xref: /freebsd/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_eeprom.c (revision 807b6a646a0a0dbc258bf239468b5d9f901d1f92)
1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 #include "ar9300/ar9300.h"
26 #include "ar9300/ar9300eep.h"
27 #include "ar9300/ar9300template_generic.h"
28 #include "ar9300/ar9300template_xb112.h"
29 #include "ar9300/ar9300template_hb116.h"
30 #include "ar9300/ar9300template_xb113.h"
31 #include "ar9300/ar9300template_hb112.h"
32 #include "ar9300/ar9300template_ap121.h"
33 #include "ar9300/ar9300template_osprey_k31.h"
34 #include "ar9300/ar9300template_wasp_2.h"
35 #include "ar9300/ar9300template_wasp_k31.h"
36 #include "ar9300/ar9300template_aphrodite.h"
37 #include "ar9300/ar9300reg.h"
38 #include "ar9300/ar9300phy.h"
39 
40 
41 
42 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
43 void ar9300_swap_eeprom(ar9300_eeprom_t *eep);
44 void ar9300_eeprom_template_swap(void);
45 #endif
46 
47 static u_int16_t ar9300_eeprom_get_spur_chan(struct ath_hal *ah,
48     int spur_chan, HAL_BOOL is_2ghz);
49 #ifdef UNUSED
50 static inline HAL_BOOL ar9300_fill_eeprom(struct ath_hal *ah);
51 static inline HAL_STATUS ar9300_check_eeprom(struct ath_hal *ah);
52 #endif
53 
54 static ar9300_eeprom_t *default9300[] =
55 {
56     &ar9300_template_generic,
57     &ar9300_template_xb112,
58     &ar9300_template_hb116,
59     &ar9300_template_hb112,
60     &ar9300_template_xb113,
61     &ar9300_template_ap121,
62     &ar9300_template_wasp_2,
63     &ar9300_template_wasp_k31,
64     &ar9300_template_osprey_k31,
65     &ar9300_template_aphrodite,
66 };
67 
68 /*
69  * Different types of memory where the calibration data might be stored.
70  * All types are searched in ar9300_eeprom_restore()
71  * in the order flash, eeprom, otp.
72  * To disable searching a type, set its parameter to 0.
73  */
74 
75 /*
76  * This is where we look for the calibration data.
77  * must be set before ath_attach() is called
78  */
79 static int calibration_data_try = calibration_data_none;
80 static int calibration_data_try_address = 0;
81 
82 /*
83  * Set the type of memory used to store calibration data.
84  * Used by nart to force reading/writing of a specific type.
85  * The driver can normally allow autodetection
86  * by setting source to calibration_data_none=0.
87  */
88 void ar9300_calibration_data_set(struct ath_hal *ah, int32_t source)
89 {
90     if (ah != 0) {
91         AH9300(ah)->calibration_data_source = source;
92     } else {
93         calibration_data_try = source;
94     }
95 }
96 
97 int32_t ar9300_calibration_data_get(struct ath_hal *ah)
98 {
99     if (ah != 0) {
100         return AH9300(ah)->calibration_data_source;
101     } else {
102         return calibration_data_try;
103     }
104 }
105 
106 /*
107  * Set the address of first byte used to store calibration data.
108  * Used by nart to force reading/writing at a specific address.
109  * The driver can normally allow autodetection by setting size=0.
110  */
111 void ar9300_calibration_data_address_set(struct ath_hal *ah, int32_t size)
112 {
113     if (ah != 0) {
114         AH9300(ah)->calibration_data_source_address = size;
115     } else {
116         calibration_data_try_address = size;
117     }
118 }
119 
120 int32_t ar9300_calibration_data_address_get(struct ath_hal *ah)
121 {
122     if (ah != 0) {
123         return AH9300(ah)->calibration_data_source_address;
124     } else {
125         return calibration_data_try_address;
126     }
127 }
128 
129 /*
130  * This is the template that is loaded if ar9300_eeprom_restore()
131  * can't find valid data in the memory.
132  */
133 static int Ar9300_eeprom_template_preference = ar9300_eeprom_template_generic;
134 
135 void ar9300_eeprom_template_preference(int32_t value)
136 {
137     Ar9300_eeprom_template_preference = value;
138 }
139 
140 /*
141  * Install the specified default template.
142  * Overwrites any existing calibration and configuration information in memory.
143  */
144 int32_t ar9300_eeprom_template_install(struct ath_hal *ah, int32_t value)
145 {
146     struct ath_hal_9300 *ahp = AH9300(ah);
147     ar9300_eeprom_t *mptr, *dptr;
148     int mdata_size;
149 
150     mptr = &ahp->ah_eeprom;
151     mdata_size = ar9300_eeprom_struct_size();
152     if (mptr != 0) {
153 #if 0
154         calibration_data_source = calibration_data_none;
155         calibration_data_source_address = 0;
156 #endif
157         dptr = ar9300_eeprom_struct_default_find_by_id(value);
158         if (dptr != 0) {
159             OS_MEMCPY(mptr, dptr, mdata_size);
160             return 0;
161         }
162     }
163     return -1;
164 }
165 
166 static int
167 ar9300_eeprom_restore_something(struct ath_hal *ah, ar9300_eeprom_t *mptr,
168     int mdata_size)
169 {
170     int it;
171     ar9300_eeprom_t *dptr;
172     int nptr;
173 
174     nptr = -1;
175     /*
176      * if we didn't find any blocks in the memory,
177      * put the prefered template in place
178      */
179     if (nptr < 0) {
180         AH9300(ah)->calibration_data_source = calibration_data_none;
181         AH9300(ah)->calibration_data_source_address = 0;
182         dptr = ar9300_eeprom_struct_default_find_by_id(
183             Ar9300_eeprom_template_preference);
184         if (dptr != 0) {
185             OS_MEMCPY(mptr, dptr, mdata_size);
186             nptr = 0;
187         }
188     }
189     /*
190      * if we didn't find the prefered one,
191      * put the normal default template in place
192      */
193     if (nptr < 0) {
194         AH9300(ah)->calibration_data_source = calibration_data_none;
195         AH9300(ah)->calibration_data_source_address = 0;
196         dptr = ar9300_eeprom_struct_default_find_by_id(
197             ar9300_eeprom_template_default);
198         if (dptr != 0) {
199             OS_MEMCPY(mptr, dptr, mdata_size);
200             nptr = 0;
201         }
202     }
203     /*
204      * if we can't find the best template, put any old template in place
205      * presume that newer ones are better, so search backwards
206      */
207     if (nptr < 0) {
208         AH9300(ah)->calibration_data_source = calibration_data_none;
209         AH9300(ah)->calibration_data_source_address = 0;
210         for (it = ar9300_eeprom_struct_default_many() - 1; it >= 0; it--) {
211             dptr = ar9300_eeprom_struct_default(it);
212             if (dptr != 0) {
213                 OS_MEMCPY(mptr, dptr, mdata_size);
214                 nptr = 0;
215                 break;
216             }
217         }
218     }
219     return nptr;
220 }
221 
222 /*
223  * Read 16 bits of data from offset into *data
224  */
225 HAL_BOOL
226 ar9300_eeprom_read_word(struct ath_hal *ah, u_int off, u_int16_t *data)
227 {
228     if (AR_SREV_OSPREY(ah) || AR_SREV_POSEIDON(ah))
229     {
230         (void) OS_REG_READ(ah, AR9300_EEPROM_OFFSET + (off << AR9300_EEPROM_S));
231         if (!ath_hal_wait(ah,
232 			  AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA),
233 			  AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS,
234 			  0))
235 	{
236             return AH_FALSE;
237 	}
238         *data = MS(OS_REG_READ(ah,
239 			       AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA)), AR_EEPROM_STATUS_DATA_VAL);
240        return AH_TRUE;
241     }
242     else
243     {
244         *data = 0;
245         return AH_FALSE;
246     }
247 }
248 
249 
250 HAL_BOOL
251 ar9300_otp_read(struct ath_hal *ah, u_int off, u_int32_t *data, HAL_BOOL is_wifi)
252 {
253     int time_out = 1000;
254     int status = 0;
255     u_int32_t addr;
256 
257     if (AR_SREV_HONEYBEE(ah)){ /* no OTP for Honeybee */
258         return false;
259     }
260     addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah))?
261         OTP_MEM_START_ADDRESS_WASP : OTP_MEM_START_ADDRESS;
262 	if (!is_wifi) {
263         addr = BTOTP_MEM_START_ADDRESS;
264     }
265     addr += off * 4; /* OTP is 32 bit addressable */
266     (void) OS_REG_READ(ah, addr);
267 
268     addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
269         OTP_STATUS0_OTP_SM_BUSY_WASP : OTP_STATUS0_OTP_SM_BUSY;
270 	if (!is_wifi) {
271         addr = BTOTP_STATUS0_OTP_SM_BUSY;
272     }
273     while ((time_out > 0) && (!status)) { /* wait for access complete */
274         /* Read data valid, access not busy, sm not busy */
275         status = ((OS_REG_READ(ah, addr) & 0x7) == 0x4) ? 1 : 0;
276         time_out--;
277     }
278     if (time_out == 0) {
279         HALDEBUG(ah, HAL_DEBUG_EEPROM,
280             "%s: Timed out during OTP Status0 validation\n", __func__);
281         return AH_FALSE;
282     }
283 
284     addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
285         OTP_STATUS1_EFUSE_READ_DATA_WASP : OTP_STATUS1_EFUSE_READ_DATA;
286 	if (!is_wifi) {
287         addr = BTOTP_STATUS1_EFUSE_READ_DATA;
288     }
289     *data = OS_REG_READ(ah, addr);
290     return AH_TRUE;
291 }
292 
293 
294 
295 
296 static HAL_STATUS
297 ar9300_flash_map(struct ath_hal *ah)
298 {
299     /* XXX disable flash remapping for now (ie, SoC support) */
300     ath_hal_printf(ah, "%s: unimplemented for now\n", __func__);
301 #if 0
302     struct ath_hal_9300 *ahp = AH9300(ah);
303 #if defined(AR9100) || defined(__NetBSD__)
304     ahp->ah_cal_mem = OS_REMAP(ah, AR9300_EEPROM_START_ADDR, AR9300_EEPROM_MAX);
305 #else
306     ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
307         (AR9300_EEPROM_MAX + AR9300_FLASH_CAL_START_OFFSET));
308 #endif
309     if (!ahp->ah_cal_mem) {
310         HALDEBUG(ah, HAL_DEBUG_EEPROM,
311             "%s: cannot remap eeprom region \n", __func__);
312         return HAL_EIO;
313     }
314 #endif
315     return HAL_OK;
316 }
317 
318 HAL_BOOL
319 ar9300_flash_read(struct ath_hal *ah, u_int off, u_int16_t *data)
320 {
321     struct ath_hal_9300 *ahp = AH9300(ah);
322 
323     *data = ((u_int16_t *)ahp->ah_cal_mem)[off];
324     return AH_TRUE;
325 }
326 
327 HAL_BOOL
328 ar9300_flash_write(struct ath_hal *ah, u_int off, u_int16_t data)
329 {
330     struct ath_hal_9300 *ahp = AH9300(ah);
331 
332     ((u_int16_t *)ahp->ah_cal_mem)[off] = data;
333     return AH_TRUE;
334 }
335 
336 HAL_STATUS
337 ar9300_eeprom_attach(struct ath_hal *ah)
338 {
339     struct ath_hal_9300 *ahp = AH9300(ah);
340     ahp->try_dram = 1;
341     ahp->try_eeprom = 1;
342     ahp->try_otp = 1;
343 #ifdef ATH_CAL_NAND_FLASH
344     ahp->try_nand = 1;
345 #else
346     ahp->try_flash = 1;
347 #endif
348     ahp->calibration_data_source = calibration_data_none;
349     ahp->calibration_data_source_address = 0;
350     ahp->calibration_data_try = calibration_data_try;
351     ahp->calibration_data_try_address = 0;
352 
353     /*
354      * In case flash will be used for EEPROM. Otherwise ahp->ah_cal_mem
355      * must be set to NULL or the real EEPROM address.
356      */
357     ar9300_flash_map(ah);
358     /*
359      * ###### This function always return NO SPUR.
360      * This is not true for many board designs.
361      * Does anyone use this?
362      */
363     AH_PRIVATE(ah)->ah_getSpurChan = ar9300_eeprom_get_spur_chan;
364 
365 #ifdef OLDCODE
366     /* XXX Needs to be moved for dynamic selection */
367     ahp->ah_eeprom = *(default9300[ar9300_eeprom_template_default]);
368 
369 
370     if (AR_SREV_HORNET(ah)) {
371         /* Set default values for Hornet. */
372         ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
373             AR9300_OPFLAGS_11G;
374         ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
375     } else if (AR_SREV_POSEIDON(ah)) {
376         /* Set default values for Poseidon. */
377         ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
378             AR9300_OPFLAGS_11G;
379         ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
380     }
381 
382     if (AH_PRIVATE(ah)->ah_config.ath_hal_skip_eeprom_read) {
383         ahp->ah_emu_eeprom = 1;
384         return HAL_OK;
385     }
386 
387     ahp->ah_emu_eeprom = 1;
388 
389 #ifdef UNUSED
390 #endif
391 
392     if (!ar9300_fill_eeprom(ah)) {
393         return HAL_EIO;
394     }
395 
396     return HAL_OK;
397     /* return ar9300_check_eeprom(ah); */
398 #else
399     ahp->ah_emu_eeprom = 1;
400 
401 #if 0
402 /*#ifdef MDK_AP*/ /* MDK_AP is defined only in NART AP build */
403     u_int8_t buffer[10];
404     int caldata_check = 0;
405 
406     ar9300_calibration_data_read_flash(
407         ah, FLASH_BASE_CALDATA_OFFSET, buffer, 4);
408     printf("flash caldata:: %x\n", buffer[0]);
409     if (buffer[0] != 0xff) {
410         caldata_check = 1;
411     }
412     if (!caldata_check) {
413         ar9300_eeprom_t *mptr;
414         int mdata_size;
415         if (AR_SREV_HORNET(ah)) {
416             /* XXX: For initial testing */
417             mptr = &ahp->ah_eeprom;
418             mdata_size = ar9300_eeprom_struct_size();
419             ahp->ah_eeprom = ar9300_template_ap121;
420             ahp->ah_emu_eeprom = 1;
421             /* need it to let art save in to flash ????? */
422             calibration_data_source = calibration_data_flash;
423         } else if (AR_SREV_WASP(ah)) {
424             /* XXX: For initial testing */
425             ath_hal_printf(ah, " wasp eep attach\n");
426             mptr = &ahp->ah_eeprom;
427             mdata_size = ar9300_eeprom_struct_size();
428             ahp->ah_eeprom = ar9300_template_generic;
429             ahp->ah_eeprom.mac_addr[0] = 0x00;
430             ahp->ah_eeprom.mac_addr[1] = 0x03;
431             ahp->ah_eeprom.mac_addr[2] = 0x7F;
432             ahp->ah_eeprom.mac_addr[3] = 0xBA;
433             ahp->ah_eeprom.mac_addr[4] = 0xD0;
434             ahp->ah_eeprom.mac_addr[5] = 0x00;
435             ahp->ah_emu_eeprom = 1;
436             ahp->ah_eeprom.base_eep_header.txrx_mask = 0x33;
437             ahp->ah_eeprom.base_eep_header.txrxgain = 0x10;
438             /* need it to let art save in to flash ????? */
439             calibration_data_source = calibration_data_flash;
440         }
441         return HAL_OK;
442     }
443 #endif
444     if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)
445         || AR_SREV_HONEYBEE(ah)) {
446         ahp->try_eeprom = 0;
447     }
448 
449     if (AR_SREV_HONEYBEE(ah)) {
450         ahp->try_otp = 0;
451     }
452 
453     if (!ar9300_eeprom_restore(ah)) {
454         return HAL_EIO;
455     }
456     return HAL_OK;
457 #endif
458 }
459 
460 u_int32_t
461 ar9300_eeprom_get(struct ath_hal_9300 *ahp, EEPROM_PARAM param)
462 {
463     ar9300_eeprom_t *eep = &ahp->ah_eeprom;
464     OSPREY_BASE_EEP_HEADER *p_base = &eep->base_eep_header;
465     OSPREY_BASE_EXTENSION_1 *base_ext1 = &eep->base_ext1;
466 
467     switch (param) {
468 #ifdef NOTYET
469     case EEP_NFTHRESH_5:
470         return p_modal[0].noise_floor_thresh_ch[0];
471     case EEP_NFTHRESH_2:
472         return p_modal[1].noise_floor_thresh_ch[0];
473 #endif
474     case EEP_MAC_LSW:
475         return eep->mac_addr[0] << 8 | eep->mac_addr[1];
476     case EEP_MAC_MID:
477         return eep->mac_addr[2] << 8 | eep->mac_addr[3];
478     case EEP_MAC_MSW:
479         return eep->mac_addr[4] << 8 | eep->mac_addr[5];
480     case EEP_REG_0:
481         return p_base->reg_dmn[0];
482     case EEP_REG_1:
483         return p_base->reg_dmn[1];
484     case EEP_OP_CAP:
485         return p_base->device_cap;
486     case EEP_OP_MODE:
487         return p_base->op_cap_flags.op_flags;
488     case EEP_RF_SILENT:
489         return p_base->rf_silent;
490 #ifdef NOTYET
491     case EEP_OB_5:
492         return p_modal[0].ob;
493     case EEP_DB_5:
494         return p_modal[0].db;
495     case EEP_OB_2:
496         return p_modal[1].ob;
497     case EEP_DB_2:
498         return p_modal[1].db;
499     case EEP_MINOR_REV:
500         return p_base->eeprom_version & AR9300_EEP_VER_MINOR_MASK;
501 #endif
502     case EEP_TX_MASK:
503         return (p_base->txrx_mask >> 4) & 0xf;
504     case EEP_RX_MASK:
505         return p_base->txrx_mask & 0xf;
506 #ifdef NOTYET
507     case EEP_FSTCLK_5G:
508         return p_base->fast_clk5g;
509     case EEP_RXGAIN_TYPE:
510         return p_base->rx_gain_type;
511 #endif
512     case EEP_DRIVE_STRENGTH:
513 #define AR9300_EEP_BASE_DRIVE_STRENGTH    0x1
514         return p_base->misc_configuration & AR9300_EEP_BASE_DRIVE_STRENGTH;
515     case EEP_INTERNAL_REGULATOR:
516         /* Bit 4 is internal regulator flag */
517         return ((p_base->feature_enable & 0x10) >> 4);
518     case EEP_SWREG:
519         return (p_base->swreg);
520     case EEP_PAPRD_ENABLED:
521         /* Bit 5 is paprd flag */
522         return ((p_base->feature_enable & 0x20) >> 5);
523     case EEP_ANTDIV_control:
524         return (u_int32_t)(base_ext1->ant_div_control);
525     case EEP_CHAIN_MASK_REDUCE:
526         return ((p_base->misc_configuration >> 3) & 0x1);
527     case EEP_OL_PWRCTRL:
528         return 0;
529      case EEP_DEV_TYPE:
530         return p_base->device_type;
531     default:
532         HALASSERT(0);
533         return 0;
534     }
535 }
536 
537 
538 
539 /******************************************************************************/
540 /*!
541 **  \brief EEPROM fixup code for INI values
542 **
543 ** This routine provides a place to insert "fixup" code for specific devices
544 ** that need to modify INI values based on EEPROM values, BEFORE the INI values
545 ** are written.
546 ** Certain registers in the INI file can only be written once without
547 ** undesired side effects, and this provides a place for EEPROM overrides
548 ** in these cases.
549 **
550 ** This is called at attach time once.  It should not affect run time
551 ** performance at all
552 **
553 **  \param ah       Pointer to HAL object (this)
554 **  \param p_eep_data Pointer to (filled in) eeprom data structure
555 **  \param reg      register being inspected on this call
556 **  \param value    value in INI file
557 **
558 **  \return Updated value for INI file.
559 */
560 u_int32_t
561 ar9300_ini_fixup(struct ath_hal *ah, ar9300_eeprom_t *p_eep_data,
562     u_int32_t reg, u_int32_t value)
563 {
564     HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
565         "ar9300_eeprom_def_ini_fixup: FIXME\n");
566 #if 0
567     BASE_EEPDEF_HEADER  *p_base  = &(p_eep_data->base_eep_header);
568 
569     switch (AH_PRIVATE(ah)->ah_devid)
570     {
571     case AR9300_DEVID_AR9300_PCI:
572         /*
573         ** Need to set the external/internal regulator bit to the proper value.
574         ** Can only write this ONCE.
