                     AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2892                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2893                     AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2894                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2895                     AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2896                 /* 3. Store TPC settting */
2897                 temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
2898                                     SM(6, AR_TPC_CTS) |
2899                                     SM(6, AR_TPC_CHIRP) |
2900                                     SM(6, AR_TPC_RPT));
2901                 /* 4. Store BB_powertx_rate9 value */
2902                 temp_powertx_rate9_reg_val =
2903                     WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
2904                 break;
2905             case HAL_RSSI_TX_POWER_MIDDLE:
2906                 /* 1. TxPower Config */
2907                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
2908                     sizeof(target_power_val_t));
2909                 /* 1.1 Store OLPC Delta Calibration Offset*/
2910                 olpc_power_offset =
2911                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
2912                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2913                 /* 2. Store OB/DB */
2914                 temp_obdb_reg_val =
2915                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2916                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2917                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2918                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2919                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2920                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2921                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2922                         AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2923                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2924                         AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2925                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2926                         AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2927                 /* 3. Store TPC settting */
2928                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2929                                     SM(14, AR_TPC_CTS) |
2930                                     SM(14, AR_TPC_CHIRP) |
2931                                     SM(14, AR_TPC_RPT));
2932                 /* 4. Store BB_powertx_rate9 value */
2933                 temp_powertx_rate9_reg_val =
2934                     WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
2935                 break;
2936             case HAL_RSSI_TX_POWER_LONG:
2937             default:
2938                 /* 1. TxPower Config */
2939                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2940                     sizeof(target_power_val_t));
2941                 /* 1.1 Store OLPC Delta Calibration Offset*/
2942                 olpc_power_offset =
2943                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
2944                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2945                 /* 2. Store OB/DB1/DB2 */
2946                 temp_obdb_reg_val =
2947                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2948                 /* 3. Store TPC settting */
2949                 temp_tcp_reg_val =
2950                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2951                 /* 4. Store BB_powertx_rate9 value */
2952                 temp_powertx_rate9_reg_val =
2953                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2954                 break;
2955             }
2956         }
2957         /* 1.1 Do OLPC Delta Calibration Offset */
2958         tmp_olpc_val =
2959             (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
2960         tmp_olpc_val += olpc_power_offset;
2961         OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
2962             (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2963             AR_PHY_TPC_OLPC_GAIN_DELTA);
2964 
2965         /* 1.2 TxPower Config */
2966         ar9300_transmit_power_reg_write(ah, target_power_val_t);
2967         /* 2. Config OB/DB */
2968         if (!ahp->ah_hw_green_tx_enable) {
2969             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
2970         }
2971         /* 3. config TPC settting */
2972         OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
2973         /* 4. config BB_powertx_rate9 value */
2974         OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
2975     }
2976 }
2977 
2978 #if 0
2979 void
2980 ar9300_get_vow_stats(
2981     struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
2982 {
2983     if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
2984         p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2985     }
2986     if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
2987         p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2988     }
2989     if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
2990         p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2991     }
2992     if (vow_reg_flags & AR_REG_CYCLE_CNT) {
2993         p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2994     }
2995     if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
2996         p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
2997     }
2998 }
2999 #endif
3000 
3001 /*
3002  * ar9300_is_skip_paprd_by_greentx
3003  *
3004  * This function check if we need to skip PAPRD tuning
3005  * when GreenTx in specific state.
3006  */
3007 HAL_BOOL
3008 ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3009 {
3010     if (AR_SREV_POSEIDON(ah) &&
3011         ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3012         ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3013          (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3014     {
3015         return AH_TRUE;
3016     }
3017     return AH_FALSE;
3018 }
3019 
3020 void
3021 ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3022 {
3023     unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3024     unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3025     unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3026     unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3027     unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3028     struct ath_hal_9300 *ahp = AH9300(ah);
3029 
3030     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3031         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3032                              AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3033         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3034                              AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3035         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3036                              AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3037         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3038                              AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3039         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3040                              AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3041     }
3042 }
3043 
3044 void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3045 {
3046     struct ath_hal_9300 *ahp = AH9300(ah);
3047 
3048     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3049         if ((value == 0) || (value == 1)) {
3050             OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3051                              AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3052         }
3053     }
3054 }
3055 
3056 void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3057 {
3058     OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3059 }
3060 
3061 int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3062 {
3063     int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3064 
3065     /* RSSI format is 8.4.  Ignore lowest four bits */
3066     val = val >> 4;
3067     return val;
3068 }
3069 
3070 void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3071                                         u_int32_t rssi_threshold)
3072 {
3073     struct ath_hal_9300 *ahp = AH9300(ah);
3074 
3075     OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3076 
3077     /* save value for restoring after chip reset */
3078     ahp->ah_beacon_rssi_threshold = rssi_threshold;
3079 }
3080 
3081 void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3082 {
3083     OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3084 }
3085 
3086 void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3087 {
3088     if (on) {
3089         OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3090                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3091     }
3092     else {
3093         OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3094                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3095     }
3096 }
3097 /*
3098  * Gets the contents of the specified key cache entry.
3099  */
3100 HAL_BOOL
3101 ar9300_print_keycache(struct ath_hal *ah)
3102 {
3103 
3104     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3105     u_int32_t key0, key1, key2, key3, key4;
3106     u_int32_t mac_hi, mac_lo;
3107     u_int16_t entry = 0;
3108     u_int32_t valid = 0;
3109     u_int32_t key_type;
3110 
3111     ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3112 
3113     for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3114         key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3115         key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3116         key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3117         key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3118         key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3119 
3120         key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3121 
3122         mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3123         mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3124 
3125         if (mac_hi & AR_KEYTABLE_VALID) {
3126             valid = 1;
3127         } else {
3128             valid = 0;
3129         }
3130 
3131         if ((mac_hi != 0) && (mac_lo != 0)) {
3132             mac_hi &= ~0x8000;
3133             mac_hi <<= 1;
3134             mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3135             mac_lo <<= 1;
3136         }
3137 
3138         ath_hal_printf(ah,
3139             "%03d    "
3140             "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3141             "   %02d     %02d    "
3142             "%02x:%02x:%02x:%02x:%02x:%02x \n",
3143             entry,
3144             (key0 << 24) >> 24, (key0 << 16) >> 24,
3145             (key0 << 8) >> 24, key0 >> 24,
3146             (key1 << 24) >> 24, (key1 << 16) >> 24,
3147             //(key1 << 8) >> 24, key1 >> 24,
3148             (key2 << 24) >> 24, (key2 << 16) >> 24,
3149             (key2 << 8) >> 24, key2 >> 24,
3150             (key3 << 24) >> 24, (key3 << 16) >> 24,
3151             //(key3 << 8) >> 24, key3 >> 24,
3152             (key4 << 24) >> 24, (key4 << 16) >> 24,
3153             (key4 << 8) >> 24, key4 >> 24,
3154             valid, key_type,
3155             (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3156             (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3157     }
3158 
3159     return AH_TRUE;
3160 }
3161 
3162 /* enable/disable smart antenna mode */
3163 HAL_BOOL
3164 ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3165 {
3166     struct ath_hal_9300 *ahp = AH9300(ah);
3167 
3168     if (enable) {
3169         OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3170     } else {
3171         OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3172     }
3173 
3174     /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3175      * and swcom2 with 0
3176      * FIXME Ideally these registers need to be made read from caldata.
3177      * Until the calibration team gets them, keep them along with board
3178      * configuration.