575         */
576 
577         if ( reg == 0x7894 )
578         {
579             /*
580             ** Check for an EEPROM data structure of "0x0b" or better
581             */
582 
583             HALDEBUG(ah, HAL_DEBUG_EEPROM, "ini VAL: %x  EEPROM: %x\n",
584                      value, (p_base->version & 0xff));
585 
586             if ( (p_base->version & 0xff) > 0x0a) {
587                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
588                     "PWDCLKIND: %d\n", p_base->pwdclkind);
589                 value &= ~AR_AN_TOP2_PWDCLKIND;
590                 value |=
591                     AR_AN_TOP2_PWDCLKIND &
592                     (p_base->pwdclkind <<  AR_AN_TOP2_PWDCLKIND_S);
593             } else {
594                 HALDEBUG(ah, HAL_DEBUG_EEPROM, "PWDCLKIND Earlier Rev\n");
595             }
596 
597             HALDEBUG(ah, HAL_DEBUG_EEPROM, "final ini VAL: %x\n", value);
598         }
599         break;
600 
601     }
602 
603     return (value);
604 #else
605     return 0;
606 #endif
607 }
608 
609 /*
610  * Returns the interpolated y value corresponding to the specified x value
611  * from the np ordered pairs of data (px,py).
612  * The pairs do not have to be in any order.
613  * If the specified x value is less than any of the px,
614  * the returned y value is equal to the py for the lowest px.
615  * If the specified x value is greater than any of the px,
616  * the returned y value is equal to the py for the highest px.
617  */
618 static int
619 interpolate(int32_t x, int32_t *px, int32_t *py, u_int16_t np)
620 {
621     int ip = 0;
622     int lx = 0, ly = 0, lhave = 0;
623     int hx = 0, hy = 0, hhave = 0;
624     int dx = 0;
625     int y = 0;
626     int bf, factor, plus;
627 
628     lhave = 0;
629     hhave = 0;
630     /*
631      * identify best lower and higher x calibration measurement
632      */
633     for (ip = 0; ip < np; ip++) {
634         dx = x - px[ip];
635         /* this measurement is higher than our desired x */
636         if (dx <= 0) {
637             if (!hhave || dx > (x - hx)) {
638                 /* new best higher x measurement */
639                 hx = px[ip];
640                 hy = py[ip];
641                 hhave = 1;
642             }
643         }
644         /* this measurement is lower than our desired x */
645         if (dx >= 0) {
646             if (!lhave || dx < (x - lx)) {
647                 /* new best lower x measurement */
648                 lx = px[ip];
649                 ly = py[ip];
650                 lhave = 1;
651             }
652         }
653     }
654     /* the low x is good */
655     if (lhave) {
656         /* so is the high x */
657         if (hhave) {
658             /* they're the same, so just pick one */
659             if (hx == lx) {
660                 y = ly;
661             } else {
662                 /* interpolate with round off */
663                 bf = (2 * (hy - ly) * (x - lx)) / (hx - lx);
664                 plus = (bf % 2);
665                 factor = bf / 2;
666                 y = ly + factor + plus;
667             }
668         } else {
669             /* only low is good, use it */
670             y = ly;
671         }
672     } else if (hhave) {
673         /* only high is good, use it */
674         y = hy;
675     } else {
676         /* nothing is good,this should never happen unless np=0, ????  */
677         y = -(1 << 30);
678     }
679 
680     return y;
681 }
682 
683 u_int8_t
684 ar9300_eeprom_get_legacy_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
685     u_int16_t freq, HAL_BOOL is_2ghz)
686 {
687     u_int16_t            num_piers, i;
688     int32_t              target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
689     int32_t              freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
690     u_int8_t             *p_freq_bin;
691     ar9300_eeprom_t      *eep = &AH9300(ah)->ah_eeprom;
692     CAL_TARGET_POWER_LEG *p_eeprom_target_pwr;
693 
694     if (is_2ghz) {
695         num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
696         p_eeprom_target_pwr = eep->cal_target_power_2g;
697         p_freq_bin = eep->cal_target_freqbin_2g;
698     } else {
699         num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
700         p_eeprom_target_pwr = eep->cal_target_power_5g;
701         p_freq_bin = eep->cal_target_freqbin_5g;
702    }
703 
704     /*
705      * create array of channels and targetpower from
706      * targetpower piers stored on eeprom
707      */
708     for (i = 0; i < num_piers; i++) {
709         freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
710         target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
711     }
712 
713     /* interpolate to get target power for given frequency */
714     return
715         ((u_int8_t)interpolate(
716             (int32_t)freq, freq_array, target_power_array, num_piers));
717 }
718 
719 u_int8_t
720 ar9300_eeprom_get_ht20_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
721     u_int16_t freq, HAL_BOOL is_2ghz)
722 {
723     u_int16_t               num_piers, i;
724     int32_t                 target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
725     int32_t                 freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
726     u_int8_t                *p_freq_bin;
727     ar9300_eeprom_t         *eep = &AH9300(ah)->ah_eeprom;
728     OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
729 
730     if (is_2ghz) {
731         num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
732         p_eeprom_target_pwr = eep->cal_target_power_2g_ht20;
733         p_freq_bin = eep->cal_target_freqbin_2g_ht20;
734     } else {
735         num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
736         p_eeprom_target_pwr = eep->cal_target_power_5g_ht20;
737         p_freq_bin = eep->cal_target_freqbin_5g_ht20;
738     }
739 
740     /*
741      * create array of channels and targetpower from
742      * targetpower piers stored on eeprom
743      */
744     for (i = 0; i < num_piers; i++) {
745         freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
746         target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
747     }
748 
749     /* interpolate to get target power for given frequency */
750     return
751         ((u_int8_t)interpolate(
752             (int32_t)freq, freq_array, target_power_array, num_piers));
753 }
754 
755 u_int8_t
756 ar9300_eeprom_get_ht40_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
757     u_int16_t freq, HAL_BOOL is_2ghz)
758 {
759     u_int16_t               num_piers, i;
760     int32_t                 target_power_array[OSPREY_NUM_5G_40_TARGET_POWERS];
761     int32_t                 freq_array[OSPREY_NUM_5G_40_TARGET_POWERS];
762     u_int8_t                *p_freq_bin;
763     ar9300_eeprom_t         *eep = &AH9300(ah)->ah_eeprom;
764     OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
765 
766     if (is_2ghz) {
767         num_piers = OSPREY_NUM_2G_40_TARGET_POWERS;
768         p_eeprom_target_pwr = eep->cal_target_power_2g_ht40;
769         p_freq_bin = eep->cal_target_freqbin_2g_ht40;
770     } else {
771         num_piers = OSPREY_NUM_5G_40_TARGET_POWERS;
772         p_eeprom_target_pwr = eep->cal_target_power_5g_ht40;
773         p_freq_bin = eep->cal_target_freqbin_5g_ht40;
774     }
775 
776     /*
777      * create array of channels and targetpower from
778      * targetpower piers stored on eeprom
779      */
780     for (i = 0; i < num_piers; i++) {
781         freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
782         target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
783     }
784 
785     /* interpolate to get target power for given frequency */
786     return
787         ((u_int8_t)interpolate(
788             (int32_t)freq, freq_array, target_power_array, num_piers));
789 }
790 
791 u_int8_t
792 ar9300_eeprom_get_cck_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
793     u_int16_t freq)
794 {
795     u_int16_t            num_piers = OSPREY_NUM_2G_CCK_TARGET_POWERS, i;
796     int32_t              target_power_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
797     int32_t              freq_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
798     ar9300_eeprom_t      *eep = &AH9300(ah)->ah_eeprom;
799     u_int8_t             *p_freq_bin = eep->cal_target_freqbin_cck;
800     CAL_TARGET_POWER_LEG *p_eeprom_target_pwr = eep->cal_target_power_cck;
801 
802     /*
803      * create array of channels and targetpower from
804      * targetpower piers stored on eeprom
805      */
806     for (i = 0; i < num_piers; i++) {
807         freq_array[i] = FBIN2FREQ(p_freq_bin[i], 1);
808         target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
809     }
810 
811     /* interpolate to get target power for given frequency */
812     return
813         ((u_int8_t)interpolate(
814             (int32_t)freq, freq_array, target_power_array, num_piers));
815 }
816 
817 /*
818  * Set tx power registers to array of values passed in
819  */
820 int
821 ar9300_transmit_power_reg_write(struct ath_hal *ah, u_int8_t *p_pwr_array)
822 {
823 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
824     /* make sure forced gain is not set */
825 #if 0
826     field_write("force_dac_gain", 0);
827     OS_REG_WRITE(ah, 0xa3f8, 0);
828     field_write("force_tx_gain", 0);
829 #endif
830 
831     OS_REG_WRITE(ah, 0xa458, 0);
832 
833     /* Write the OFDM power per rate set */
834     /* 6 (LSB), 9, 12, 18 (MSB) */
835     OS_REG_WRITE(ah, 0xa3c0,
836         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
837           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
838           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
839           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
840     );
841     /* 24 (LSB), 36, 48, 54 (MSB) */
842     OS_REG_WRITE(ah, 0xa3c4,
843         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
844           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
845           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
846           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
847     );
848 
849     /* Write the CCK power per rate set */
850     /* 1L (LSB), reserved, 2L, 2S (MSB) */
851     OS_REG_WRITE(ah, 0xa3c8,
852         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
853           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
854 /*          | POW_SM(tx_power_times2,  8)*/ /* this is reserved for Osprey */
855           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
856     );
857     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
858     OS_REG_WRITE(ah, 0xa3cc,
859         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
860           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
861           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
862           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
863     );
864 
865 	/* write the power for duplicated frames - HT40 */
866 	/* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm  (MSB) */
867     OS_REG_WRITE(ah, 0xa3e0,
868         POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
869           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
870           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
871           | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
872     );
873 
874     /* Write the HT20 power per rate set */
875     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
876     OS_REG_WRITE(ah, 0xa3d0,
877         POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24)
878           | POW_SM(p_pwr_array[ALL_TARGET_HT20_4],  16)
879           | POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
880           | POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
881     );
882 
883     /* 6 (LSB), 7, 12, 13 (MSB) */
884     OS_REG_WRITE(ah, 0xa3d4,
885         POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24)
886           | POW_SM(p_pwr_array[ALL_TARGET_HT20_12],  16)
887           | POW_SM(p_pwr_array[ALL_TARGET_HT20_7],  8)
888           | POW_SM(p_pwr_array[ALL_TARGET_HT20_6],   0)
889     );
890 
891     /* 14 (LSB), 15, 20, 21 */
892     OS_REG_WRITE(ah, 0xa3e4,
893         POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24)
894           | POW_SM(p_pwr_array[ALL_TARGET_HT20_20],  16)
895           | POW_SM(p_pwr_array[ALL_TARGET_HT20_15],  8)
896           | POW_SM(p_pwr_array[ALL_TARGET_HT20_14],   0)
897     );
898 
899     /* Mixed HT20 and HT40 rates */
900     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
901     OS_REG_WRITE(ah, 0xa3e8,
902         POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24)
903           | POW_SM(p_pwr_array[ALL_TARGET_HT40_22],  16)
904           | POW_SM(p_pwr_array[ALL_TARGET_HT20_23],  8)
905           | POW_SM(p_pwr_array[ALL_TARGET_HT20_22],   0)
906     );
907 
908     /* Write the HT40 power per rate set */
909     /* correct PAR difference between HT40 and HT20/LEGACY */
910     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
911     OS_REG_WRITE(ah, 0xa3d8,
912         POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24)
913           | POW_SM(p_pwr_array[ALL_TARGET_HT40_4],  16)
914           | POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
915           | POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
916     );
917 
918     /* 6 (LSB), 7, 12, 13 (MSB) */
919     OS_REG_WRITE(ah, 0xa3dc,
920         POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24)
921           | POW_SM(p_pwr_array[ALL_TARGET_HT40_12],  16)
922           | POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8)
923           | POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0)
924     );
925 
926     /* 14 (LSB), 15, 20, 21 */
927     OS_REG_WRITE(ah, 0xa3ec,
928         POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24)
929           | POW_SM(p_pwr_array[ALL_TARGET_HT40_20],  16)
930           | POW_SM(p_pwr_array[ALL_TARGET_HT40_15],  8)
931           | POW_SM(p_pwr_array[ALL_TARGET_HT40_14],   0)
932     );
933 
934     return 0;
935 #undef POW_SM
936 }
937 
938 static void
939 ar9300_selfgen_tpc_reg_write(struct ath_hal *ah, const struct ieee80211_channel *chan,
940                              u_int8_t *p_pwr_array)
941 {
942     u_int32_t tpc_reg_val;
943 
944     /* Set the target power values for self generated frames (ACK,RTS/CTS) to
945      * be within limits. This is just a safety measure.With per packet TPC mode
946      * enabled the target power value used with self generated frames will be
947      * MIN( TPC reg, BB_powertx_rate register)
948      */
949 
950     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
951         tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
952                        SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
953                        SM(0x3f, AR_TPC_CHIRP) |
954                        SM(0x3f, AR_TPC_RPT));
955     } else {
956         tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
957                        SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
958                        SM(0x3f, AR_TPC_CHIRP) |
959                        SM(0x3f, AR_TPC_RPT));
960     }
961     OS_REG_WRITE(ah, AR_TPC, tpc_reg_val);
962 }
963 
964 void
965 ar9300_set_target_power_from_eeprom(struct ath_hal *ah, u_int16_t freq,
966     u_int8_t *target_power_val_t2)
967 {
968     /* hard code for now, need to get from eeprom struct */
969     u_int8_t ht40_power_inc_for_pdadc = 0;
970     HAL_BOOL  is_2ghz = 0;
971 
972     if (freq < 4000) {
973         is_2ghz = 1;
974     }
975 
976     target_power_val_t2[ALL_TARGET_LEGACY_6_24] =
977         ar9300_eeprom_get_legacy_trgt_pwr(
978             ah, LEGACY_TARGET_RATE_6_24, freq, is_2ghz);
979     target_power_val_t2[ALL_TARGET_LEGACY_36] =
980         ar9300_eeprom_get_legacy_trgt_pwr(
981             ah, LEGACY_TARGET_RATE_36, freq, is_2ghz);
982     target_power_val_t2[ALL_TARGET_LEGACY_48] =
983         ar9300_eeprom_get_legacy_trgt_pwr(
984             ah, LEGACY_TARGET_RATE_48, freq, is_2ghz);
985     target_power_val_t2[ALL_TARGET_LEGACY_54] =
986         ar9300_eeprom_get_legacy_trgt_pwr(
987             ah, LEGACY_TARGET_RATE_54, freq, is_2ghz);
988     target_power_val_t2[ALL_TARGET_LEGACY_1L_5L] =
989         ar9300_eeprom_get_cck_trgt_pwr(
990             ah, LEGACY_TARGET_RATE_1L_5L, freq);
991     target_power_val_t2[ALL_TARGET_LEGACY_5S] =
992         ar9300_eeprom_get_cck_trgt_pwr(
993             ah, LEGACY_TARGET_RATE_5S, freq);
994     target_power_val_t2[ALL_TARGET_LEGACY_11L] =
995         ar9300_eeprom_get_cck_trgt_pwr(
996             ah, LEGACY_TARGET_RATE_11L, freq);
997     target_power_val_t2[ALL_TARGET_LEGACY_11S] =
998         ar9300_eeprom_get_cck_trgt_pwr(
999             ah, LEGACY_TARGET_RATE_11S, freq);
1000     target_power_val_t2[ALL_TARGET_HT20_0_8_16] =
1001         ar9300_eeprom_get_ht20_trgt_pwr(
1002             ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz);
1003     target_power_val_t2[ALL_TARGET_HT20_1_3_9_11_17_19] =
1004         ar9300_eeprom_get_ht20_trgt_pwr(
1005             ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz);
1006     target_power_val_t2[ALL_TARGET_HT20_4] =
1007         ar9300_eeprom_get_ht20_trgt_pwr(
1008             ah, HT_TARGET_RATE_4, freq, is_2ghz);
1009     target_power_val_t2[ALL_TARGET_HT20_5] =
1010         ar9300_eeprom_get_ht20_trgt_pwr(
1011             ah, HT_TARGET_RATE_5, freq, is_2ghz);
1012     target_power_val_t2[ALL_TARGET_HT20_6] =
1013         ar9300_eeprom_get_ht20_trgt_pwr(
1014             ah, HT_TARGET_RATE_6, freq, is_2ghz);
1015     target_power_val_t2[ALL_TARGET_HT20_7] =
1016         ar9300_eeprom_get_ht20_trgt_pwr(
1017             ah, HT_TARGET_RATE_7, freq, is_2ghz);
1018     target_power_val_t2[ALL_TARGET_HT20_12] =
1019         ar9300_eeprom_get_ht20_trgt_pwr(
1020             ah, HT_TARGET_RATE_12, freq, is_2ghz);
1021     target_power_val_t2[ALL_TARGET_HT20_13] =
1022         ar9300_eeprom_get_ht20_trgt_pwr(
1023             ah, HT_TARGET_RATE_13, freq, is_2ghz);
1024     target_power_val_t2[ALL_TARGET_HT20_14] =
1025         ar9300_eeprom_get_ht20_trgt_pwr(
1026             ah, HT_TARGET_RATE_14, freq, is_2ghz);
1027     target_power_val_t2[ALL_TARGET_HT20_15] =
1028         ar9300_eeprom_get_ht20_trgt_pwr(
1029             ah, HT_TARGET_RATE_15, freq, is_2ghz);
1030     target_power_val_t2[ALL_TARGET_HT20_20] =
1031         ar9300_eeprom_get_ht20_trgt_pwr(
1032             ah, HT_TARGET_RATE_20, freq, is_2ghz);
1033     target_power_val_t2[ALL_TARGET_HT20_21] =
1034         ar9300_eeprom_get_ht20_trgt_pwr(
1035             ah, HT_TARGET_RATE_21, freq, is_2ghz);
1036     target_power_val_t2[ALL_TARGET_HT20_22] =
1037         ar9300_eeprom_get_ht20_trgt_pwr(
1038             ah, HT_TARGET_RATE_22, freq, is_2ghz);
1039     target_power_val_t2[ALL_TARGET_HT20_23] =
1040         ar9300_eeprom_get_ht20_trgt_pwr(
1041             ah, HT_TARGET_RATE_23, freq, is_2ghz);
1042     target_power_val_t2[ALL_TARGET_HT40_0_8_16] =
1043         ar9300_eeprom_get_ht40_trgt_pwr(
1044             ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz) +
1045         ht40_power_inc_for_pdadc;
1046     target_power_val_t2[ALL_TARGET_HT40_1_3_9_11_17_19] =
1047         ar9300_eeprom_get_ht40_trgt_pwr(
1048             ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz) +
1049         ht40_power_inc_for_pdadc;
1050     target_power_val_t2[ALL_TARGET_HT40_4] =
1051         ar9300_eeprom_get_ht40_trgt_pwr(
1052             ah, HT_TARGET_RATE_4, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1053     target_power_val_t2[ALL_TARGET_HT40_5] =
1054         ar9300_eeprom_get_ht40_trgt_pwr(
1055             ah, HT_TARGET_RATE_5, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1056     target_power_val_t2[ALL_TARGET_HT40_6] =
1057         ar9300_eeprom_get_ht40_trgt_pwr(
1058             ah, HT_TARGET_RATE_6, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1059     target_power_val_t2[ALL_TARGET_HT40_7] =
1060         ar9300_eeprom_get_ht40_trgt_pwr(
1061             ah, HT_TARGET_RATE_7, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1062     target_power_val_t2[ALL_TARGET_HT40_12] =
1063         ar9300_eeprom_get_ht40_trgt_pwr(
1064             ah, HT_TARGET_RATE_12, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1065     target_power_val_t2[ALL_TARGET_HT40_13] =
1066         ar9300_eeprom_get_ht40_trgt_pwr(
1067             ah, HT_TARGET_RATE_13, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1068     target_power_val_t2[ALL_TARGET_HT40_14] =
1069         ar9300_eeprom_get_ht40_trgt_pwr(
1070             ah, HT_TARGET_RATE_14, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1071     target_power_val_t2[ALL_TARGET_HT40_15] =
1072         ar9300_eeprom_get_ht40_trgt_pwr(
1073             ah, HT_TARGET_RATE_15, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1074     target_power_val_t2[ALL_TARGET_HT40_20] =
1075         ar9300_eeprom_get_ht40_trgt_pwr(
1076             ah, HT_TARGET_RATE_20, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1077     target_power_val_t2[ALL_TARGET_HT40_21] =
1078         ar9300_eeprom_get_ht40_trgt_pwr(
1079             ah, HT_TARGET_RATE_21, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1080     target_power_val_t2[ALL_TARGET_HT40_22] =
1081         ar9300_eeprom_get_ht40_trgt_pwr(
1082             ah, HT_TARGET_RATE_22, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1083     target_power_val_t2[ALL_TARGET_HT40_23] =
1084         ar9300_eeprom_get_ht40_trgt_pwr(
1085             ah, HT_TARGET_RATE_23, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1086 
1087 #ifdef AH_DEBUG
1088     {
1089         int  i = 0;
1090 
1091         HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: APPLYING TARGET POWERS\n", __func__);
1092         while (i < ar9300_rate_size) {
1093             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
1094                      __func__, i, target_power_val_t2[i]);
1095             i++;
1096 			if (i == ar9300_rate_size) {
1097                 break;
1098 			}
1099             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
1100                      __func__, i, target_power_val_t2[i]);
1101             i++;
1102 			if (i == ar9300_rate_size) {
1103                 break;
1104 			}
1105             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
1106                      __func__, i, target_power_val_t2[i]);
1107             i++;
1108 			if (i == ar9300_rate_size) {
1109                 break;
1110 			}
1111             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x \n",
1112                      __func__, i, target_power_val_t2[i]);
1113             i++;
1114         }
1115     }
1116 #endif
1117 }
1118 
1119 u_int16_t *ar9300_regulatory_domain_get(struct ath_hal *ah)
1120 {
1121     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1122     return eep->base_eep_header.reg_dmn;
1123 }
1124 
1125 
1126 int32_t
1127 ar9300_eeprom_write_enable_gpio_get(struct ath_hal *ah)
1128 {
1129     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1130     return eep->base_eep_header.eeprom_write_enable_gpio;
1131 }
1132 
1133 int32_t
1134 ar9300_wlan_disable_gpio_get(struct ath_hal *ah)
1135 {
1136     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1137     return eep->base_eep_header.wlan_disable_gpio;
1138 }
1139 
1140 int32_t
1141 ar9300_wlan_led_gpio_get(struct ath_hal *ah)
1142 {
1143     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1144     return eep->base_eep_header.wlan_led_gpio;
1145 }
1146 
1147 int32_t
1148 ar9300_rx_band_select_gpio_get(struct ath_hal *ah)
1149 {
1150     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1151     return eep->base_eep_header.rx_band_select_gpio;
1152 }
1153 
1154 /*
1155  * since valid noise floor values are negative, returns 1 on error
1156  */
1157 int32_t
1158 ar9300_noise_floor_cal_or_power_get(struct ath_hal *ah, int32_t frequency,
1159     int32_t ichain, HAL_BOOL use_cal)
1160 {
1161     int     nf_use = 1; /* start with an error return value */
1162     int32_t fx[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
1163     int32_t nf[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
1164     int     nnf;
1165     int     is_2ghz;
1166     int     ipier, npier;
1167     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1168     u_int8_t        *p_cal_pier;
1169     OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
1170 
1171     /*
1172      * check chain value
1173      */
1174     if (ichain < 0 || ichain >= OSPREY_MAX_CHAINS) {
1175         return 1;
1176     }
1177 
1178     /* figure out which band we're using */
1179     is_2ghz = (frequency < 4000);
1180     if (is_2ghz) {
1181         npier = OSPREY_NUM_2G_CAL_PIERS;
1182         p_cal_pier = eep->cal_freq_pier_2g;
1183         p_cal_pier_struct = eep->cal_pier_data_2g[ichain];
1184     } else {
1185         npier = OSPREY_NUM_5G_CAL_PIERS;
1186         p_cal_pier = eep->cal_freq_pier_5g;
1187         p_cal_pier_struct = eep->cal_pier_data_5g[ichain];
1188     }
1189     /* look for valid noise floor values */
1190     nnf = 0;
1191     for (ipier = 0; ipier < npier; ipier++) {
1192         fx[nnf] = FBIN2FREQ(p_cal_pier[ipier], is_2ghz);
1193         nf[nnf] = use_cal ?