3179      */
3180     if (enable && AR_SREV_SCORPION(ah) &&
3181            (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3182 
3183        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3184        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3185     }
3186 
3187     ahp->ah_smartantenna_enable = enable;
3188     return 1;
3189 }
3190 
3191 #ifdef ATH_TX99_DIAG
3192 #ifndef ATH_SUPPORT_HTC
3193 void
3194 ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3195     u_int32_t txpower)
3196 {
3197 #define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3198     static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3199     int32_t i;
3200 
3201     /* The max power is limited to 63 */
3202     if (txpower <= AR9300_MAX_RATE_POWER) {
3203         for (i = 0; i < ar9300_rate_size; i++) {
3204             p_pwr_array[i] = txpower;
3205         }
3206     } else {
3207         for (i = 0; i < ar9300_rate_size; i++) {
3208             p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3209         }
3210     }
3211 
3212     OS_REG_WRITE(ah, 0xa458, 0);
3213 
3214     /* Write the OFDM power per rate set */
3215     /* 6 (LSB), 9, 12, 18 (MSB) */
3216     OS_REG_WRITE(ah, 0xa3c0,
3217         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3218           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3219           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3220           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3221     );
3222     /* 24 (LSB), 36, 48, 54 (MSB) */
3223     OS_REG_WRITE(ah, 0xa3c4,
3224         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3225           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3226           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3227           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3228     );
3229 
3230     /* Write the CCK power per rate set */
3231     /* 1L (LSB), reserved, 2L, 2S (MSB) */
3232     OS_REG_WRITE(ah, 0xa3c8,
3233         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3234           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3235           /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3236           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3237     );
3238     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3239     OS_REG_WRITE(ah, 0xa3cc,
3240         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3241           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3242           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3243           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3244     );
3245 
3246     /* Write the HT20 power per rate set */
3247     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3248     OS_REG_WRITE(ah, 0xa3d0,
3249         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3250           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3251           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3252           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3253     );
3254 
3255     /* 6 (LSB), 7, 12, 13 (MSB) */
3256     OS_REG_WRITE(ah, 0xa3d4,
3257         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3258           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3259           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3260           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3261     );
3262 
3263     /* 14 (LSB), 15, 20, 21 */
3264     OS_REG_WRITE(ah, 0xa3e4,
3265         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3266           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3267           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3268           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3269     );
3270 
3271     /* Mixed HT20 and HT40 rates */
3272     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3273     OS_REG_WRITE(ah, 0xa3e8,
3274         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3275           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3276           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3277           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3278     );
3279 
3280     /* Write the HT40 power per rate set */
3281     /* correct PAR difference between HT40 and HT20/LEGACY */
3282     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3283     OS_REG_WRITE(ah, 0xa3d8,
3284         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3285           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3286           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3287           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3288     );
3289 
3290     /* 6 (LSB), 7, 12, 13 (MSB) */
3291     OS_REG_WRITE(ah, 0xa3dc,
3292         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3293           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3294           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3295           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3296     );
3297 
3298     /* 14 (LSB), 15, 20, 21 */
3299     OS_REG_WRITE(ah, 0xa3ec,
3300         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3301           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3302           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3303           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3304     );
3305 #undef PWR_MAS
3306 }
3307 
3308 void
3309 ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3310 {
3311     if (tx_chainmask == 0x5) {
3312         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3313             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3314     }
3315     OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3316     OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3317 
3318     OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3319     if (tx_chainmask == 0x5) {
3320         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3321             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3322     }
3323 }
3324 
3325 void
3326 ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3327     int chtype)
3328 {
3329     OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3330     OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3331     OS_REG_WRITE(ah, 0xa350,
3332         (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3333 
3334     /* 11G mode */
3335     if (!chtype) {
3336         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3337             OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3338         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3339             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3340                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3341             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3342                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3343                         | (0x1 << 26)  | (0x7 << 24))
3344                         & ~(0x1 << 22));
3345         } else {
3346             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3347                 OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3348             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3349                 (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3350                         | (0x1 << 26)  | (0x7 << 24))
3351                         & ~(0x1 << 22));
3352         }
3353 
3354         /* chain zero */
3355         if ((tx_chain_mask & 0x01) == 0x01) {
3356             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3357                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3358                       | (0x1 << 31) | (0x5 << 15)
3359                       | (0x3 << 9)) & ~(0x1 << 27)
3360                       & ~(0x1 << 12));
3361             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3362                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3363                       | (0x1 << 12) | (0x1 << 10)
3364                       | (0x1 << 9)  | (0x1 << 8)
3365                       | (0x1 << 7)) & ~(0x1 << 11));
3366             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3367                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3368                       | (0x1 << 29) | (0x1 << 25)
3369                       | (0x1 << 23) | (0x1 << 19)
3370                       | (0x1 << 10) | (0x1 << 9)
3371                       | (0x1 << 8)  | (0x1 << 3))
3372                       & ~(0x1 << 28)& ~(0x1 << 24)
3373                       & ~(0x1 << 22)& ~(0x1 << 7));
3374             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3375                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3376                       | (0x1 << 23))& ~(0x1 << 21));
3377             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3378                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3379                       | (0x1 << 12) | (0x1 << 10)
3380                       | (0x1 << 9)  | (0x1 << 8)
3381                       | (0x1 << 6)  | (0x1 << 5)
3382                       | (0x1 << 4)  | (0x1 << 3)
3383                       | (0x1 << 2));
3384             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3385                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3386         }
3387         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3388             /* chain one */
3389             if ((tx_chain_mask & 0x02) == 0x02 ) {
3390                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3391                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3392                           | (0x1 << 31) | (0x5 << 15)
3393                           | (0x3 << 9)) & ~(0x1 << 27)
3394                           & ~(0x1 << 12));
3395                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3396                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3397                           | (0x1 << 12) | (0x1 << 10)
3398                           | (0x1 << 9)  | (0x1 << 8)
3399                           | (0x1 << 7)) & ~(0x1 << 11));
3400                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3401                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3402                           | (0x1 << 29) | (0x1 << 25)
3403                           | (0x1 << 23) | (0x1 << 19)
3404                           | (0x1 << 10) | (0x1 << 9)
3405                           | (0x1 << 8)  | (0x1 << 3))
3406                           & ~(0x1 << 28)& ~(0x1 << 24)
3407                           & ~(0x1 << 22)& ~(0x1 << 7));
3408                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3409                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3410                           | (0x1 << 23))& ~(0x1 << 21));
3411                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3412                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3413                           | (0x1 << 12) | (0x1 << 10)
3414                           | (0x1 << 9)  | (0x1 << 8)
3415                           | (0x1 << 6)  | (0x1 << 5)
3416                           | (0x1 << 4)  | (0x1 << 3)
3417                           | (0x1 << 2));
3418                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3419                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3420             }
3421         }
3422         if (AR_SREV_OSPREY(ah)) {
3423             /* chain two */
3424             if ((tx_chain_mask & 0x04) == 0x04 ) {
3425                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3426                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3427                           | (0x1 << 31) | (0x5 << 15)
3428                           | (0x3 << 9)) & ~(0x1 << 27)
3429                           & ~(0x1 << 12));
3430                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3431                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3432                           | (0x1 << 12) | (0x1 << 10)
3433                           | (0x1 << 9)  | (0x1 << 8)
3434                           | (0x1 << 7)) & ~(0x1 << 11));
3435                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3436                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3437                           | (0x1 << 29) | (0x1 << 25)
3438                           | (0x1 << 23) | (0x1 << 19)
3439                           | (0x1 << 10) | (0x1 << 9)
3440                           | (0x1 << 8)  | (0x1 << 3))
3441                           & ~(0x1 << 28)& ~(0x1 << 24)
3442                           & ~(0x1 << 22)& ~(0x1 << 7));
3443                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3444                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3445                           | (0x1 << 23))& ~(0x1 << 21));
3446                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3447                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3448                           | (0x1 << 12) | (0x1 << 10)
3449                           | (0x1 << 9)  | (0x1 << 8)
3450                           | (0x1 << 6)  | (0x1 << 5)
3451                           | (0x1 << 4)  | (0x1 << 3)
3452                           | (0x1 << 2));
3453                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3454                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3455             }
3456         }
3457 
3458         OS_REG_WRITE(ah, 0xa28c, 0x11111);
3459         OS_REG_WRITE(ah, 0xa288, 0x111);
3460     } else {
3461         /* chain zero */
3462         if ((tx_chain_mask & 0x01) == 0x01) {
3463             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3464                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3465                       | (0x1 << 31) | (0x1 << 27)
3466                       | (0x3 << 23) | (0x1 << 19)
3467                       | (0x1 << 15) | (0x3 << 9))
3468                       & ~(0x1 << 12));
3469             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3470                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3471                       | (0x1 << 12) | (0x1 << 10)
3472                       | (0x1 << 9)  | (0x1 << 8)
3473                       | (0x1 << 7)  | (0x1 << 3)
3474                       | (0x1 << 2)  | (0x1 << 1))
3475                       & ~(0x1 << 11)& ~(0x1 << 0));
3476             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3477                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3478                       | (0x1 << 29) | (0x1 << 25)
3479                       | (0x1 << 23) | (0x1 << 19)
3480                       | (0x1 << 10) | (0x1 << 9)
3481                       | (0x1 << 8)  | (0x1 << 3))
3482                       & ~(0x1 << 28)& ~(0x1 << 24)
3483                       & ~(0x1 << 22)& ~(0x1 << 7));
3484             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3485                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3486                       | (0x1 << 23))& ~(0x1 << 21));