1194             p_cal_pier_struct[ipier].rx_noisefloor_cal :
1195             p_cal_pier_struct[ipier].rx_noisefloor_power;
1196         if (nf[nnf] < 0) {
1197             nnf++;
1198         }
1199     }
1200     /*
1201      * If we have some valid values, interpolate to find the value
1202      * at the desired frequency.
1203      */
1204     if (nnf > 0) {
1205         nf_use = interpolate(frequency, fx, nf, nnf);
1206     }
1207 
1208     return nf_use;
1209 }
1210 
1211 /*
1212  * Return the Rx NF offset for specific channel.
1213  * The values saved in EEPROM/OTP/Flash is converted through the following way:
1214  *     ((_p) - NOISE_PWR_DATA_OFFSET) << 2
1215  * So we need to convert back to the original values.
1216  */
1217 int ar9300_get_rx_nf_offset(struct ath_hal *ah, struct ieee80211_channel *chan, int8_t *nf_pwr, int8_t *nf_cal) {
1218     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1219     int8_t rx_nf_pwr, rx_nf_cal;
1220     int i;
1221     //HALASSERT(ichan);
1222 
1223     /* Fill 0 if valid internal channel is not found */
1224     if (ichan == AH_NULL) {
1225         OS_MEMZERO(nf_pwr, sizeof(nf_pwr[0])*OSPREY_MAX_CHAINS);
1226         OS_MEMZERO(nf_cal, sizeof(nf_cal[0])*OSPREY_MAX_CHAINS);
1227         return -1;
1228     }
1229 
1230     for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
1231 	    if ((rx_nf_pwr = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 0)) == 1) {
1232 	        nf_pwr[i] = 0;
1233 	    } else {
1234 	        //printk("%s: raw nf_pwr[%d] = %d\n", __func__, i, rx_nf_pwr);
1235             nf_pwr[i] = NOISE_PWR_DBM_2_INT(rx_nf_pwr);
1236 	    }
1237 
1238 	    if ((rx_nf_cal = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 1)) == 1) {
1239 	        nf_cal[i] = 0;
1240 	    } else {
1241 	        //printk("%s: raw nf_cal[%d] = %d\n", __func__, i, rx_nf_cal);
1242             nf_cal[i] = NOISE_PWR_DBM_2_INT(rx_nf_cal);
1243 	    }
1244     }
1245 
1246     return 0;
1247 }
1248 
1249 int32_t ar9300_rx_gain_index_get(struct ath_hal *ah)
1250 {
1251     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1252 
1253     return (eep->base_eep_header.txrxgain) & 0xf;        /* bits 3:0 */
1254 }
1255 
1256 
1257 int32_t ar9300_tx_gain_index_get(struct ath_hal *ah)
1258 {
1259     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1260 
1261     return (eep->base_eep_header.txrxgain >> 4) & 0xf;    /* bits 7:4 */
1262 }
1263 
1264 HAL_BOOL ar9300_internal_regulator_apply(struct ath_hal *ah)
1265 {
1266     struct ath_hal_9300 *ahp = AH9300(ah);
1267     int internal_regulator = ar9300_eeprom_get(ahp, EEP_INTERNAL_REGULATOR);
1268     int reg_pmu1, reg_pmu2, reg_pmu1_set, reg_pmu2_set;
1269     u_int32_t reg_PMU1, reg_PMU2;
1270     unsigned long eep_addr;
1271     u_int32_t reg_val, reg_usb = 0, reg_pmu = 0;
1272     int usb_valid = 0, pmu_valid = 0;
1273     unsigned char pmu_refv;
1274 
1275     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1276         reg_PMU1 = AR_PHY_PMU1_JUPITER;
1277         reg_PMU2 = AR_PHY_PMU2_JUPITER;
1278     }
1279     else {
1280         reg_PMU1 = AR_PHY_PMU1;
1281         reg_PMU2 = AR_PHY_PMU2;
1282     }
1283 
1284     if (internal_regulator) {
1285         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
1286             if (AR_SREV_HORNET(ah)) {
1287                 /* Read OTP first */
1288                 for (eep_addr = 0x14; ; eep_addr -= 0x10) {
1289 
1290                     ar9300_otp_read(ah, eep_addr / 4, &reg_val, 1);
1291 
1292                     if ((reg_val & 0x80) == 0x80){
1293                         usb_valid = 1;
1294                         reg_usb = reg_val & 0x000000ff;
1295                     }
1296 
1297                     if ((reg_val & 0x80000000) == 0x80000000){
1298                         pmu_valid = 1;
1299                         reg_pmu = (reg_val & 0xff000000) >> 24;
1300                     }
1301 
1302                     if (eep_addr == 0x4) {
1303                         break;
1304                     }
1305                 }
1306 
1307                 if (pmu_valid) {
1308                     pmu_refv = reg_pmu & 0xf;
1309                 } else {
1310                     pmu_refv = 0x8;
1311                 }
1312 
1313                 /*
1314                  * If (valid) {
1315                  *   Usb_phy_ctrl2_tx_cal_en -> 0
1316                  *   Usb_phy_ctrl2_tx_cal_sel -> 0
1317                  *   Usb_phy_ctrl2_tx_man_cal -> 0, 1, 3, 7 or 15 from OTP
1318                  * }
1319                  */
1320                 if (usb_valid) {
1321                     OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_EN, 0x0);
1322                     OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_SEL, 0x0);
1323                     OS_REG_RMW_FIELD(ah, 0x16c88,
1324                         AR_PHY_CTRL2_TX_MAN_CAL, (reg_usb & 0xf));
1325                 }
1326 
1327             } else {
1328                 pmu_refv = 0x8;
1329             }
1330             /*#ifndef USE_HIF*/
1331             /* Follow the MDK settings for Hornet PMU.
1332              * my $pwd               = 0x0;
1333              * my $Nfdiv             = 0x3;  # xtal_freq = 25MHz
1334              * my $Nfdiv             = 0x4;  # xtal_freq = 40MHz
1335              * my $Refv              = 0x7;  # 0x5:1.22V; 0x8:1.29V
1336              * my $Gm1               = 0x3;  #Poseidon $Gm1=1
1337              * my $classb            = 0x0;
1338              * my $Cc                = 0x1;  #Poseidon $Cc=7
1339              * my $Rc                = 0x6;
1340              * my $ramp_slope        = 0x1;
1341              * my $Segm              = 0x3;
1342              * my $use_local_osc     = 0x0;
1343              * my $force_xosc_stable = 0x0;
1344              * my $Selfb             = 0x0;  #Poseidon $Selfb=1
1345              * my $Filterfb          = 0x3;  #Poseidon $Filterfb=0
1346              * my $Filtervc          = 0x0;
1347              * my $disc              = 0x0;
1348              * my $discdel           = 0x4;
1349              * my $spare             = 0x0;
1350              * $reg_PMU1 =
1351              *     $pwd | ($Nfdiv<<1) | ($Refv<<4) | ($Gm1<<8) |
1352              *     ($classb<<11) | ($Cc<<14) | ($Rc<<17) | ($ramp_slope<<20) |
1353              *     ($Segm<<24) | ($use_local_osc<<26) |
1354              *     ($force_xosc_stable<<27) | ($Selfb<<28) | ($Filterfb<<29);
1355              * $reg_PMU2 = $handle->reg_rd("ch0_PMU2");
1356              * $reg_PMU2 = ($reg_PMU2 & 0xfe3fffff) | ($Filtervc<<22);
1357              * $reg_PMU2 = ($reg_PMU2 & 0xe3ffffff) | ($discdel<<26);
1358              * $reg_PMU2 = ($reg_PMU2 & 0x1fffffff) | ($spare<<29);
1359              */
1360             if (ahp->clk_25mhz) {
1361                 reg_pmu1_set = 0 |
1362                     (3 <<  1) | (pmu_refv << 4) | (3 <<  8) | (0 << 11) |
1363                     (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
1364                     (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29);
1365             } else {
1366                 if (AR_SREV_POSEIDON(ah)) {
1367                     reg_pmu1_set = 0 |
1368                         (5 <<  1) | (7 <<  4) | (2 <<  8) | (0 << 11) |
1369                         (2 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
1370                         (0 << 26) | (0 << 27) | (1 << 28) | (0 << 29) ;
1371                 } else {
1372                     reg_pmu1_set = 0 |
1373                         (4 <<  1) | (7 <<  4) | (3 <<  8) | (0 << 11) |
1374                         (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
1375                         (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29) ;
1376                 }
1377             }
1378             OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
1379 
1380             OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set);   /* 0x638c8376 */
1381             reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
1382             while (reg_pmu1 != reg_pmu1_set) {
1383                 OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set);  /* 0x638c8376 */
1384                 OS_DELAY(10);
1385                 reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
1386             }
1387 
1388             reg_pmu2_set =
1389                  (OS_REG_READ(ah, reg_PMU2) & (~0xFFC00000)) | (4 << 26);
1390             OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1391             reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1392             while (reg_pmu2 != reg_pmu2_set) {
1393                 OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1394                 OS_DELAY(10);
1395                 reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1396             }
1397             reg_pmu2_set =
1398                  (OS_REG_READ(ah, reg_PMU2) & (~0x00200000)) | (1 << 21);
1399             OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1400             reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1401             while (reg_pmu2 != reg_pmu2_set) {
1402                 OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1403                 OS_DELAY(10);
1404                 reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1405             }
1406             /*#endif*/
1407         } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1408             /* Internal regulator is ON. Write swreg register. */
1409             int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
1410             OS_REG_WRITE(ah, reg_PMU1, swreg);
1411         } else {
1412             /* Internal regulator is ON. Write swreg register. */
1413             int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
1414             OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
1415                          OS_REG_READ(ah, AR_RTC_REG_CONTROL1) &
1416                          (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
1417             OS_REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
1418             /* Set REG_CONTROL1.SWREG_PROGRAM */
1419             OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
1420                 OS_REG_READ(ah, AR_RTC_REG_CONTROL1) |
1421                 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
1422         }
1423     } else {
1424         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
1425             OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
1426             reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1427             while (reg_pmu2) {
1428                 OS_DELAY(10);
1429                 reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1430             }
1431             OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
1432             reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
1433             while (!reg_pmu1) {
1434                 OS_DELAY(10);
1435                 reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
1436             }
1437             OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x1);
1438             reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1439             while (!reg_pmu2) {
1440                 OS_DELAY(10);
1441                 reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1442             }
1443         } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1444             OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
1445         } else {
1446             OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK,
1447                 (OS_REG_READ(ah, AR_RTC_SLEEP_CLK) |
1448                 AR_RTC_FORCE_SWREG_PRD | AR_RTC_PCIE_RST_PWDN_EN));
1449         }
1450     }
1451 
1452     return 0;
1453 }
1454 
1455 HAL_BOOL ar9300_drive_strength_apply(struct ath_hal *ah)
1456 {
1457     struct ath_hal_9300 *ahp = AH9300(ah);
1458     int drive_strength;
1459     unsigned long reg;
1460 
1461     drive_strength = ar9300_eeprom_get(ahp, EEP_DRIVE_STRENGTH);
1462     if (drive_strength) {
1463         reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
1464         reg &= ~0x00ffffc0;
1465         reg |= 0x5 << 21;
1466         reg |= 0x5 << 18;
1467         reg |= 0x5 << 15;
1468         reg |= 0x5 << 12;
1469         reg |= 0x5 << 9;
1470         reg |= 0x5 << 6;
1471         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
1472 
1473         reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
1474         reg &= ~0xffffffe0;
1475         reg |= 0x5 << 29;
1476         reg |= 0x5 << 26;
1477         reg |= 0x5 << 23;
1478         reg |= 0x5 << 20;
1479         reg |= 0x5 << 17;
1480         reg |= 0x5 << 14;
1481         reg |= 0x5 << 11;
1482         reg |= 0x5 << 8;
1483         reg |= 0x5 << 5;
1484         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
1485 
1486         reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
1487         reg &= ~0xff800000;
1488         reg |= 0x5 << 29;
1489         reg |= 0x5 << 26;
1490         reg |= 0x5 << 23;
1491         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
1492     }
1493     return 0;
1494 }
1495 
1496 int32_t ar9300_xpa_bias_level_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1497 {
1498     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1499     if (is_2ghz) {
1500         return eep->modal_header_2g.xpa_bias_lvl;
1501     } else {
1502         return eep->modal_header_5g.xpa_bias_lvl;
1503     }
1504 }
1505 
1506 HAL_BOOL ar9300_xpa_bias_level_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
1507 {
1508     /*
1509      * In ar9330 emu, we can't access radio registers,
1510      * merlin is used for radio part.
1511      */
1512     int bias;
1513     bias = ar9300_xpa_bias_level_get(ah, is_2ghz);
1514 
1515     if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah)) {
1516         OS_REG_RMW_FIELD(ah,
1517             AR_HORNET_CH0_TOP2, AR_HORNET_CH0_TOP2_XPABIASLVL, bias);
1518     } else if (AR_SREV_SCORPION(ah)) {
1519         OS_REG_RMW_FIELD(ah,
1520             AR_SCORPION_CH0_TOP, AR_SCORPION_CH0_TOP_XPABIASLVL, bias);
1521     } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1522         OS_REG_RMW_FIELD(ah,
1523             AR_PHY_65NM_CH0_TOP_JUPITER, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
1524     } else {
1525         OS_REG_RMW_FIELD(ah,
1526             AR_PHY_65NM_CH0_TOP, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
1527         OS_REG_RMW_FIELD(ah,
1528             AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB,
1529             bias >> 2);
1530         OS_REG_RMW_FIELD(ah,
1531             AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPASHORT2GND, 1);
1532     }
1533     return 0;
1534 }
1535 
1536 u_int32_t ar9300_ant_ctrl_common_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1537 {
1538     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1539     if (is_2ghz) {
1540         return eep->modal_header_2g.ant_ctrl_common;
1541     } else {
1542         return eep->modal_header_5g.ant_ctrl_common;
1543     }
1544 }
1545 static u_int16_t
1546 ar9300_switch_com_spdt_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1547 {
1548     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1549     if (is_2ghz) {
1550         return eep->modal_header_2g.switchcomspdt;
1551     } else {
1552         return eep->modal_header_5g.switchcomspdt;
1553     }
1554 }
1555 u_int32_t ar9300_ant_ctrl_common2_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1556 {
1557     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1558     if (is_2ghz) {
1559         return eep->modal_header_2g.ant_ctrl_common2;
1560     } else {
1561         return eep->modal_header_5g.ant_ctrl_common2;
1562     }
1563 }
1564 
1565 u_int16_t ar9300_ant_ctrl_chain_get(struct ath_hal *ah, int chain,
1566     HAL_BOOL is_2ghz)
1567 {
1568     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1569     if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
1570         if (is_2ghz) {
1571             return eep->modal_header_2g.ant_ctrl_chain[chain];
1572         } else {
1573             return eep->modal_header_5g.ant_ctrl_chain[chain];
1574         }
1575     }
1576     return 0;
1577 }
1578 
1579 /*
1580  * Select the usage of antenna via the RF switch.
1581  * Default values are loaded from eeprom.
1582  */
1583 HAL_BOOL ar9300_ant_swcom_sel(struct ath_hal *ah, u_int8_t ops,
1584                         u_int32_t *common_tbl1, u_int32_t *common_tbl2)
1585 {
1586     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1587     struct ath_hal_private  *ap  = AH_PRIVATE(ah);
1588     const struct ieee80211_channel *curchan = ap->ah_curchan;
1589     enum {
1590         ANT_SELECT_OPS_GET,
1591         ANT_SELECT_OPS_SET,
1592     };
1593 
1594     if (AR_SREV_JUPITER(ah) || AR_SREV_SCORPION(ah))
1595         return AH_FALSE;
1596 
1597     if (!curchan)
1598         return AH_FALSE;
1599 
1600 #define AR_SWITCH_TABLE_COM_ALL (0xffff)
1601 #define AR_SWITCH_TABLE_COM_ALL_S (0)
1602 #define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
1603 #define AR_SWITCH_TABLE_COM2_ALL_S (0)
1604     switch (ops) {
1605     case ANT_SELECT_OPS_GET:
1606         *common_tbl1 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM,
1607                             AR_SWITCH_TABLE_COM_ALL);
1608         *common_tbl2 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM_2,
1609                             AR_SWITCH_TABLE_COM2_ALL);
1610         break;
1611     case ANT_SELECT_OPS_SET:
1612         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1613             AR_SWITCH_TABLE_COM_ALL, *common_tbl1);
1614         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2,
1615             AR_SWITCH_TABLE_COM2_ALL, *common_tbl2);
1616 
1617         /* write back to eeprom */
1618         if (IEEE80211_IS_CHAN_2GHZ(curchan)) {
1619             eep->modal_header_2g.ant_ctrl_common = *common_tbl1;
1620             eep->modal_header_2g.ant_ctrl_common2 = *common_tbl2;
1621         } else {
1622             eep->modal_header_5g.ant_ctrl_common = *common_tbl1;
1623             eep->modal_header_5g.ant_ctrl_common2 = *common_tbl2;
1624         }
1625 
1626         break;
1627     default:
1628         break;
1629     }
1630 
1631     return AH_TRUE;
1632 }
1633 
1634 HAL_BOOL ar9300_ant_ctrl_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
1635 {
1636     u_int32_t value;
1637     struct ath_hal_9300 *ahp = AH9300(ah);
1638     u_int32_t regval;
1639     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
1640 #if ATH_ANT_DIV_COMB
1641     HAL_CAPABILITIES *pcap = &ahpriv->ah_caps;
1642 #endif  /* ATH_ANT_DIV_COMB */
1643     u_int32_t xlan_gpio_cfg;
1644     u_int8_t  i;
1645 
1646     if (AR_SREV_POSEIDON(ah)) {
1647         xlan_gpio_cfg = ah->ah_config.ath_hal_ext_lna_ctl_gpio;
1648         if (xlan_gpio_cfg) {
1649             for (i = 0; i < 32; i++) {
1650                 if (xlan_gpio_cfg & (1 << i)) {
1651                     ath_hal_gpioCfgOutput(ah, i,
1652                         HAL_GPIO_OUTPUT_MUX_PCIE_ATTENTION_LED);
1653                 }
1654             }
1655         }
1656     }
1657 #define AR_SWITCH_TABLE_COM_ALL (0xffff)
1658 #define AR_SWITCH_TABLE_COM_ALL_S (0)
1659 #define AR_SWITCH_TABLE_COM_JUPITER_ALL (0xffffff)
1660 #define AR_SWITCH_TABLE_COM_JUPITER_ALL_S (0)
1661 #define AR_SWITCH_TABLE_COM_SCORPION_ALL (0xffffff)
1662 #define AR_SWITCH_TABLE_COM_SCORPION_ALL_S (0)
1663 #define AR_SWITCH_TABLE_COM_HONEYBEE_ALL (0xffffff)
1664 #define AR_SWITCH_TABLE_COM_HONEYBEE_ALL_S (0)
1665 #define AR_SWITCH_TABLE_COM_SPDT (0x00f00000)
1666     value = ar9300_ant_ctrl_common_get(ah, is_2ghz);
1667     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1668         if (AR_SREV_JUPITER_10(ah)) {
1669             /* Force SPDT setting for Jupiter 1.0 chips. */
1670             value &= ~AR_SWITCH_TABLE_COM_SPDT;
1671             value |= 0x00100000;
1672         }
1673         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1674             AR_SWITCH_TABLE_COM_JUPITER_ALL, value);
1675     }
1676     else if (AR_SREV_SCORPION(ah)) {
1677         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1678             AR_SWITCH_TABLE_COM_SCORPION_ALL, value);
1679     }
1680     else if (AR_SREV_HONEYBEE(ah)) {
1681         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1682             AR_SWITCH_TABLE_COM_HONEYBEE_ALL, value);
1683     }
1684     else {
1685         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1686             AR_SWITCH_TABLE_COM_ALL, value);
1687     }
1688 /*
1689 *   Jupiter2.0 defines new switch table for BT/WLAN,
1690 *	here's new field name in WB222.ref for both 2G and 5G.
1691 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
1692 *   15:12	R/W	SWITCH_TABLE_COM_SPDT_WLAN_RX	SWITCH_TABLE_COM_SPDT_WLAN_RX
1693 *   11:8	R/W	SWITCH_TABLE_COM_SPDT_WLAN_TX	SWITCH_TABLE_COM_SPDT_WLAN_TX
1694 *   7:4	R/W	SWITCH_TABLE_COM_SPDT_WLAN_IDLE	SWITCH_TABLE_COM_SPDT_WLAN_IDLE
1695 */
1696 #define AR_SWITCH_TABLE_COM_SPDT_ALL (0x0000fff0)
1697 #define AR_SWITCH_TABLE_COM_SPDT_ALL_S (4)
1698     if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) {
1699         value = ar9300_switch_com_spdt_get(ah, is_2ghz);
1700         OS_REG_RMW_FIELD(ah, AR_GLB_CONTROL,
1701             AR_SWITCH_TABLE_COM_SPDT_ALL, value);
1702 
1703         OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
1704             AR_BTCOEX_CTRL_SPDT_ENABLE);
1705         //OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
1706         //    AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
1707     }
1708 
1709 #define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
1710 #define AR_SWITCH_TABLE_COM2_ALL_S (0)
1711     value = ar9300_ant_ctrl_common2_get(ah, is_2ghz);
1712 #if ATH_ANT_DIV_COMB
1713     if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
1714         value &= ~AR_SWITCH_TABLE_COM2_ALL;
1715         value |= ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable;
1716 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__, value)
1717     }
1718 #endif  /* ATH_ANT_DIV_COMB */
1719     OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
1720 
1721 #define AR_SWITCH_TABLE_ALL (0xfff)
1722 #define AR_SWITCH_TABLE_ALL_S (0)
1723     value = ar9300_ant_ctrl_chain_get(ah, 0, is_2ghz);
1724     OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
1725 
1726     if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) {
1727         value = ar9300_ant_ctrl_chain_get(ah, 1, is_2ghz);
1728         OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
1729 
1730         if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)) {
1731             value = ar9300_ant_ctrl_chain_get(ah, 2, is_2ghz);
1732             OS_REG_RMW_FIELD(ah,
1733                 AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
1734         }
1735     }
1736     if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
1737         value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control);
1738         /* main_lnaconf, alt_lnaconf, main_tb, alt_tb */
1739         regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1740         regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */
1741         regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S;
1742         /* enable_lnadiv */
1743         regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK);
1744         regval |= ((value >> 6) & 0x1) <<
1745                   MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT;
1746 #if ATH_ANT_DIV_COMB
1747         if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
1748             regval |= ANT_DIV_ENABLE;
1749         }
1750 #endif  /* ATH_ANT_DIV_COMB */
1751         OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
1752 
1753         /* enable fast_div */
1754         regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
1755         regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
1756         regval |= ((value >> 7) & 0x1) <<
1757                   BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT;
1758 #if ATH_ANT_DIV_COMB
1759         if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
1760             regval |= FAST_DIV_ENABLE;
1761         }
1762 #endif  /* ATH_ANT_DIV_COMB */
1763         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
1764     }
1765 
1766 #if ATH_ANT_DIV_COMB
1767     if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON_11_OR_LATER(ah)) {
1768         if (pcap->halAntDivCombSupport) {
1769             /* If support DivComb, set MAIN to LNA1, ALT to LNA2 at beginning */
1770             regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1771             /* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */
1772             regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
1773                          MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
1774                          MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK |
1775                          MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK));
1776             regval |= (HAL_ANT_DIV_COMB_LNA1 <<
1777                        MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
1778             regval |= (HAL_ANT_DIV_COMB_LNA2 <<
1779                        MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
1780             OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
1781         }
1782 
1783     }
1784 #endif /* ATH_ANT_DIV_COMB */
1785     if (AR_SREV_POSEIDON(ah) && ( ahp->ah_diversity_control == HAL_ANT_FIXED_A
1786 	     || ahp->ah_diversity_control == HAL_ANT_FIXED_B))
1787     {
1788         u_int32_t reg_val = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1789         reg_val &=  ~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
1790                     MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
1791                     MULTICHAIN_GAIN_CTRL__ANT_FAST_DIV_BIAS__MASK |
1792     		        MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK |
1793     		        MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK );
1794 
1795         switch (ahp->ah_diversity_control) {
1796         case HAL_ANT_FIXED_A:
1797             /* Enable first antenna only */
1798             reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
1799                        MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
1800             reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
1801                        MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
1802             /* main/alt gain table and Fast Div Bias all set to 0 */
1803             OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
1804             regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
1805             regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
1806             OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
1807             break;
1808         case HAL_ANT_FIXED_B:
1809             /* Enable second antenna only, after checking capability */
1810             reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
1811                        MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
1812             reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
1813                        MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
1814             /* main/alt gain table and Fast Div all set to 0 */
1815             OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
1816             regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
1817             regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
1818             OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
1819             /* For WB225, need to swith ANT2 from BT to Wifi
1820              * This will not affect HB125 LNA diversity feature.
1821              */
1822 	     HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__,
1823 	         ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable)
1824             OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL,
1825                 ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable);
1826             break;
1827         default:
1828             break;
1829         }
1830     }
1831     return 0;
1832 }
1833 
1834 static u_int16_t
1835 ar9300_attenuation_chain_get(struct ath_hal *ah, int chain, u_int16_t channel)
1836 {
1837     int32_t f[3], t[3];
1838     u_int16_t value;
1839     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1840     if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
1841         if (channel < 4000) {
1842             return eep->modal_header_2g.xatten1_db[chain];
1843         } else {
1844             if (eep->base_ext2.xatten1_db_low[chain] != 0) {
1845                 t[0] = eep->base_ext2.xatten1_db_low[chain];
1846                 f[0] = 5180;
1847                 t[1] = eep->modal_header_5g.xatten1_db[chain];
1848                 f[1] = 5500;
1849                 t[2] = eep->base_ext2.xatten1_db_high[chain];
1850                 f[2] = 5785;
1851                 value = interpolate(channel, f, t, 3);
1852                 return value;
1853             } else {
1854                 return eep->modal_header_5g.xatten1_db[chain];
1855             }
1856         }
1857     }
1858     return 0;
1859 }
1860 
1861 static u_int16_t
1862 ar9300_attenuation_margin_chain_get(struct ath_hal *ah, int chain,
1863     u_int16_t channel)
1864 {
1865     int32_t f[3], t[3];
1866     u_int16_t value;
1867     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1868     if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
1869         if (channel < 4000) {
1870             return eep->modal_header_2g.xatten1_margin[chain];
1871         } else {
1872             if (eep->base_ext2.xatten1_margin_low[chain] != 0) {
1873                 t[0] = eep->base_ext2.xatten1_margin_low[chain];
1874                 f[0] = 5180;
1875                 t[1] = eep->modal_header_5g.xatten1_margin[chain];
1876                 f[1] = 5500;
1877                 t[2] = eep->base_ext2.xatten1_margin_high[chain];
1878                 f[2] = 5785;
1879                 value = interpolate(channel, f, t, 3);
1880                 return value;
1881             } else {
1882                 return eep->modal_header_5g.xatten1_margin[chain];
1883             }
1884         }
1885     }
1886     return 0;
1887 }
1888 
1889 #if 0
1890 HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
1891 {
1892     u_int32_t value;
1893 //    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
1894 
1895     /* Test value. if 0 then attenuation is unused. Don't load anything. */
1896     value = ar9300_attenuation_chain_get(ah, 0, channel);
1897     OS_REG_RMW_FIELD(ah,
1898         AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1899     value = ar9300_attenuation_margin_chain_get(ah, 0, channel);
1900     if (ar9300_rx_gain_index_get(ah) == 0
1901         && ah->ah_config.ath_hal_ext_atten_margin_cfg)
1902     {
1903         value = 5;
1904     }
1905     OS_REG_RMW_FIELD(ah,
1906         AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
1907 
1908     if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
1909         value = ar9300_attenuation_chain_get(ah, 1, channel);
1910         OS_REG_RMW_FIELD(ah,
1911             AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1912         value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
1913         OS_REG_RMW_FIELD(ah,
1914             AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
1915             value);
1916         if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)&& !AR_SREV_HONEYBEE(ah) ) {
1917             value = ar9300_attenuation_chain_get(ah, 2, channel);
1918             OS_REG_RMW_FIELD(ah,
1919                 AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1920             value = ar9300_attenuation_margin_chain_get(ah, 2, channel);
1921             OS_REG_RMW_FIELD(ah,
1922                 AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
1923                 value);
1924         }
1925     }
1926     return 0;
1927 }
1928 #endif
1929 HAL_BOOL
1930 ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
1931 {
1932 	int i;
1933 	uint32_t value;
1934 	uint32_t ext_atten_reg[3] = {
1935 	    AR_PHY_EXT_ATTEN_CTL_0,
1936 	    AR_PHY_EXT_ATTEN_CTL_1,
1937 	    AR_PHY_EXT_ATTEN_CTL_2
1938 	};
1939 
1940 	/*
1941 	 * If it's an AR9462 and we're receiving on the second
1942 	 * chain only, set the chain 0 details from chain 1
1943 	 * calibration.
1944 	 *
1945 	 * This is from ath9k.
1946 	 */
1947 	if (AR_SREV_JUPITER(ah) && (AH9300(ah)->ah_rx_chainmask == 0x2)) {
1948 		value = ar9300_attenuation_chain_get(ah, 1, channel);
1949 		OS_REG_RMW_FIELD(ah, ext_atten_reg[0],
1950 		    AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1951 		value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
1952 		OS_REG_RMW_FIELD(ah, ext_atten_reg[0],
1953 		    AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
1954 	}
1955 
1956 	/*
1957 	 * Now, loop over the configured transmit chains and
1958 	 * load in the attenuation/margin settings as appropriate.
1959 	 */
1960 	for (i = 0; i < 3; i++) {
1961 		if ((AH9300(ah)->ah_tx_chainmask & (1 << i)) == 0)
1962 			continue;
1963 
1964 		value = ar9300_attenuation_chain_get(ah, i, channel);
1965 		OS_REG_RMW_FIELD(ah, ext_atten_reg[i],
1966 		    AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB,
1967 		    value);
1968 
1969 		if (AR_SREV_POSEIDON(ah) &&
1970 		    (ar9300_rx_gain_index_get(ah) == 0) &&
1971 		    ah->ah_config.ath_hal_ext_atten_margin_cfg) {
1972 			value = 5;
1973 		} else {
1974 			value = ar9300_attenuation_margin_chain_get(ah, 0,
1975 			    channel);
1976 		}
1977 
1978 		/*
1979 		 * I'm not sure why it's loading in this setting into
1980 		 * the chain 0 margin regardless of the current chain.
1981 		 */
1982 		if (ah->ah_config.ath_hal_min_gainidx)
1983 			OS_REG_RMW_FIELD(ah,
1984 			    AR_PHY_EXT_ATTEN_CTL_0,
1985 			    AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
1986 			    value);
1987 
1988 		OS_REG_RMW_FIELD(ah,
1989 		    ext_atten_reg[i],
1990 		    AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
1991 		    value);
1992 	}
1993 
1994 	return (0);
1995 }
1996 
1997 
1998 static u_int16_t ar9300_quick_drop_get(struct ath_hal *ah,
1999 								int chain, u_int16_t channel)
2000 {
2001     int32_t f[3], t[3];
2002     u_int16_t value;
2003     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2004 
2005     if (channel < 4000) {
2006         return eep->modal_header_2g.quick_drop;
2007     } else {
2008         t[0] = eep->base_ext1.quick_drop_low;
2009         f[0] = 5180;
2010         t[1] = eep->modal_header_5g.quick_drop;
2011         f[1] = 5500;
2012         t[2] = eep->base_ext1.quick_drop_high;
2013         f[2] = 5785;
2014         value = interpolate(channel, f, t, 3);
2015         return value;
2016     }
2017 }
2018 
2019 
2020 static HAL_BOOL ar9300_quick_drop_apply(struct ath_hal *ah, u_int16_t channel)
2021 {
2022     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2023     u_int32_t value;
2024     //
2025     // Test value. if 0 then quickDrop is unused. Don't load anything.
2026     //
2027     if (eep->base_eep_header.misc_configuration & 0x10)
2028 	{
2029         if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
2030         {
2031             value = ar9300_quick_drop_get(ah, 0, channel);
2032             OS_REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, value);
2033         }
2034     }
2035     return 0;
2036 }
2037 
2038 static u_int16_t ar9300_tx_end_to_xpa_off_get(struct ath_hal *ah, u_int16_t channel)
2039 {
2040     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2041 
2042     if (channel < 4000) {
2043         return eep->modal_header_2g.tx_end_to_xpa_off;
2044     } else {
2045         return eep->modal_header_5g.tx_end_to_xpa_off;
2046     }
2047 }
2048 
2049 static HAL_BOOL ar9300_tx_end_to_xpab_off_apply(struct ath_hal *ah, u_int16_t channel)
2050 {
2051     u_int32_t value;
2052 
2053     value = ar9300_tx_end_to_xpa_off_get(ah, channel);
2054     /* Apply to both xpaa and xpab */
2055     if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
2056     {
2057         OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
2058             AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
2059         OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
2060             AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
2061     }
2062     return 0;
2063 }
2064 
2065 static int
2066 ar9300_eeprom_cal_pier_get(struct ath_hal *ah, int mode, int ipier, int ichain,
2067     int *pfrequency, int *pcorrection, int *ptemperature, int *pvoltage)
2068 {
2069     u_int8_t *p_cal_pier;
2070     OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
2071     int is_2ghz;
2072     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2073 
2074     if (ichain >= OSPREY_MAX_CHAINS) {
2075         HALDEBUG(ah, HAL_DEBUG_EEPROM,
2076             "%s: Invalid chain index, must be less than %d\n",
2077             __func__, OSPREY_MAX_CHAINS);
2078         return -1;
2079     }
2080 
2081     if (mode) {/* 5GHz */
2082         if (ipier >= OSPREY_NUM_5G_CAL_PIERS){
2083             HALDEBUG(ah, HAL_DEBUG_EEPROM,
2084                 "%s: Invalid 5GHz cal pier index, must be less than %d\n",
2085                 __func__, OSPREY_NUM_5G_CAL_PIERS);
2086             return -1;
2087         }
2088         p_cal_pier = &(eep->cal_freq_pier_5g[ipier]);
2089         p_cal_pier_struct = &(eep->cal_pier_data_5g[ichain][ipier]);
2090         is_2ghz = 0;
2091     } else {
2092         if (ipier >= OSPREY_NUM_2G_CAL_PIERS){
2093             HALDEBUG(ah, HAL_DEBUG_EEPROM,
2094                 "%s: Invalid 2GHz cal pier index, must be less than %d\n",
2095                 __func__, OSPREY_NUM_2G_CAL_PIERS);
2096             return -1;
2097         }
2098 
2099         p_cal_pier = &(eep->cal_freq_pier_2g[ipier]);
2100         p_cal_pier_struct = &(eep->cal_pier_data_2g[ichain][ipier]);
2101         is_2ghz = 1;
2102     }
2103     *pfrequency = FBIN2FREQ(*p_cal_pier, is_2ghz);
2104     *pcorrection = p_cal_pier_struct->ref_power;
2105     *ptemperature = p_cal_pier_struct->temp_meas;
2106     *pvoltage = p_cal_pier_struct->volt_meas;
2107     return 0;
2108 }
2109 
2110 /*
2111  * Apply the recorded correction values.
2112  */
2113 static int
2114 ar9300_calibration_apply(struct ath_hal *ah, int frequency)
2115 {
2116     struct ath_hal_9300 *ahp = AH9300(ah);
2117 
2118     int ichain, ipier, npier;
2119     int mode;
2120     int fdiff;
2121     int pfrequency, pcorrection, ptemperature, pvoltage;
2122     int bf, factor, plus;
2123 
2124     int lfrequency[AR9300_MAX_CHAINS];
2125     int hfrequency[AR9300_MAX_CHAINS];
2126 
2127     int lcorrection[AR9300_MAX_CHAINS];
2128     int hcorrection[AR9300_MAX_CHAINS];
2129     int correction[AR9300_MAX_CHAINS];
2130 
2131     int ltemperature[AR9300_MAX_CHAINS];
2132     int htemperature[AR9300_MAX_CHAINS];
2133     int temperature[AR9300_MAX_CHAINS];
2134 
2135     int lvoltage[AR9300_MAX_CHAINS];
2136     int hvoltage[AR9300_MAX_CHAINS];
2137     int voltage[AR9300_MAX_CHAINS];
2138 
2139     mode = (frequency >= 4000);
2140     npier = (mode) ?  OSPREY_NUM_5G_CAL_PIERS : OSPREY_NUM_2G_CAL_PIERS;
2141 
2142     for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
2143         lfrequency[ichain] = 0;
2144         hfrequency[ichain] = 100000;
2145     }
2146     /*
2147      * identify best lower and higher frequency calibration measurement
2148      */
2149     for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
2150         for (ipier = 0; ipier < npier; ipier++) {
2151             if (ar9300_eeprom_cal_pier_get(
2152                     ah, mode, ipier, ichain,
2153                     &pfrequency, &pcorrection, &ptemperature, &pvoltage) == 0)
2154             {
2155                 fdiff = frequency - pfrequency;
2156                 /*
2157                  * this measurement is higher than our desired frequency
2158                  */
2159                 if (fdiff <= 0) {
2160                     if (hfrequency[ichain] <= 0 ||
2161                         hfrequency[ichain] >= 100000 ||
2162                         fdiff > (frequency - hfrequency[ichain]))
2163                     {
2164                         /*
2165                          * new best higher frequency measurement
2166                          */
2167                         hfrequency[ichain] = pfrequency;
2168                         hcorrection[ichain] = pcorrection;
2169                         htemperature[ichain] = ptemperature;
2170                         hvoltage[ichain] = pvoltage;
2171                     }
2172                 }
2173                 if (fdiff >= 0) {
2174                     if (lfrequency[ichain] <= 0 ||
2175                         fdiff < (frequency - lfrequency[ichain]))
2176                     {
2177                         /*
2178                          * new best lower frequency measurement
2179                          */
2180                         lfrequency[ichain] = pfrequency;
2181                         lcorrection[ichain] = pcorrection;
2182                         ltemperature[ichain] = ptemperature;
2183                         lvoltage[ichain] = pvoltage;
2184                     }
2185                 }
2186             }
2187         }
2188     }
2189     /* interpolate */
2190     for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
2191         HALDEBUG(ah, HAL_DEBUG_EEPROM,
2192             "%s: ch=%d f=%d low=%d %d h=%d %d\n",
2193             __func__, ichain, frequency,
2194             lfrequency[ichain], lcorrection[ichain],
2195             hfrequency[ichain], hcorrection[ichain]);
2196         /*
2197          * they're the same, so just pick one
2198          */
2199         if (hfrequency[ichain] == lfrequency[ichain]) {
2200             correction[ichain] = lcorrection[ichain];
2201             voltage[ichain] = lvoltage[ichain];
2202             temperature[ichain] = ltemperature[ichain];
2203         } else if (frequency - lfrequency[ichain] < 1000) {
2204             /* the low frequency is good */
2205             if (hfrequency[ichain] - frequency < 1000) {
2206                 /*
2207                  * The high frequency is good too -
2208                  * interpolate with round off.