3487             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3488                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3489                       | (0x3 << 3)  | (0x3 << 0));
3490             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3491                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3492                       | (0x3 << 29) | (0x3 << 26)
3493                       | (0x2 << 23) | (0x2 << 20)
3494                       | (0x2 << 17))& ~(0x1 << 14));
3495             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3496                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3497                       | (0x1 << 12) | (0x1 << 10)
3498                       | (0x1 << 9)  | (0x1 << 8)
3499                       | (0x1 << 6)  | (0x1 << 5)
3500                       | (0x1 << 4)  | (0x1 << 3)
3501                       | (0x1 << 2));
3502             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3503                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3504             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3505                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3506                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3507                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3508                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3509                           | (0x1 << 26) | (0x7 << 24)
3510                           | (0x3 << 22));
3511             } else {
3512                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3513                     OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3514                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3515                     OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3516                           | (0x1 << 26) | (0x7 << 24)
3517                           | (0x3 << 22));
3518             }
3519 
3520             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3521                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3522                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3523                           | (0x1 << 3)  | (0x1 << 2)
3524                           | (0x1 << 1)) & ~(0x1 << 0));
3525                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3526                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3527                           | (0x1 << 19) | (0x1 << 3));
3528                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3529                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3530             }
3531             if (AR_SREV_OSPREY(ah)) {
3532                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3533                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3534                           | (0x1 << 3)  | (0x1 << 2)
3535                           | (0x1 << 1)) & ~(0x1 << 0));
3536                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3537                     OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3538                           | (0x1 << 19) | (0x1 << 3));
3539                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3540                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3541             }
3542         }
3543         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3544             /* chain one */
3545             if ((tx_chain_mask & 0x02) == 0x02 ) {
3546                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3547                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3548                           | (0x1 << 3)  | (0x1 << 2)
3549                           | (0x1 << 1)) & ~(0x1 << 0));
3550                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3551                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3552                           | (0x1 << 19) | (0x1 << 3));
3553                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3554                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3555                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3556                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3557                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3558                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3559                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3560                               | (0x1 << 26) | (0x7 << 24)
3561                               | (0x3 << 22));
3562                 } else {
3563                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3564                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3565                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3566                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3567                               | (0x1 << 26) | (0x7 << 24)
3568                               | (0x3 << 22));
3569                 }
3570 
3571                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3572                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3573                           | (0x1 << 31) | (0x1 << 27)
3574                           | (0x3 << 23) | (0x1 << 19)
3575                           | (0x1 << 15) | (0x3 << 9))
3576                           & ~(0x1 << 12));
3577                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3578                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3579                           | (0x1 << 12) | (0x1 << 10)
3580                           | (0x1 << 9)  | (0x1 << 8)
3581                           | (0x1 << 7)  | (0x1 << 3)
3582                           | (0x1 << 2)  | (0x1 << 1))
3583                           & ~(0x1 << 11)& ~(0x1 << 0));
3584                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3585                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3586                           | (0x1 << 29) | (0x1 << 25)
3587                           | (0x1 << 23) | (0x1 << 19)
3588                           | (0x1 << 10) | (0x1 << 9)
3589                           | (0x1 << 8)  | (0x1 << 3))
3590                           & ~(0x1 << 28)& ~(0x1 << 24)
3591                           & ~(0x1 << 22)& ~(0x1 << 7));
3592                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3593                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3594                           | (0x1 << 23))& ~(0x1 << 21));
3595                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3596                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3597                           | (0x3 << 3)  | (0x3 << 0));
3598                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3599                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3600                           | (0x3 << 29) | (0x3 << 26)
3601                           | (0x2 << 23) | (0x2 << 20)
3602                           | (0x2 << 17))& ~(0x1 << 14));
3603                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3604                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3605                           | (0x1 << 12) | (0x1 << 10)
3606                           | (0x1 << 9)  | (0x1 << 8)
3607                           | (0x1 << 6)  | (0x1 << 5)
3608                           | (0x1 << 4)  | (0x1 << 3)
3609                           | (0x1 << 2));
3610                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3611                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3612 