2209                  */
2210                 int mult, div, diff;
2211                 mult = frequency - lfrequency[ichain];
2212                 div = hfrequency[ichain] - lfrequency[ichain];
2213 
2214                 diff = hcorrection[ichain] - lcorrection[ichain];
2215                 bf = 2 * diff * mult / div;
2216                 plus = (bf % 2);
2217                 factor = bf / 2;
2218                 correction[ichain] = lcorrection[ichain] + factor + plus;
2219 
2220                 diff = htemperature[ichain] - ltemperature[ichain];
2221                 bf = 2 * diff * mult / div;
2222                 plus = (bf % 2);
2223                 factor = bf / 2;
2224                 temperature[ichain] = ltemperature[ichain] + factor + plus;
2225 
2226                 diff = hvoltage[ichain] - lvoltage[ichain];
2227                 bf = 2 * diff * mult / div;
2228                 plus = (bf % 2);
2229                 factor = bf / 2;
2230                 voltage[ichain] = lvoltage[ichain] + factor + plus;
2231             } else {
2232                 /* only low is good, use it */
2233                 correction[ichain] = lcorrection[ichain];
2234                 temperature[ichain] = ltemperature[ichain];
2235                 voltage[ichain] = lvoltage[ichain];
2236             }
2237         } else if (hfrequency[ichain] - frequency < 1000) {
2238             /* only high is good, use it */
2239             correction[ichain] = hcorrection[ichain];
2240             temperature[ichain] = htemperature[ichain];
2241             voltage[ichain] = hvoltage[ichain];
2242         } else {
2243             /* nothing is good, presume 0???? */
2244             correction[ichain] = 0;
2245             temperature[ichain] = 0;
2246             voltage[ichain] = 0;
2247         }
2248     }
2249 
2250     /* GreenTx isn't currently supported */
2251     /* GreenTx */
2252     if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2253         if (AR_SREV_POSEIDON(ah)) {
2254             /* Get calibrated OLPC gain delta value for GreenTx */
2255             ahp->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET] =
2256                 (u_int32_t) correction[0];
2257         }
2258     }
2259 
2260     ar9300_power_control_override(
2261         ah, frequency, correction, voltage, temperature);
2262     HALDEBUG(ah, HAL_DEBUG_EEPROM,
2263         "%s: for frequency=%d, calibration correction = %d %d %d\n",
2264          __func__, frequency, correction[0], correction[1], correction[2]);
2265 
2266     return 0;
2267 }
2268 
2269 int
2270 ar9300_power_control_override(struct ath_hal *ah, int frequency,
2271     int *correction, int *voltage, int *temperature)
2272 {
2273     int temp_slope = 0;
2274     int temp_slope_1 = 0;
2275     int temp_slope_2 = 0;
2276     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2277     int32_t f[8], t[8],t1[3], t2[3];
2278 	int i;
2279 
2280     OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
2281         (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2282         AR_PHY_TPC_OLPC_GAIN_DELTA);
2283     if (!AR_SREV_POSEIDON(ah)) {
2284         OS_REG_RMW(ah, AR_PHY_TPC_11_B1,
2285             (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2286             AR_PHY_TPC_OLPC_GAIN_DELTA);
2287         if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
2288             OS_REG_RMW(ah, AR_PHY_TPC_11_B2,
2289                 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2290                 AR_PHY_TPC_OLPC_GAIN_DELTA);
2291         }
2292     }
2293     /*
2294      * enable open loop power control on chip
2295      */
2296     OS_REG_RMW(ah, AR_PHY_TPC_6_B0,
2297         (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
2298     if (!AR_SREV_POSEIDON(ah)) {
2299         OS_REG_RMW(ah, AR_PHY_TPC_6_B1,
2300             (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
2301         if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)  ) {
2302             OS_REG_RMW(ah, AR_PHY_TPC_6_B2,
2303                 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
2304                 AR_PHY_TPC_6_ERROR_EST_MODE);
2305         }
2306     }
2307 
2308     /*
2309      * Enable temperature compensation
2310      * Need to use register names
2311      */
2312     if (frequency < 4000) {
2313         temp_slope = eep->modal_header_2g.temp_slope;
2314     } else {
2315 		if ((eep->base_eep_header.misc_configuration & 0x20) != 0)
2316 		{
2317 				for(i=0;i<8;i++)
2318 				{
2319 					t[i]=eep->base_ext1.tempslopextension[i];
2320 					f[i]=FBIN2FREQ(eep->cal_freq_pier_5g[i], 0);
2321 				}
2322 				temp_slope=interpolate(frequency,f,t,8);
2323 		}
2324 		else
2325 		{
2326         if(!AR_SREV_SCORPION(ah)) {
2327           if (eep->base_ext2.temp_slope_low != 0) {
2328              t[0] = eep->base_ext2.temp_slope_low;
2329              f[0] = 5180;
2330              t[1] = eep->modal_header_5g.temp_slope;
2331              f[1] = 5500;
2332              t[2] = eep->base_ext2.temp_slope_high;
2333              f[2] = 5785;
2334              temp_slope = interpolate(frequency, f, t, 3);
2335            } else {
2336              temp_slope = eep->modal_header_5g.temp_slope;
2337            }
2338          } else {
2339             /*
2340              * Scorpion has individual chain tempslope values
2341              */
2342              t[0] = eep->base_ext1.tempslopextension[2];
2343              t1[0]= eep->base_ext1.tempslopextension[3];
2344              t2[0]= eep->base_ext1.tempslopextension[4];
2345              f[0] = 5180;
2346              t[1] = eep->modal_header_5g.temp_slope;
2347              t1[1]= eep->base_ext1.tempslopextension[0];
2348              t2[1]= eep->base_ext1.tempslopextension[1];
2349              f[1] = 5500;
2350              t[2] = eep->base_ext1.tempslopextension[5];
2351              t1[2]= eep->base_ext1.tempslopextension[6];
2352              t2[2]= eep->base_ext1.tempslopextension[7];
2353              f[2] = 5785;
2354              temp_slope = interpolate(frequency, f, t, 3);
2355              temp_slope_1=interpolate(frequency, f, t1,3);
2356              temp_slope_2=interpolate(frequency, f, t2,3);
2357        }
2358 	 }
2359   }
2360 
2361     if (!AR_SREV_SCORPION(ah) && !AR_SREV_HONEYBEE(ah)) {
2362         OS_REG_RMW_FIELD(ah,
2363             AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
2364     } else {
2365         /*Scorpion and Honeybee has tempSlope register for each chain*/
2366         /*Check whether temp_compensation feature is enabled or not*/
2367         if (eep->base_eep_header.feature_enable & 0x1){
2368 	    if(frequency < 4000) {
2369 		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
2370 		    OS_REG_RMW_FIELD(ah,
2371 				    AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
2372 				    eep->base_ext2.temp_slope_low);
2373 		    }
2374 		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
2375 		    OS_REG_RMW_FIELD(ah,
2376 				    AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
2377 				    temp_slope);
2378 		    }
2379 		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
2380 		    OS_REG_RMW_FIELD(ah,
2381 				    AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
2382 				    eep->base_ext2.temp_slope_high);
2383 		     }
2384 	    } else {
2385 		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
2386 		    OS_REG_RMW_FIELD(ah,
2387 				    AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
2388 				    temp_slope);
2389 			}
2390 		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
2391 		    OS_REG_RMW_FIELD(ah,
2392 				    AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
2393 				    temp_slope_1);
2394 		}
2395 		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
2396 		    OS_REG_RMW_FIELD(ah,
2397 				    AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
2398 				    temp_slope_2);
2399 			}
2400 	    }
2401         }else {
2402         	/* If temp compensation is not enabled, set all registers to 0*/
2403 		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
2404             OS_REG_RMW_FIELD(ah,
2405                 AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, 0);
2406 		    }
2407 		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
2408             OS_REG_RMW_FIELD(ah,
2409                 AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, 0);
2410 		    }
2411 		if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
2412             OS_REG_RMW_FIELD(ah,
2413                 AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, 0);
2414 		}
2415         }
2416     }
2417     OS_REG_RMW_FIELD(ah,
2418         AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE, temperature[0]);
2419 
2420     return 0;
2421 }
2422 
2423 /**************************************************************
2424  * ar9300_eep_def_get_max_edge_power
2425  *
2426  * Find the maximum conformance test limit for the given channel and CTL info
2427  */
2428 static inline u_int16_t
2429 ar9300_eep_def_get_max_edge_power(ar9300_eeprom_t *p_eep_data, u_int16_t freq,
2430     int idx, HAL_BOOL is_2ghz)
2431 {
2432     u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
2433     u_int8_t *ctl_freqbin = is_2ghz ?
2434         &p_eep_data->ctl_freqbin_2G[idx][0] :
2435         &p_eep_data->ctl_freqbin_5G[idx][0];
2436     u_int16_t num_edges = is_2ghz ?
2437         OSPREY_NUM_BAND_EDGES_2G : OSPREY_NUM_BAND_EDGES_5G;
2438     int i;
2439 
2440     /* Get the edge power */
2441     for (i = 0; (i < num_edges) && (ctl_freqbin[i] != AR9300_BCHAN_UNUSED); i++)
2442     {
2443         /*
2444          * If there's an exact channel match or an inband flag set
2445          * on the lower channel use the given rd_edge_power
2446          */
2447         if (freq == fbin2freq(ctl_freqbin[i], is_2ghz)) {
2448             if (is_2ghz) {
2449                 twice_max_edge_power =
2450                     p_eep_data->ctl_power_data_2g[idx].ctl_edges[i].t_power;
2451             } else {
2452                 twice_max_edge_power =
2453                     p_eep_data->ctl_power_data_5g[idx].ctl_edges[i].t_power;
2454             }
2455             break;
2456         } else if ((i > 0) && (freq < fbin2freq(ctl_freqbin[i], is_2ghz))) {
2457             if (is_2ghz) {
2458                 if (fbin2freq(ctl_freqbin[i - 1], 1) < freq &&
2459                     p_eep_data->ctl_power_data_2g[idx].ctl_edges[i - 1].flag)
2460                 {
2461                     twice_max_edge_power =
2462                         p_eep_data->ctl_power_data_2g[idx].
2463                             ctl_edges[i - 1].t_power;
2464                 }
2465             } else {
2466                 if (fbin2freq(ctl_freqbin[i - 1], 0) < freq &&
2467                     p_eep_data->ctl_power_data_5g[idx].ctl_edges[i - 1].flag)
2468                 {
2469                     twice_max_edge_power =
2470                         p_eep_data->ctl_power_data_5g[idx].
2471                             ctl_edges[i - 1].t_power;
2472                 }
2473             }
2474             /*
2475              * Leave loop - no more affecting edges possible
2476              * in this monotonic increasing list
2477              */
2478             break;
2479         }
2480     }
2481     /*
2482      * EV89475: EEPROM might contain 0 txpower in CTL table for certain
2483      * 2.4GHz channels. We workaround it by overwriting 60 (30 dBm) here.
2484      */
2485     if (is_2ghz && (twice_max_edge_power == 0)) {
2486         twice_max_edge_power = 60;
2487     }
2488 
2489     HALASSERT(twice_max_edge_power > 0);
2490     return twice_max_edge_power;
2491 }
2492 
2493 HAL_BOOL
2494 ar9300_eeprom_set_power_per_rate_table(
2495     struct ath_hal *ah,
2496     ar9300_eeprom_t *p_eep_data,
2497     const struct ieee80211_channel *chan,
2498     u_int8_t *p_pwr_array,
2499     u_int16_t cfg_ctl,
2500     u_int16_t antenna_reduction,
2501     u_int16_t twice_max_regulatory_power,
2502     u_int16_t power_limit,
2503     u_int8_t chainmask)
2504 {
2505     /* Local defines to distinguish between extension and control CTL's */
2506 #define EXT_ADDITIVE (0x8000)
2507 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
2508 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
2509 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
2510 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
2511 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN  10  /* 10*log10(3)*2 */
2512 #define PWRINCR_3_TO_1_CHAIN      9             /* 10*log(3)*2 */
2513 #define PWRINCR_3_TO_2_CHAIN      3             /* floor(10*log(3/2)*2) */
2514 #define PWRINCR_2_TO_1_CHAIN      6             /* 10*log(2)*2 */
2515 
2516     static const u_int16_t tp_scale_reduction_table[5] =
2517         { 0, 3, 6, 9, AR9300_MAX_RATE_POWER };
2518     int i;
2519     int16_t twice_largest_antenna;
2520     u_int16_t twice_antenna_reduction = 2*antenna_reduction ;
2521     int16_t scaled_power = 0, min_ctl_power, max_reg_allowed_power;
2522 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
2523 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
2524     u_int16_t ctl_modes_for11a[] =
2525         {CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40};
2526     u_int16_t ctl_modes_for11g[] =
2527         {CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
2528     u_int16_t num_ctl_modes, *p_ctl_mode, ctl_mode, freq;
2529     CHAN_CENTERS centers;
2530     int tx_chainmask;
2531     struct ath_hal_9300 *ahp = AH9300(ah);
2532     u_int8_t *ctl_index;
2533     u_int8_t ctl_num;
2534     u_int16_t twice_min_edge_power;
2535     u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
2536 #ifdef	AH_DEBUG
2537     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
2538 #endif
2539 
2540     if (chainmask)
2541         tx_chainmask = chainmask;
2542     else
2543         tx_chainmask = ahp->ah_tx_chainmaskopt ?
2544                             ahp->ah_tx_chainmaskopt :ahp->ah_tx_chainmask;
2545 
2546     ar9300_get_channel_centers(ah, chan, &centers);
2547 
2548 #if 1
2549     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2550         ahp->twice_antenna_gain = p_eep_data->modal_header_2g.antenna_gain;
2551     } else {
2552         ahp->twice_antenna_gain = p_eep_data->modal_header_5g.antenna_gain;
2553     }
2554 
2555 #else
2556     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2557         ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_2g.antenna_gain,
2558                                          AH_PRIVATE(ah)->ah_antenna_gain_2g);
2559     } else {
2560         ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_5g.antenna_gain,
2561                                          AH_PRIVATE(ah)->ah_antenna_gain_5g);
2562     }
2563 #endif
2564 
2565     /* Save max allowed antenna gain to ease future lookups */
2566     ahp->twice_antenna_reduction = twice_antenna_reduction;
2567 
2568     /*  Deduct antenna gain from  EIRP to get the upper limit */
2569     twice_largest_antenna = (int16_t)AH_MIN((twice_antenna_reduction -
2570                                        ahp->twice_antenna_gain), 0);
2571     max_reg_allowed_power = twice_max_regulatory_power + twice_largest_antenna;
2572 
2573     /* Use ah_tp_scale - see bug 30070. */
2574     if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
2575         max_reg_allowed_power -=
2576             (tp_scale_reduction_table[(AH_PRIVATE(ah)->ah_tpScale)] * 2);
2577     }
2578 
2579     scaled_power = AH_MIN(power_limit, max_reg_allowed_power);
2580 
2581     /*
2582      * Reduce scaled Power by number of chains active to get to
2583      * per chain tx power level
2584      */
2585     /* TODO: better value than these? */
2586     switch (ar9300_get_ntxchains(tx_chainmask)) {
2587     case 1:
2588         ahp->upper_limit[0] = AH_MAX(0, scaled_power);
2589         break;
2590     case 2:
2591         scaled_power -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
2592         ahp->upper_limit[1] = AH_MAX(0, scaled_power);
2593         break;
2594     case 3:
2595         scaled_power -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
2596         ahp->upper_limit[2] = AH_MAX(0, scaled_power);
2597         break;
2598     default:
2599         HALASSERT(0); /* Unsupported number of chains */
2600     }
2601 
2602     scaled_power = AH_MAX(0, scaled_power);
2603 
2604     /* Get target powers from EEPROM - our baseline for TX Power */
2605     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2606         /* Setup for CTL modes */
2607         /* CTL_11B, CTL_11G, CTL_2GHT20 */
2608         num_ctl_modes =
2609             ARRAY_LENGTH(ctl_modes_for11g) - SUB_NUM_CTL_MODES_AT_2G_40;
2610         p_ctl_mode = ctl_modes_for11g;
2611 
2612         if (IEEE80211_IS_CHAN_HT40(chan)) {
2613             num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11g); /* All 2G CTL's */
2614         }
2615     } else {
2616         /* Setup for CTL modes */
2617         /* CTL_11A, CTL_5GHT20 */
2618         num_ctl_modes =
2619             ARRAY_LENGTH(ctl_modes_for11a) - SUB_NUM_CTL_MODES_AT_5G_40;
2620         p_ctl_mode = ctl_modes_for11a;
2621 
2622         if (IEEE80211_IS_CHAN_HT40(chan)) {
2623             num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11a); /* All 5G CTL's */
2624         }
2625     }
2626 
2627     /*
2628      * For MIMO, need to apply regulatory caps individually across dynamically
2629      * running modes: CCK, OFDM, HT20, HT40
2630      *
2631      * The outer loop walks through each possible applicable runtime mode.
2632      * The inner loop walks through each ctl_index entry in EEPROM.