3613                 if (AR_SREV_OSPREY(ah)) {
3614                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3615                         (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3616                               | (0x1 << 3)  | (0x1 << 2)
3617                               | (0x1 << 1)) & ~(0x1 << 0));
3618                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3619                         OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3620                               | (0x1 << 19) | (0x1 << 3));
3621                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3622                         OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3623                 }
3624             }
3625         }
3626         if (AR_SREV_OSPREY(ah)) {
3627             /* chain two */
3628             if ((tx_chain_mask & 0x04) == 0x04 ) {
3629                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3630                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3631                           | (0x1 << 3)  | (0x1 << 2)
3632                           | (0x1 << 1)) & ~(0x1 << 0));
3633                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3634                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3635                           | (0x1 << 19) | (0x1 << 3));
3636                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3637                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3638                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3639                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3640                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3641                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3642                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3643                               | (0x1 << 26) | (0x7 << 24)
3644                               | (0x3 << 22));
3645                 } else {
3646                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3647                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3648                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3649                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3650                               | (0x1 << 26) | (0x7 << 24)
3651                               | (0x3 << 22));
3652                 }
3653 
3654                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3655                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3656                           | (0x1 << 3)  | (0x1 << 2)
3657                           | (0x1 << 1)) & ~(0x1 << 0));
3658                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3659                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3660                           | (0x1 << 19) | (0x1 << 3));
3661                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3662                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3663 
3664                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3665                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3666                           | (0x1 << 31) | (0x1 << 27)
3667                           | (0x3 << 23) | (0x1 << 19)
3668                           | (0x1 << 15) | (0x3 << 9))
3669                           & ~(0x1 << 12));
3670                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3671                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3672                           | (0x1 << 12) | (0x1 << 10)
3673                           | (0x1 << 9)  | (0x1 << 8)
3674                           | (0x1 << 7)  | (0x1 << 3)
3675                           | (0x1 << 2)  | (0x1 << 1))
3676                           & ~(0x1 << 11)& ~(0x1 << 0));
3677                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3678                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3679                           | (0x1 << 29) | (0x1 << 25)
3680                           | (0x1 << 23) | (0x1 << 19)
3681                           | (0x1 << 10) | (0x1 << 9)
3682                           | (0x1 << 8)  | (0x1 << 3))
3683                           & ~(0x1 << 28)& ~(0x1 << 24)
3684                           & ~(0x1 << 22)& ~(0x1 << 7));
3685                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3686                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3687                           | (0x1 << 23))& ~(0x1 << 21));
3688                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3689                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3690                           | (0x3 << 3)  | (0x3 << 0));
3691                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3692                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3693                           | (0x3 << 29) | (0x3 << 26)
3694                           | (0x2 << 23) | (0x2 << 20)
3695                           | (0x2 << 17))& ~(0x1 << 14));
3696                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3697                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3698                           | (0x1 << 12) | (0x1 << 10)
3699                           | (0x1 << 9)  | (0x1 << 8)
3700                           | (0x1 << 6)  | (0x1 << 5)
3701                           | (0x1 << 4)  | (0x1 << 3)
3702                           | (0x1 << 2));
3703                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3704                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3705             }
3706         }
3707 
3708         OS_REG_WRITE(ah, 0xa28c, 0x22222);
3709         OS_REG_WRITE(ah, 0xa288, 0x222);
3710     }
3711 }
3712 
3713 void
3714 ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3715 {
3716     u_int32_t val;
3717     u_int32_t qnum = (u_int32_t)data;
3718 
3719     /* Disable AGC to A2 */
3720     OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3721     OS_REG_WRITE(ah, 0x9864, OS_REG_READ(ah, 0x9864) | 0x7f000);
3722     OS_REG_WRITE(ah, 0x9924, OS_REG_READ(ah, 0x9924) | 0x7f00fe);
3723     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3724 
3725     OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3726     /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3727     OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3728     OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3729     OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3730     /* 200 ok for HT20, 400 ok for HT40 */
3731     OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3732     OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3733 
3734     /* set QCU modes to early termination */
3735     val = OS_REG_READ(ah, AR_QMISC(qnum));
3736     OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3737 }
3738 
3739 void
3740 ar9300_tx99_stop(struct ath_hal *ah)
3741 {
3742     /* this should follow the setting of start */
3743     OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3744     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3745 }
3746 #endif /* ATH_TX99_DIAG */
3747 #endif /* ATH_SUPPORT_HTC */
3748 
3749 HAL_BOOL
3750 ar9300Get3StreamSignature(struct ath_hal *ah)
3751 {
3752     return AH_FALSE;
3753 }
3754 
3755 HAL_BOOL
3756 ar9300ForceVCS(struct ath_hal *ah)
3757 {
3758    return AH_FALSE;
3759 }
3760 
3761 HAL_BOOL
3762 ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3763 {
3764    return AH_FALSE;
3765 }
3766