2633      * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
2634      *
2635      */
2636     for (ctl_mode = 0; ctl_mode < num_ctl_modes; ctl_mode++) {
2637         HAL_BOOL is_ht40_ctl_mode =
2638             (p_ctl_mode[ctl_mode] == CTL_5GHT40) ||
2639             (p_ctl_mode[ctl_mode] == CTL_2GHT40);
2640         if (is_ht40_ctl_mode) {
2641             freq = centers.synth_center;
2642         } else if (p_ctl_mode[ctl_mode] & EXT_ADDITIVE) {
2643             freq = centers.ext_center;
2644         } else {
2645             freq = centers.ctl_center;
2646         }
2647 
2648         HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2649             "LOOP-Mode ctl_mode %d < %d, "
2650             "is_ht40_ctl_mode %d, EXT_ADDITIVE %d\n",
2651             ctl_mode, num_ctl_modes, is_ht40_ctl_mode,
2652             (p_ctl_mode[ctl_mode] & EXT_ADDITIVE));
2653         /* walk through each CTL index stored in EEPROM */
2654         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2655             ctl_index = p_eep_data->ctl_index_2g;
2656             ctl_num = OSPREY_NUM_CTLS_2G;
2657         } else {
2658             ctl_index = p_eep_data->ctl_index_5g;
2659             ctl_num = OSPREY_NUM_CTLS_5G;
2660         }
2661 
2662         for (i = 0; (i < ctl_num) && ctl_index[i]; i++) {
2663             HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2664                 "  LOOP-Ctlidx %d: cfg_ctl 0x%2.2x p_ctl_mode 0x%2.2x "
2665                 "ctl_index 0x%2.2x chan %d chanctl 0x%x\n",
2666                 i, cfg_ctl, p_ctl_mode[ctl_mode], ctl_index[i],
2667                 ichan->channel, ath_hal_getctl(ah, chan));
2668 
2669 
2670             /*
2671              * compare test group from regulatory channel list
2672              * with test mode from p_ctl_mode list
2673              */
2674             if ((((cfg_ctl & ~CTL_MODE_M) |
2675                   (p_ctl_mode[ctl_mode] & CTL_MODE_M)) == ctl_index[i]) ||
2676                 (((cfg_ctl & ~CTL_MODE_M) |
2677                   (p_ctl_mode[ctl_mode] & CTL_MODE_M)) ==
2678                  ((ctl_index[i] & CTL_MODE_M) | SD_NO_CTL)))
2679             {
2680                 twice_min_edge_power =
2681                     ar9300_eep_def_get_max_edge_power(
2682                         p_eep_data, freq, i, IEEE80211_IS_CHAN_2GHZ(chan));
2683 
2684                 HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2685                     "    MATCH-EE_IDX %d: ch %d is2 %d "
2686                     "2xMinEdge %d chainmask %d chains %d\n",
2687                     i, freq, IEEE80211_IS_CHAN_2GHZ(chan),
2688                     twice_min_edge_power, tx_chainmask,
2689                     ar9300_get_ntxchains(tx_chainmask));
2690 
2691                 if ((cfg_ctl & ~CTL_MODE_M) == SD_NO_CTL) {
2692                     /*
2693                      * Find the minimum of all CTL edge powers
2694                      * that apply to this channel
2695                      */
2696                     twice_max_edge_power =
2697                         AH_MIN(twice_max_edge_power, twice_min_edge_power);
2698                 } else {
2699                     /* specific */
2700                     twice_max_edge_power = twice_min_edge_power;
2701                     break;
2702                 }
2703             }
2704         }
2705 
2706         min_ctl_power = (u_int8_t)AH_MIN(twice_max_edge_power, scaled_power);
2707 
2708         HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2709             "    SEL-Min ctl_mode %d p_ctl_mode %d "
2710             "2xMaxEdge %d sP %d min_ctl_pwr %d\n",
2711             ctl_mode, p_ctl_mode[ctl_mode],
2712             twice_max_edge_power, scaled_power, min_ctl_power);
2713 
2714         /* Apply ctl mode to correct target power set */
2715         switch (p_ctl_mode[ctl_mode]) {
2716         case CTL_11B:
2717             for (i = ALL_TARGET_LEGACY_1L_5L; i <= ALL_TARGET_LEGACY_11S; i++) {
2718                 p_pwr_array[i] =
2719                     (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
2720             }
2721             break;
2722         case CTL_11A:
2723         case CTL_11G:
2724             for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) {
2725                 p_pwr_array[i] =
2726                     (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
2727 #ifdef ATH_BT_COEX
2728                 if ((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
2729                     (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
2730                 {
2731                     if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR)
2732                         && (ahp->ah_bt_wlan_isolation
2733                          < HAL_BT_COEX_ISOLATION_FOR_NO_COEX))
2734                     {
2735 
2736                         u_int8_t reduce_pow;
2737 
2738                         reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
2739                                      - ahp->ah_bt_wlan_isolation) << 1;
2740 
2741                         if (reduce_pow <= p_pwr_array[i]) {
2742                             p_pwr_array[i] -= reduce_pow;
2743                         }
2744                     }
2745                     if ((ahp->ah_bt_coex_flag &
2746                           HAL_BT_COEX_FLAG_LOW_ACK_PWR) &&
2747                           (i != ALL_TARGET_LEGACY_36) &&
2748                           (i != ALL_TARGET_LEGACY_48) &&
2749                           (i != ALL_TARGET_LEGACY_54) &&
2750                           (p_ctl_mode[ctl_mode] == CTL_11G))
2751                     {
2752                         p_pwr_array[i] = 0;
2753                     }
2754                 }
2755 #endif
2756             }
2757             break;
2758         case CTL_5GHT20:
2759         case CTL_2GHT20:
2760             for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_23; i++) {
2761                 p_pwr_array[i] =
2762                     (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
2763 #ifdef ATH_BT_COEX
2764                 if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
2765                      (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
2766                     (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
2767                     (ahp->ah_bt_wlan_isolation
2768                         < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
2769 
2770                     u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
2771                                            - ahp->ah_bt_wlan_isolation) << 1;
2772 
2773                     if (reduce_pow <= p_pwr_array[i]) {
2774                         p_pwr_array[i] -= reduce_pow;
2775                     }
2776                 }
2777 #if ATH_SUPPORT_MCI
2778                 else if ((ahp->ah_bt_coex_flag &
2779                           HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
2780                          (p_ctl_mode[ctl_mode] == CTL_2GHT20) &&
2781                          (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
2782                 {
2783                     u_int8_t max_pwr;
2784 
2785                     max_pwr = MS(mci_concur_tx_max_pwr[2][1],
2786                                  ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
2787                     if (p_pwr_array[i] > max_pwr) {
2788                         p_pwr_array[i] = max_pwr;
2789                     }
2790                 }
2791 #endif
2792 #endif
2793             }
2794             break;
2795         case CTL_11B_EXT:
2796 #ifdef NOT_YET
2797             target_power_cck_ext.t_pow2x[0] = (u_int8_t)
2798                 AH_MIN(target_power_cck_ext.t_pow2x[0], min_ctl_power);
2799 #endif /* NOT_YET */
2800             break;
2801         case CTL_11A_EXT:
2802         case CTL_11G_EXT:
2803 #ifdef NOT_YET
2804             target_power_ofdm_ext.t_pow2x[0] = (u_int8_t)
2805                 AH_MIN(target_power_ofdm_ext.t_pow2x[0], min_ctl_power);
2806 #endif /* NOT_YET */
2807             break;
2808         case CTL_5GHT40:
2809         case CTL_2GHT40:
2810             for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_23; i++) {
2811                 p_pwr_array[i] = (u_int8_t)
2812                     AH_MIN(p_pwr_array[i], min_ctl_power);
2813 #ifdef ATH_BT_COEX
2814                 if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
2815                      (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
2816                     (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
2817                     (ahp->ah_bt_wlan_isolation
2818                         < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
2819 
2820                     u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
2821                                               - ahp->ah_bt_wlan_isolation) << 1;
2822 
2823                     if (reduce_pow <= p_pwr_array[i]) {
2824                         p_pwr_array[i] -= reduce_pow;
2825                     }
2826                 }
2827 #if ATH_SUPPORT_MCI
2828                 else if ((ahp->ah_bt_coex_flag &
2829                           HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
2830                          (p_ctl_mode[ctl_mode] == CTL_2GHT40) &&
2831                          (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
2832                 {
2833                     u_int8_t max_pwr;
2834 
2835                     max_pwr = MS(mci_concur_tx_max_pwr[3][1],
2836                                  ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
2837                     if (p_pwr_array[i] > max_pwr) {
2838                         p_pwr_array[i] = max_pwr;
2839                     }
2840                 }
2841 #endif
2842 #endif
2843             }
2844             break;
2845         default:
2846             HALASSERT(0);
2847             break;
2848         }
2849     } /* end ctl mode checking */
2850 
2851     return AH_TRUE;
2852 #undef EXT_ADDITIVE
2853 #undef CTL_11A_EXT
2854 #undef CTL_11G_EXT
2855 #undef CTL_11B_EXT
2856 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
2857 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
2858 }
2859 
2860 /**************************************************************
2861  * ar9300_eeprom_set_transmit_power
2862  *
2863  * Set the transmit power in the baseband for the given
2864  * operating channel and mode.
2865  */
2866 HAL_STATUS
2867 ar9300_eeprom_set_transmit_power(struct ath_hal *ah,
2868     ar9300_eeprom_t *p_eep_data, const struct ieee80211_channel *chan, u_int16_t cfg_ctl,
2869     u_int16_t antenna_reduction, u_int16_t twice_max_regulatory_power,
2870     u_int16_t power_limit)
2871 {
2872 #define ABS(_x, _y) ((int)_x > (int)_y ? (int)_x - (int)_y : (int)_y - (int)_x)
2873 #define INCREASE_MAXPOW_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
2874 #define INCREASE_MAXPOW_BY_THREE_CHAIN   10 /* 10*log10(3)*2 */
2875     u_int8_t target_power_val_t2[ar9300_rate_size];
2876     u_int8_t target_power_val_t2_eep[ar9300_rate_size];
2877     int16_t twice_array_gain = 0, max_power_level = 0;
2878     struct ath_hal_9300 *ahp = AH9300(ah);
2879     int  i = 0;
2880     u_int32_t tmp_paprd_rate_mask = 0, *tmp_ptr = NULL;
2881     int      paprd_scale_factor = 5;
2882     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
2883 
2884     u_int8_t *ptr_mcs_rate2power_table_index;
2885     u_int8_t mcs_rate2power_table_index_ht20[24] =
2886     {
2887         ALL_TARGET_HT20_0_8_16,
2888         ALL_TARGET_HT20_1_3_9_11_17_19,
2889         ALL_TARGET_HT20_1_3_9_11_17_19,
2890         ALL_TARGET_HT20_1_3_9_11_17_19,
2891         ALL_TARGET_HT20_4,
2892         ALL_TARGET_HT20_5,
2893         ALL_TARGET_HT20_6,
2894         ALL_TARGET_HT20_7,
2895         ALL_TARGET_HT20_0_8_16,
2896         ALL_TARGET_HT20_1_3_9_11_17_19,
2897         ALL_TARGET_HT20_1_3_9_11_17_19,
2898         ALL_TARGET_HT20_1_3_9_11_17_19,
2899         ALL_TARGET_HT20_12,
2900         ALL_TARGET_HT20_13,
2901         ALL_TARGET_HT20_14,
2902         ALL_TARGET_HT20_15,
2903         ALL_TARGET_HT20_0_8_16,
2904         ALL_TARGET_HT20_1_3_9_11_17_19,
2905         ALL_TARGET_HT20_1_3_9_11_17_19,
2906         ALL_TARGET_HT20_1_3_9_11_17_19,
2907         ALL_TARGET_HT20_20,
2908         ALL_TARGET_HT20_21,
2909         ALL_TARGET_HT20_22,
2910         ALL_TARGET_HT20_23
2911     };
2912 
2913     u_int8_t mcs_rate2power_table_index_ht40[24] =
2914     {
2915         ALL_TARGET_HT40_0_8_16,
2916         ALL_TARGET_HT40_1_3_9_11_17_19,
2917         ALL_TARGET_HT40_1_3_9_11_17_19,
2918         ALL_TARGET_HT40_1_3_9_11_17_19,
2919         ALL_TARGET_HT40_4,
2920         ALL_TARGET_HT40_5,
2921         ALL_TARGET_HT40_6,
2922         ALL_TARGET_HT40_7,
2923         ALL_TARGET_HT40_0_8_16,
2924         ALL_TARGET_HT40_1_3_9_11_17_19,
2925         ALL_TARGET_HT40_1_3_9_11_17_19,
2926         ALL_TARGET_HT40_1_3_9_11_17_19,
2927         ALL_TARGET_HT40_12,
2928         ALL_TARGET_HT40_13,
2929         ALL_TARGET_HT40_14,
2930         ALL_TARGET_HT40_15,
2931         ALL_TARGET_HT40_0_8_16,
2932         ALL_TARGET_HT40_1_3_9_11_17_19,
2933         ALL_TARGET_HT40_1_3_9_11_17_19,
2934         ALL_TARGET_HT40_1_3_9_11_17_19,
2935         ALL_TARGET_HT40_20,
2936         ALL_TARGET_HT40_21,
2937         ALL_TARGET_HT40_22,
2938         ALL_TARGET_HT40_23,
2939     };
2940 
2941     HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2942         "%s[%d] +++chan %d,cfgctl 0x%04x  "
2943         "antenna_reduction 0x%04x, twice_max_regulatory_power 0x%04x "
2944         "power_limit 0x%04x\n",
2945         __func__, __LINE__, ichan->channel, cfg_ctl,
2946         antenna_reduction, twice_max_regulatory_power, power_limit);
2947     ar9300_set_target_power_from_eeprom(ah, ichan->channel, target_power_val_t2);
2948 
2949     if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
2950         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2951             if (IEEE80211_IS_CHAN_HT40(chan)) {
2952                 tmp_paprd_rate_mask =
2953                     p_eep_data->modal_header_2g.paprd_rate_mask_ht40;
2954                 tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht40;
2955             } else {
2956                 tmp_paprd_rate_mask =
2957                     p_eep_data->modal_header_2g.paprd_rate_mask_ht20;
2958                 tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht20;
2959             }
2960         } else {
2961             if (IEEE80211_IS_CHAN_HT40(chan)) {
2962                 tmp_paprd_rate_mask =
2963                     p_eep_data->modal_header_5g.paprd_rate_mask_ht40;
2964                 tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht40;
2965             } else {
2966                 tmp_paprd_rate_mask =
2967                     p_eep_data->modal_header_5g.paprd_rate_mask_ht20;
2968                 tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht20;
2969             }
2970         }
2971         AH_PAPRD_GET_SCALE_FACTOR(
2972             paprd_scale_factor, p_eep_data, IEEE80211_IS_CHAN_2GHZ(chan), ichan->channel);
2973         HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d] paprd_scale_factor %d\n",
2974             __func__, __LINE__, paprd_scale_factor);
2975         /* PAPRD is not done yet, Scale down the EEP power */
2976         if (IEEE80211_IS_CHAN_HT40(chan)) {
2977             ptr_mcs_rate2power_table_index =
2978                 &mcs_rate2power_table_index_ht40[0];
2979         } else {
2980             ptr_mcs_rate2power_table_index =
2981                 &mcs_rate2power_table_index_ht20[0];
2982         }
2983         if (! ichan->paprd_table_write_done) {
2984             for (i = 0;  i < 24; i++) {
2985                 /* PAPRD is done yet, so Scale down Power for PAPRD Rates*/
2986                 if (tmp_paprd_rate_mask & (1 << i)) {
2987                     target_power_val_t2[ptr_mcs_rate2power_table_index[i]] -=
2988                         paprd_scale_factor;
2989                     HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2990                         "%s[%d]: Chan %d "
2991                         "Scale down target_power_val_t2[%d] = 0x%04x\n",
2992                         __func__, __LINE__,
2993                         ichan->channel, i, target_power_val_t2[i]);
2994                 }
2995             }
2996         } else {
2997             HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2998                 "%s[%d]: PAPRD Done No TGT PWR Scaling\n", __func__, __LINE__);
2999         }
3000     }
3001 
3002     /* Save the Target power for future use */
3003     OS_MEMCPY(target_power_val_t2_eep, target_power_val_t2,
3004                                    sizeof(target_power_val_t2));
3005     ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
3006                                      target_power_val_t2, cfg_ctl,
3007                                      antenna_reduction,
3008                                      twice_max_regulatory_power,
3009                                      power_limit, 0);
3010 
3011     /* Save this for quick lookup */
3012     ahp->reg_dmn = ath_hal_getctl(ah, chan);
3013 
3014     /*
3015      * Always use CDD/direct per rate power table for register based approach.
3016      * For FCC, CDD calculations should factor in the array gain, hence
3017      * this adjust call. ETSI and MKK does not have this requirement.
3018      */
3019     if (is_reg_dmn_fcc(ahp->reg_dmn)) {
3020         HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3021             "%s: FCC regdomain, calling reg_txpower_cdd\n",
3022             __func__);
3023         ar9300_adjust_reg_txpower_cdd(ah, target_power_val_t2);
3024     }
3025 
3026     if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
3027         for (i = 0;  i < ar9300_rate_size; i++) {
3028             /*
3029              * EEPROM TGT PWR is not same as current TGT PWR,
3030              * so Disable PAPRD for this rate.
3031              * Some of APs might ask to reduce Target Power,
3032              * if target power drops significantly,
3033              * disable PAPRD for that rate.
3034              */
3035             if (tmp_paprd_rate_mask & (1 << i)) {
3036                 if (ABS(target_power_val_t2_eep[i], target_power_val_t2[i]) >
3037                     paprd_scale_factor)
3038                 {
3039                     tmp_paprd_rate_mask &= ~(1 << i);
3040                     HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3041                         "%s: EEP TPC[%02d] 0x%08x "
3042                         "Curr TPC[%02d] 0x%08x mask = 0x%08x\n",
3043                         __func__, i, target_power_val_t2_eep[i], i,
3044                         target_power_val_t2[i], tmp_paprd_rate_mask);
3045                 }
3046             }
3047 
3048         }
3049         HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
3050             "%s: Chan %d After tmp_paprd_rate_mask = 0x%08x\n",
3051             __func__, ichan->channel, tmp_paprd_rate_mask);
3052         if (tmp_ptr) {
3053             *tmp_ptr = tmp_paprd_rate_mask;
3054         }
3055     }
3056 
3057     /* Write target power array to registers */
3058     ar9300_transmit_power_reg_write(ah, target_power_val_t2);
3059 
3060     /* Write target power for self generated frames to the TPC register */
3061     ar9300_selfgen_tpc_reg_write(ah, chan, target_power_val_t2);
3062 
3063     /* GreenTx or Paprd */
3064     if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable ||
3065         AH_PRIVATE(ah)->ah_caps.halPaprdEnabled)
3066     {
3067         if (AR_SREV_POSEIDON(ah)) {
3068             /*For HAL_RSSI_TX_POWER_NONE array*/
3069             OS_MEMCPY(ahp->ah_default_tx_power,
3070                 target_power_val_t2,
3071                 sizeof(target_power_val_t2));
3072             /* Get defautl tx related register setting for GreenTx */
3073             /* Record OB/DB */
3074             ahp->ah_ob_db1[POSEIDON_STORED_REG_OBDB] =
3075                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2);
3076             /* Record TPC settting */
3077             ahp->ah_ob_db1[POSEIDON_STORED_REG_TPC] =
3078                 OS_REG_READ(ah, AR_TPC);
3079             /* Record BB_powertx_rate9 setting */
3080             ahp->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9] =
3081                 OS_REG_READ(ah, AR_PHY_BB_POWERTX_RATE9);
3082         }
3083     }
3084 
3085     /*
3086      * Return tx power used to iwconfig.
3087      * Since power is rate dependent, use one of the indices from the
3088      * AR9300_Rates enum to select an entry from target_power_val_t2[]
3089      * to report.
3090      * Currently returns the power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
3091      * as CCK power is less interesting (?).
3092      */
3093     i = ALL_TARGET_LEGACY_6_24;         /* legacy */
3094     if (IEEE80211_IS_CHAN_HT40(chan)) {
3095         i = ALL_TARGET_HT40_0_8_16;     /* ht40 */
3096     } else if (IEEE80211_IS_CHAN_HT20(chan)) {
3097         i = ALL_TARGET_HT20_0_8_16;     /* ht20 */
3098     }
3099     max_power_level = target_power_val_t2[i];
3100     /* Adjusting the ah_max_power_level based on chains and antennaGain*/
3101     switch (ar9300_get_ntxchains(((ahp->ah_tx_chainmaskopt > 0) ?
3102                                     ahp->ah_tx_chainmaskopt : ahp->ah_tx_chainmask)))
3103     {
3104         case 1:
3105             break;
3106         case 2:
3107             twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
3108                                ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
3109                                    (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_TWO_CHAIN)), 0));
3110             /* Adjusting maxpower with antennaGain */
3111             max_power_level -= twice_array_gain;
3112             /* Adjusting maxpower based on chain */
3113             max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
3114             break;
3115         case 3:
3116             twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
3117                                ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
3118                                    (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_THREE_CHAIN)), 0));
3119 
3120             /* Adjusting maxpower with antennaGain */
3121             max_power_level -= twice_array_gain;
3122             /* Adjusting maxpower based on chain */
3123             max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
3124             break;
3125         default:
3126             HALASSERT(0); /* Unsupported number of chains */
3127     }
3128     AH_PRIVATE(ah)->ah_maxPowerLevel = (int8_t)max_power_level;
3129 
3130     ar9300_calibration_apply(ah, ichan->channel);
3131 #undef ABS
3132 
3133     /* Handle per packet TPC initializations */
3134     if (ah->ah_config.ath_hal_desc_tpc) {
3135         /* Transmit Power per-rate per-chain  are  computed here. A separate
3136          * power table is maintained for different MIMO modes (i.e. TXBF ON,
3137          * STBC) to enable easy lookup during packet transmit.
3138          * The reason for maintaing each of these tables per chain is that
3139          * the transmit power used for different number of chains is different
3140          * depending on whether the power has been limited by the target power,
3141          * the regulatory domain  or the CTL limits.
3142          */
3143         u_int mode = ath_hal_get_curmode(ah, chan);
3144         u_int32_t val = 0;
3145         u_int8_t chainmasks[AR9300_MAX_CHAINS] =
3146             {OSPREY_1_CHAINMASK, OSPREY_2LOHI_CHAINMASK, OSPREY_3_CHAINMASK};
3147         for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3148             OS_MEMCPY(target_power_val_t2, target_power_val_t2_eep,
3149                                    sizeof(target_power_val_t2_eep));
3150             ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
3151                                      target_power_val_t2, cfg_ctl,
3152                                      antenna_reduction,
3153                                      twice_max_regulatory_power,
3154                                      power_limit, chainmasks[i]);
3155             HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
3156                  " Channel = %d Chainmask = %d, Upper Limit = [%2d.%1d dBm]\n",
3157                                        ichan->channel, i, ahp->upper_limit[i]/2,
3158                                        ahp->upper_limit[i]%2 * 5);
3159             ar9300_init_rate_txpower(ah, mode, chan, target_power_val_t2,
3160                                                            chainmasks[i]);
3161 
3162         }
3163 
3164         /* Enable TPC */
3165         OS_REG_WRITE(ah, AR_PHY_PWRTX_MAX, AR_PHY_PWRTX_MAX_TPC_ENABLE);
3166         /*
3167          * Disable per chain power reduction since we are already
3168          * accounting for this in our calculations
3169          */
3170         val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
3171         if (AR_SREV_WASP(ah)) {
3172             OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
3173                        val & AR_PHY_POWER_TX_SUB_2_DISABLE);
3174         } else {
3175             OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
3176                        val & AR_PHY_POWER_TX_SUB_3_DISABLE);
3177         }
3178     }
3179 
3180     return HAL_OK;
3181 }
3182 
3183 /**************************************************************
3184  * ar9300_eeprom_set_addac
3185  *
3186  * Set the ADDAC from eeprom.
3187  */
3188 void
3189 ar9300_eeprom_set_addac(struct ath_hal *ah, struct ieee80211_channel *chan)
3190 {
3191 
3192     HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
3193                  "FIXME: ar9300_eeprom_def_set_addac called\n");
3194 #if 0
3195     MODAL_EEPDEF_HEADER *p_modal;
3196     struct ath_hal_9300 *ahp = AH9300(ah);
3197     ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
3198     u_int8_t biaslevel;
3199 
3200     if (AH_PRIVATE(ah)->ah_macVersion != AR_SREV_VERSION_SOWL) {
3201         return;
3202     }
3203 
3204     HALASSERT(owl_get_eepdef_ver(ahp) == AR9300_EEP_VER);
3205 
3206     /* Xpa bias levels in eeprom are valid from rev 14.7 */
3207     if (owl_get_eepdef_rev(ahp) < AR9300_EEP_MINOR_VER_7) {
3208         return;
3209     }
3210 
3211     if (ahp->ah_emu_eeprom) {
3212         return;
3213     }
3214 
3215     p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
3216 
3217     if (p_modal->xpa_bias_lvl != 0xff) {
3218         biaslevel = p_modal->xpa_bias_lvl;
3219     } else {
3220         /* Use freqeuncy specific xpa bias level */
3221         u_int16_t reset_freq_bin, freq_bin, freq_count = 0;
3222         CHAN_CENTERS centers;
3223 
3224         ar9300_get_channel_centers(ah, chan, &centers);
3225 
3226         reset_freq_bin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
3227         freq_bin = p_modal->xpa_bias_lvl_freq[0] & 0xff;
3228         biaslevel = (u_int8_t)(p_modal->xpa_bias_lvl_freq[0] >> 14);
3229 
3230         freq_count++;
3231 
3232         while (freq_count < 3) {
3233             if (p_modal->xpa_bias_lvl_freq[freq_count] == 0x0) {
3234                 break;
3235             }
3236 
3237             freq_bin = p_modal->xpa_bias_lvl_freq[freq_count] & 0xff;
3238             if (reset_freq_bin >= freq_bin) {
3239                 biaslevel =
3240                     (u_int8_t)(p_modal->xpa_bias_lvl_freq[freq_count] >> 14);
3241             } else {
3242                 break;
3243             }
3244             freq_count++;
3245         }
3246     }
3247 
3248     /* Apply bias level to the ADDAC values in the INI array */
3249     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
3250         INI_RA(&ahp->ah_ini_addac, 7, 1) =
3251             (INI_RA(&ahp->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
3252     } else {
3253         INI_RA(&ahp->ah_ini_addac, 6, 1) =
3254             (INI_RA(&ahp->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
3255     }
3256 #endif
3257 }
3258 
3259 u_int
3260 ar9300_eeprom_dump_support(struct ath_hal *ah, void **pp_e)
3261 {
3262     *pp_e = &(AH9300(ah)->ah_eeprom);
3263     return sizeof(ar9300_eeprom_t);
3264 }
3265 
3266 u_int8_t
3267 ar9300_eeprom_get_num_ant_config(struct ath_hal_9300 *ahp,
3268     HAL_FREQ_BAND freq_band)
3269 {
3270 #if 0
3271     ar9300_eeprom_t  *eep = &ahp->ah_eeprom.def;
3272     MODAL_EEPDEF_HEADER *p_modal =
3273         &(eep->modal_header[HAL_FREQ_BAND_2GHZ == freq_band]);
3274     BASE_EEPDEF_HEADER  *p_base  = &eep->base_eep_header;
3275     u_int8_t         num_ant_config;
3276 
3277     num_ant_config = 1; /* default antenna configuration */
3278 
3279     if (p_base->version >= 0x0E0D) {
3280         if (p_modal->use_ant1) {
3281             num_ant_config += 1;
3282         }
3283     }
3284 
3285     return num_ant_config;
3286 #else
3287     return 1;
3288 #endif
3289 }
3290 
3291 HAL_STATUS
3292 ar9300_eeprom_get_ant_cfg(struct ath_hal_9300 *ahp,
3293   const struct ieee80211_channel *chan,
3294   u_int8_t index, u_int16_t *config)
3295 {
3296 #if 0
3297     ar9300_eeprom_t  *eep = &ahp->ah_eeprom.def;
3298     MODAL_EEPDEF_HEADER *p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
3299     BASE_EEPDEF_HEADER  *p_base  = &eep->base_eep_header;
3300 
3301     switch (index) {
3302     case 0:
3303         *config = p_modal->ant_ctrl_common & 0xFFFF;
3304         return HAL_OK;
3305     case 1:
3306         if (p_base->version >= 0x0E0D) {
3307             if (p_modal->use_ant1) {
3308                 *config = ((p_modal->ant_ctrl_common & 0xFFFF0000) >> 16);
3309                 return HAL_OK;
3310             }
3311         }
3312         break;
3313     default:
3314         break;
3315     }
3316 #endif
3317     return HAL_EINVAL;
3318 }
3319 
3320 u_int8_t*
3321 ar9300_eeprom_get_cust_data(struct ath_hal_9300 *ahp)
3322 {
3323     return (u_int8_t *)ahp;
3324 }
3325 
3326 #ifdef UNUSED
3327 static inline HAL_STATUS
3328 ar9300_check_eeprom(struct ath_hal *ah)
3329 {
3330 #if 0
3331     u_int32_t sum = 0, el;
3332     u_int16_t *eepdata;
3333     int i;
3334     struct ath_hal_9300 *ahp = AH9300(ah);
3335     HAL_BOOL need_swap = AH_FALSE;
3336     ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom.def;
3337     u_int16_t magic, magic2;
3338     int addr;
3339     u_int16_t temp;
3340 
3341     /*
3342     ** We need to check the EEPROM data regardless of if it's in flash or
3343     ** in EEPROM.
3344     */
3345 
3346     if (!ahp->ah_priv.priv.ah_eeprom_read(
3347             ah, AR9300_EEPROM_MAGIC_OFFSET, &magic))
3348     {
3349         HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Reading Magic # failed\n", __func__);
3350         return AH_FALSE;
3351     }
3352 
3353     HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Read Magic = 0x%04X\n", __func__, magic);
3354 
3355     if (!ar9300_eep_data_in_flash(ah)) {
3356 
3357         if (magic != AR9300_EEPROM_MAGIC) {
3358             magic2 = SWAP16(magic);
3359 
3360             if (magic2 == AR9300_EEPROM_MAGIC) {
3361                 need_swap = AH_TRUE;
3362                 eepdata = (u_int16_t *)(&ahp->ah_eeprom);
3363 
3364                 for (addr = 0;
3365                      addr < sizeof(ar9300_eeprom_t) / sizeof(u_int16_t);
3366                      addr++)
3367                 {
3368                     temp = SWAP16(*eepdata);
3369                     *eepdata = temp;
3370                     eepdata++;
3371 
3372                     HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "0x%04X  ", *eepdata);
3373                     if (((addr + 1) % 6) == 0) {
3374                         HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "\n");
3375                     }
3376                 }
3377             } else {
3378                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
3379                     "Invalid EEPROM Magic. endianness missmatch.\n");
3380                 return HAL_EEBADSUM;
3381             }
3382         }
3383     } else {
3384         HALDEBUG(ah, HAL_DEBUG_EEPROM,
3385                  "EEPROM being read from flash @0x%p\n", AH_PRIVATE(ah)->ah_st);
3386     }
3387 
3388     HALDEBUG(ah, HAL_DEBUG_EEPROM, "need_swap = %s.\n", need_swap?"True":"False");
3389 
3390     if (need_swap) {
3391         el = SWAP16(ahp->ah_eeprom.def.base_eep_header.length);
3392     } else {
3393         el = ahp->ah_eeprom.def.base_eep_header.length;
3394     }
3395 
3396     eepdata = (u_int16_t *)(&ahp->ah_eeprom.def);
3397     for (i = 0;
3398          i < AH_MIN(el, sizeof(ar9300_eeprom_t)) / sizeof(u_int16_t);
3399          i++) {
3400         sum ^= *eepdata++;
3401     }
3402 
3403     if (need_swap) {
3404         /*
3405         *  preddy: EEPROM endianness does not match. So change it
3406         *  8bit values in eeprom data structure does not need to be swapped
3407         *  Only >8bits (16 & 32) values need to be swapped
3408         *  If a new 16 or 32 bit field is added to the EEPROM contents,
3409         *  please make sure to swap the field here
3410         */
3411         u_int32_t integer, j;
3412         u_int16_t word;
3413 
3414         HALDEBUG(ah, HAL_DEBUG_EEPROM,
3415             "EEPROM Endianness is not native.. Changing \n");
3416 
3417         /* convert Base Eep header */
3418         word = SWAP16(eep->base_eep_header.length);
3419         eep->base_eep_header.length = word;
3420 
3421         word = SWAP16(eep->base_eep_header.checksum);
3422         eep->base_eep_header.checksum = word;
3423 
3424         word = SWAP16(eep->base_eep_header.version);
3425         eep->base_eep_header.version = word;
3426 
3427         word = SWAP16(eep->base_eep_header.reg_dmn[0]);
3428         eep->base_eep_header.reg_dmn[0] = word;
3429 
3430         word = SWAP16(eep->base_eep_header.reg_dmn[1]);
3431         eep->base_eep_header.reg_dmn[1] = word;
3432 
3433         word = SWAP16(eep->base_eep_header.rf_silent);
3434         eep->base_eep_header.rf_silent = word;
3435 
3436         word = SWAP16(eep->base_eep_header.blue_tooth_options);
3437         eep->base_eep_header.blue_tooth_options = word;
3438 
3439         word = SWAP16(eep->base_eep_header.device_cap);
3440         eep->base_eep_header.device_cap = word;
3441 
3442         /* convert Modal Eep header */
3443         for (j = 0; j < ARRAY_LENGTH(eep->modal_header); j++) {
3444             MODAL_EEPDEF_HEADER *p_modal = &eep->modal_header[j];
3445             integer = SWAP32(p_modal->ant_ctrl_common);
3446             p_modal->ant_ctrl_common = integer;
3447 
3448             for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3449                 integer = SWAP32(p_modal->ant_ctrl_chain[i]);
3450                 p_modal->ant_ctrl_chain[i] = integer;
3451             }
3452 
3453             for (i = 0; i < AR9300_EEPROM_MODAL_SPURS; i++) {
3454                 word = SWAP16(p_modal->spur_chans[i].spur_chan);
3455                 p_modal->spur_chans[i].spur_chan = word;
3456             }
3457         }
3458     }
3459 
3460     /* Check CRC - Attach should fail on a bad checksum */
3461     if (sum != 0xffff || owl_get_eepdef_ver(ahp) != AR9300_EEP_VER ||
3462         owl_get_eepdef_rev(ahp) < AR9300_EEP_NO_BACK_VER) {
3463         HALDEBUG(ah, HAL_DEBUG_EEPROM,
3464             "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
3465             sum, owl_get_eepdef_ver(ahp));
3466         return HAL_EEBADSUM;
3467     }
3468 #ifdef EEPROM_DUMP
3469     ar9300_eeprom_def_dump(ah, eep);
3470 #endif
3471 
3472 #if 0
3473 #ifdef AH_AR9300_OVRD_TGT_PWR
3474 
3475     /*
3476      * 14.4 EEPROM contains low target powers.
3477      * Hardcode until EEPROM > 14.4
3478      */
3479     if (owl_get_eepdef_ver(ahp) == 14 && owl_get_eepdef_rev(ahp) <= 4) {
3480         MODAL_EEPDEF_HEADER *p_modal;
3481 
3482 #ifdef EEPROM_DUMP
3483         HALDEBUG(ah,  HAL_DEBUG_POWER_OVERRIDE, "Original Target Powers\n");
3484         ar9300_eep_def_dump_tgt_power(ah, eep);
3485 #endif
3486         HALDEBUG(ah,  HAL_DEBUG_POWER_OVERRIDE,
3487                 "Override Target Powers. EEPROM Version is %d.%d, "
3488                 "Device Type %d\n",
3489                 owl_get_eepdef_ver(ahp),
3490                 owl_get_eepdef_rev(ahp),
3491                 eep->base_eep_header.device_type);
3492 
3493 
3494         ar9300_eep_def_override_tgt_power(ah, eep);
3495 
3496         if (eep->base_eep_header.device_type == 5) {
3497             /* for xb72 only: improve transmit EVM for interop */
3498             p_modal = &eep->modal_header[1];
3499             p_modal->tx_frame_to_data_start = 0x23;
3500             p_modal->tx_frame_to_xpa_on = 0x23;
3501             p_modal->tx_frame_to_pa_on = 0x23;
3502     }
3503 
3504 #ifdef EEPROM_DUMP
3505         HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Modified Target Powers\n");
3506         ar9300_eep_def_dump_tgt_power(ah, eep);
3507 #endif
3508         }
3509 #endif /* AH_AR9300_OVRD_TGT_PWR */
3510 #endif
3511 #endif
3512     return HAL_OK;
3513 }
3514 #endif
3515 
3516 static u_int16_t
3517 ar9300_eeprom_get_spur_chan(struct ath_hal *ah, int i, HAL_BOOL is_2ghz)
3518 {
3519     u_int16_t   spur_val = AR_NO_SPUR;
3520 #if 0
3521     struct ath_hal_9300 *ahp = AH9300(ah);
3522     ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom;
3523 
3524     HALASSERT(i <  AR_EEPROM_MODAL_SPURS );
3525 
3526     HALDEBUG(ah, HAL_DEBUG_ANI,
3527              "Getting spur idx %d is2Ghz. %d val %x\n",
3528              i, is_2ghz,
3529              AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz]);
3530 
3531     switch (AH_PRIVATE(ah)->ah_config.ath_hal_spur_mode) {
3532     case SPUR_DISABLE:
3533         /* returns AR_NO_SPUR */
3534         break;
3535     case SPUR_ENABLE_IOCTL:
3536         spur_val = AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz];
3537         HALDEBUG(ah, HAL_DEBUG_ANI,
3538             "Getting spur val from new loc. %d\n", spur_val);
3539         break;
3540     case SPUR_ENABLE_EEPROM:
3541         spur_val = eep->modal_header[is_2ghz].spur_chans[i].spur_chan;
3542         break;
3543 
3544     }
3545 #endif
3546     return spur_val;
3547 }
3548 
3549 #ifdef UNUSED
3550 static inline HAL_BOOL
3551 ar9300_fill_eeprom(struct ath_hal *ah)
3552 {
3553     return ar9300_eeprom_restore(ah);
3554 }
3555 #endif
3556 
3557 u_int16_t
3558 ar9300_eeprom_struct_size(void)
3559 {
3560     return sizeof(ar9300_eeprom_t);
3561 }
3562 
3563 int ar9300_eeprom_struct_default_many(void)
3564 {
3565     return ARRAY_LENGTH(default9300);
3566 }
3567 
3568 
3569 ar9300_eeprom_t *
3570 ar9300_eeprom_struct_default(int default_index)
3571 {
3572     if (default_index >= 0 &&
3573         default_index < ARRAY_LENGTH(default9300))
3574     {
3575         return default9300[default_index];
3576     } else {
3577         return 0;
3578     }
3579 }
3580 
3581 ar9300_eeprom_t *
3582 ar9300_eeprom_struct_default_find_by_id(int id)
3583 {
3584     int it;
3585 
3586     for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
3587         if (default9300[it] != 0 && default9300[it]->template_version == id) {
3588             return default9300[it];
3589         }
3590     }
3591     return 0;
3592 }
3593 
3594 
3595 HAL_BOOL
3596 ar9300_calibration_data_read_flash(struct ath_hal *ah, long address,
3597     u_int8_t *buffer, int many)
3598 {
3599 
3600     if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE - 1)) {
3601         return AH_FALSE;
3602     }
3603     return AH_FALSE;
3604 }
3605 
3606 HAL_BOOL
3607 ar9300_calibration_data_read_eeprom(struct ath_hal *ah, long address,
3608     u_int8_t *buffer, int many)
3609 {
3610     int i;
3611     u_int8_t value[2];
3612     unsigned long eep_addr;
3613     unsigned long byte_addr;
3614     u_int16_t *svalue;
3615 
3616     if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE)) {
3617         return AH_FALSE;
3618     }
3619 
3620     for (i = 0; i < many; i++) {
3621         eep_addr = (u_int16_t) (address + i) / 2;
3622         byte_addr = (u_int16_t) (address + i) % 2;
3623         svalue = (u_int16_t *) value;
3624         if (! ath_hal_eepromRead(ah, eep_addr, svalue)) {
3625             HALDEBUG(ah, HAL_DEBUG_EEPROM,
3626                 "%s: Unable to read eeprom region \n", __func__);
3627             return AH_FALSE;
3628         }
3629         buffer[i] = (*svalue >> (8 * byte_addr)) & 0xff;
3630     }
3631     return AH_TRUE;
3632 }
3633 
3634 HAL_BOOL
3635 ar9300_calibration_data_read_otp(struct ath_hal *ah, long address,
3636     u_int8_t *buffer, int many, HAL_BOOL is_wifi)
3637 {
3638     int i;
3639     unsigned long eep_addr;
3640     unsigned long byte_addr;
3641     u_int32_t svalue;
3642 
3643     if (((address) < 0) || ((address + many) > 0x400)) {
3644         return AH_FALSE;
3645     }
3646 
3647     for (i = 0; i < many; i++) {
3648         eep_addr = (u_int16_t) (address + i) / 4; /* otp is 4 bytes long???? */
3649         byte_addr = (u_int16_t) (address + i) % 4;
3650         if (!ar9300_otp_read(ah, eep_addr, &svalue, is_wifi)) {
3651             HALDEBUG(ah, HAL_DEBUG_EEPROM,
3652                 "%s: Unable to read otp region \n", __func__);
3653             return AH_FALSE;
3654         }
3655         buffer[i] = (svalue >> (8 * byte_addr)) & 0xff;
3656     }
3657     return AH_TRUE;
3658 }
3659 
3660 #ifdef ATH_CAL_NAND_FLASH
3661 HAL_BOOL
3662 ar9300_calibration_data_read_nand(struct ath_hal *ah, long address,
3663     u_int8_t *buffer, int many)
3664 {
3665     int ret_len;
3666     int ret_val = 1;
3667 
3668       /* Calling OS based API to read NAND */
3669     ret_val = OS_NAND_FLASH_READ(ATH_CAL_NAND_PARTITION, address, many, &ret_len, buffer);
3670 
3671     return (ret_val ? AH_FALSE: AH_TRUE);
3672 }
3673 #endif
3674 
3675 HAL_BOOL
3676 ar9300_calibration_data_read(struct ath_hal *ah, long address,
3677     u_int8_t *buffer, int many)
3678 {
3679     switch (AH9300(ah)->calibration_data_source) {
3680     case calibration_data_flash:
3681         return ar9300_calibration_data_read_flash(ah, address, buffer, many);
3682     case calibration_data_eeprom:
3683         return ar9300_calibration_data_read_eeprom(ah, address, buffer, many);
3684     case calibration_data_otp:
3685         return ar9300_calibration_data_read_otp(ah, address, buffer, many, 1);
3686 #ifdef ATH_CAL_NAND_FLASH
3687     case calibration_data_nand:
3688         return ar9300_calibration_data_read_nand(ah,address,buffer,many);
3689 #endif
3690 
3691     }
3692     return AH_FALSE;
3693 }
3694 
3695 
3696 HAL_BOOL
3697 ar9300_calibration_data_read_array(struct ath_hal *ah, int address,
3698     u_int8_t *buffer, int many)
3699 {
3700     int it;
3701 
3702     for (it = 0; it < many; it++) {
3703         (void)ar9300_calibration_data_read(ah, address - it, buffer + it, 1);
3704     }
3705     return AH_TRUE;
3706 }
3707 
3708 
3709 /*
3710  * the address where the first configuration block is written
3711  */
3712 static const int base_address = 0x3ff;                /* 1KB */
3713 static const int base_address_512 = 0x1ff;            /* 512Bytes */
3714 
3715 /*
3716  * the address where the NAND first configuration block is written
3717  */
3718 #ifdef ATH_CAL_NAND_FLASH
3719 static const int base_address_nand = AR9300_FLASH_CAL_START_OFFSET;
3720 #endif
3721 
3722 
3723 /*
3724  * the lower limit on configuration data
3725  */
3726 static const int low_limit = 0x040;
3727 
3728 /*
3729  * returns size of the physical eeprom in bytes.
3730  * 1024 and 2048 are normal sizes.
3731  * 0 means there is no eeprom.
3732  */
3733 int32_t
3734 ar9300_eeprom_size(struct ath_hal *ah)
3735 {
3736     u_int16_t data;
3737     /*
3738      * first we'll try for 4096 bytes eeprom
3739      */
3740     if (ar9300_eeprom_read_word(ah, 2047, &data)) {
3741         if (data != 0) {
3742             return 4096;
3743         }
3744     }
3745     /*
3746      * then we'll try for 2048 bytes eeprom
3747      */
3748     if (ar9300_eeprom_read_word(ah, 1023, &data)) {
3749         if (data != 0) {
3750             return 2048;
3751         }
3752     }
3753     /*
3754      * then we'll try for 1024 bytes eeprom
3755      */
3756     if (ar9300_eeprom_read_word(ah, 511, &data)) {
3757         if (data != 0) {
3758             return 1024;
3759         }
3760     }
3761     return 0;
3762 }
3763 
3764 /*
3765  * returns size of the physical otp in bytes.
3766  * 1024 and 2048 are normal sizes.
3767  * 0 means there is no eeprom.
3768  */
3769 int32_t
3770 ar9300_otp_size(struct ath_hal *ah)
3771 {
3772     if (AR_SREV_POSEIDON(ah) || AR_SREV_HORNET(ah)) {
3773         return base_address_512+1;
3774     } else {
3775         return base_address+1;
3776     }
3777 }
3778 
3779 
3780 /*
3781  * find top of memory
3782  */
3783 int
3784 ar9300_eeprom_base_address(struct ath_hal *ah)
3785 {
3786     int size;
3787 
3788     if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
3789 		return ar9300_otp_size(ah)-1;
3790 	}
3791 	else
3792 	{
3793 		size = ar9300_eeprom_size(ah);
3794 		if (size > 0) {
3795 			return size - 1;
3796 		} else {
3797 			return ar9300_otp_size(ah)-1;
3798 		}
3799 	}
3800 }
3801 
3802 int
3803 ar9300_eeprom_volatile(struct ath_hal *ah)
3804 {
3805     if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
3806         return 0;        /* no eeprom, use otp */
3807     } else {
3808         return 1;        /* board has eeprom or flash */
3809     }
3810 }
3811 
3812 /*
3813  * need to change this to look for the pcie data in the low parts of memory
3814  * cal data needs to stop a few locations above
3815  */
3816 int
3817 ar9300_eeprom_low_limit(struct ath_hal *ah)
3818 {
3819     return low_limit;
3820 }
3821 
3822 u_int16_t
3823 ar9300_compression_checksum(u_int8_t *data, int dsize)
3824 {
3825     int it;
3826     int checksum = 0;
3827 
3828     for (it = 0; it < dsize; it++) {
3829         checksum += data[it];
3830         checksum &= 0xffff;
3831     }
3832 
3833     return checksum;
3834 }
3835 
3836 int
3837 ar9300_compression_header_unpack(u_int8_t *best, int *code, int *reference,
3838     int *length, int *major, int *minor)
3839 {
3840     unsigned long value[4];
3841 
3842     value[0] = best[0];
3843     value[1] = best[1];
3844     value[2] = best[2];
3845     value[3] = best[3];
3846     *code = ((value[0] >> 5) & 0x0007);
3847     *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3848     *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3849     *major = (value[2] & 0x000f);
3850     *minor = (value[3] & 0x00ff);
3851 
3852     return 4;
3853 }
3854 
3855 
3856 static HAL_BOOL
3857 ar9300_uncompress_block(struct ath_hal *ah, u_int8_t *mptr, int mdata_size,
3858     u_int8_t *block, int size)
3859 {
3860     int it;
3861     int spot;
3862     int offset;
3863     int length;
3864 
3865     spot = 0;
3866     for (it = 0; it < size; it += (length + 2)) {
3867         offset = block[it];
3868         offset &= 0xff;
3869         spot += offset;
3870         length = block[it + 1];
3871         length &= 0xff;
3872         if (length > 0 && spot >= 0 && spot + length <= mdata_size) {
3873             HALDEBUG(ah, HAL_DEBUG_EEPROM,
3874                 "%s: Restore at %d: spot=%d offset=%d length=%d\n",
3875                 __func__, it, spot, offset, length);
3876             OS_MEMCPY(&mptr[spot], &block[it + 2], length);
3877             spot += length;
3878         } else if (length > 0) {
3879             HALDEBUG(ah, HAL_DEBUG_EEPROM,
3880                 "%s: Bad restore at %d: spot=%d offset=%d length=%d\n",
3881                 __func__, it, spot, offset, length);
3882             return AH_FALSE;
3883         }
3884     }
3885     return AH_TRUE;
3886 }
3887 
3888 static int
3889 ar9300_eeprom_restore_internal_address(struct ath_hal *ah,
3890     ar9300_eeprom_t *mptr, int mdata_size, int cptr, u_int8_t blank)
3891 {
3892     u_int8_t word[MOUTPUT];
3893     ar9300_eeprom_t *dptr; /* was uint8 */
3894     int code;
3895     int reference, length, major, minor;
3896     int osize;
3897     int it;
3898     int restored;
3899     u_int16_t checksum, mchecksum;
3900 
3901     restored = 0;
3902     for (it = 0; it < MSTATE; it++) {
3903         (void) ar9300_calibration_data_read_array(
3904             ah, cptr, word, compression_header_length);
3905         if (word[0] == blank && word[1] == blank && word[2] == blank && word[3] == blank)
3906         {
3907             break;
3908         }
3909         ar9300_compression_header_unpack(
3910             word, &code, &reference, &length, &major, &minor);
3911         HALDEBUG(ah, HAL_DEBUG_EEPROM,
3912             "%s: Found block at %x: "
3913             "code=%d ref=%d length=%d major=%d minor=%d\n",
3914             __func__, cptr, code, reference, length, major, minor);
3915 #ifdef DONTUSE
3916         if (length >= 1024) {
3917             HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Skipping bad header\n", __func__);
3918             cptr -= compression_header_length;
3919             continue;
3920         }
3921 #endif
3922         osize = length;
3923         (void) ar9300_calibration_data_read_array(
3924             ah, cptr, word,
3925             compression_header_length + osize + compression_checksum_length);
3926         checksum = ar9300_compression_checksum(
3927             &word[compression_header_length], length);
3928         mchecksum =
3929             word[compression_header_length + osize] |
3930             (word[compression_header_length + osize + 1] << 8);
3931         HALDEBUG(ah, HAL_DEBUG_EEPROM,
3932             "%s: checksum %x %x\n", __func__, checksum, mchecksum);
3933         if (checksum == mchecksum) {
3934             switch (code) {
3935             case _compress_none:
3936                 if (length != mdata_size) {
3937                     HALDEBUG(ah, HAL_DEBUG_EEPROM,
3938                         "%s: EEPROM structure size mismatch "
3939                         "memory=%d eeprom=%d\n", __func__, mdata_size, length);
3940                     return -1;
3941                 }
3942                 OS_MEMCPY((u_int8_t *)mptr,
3943                     (u_int8_t *)(word + compression_header_length), length);
3944                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
3945                     "%s: restored eeprom %d: uncompressed, length %d\n",
3946                     __func__, it, length);
3947                 restored = 1;
3948                 break;
3949 #ifdef UNUSED
3950             case _compress_lzma:
3951                 if (reference == reference_current) {
3952                     dptr = mptr;
3953                 } else {
3954                     dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
3955                         reference);
3956                     if (dptr == 0) {
3957                         HALDEBUG(ah, HAL_DEBUG_EEPROM,
3958                             "%s: Can't find reference eeprom struct %d\n",
3959                             __func__, reference);
3960                         goto done;
3961                     }
3962                 }
3963                 usize = -1;
3964                 if (usize != mdata_size) {
3965                     HALDEBUG(ah, HAL_DEBUG_EEPROM,
3966                         "%s: uncompressed data is wrong size %d %d\n",
3967                         __func__, usize, mdata_size);
3968                     goto done;
3969                 }
3970 
3971                 for (ib = 0; ib < mdata_size; ib++) {
3972                     mptr[ib] = dptr[ib] ^ word[ib + overhead];
3973                 }
3974                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
3975                     "%s: restored eeprom %d: compressed, "
3976                     "reference %d, length %d\n",
3977                     __func__, it, reference, length);
3978                 break;
3979             case _compress_pairs:
3980                 if (reference == reference_current) {
3981                     dptr = mptr;
3982                 } else {
3983                     dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
3984                         reference);
3985                     if (dptr == 0) {
3986                         HALDEBUG(ah, HAL_DEBUG_EEPROM,
3987                             "%s: Can't find the reference "
3988                             "eeprom structure %d\n",
3989                             __func__, reference);
3990                         goto done;
3991                     }
3992                 }
3993                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
3994                     "%s: restored eeprom %d: "
3995                     "pairs, reference %d, length %d,\n",
3996                     __func__, it, reference, length);
3997                 break;
3998 #endif
3999             case _compress_block:
4000                 if (reference == reference_current) {
4001                     dptr = mptr;
4002                 } else {
4003                     dptr = ar9300_eeprom_struct_default_find_by_id(reference);
4004                     if (dptr == 0) {
4005                         HALDEBUG(ah, HAL_DEBUG_EEPROM,
4006                             "%s: cant find reference eeprom struct %d\n",
4007                             __func__, reference);
4008                         break;
4009                     }
4010                     OS_MEMCPY(mptr, dptr, mdata_size);
4011                 }
4012 
4013                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
4014                     "%s: restore eeprom %d: block, reference %d, length %d\n",
4015                     __func__, it, reference, length);
4016                 (void) ar9300_uncompress_block(ah,
4017                     (u_int8_t *) mptr, mdata_size,
4018                     (u_int8_t *) (word + compression_header_length), length);
4019                 restored = 1;
4020                 break;
4021             default:
4022                 HALDEBUG(ah, HAL_DEBUG_EEPROM,
4023                     "%s: unknown compression code %d\n", __func__, code);
4024                 break;
4025             }
4026         } else {
4027             HALDEBUG(ah, HAL_DEBUG_EEPROM,
4028                 "%s: skipping block with bad checksum\n", __func__);
4029         }
4030         cptr -= compression_header_length + osize + compression_checksum_length;
4031     }
4032 
4033     if (!restored) {
4034         cptr = -1;
4035     }
4036     return cptr;
4037 }
4038 
4039 static int
4040 ar9300_eeprom_restore_from_dram(struct ath_hal *ah, ar9300_eeprom_t *mptr,
4041     int mdata_size)
4042 {
4043     struct ath_hal_9300 *ahp = AH9300(ah);
4044 #if !defined(USE_PLATFORM_FRAMEWORK)
4045     char *cal_ptr;
4046 #endif
4047 
4048     HALASSERT(mdata_size > 0);
4049 
4050     /* if cal_in_flash is AH_TRUE, the address sent by LMAC to HAL
4051        (i.e. ah->ah_st) is corresponding to Flash. so return from
4052        here if ar9300_eep_data_in_flash(ah) returns AH_TRUE */
4053     if(ar9300_eep_data_in_flash(ah))
4054         return -1;
4055 
4056 #if 0
4057     /* check if LMAC sent DRAM address is valid */
4058     if (!(uintptr_t)(AH_PRIVATE(ah)->ah_st)) {
4059         return -1;
4060     }
4061 #endif
4062 
4063     /* When calibration data is from host, Host will copy the
4064        compressed data to the predefined DRAM location saved at ah->ah_st */
4065 #if 0
4066     ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
4067     ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
4068 							HOST_CALDATA_SIZE);
4069 #endif
4070     if (!ahp->ah_cal_mem)
4071     {
4072        HALDEBUG(ah, HAL_DEBUG_EEPROM,"%s: can't remap dram region\n", __func__);
4073        return -1;
4074     }
4075 #if !defined(USE_PLATFORM_FRAMEWORK)
4076     cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
4077     OS_MEMCPY(mptr, cal_ptr, mdata_size);
4078 #else
4079     OS_MEMCPY(mptr, ahp->ah_cal_mem, mdata_size);
4080 #endif
4081 
4082     if (mptr->eeprom_version   == 0xff ||
4083         mptr->template_version == 0xff ||
4084         mptr->eeprom_version   == 0    ||
4085         mptr->template_version == 0)
4086     {
4087         /* The board is uncalibrated */
4088         return -1;
4089     }
4090     if (mptr->eeprom_version != 0x2)
4091     {
4092         return -1;
4093     }
4094 
4095     return mdata_size;
4096 
4097 }
4098 
4099 static int
4100 ar9300_eeprom_restore_from_flash(struct ath_hal *ah, ar9300_eeprom_t *mptr,
4101     int mdata_size)
4102 {
4103     struct ath_hal_9300 *ahp = AH9300(ah);
4104     char *cal_ptr;
4105 
4106     HALASSERT(mdata_size > 0);
4107 
4108     if (!ahp->ah_cal_mem) {
4109         return -1;
4110     }
4111 
4112     ath_hal_printf(ah, "Restoring Cal data from Flash\n");
4113     /*
4114      * When calibration data is saved in flash, read
4115      * uncompressed eeprom structure from flash and return
4116      */
4117     cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
4118     OS_MEMCPY(mptr, cal_ptr, mdata_size);
4119 #if 0
4120     ar9300_swap_eeprom((ar9300_eeprom_t *)mptr); DONE IN ar9300_restore()
4121 #endif
4122     if (mptr->eeprom_version   == 0xff ||
4123         mptr->template_version == 0xff ||
4124         mptr->eeprom_version   == 0    ||
4125         mptr->template_version == 0)
4126     {
4127         /* The board is uncalibrated */
4128         return -1;
4129     }
4130     if (mptr->eeprom_version != 0x2)
4131     {
4132         return -1;
4133     }
4134     return mdata_size;
4135 }
4136 
4137 /*
4138  * Read the configuration data from the storage. We try the order with:
4139  * EEPROM, Flash, OTP. If all of above failed, use the default template.
4140  * The data can be put in any specified memory buffer.
4141  *
4142  * Returns -1 on error.
4143  * Returns address of next memory location on success.
4144  */
4145 int
4146 ar9300_eeprom_restore_internal(struct ath_hal *ah, ar9300_eeprom_t *mptr,
4147     int mdata_size)
4148 {
4149     int nptr;
4150 
4151     nptr = -1;
4152 
4153     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4154          AH9300(ah)->calibration_data_try == calibration_data_dram) &&
4155          AH9300(ah)->try_dram && nptr < 0)
4156     {
4157         ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
4158         AH9300(ah)->calibration_data_source = calibration_data_dram;
4159         AH9300(ah)->calibration_data_source_address = 0;
4160         nptr = ar9300_eeprom_restore_from_dram(ah, mptr, mdata_size);
4161         if (nptr < 0) {
4162             AH9300(ah)->calibration_data_source = calibration_data_none;
4163             AH9300(ah)->calibration_data_source_address = 0;
4164         }
4165     }
4166 
4167     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4168          AH9300(ah)->calibration_data_try == calibration_data_eeprom) &&
4169         AH9300(ah)->try_eeprom && nptr < 0)
4170     {
4171         /*
4172          * need to look at highest eeprom address as well as at
4173          * base_address=0x3ff where we used to write the data
4174          */
4175         ath_hal_printf(ah, "Restoring Cal data from EEPROM\n");
4176         AH9300(ah)->calibration_data_source = calibration_data_eeprom;
4177         if (AH9300(ah)->calibration_data_try_address != 0) {
4178             AH9300(ah)->calibration_data_source_address =
4179                 AH9300(ah)->calibration_data_try_address;
4180             nptr = ar9300_eeprom_restore_internal_address(
4181                 ah, mptr, mdata_size,
4182                 AH9300(ah)->calibration_data_source_address, 0xff);
4183         } else {
4184             AH9300(ah)->calibration_data_source_address =
4185                 ar9300_eeprom_base_address(ah);
4186             nptr = ar9300_eeprom_restore_internal_address(
4187                 ah, mptr, mdata_size,
4188                 AH9300(ah)->calibration_data_source_address, 0xff);
4189             if (nptr < 0 &&
4190                 AH9300(ah)->calibration_data_source_address != base_address)
4191             {
4192                 AH9300(ah)->calibration_data_source_address = base_address;
4193                 nptr = ar9300_eeprom_restore_internal_address(
4194                     ah, mptr, mdata_size,
4195                     AH9300(ah)->calibration_data_source_address, 0xff);
4196             }
4197         }
4198         if (nptr < 0) {
4199             AH9300(ah)->calibration_data_source = calibration_data_none;
4200             AH9300(ah)->calibration_data_source_address = 0;
4201         }
4202     }
4203 
4204     /*
4205      * ##### should be an ifdef test for any AP usage,
4206      * either in driver or in nart
4207      */
4208     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4209          AH9300(ah)->calibration_data_try == calibration_data_flash) &&
4210         AH9300(ah)->try_flash && nptr < 0)
4211     {
4212         ath_hal_printf(ah, "Restoring Cal data from Flash\n");
4213         AH9300(ah)->calibration_data_source = calibration_data_flash;
4214         /* how are we supposed to set this for flash? */
4215         AH9300(ah)->calibration_data_source_address = 0;
4216         nptr = ar9300_eeprom_restore_from_flash(ah, mptr, mdata_size);
4217         if (nptr < 0) {
4218             AH9300(ah)->calibration_data_source = calibration_data_none;
4219             AH9300(ah)->calibration_data_source_address = 0;
4220         }
4221     }
4222 
4223     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4224          AH9300(ah)->calibration_data_try == calibration_data_otp) &&
4225         AH9300(ah)->try_otp && nptr < 0)
4226     {
4227         ath_hal_printf(ah, "Restoring Cal data from OTP\n");
4228         AH9300(ah)->calibration_data_source = calibration_data_otp;
4229         if (AH9300(ah)->calibration_data_try_address != 0) {
4230             AH9300(ah)->calibration_data_source_address =
4231                 AH9300(ah)->calibration_data_try_address;
4232 		} else {
4233             AH9300(ah)->calibration_data_source_address =
4234                 ar9300_eeprom_base_address(ah);
4235 		}
4236         nptr = ar9300_eeprom_restore_internal_address(
4237             ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0);
4238         if (nptr < 0) {
4239             AH9300(ah)->calibration_data_source = calibration_data_none;
4240             AH9300(ah)->calibration_data_source_address = 0;
4241         }
4242     }
4243 
4244 #ifdef ATH_CAL_NAND_FLASH
4245     if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4246          AH9300(ah)->calibration_data_try == calibration_data_nand) &&
4247         AH9300(ah)->try_nand && nptr < 0)
4248     {
4249         AH9300(ah)->calibration_data_source = calibration_data_nand;
4250         AH9300(ah)->calibration_data_source_address = ((unsigned int)(AH_PRIVATE(ah)->ah_st)) + base_address_nand;
4251         if(ar9300_calibration_data_read(
4252             ah, AH9300(ah)->calibration_data_source_address,
4253             (u_int8_t *)mptr, mdata_size) == AH_TRUE)
4254         {
4255             nptr = mdata_size;
4256         }
4257         /*nptr=ar9300EepromRestoreInternalAddress(ah, mptr, mdataSize, CalibrationDataSourceAddress);*/
4258         if(nptr < 0)
4259         {
4260             AH9300(ah)->calibration_data_source = calibration_data_none;
4261             AH9300(ah)->calibration_data_source_address = 0;
4262         }
4263     }
4264 #endif
4265     if (nptr < 0) {
4266         ath_hal_printf(ah, "%s[%d] No vaid CAL, calling default template\n",
4267             __func__, __LINE__);
4268         nptr = ar9300_eeprom_restore_something(ah, mptr, mdata_size);
4269     }
4270 
4271     return nptr;
4272 }
4273 
4274 /******************************************************************************/
4275 /*!
4276 **  \brief Eeprom Swapping Function
4277 **
4278 **  This function will swap the contents of the "longer" EEPROM data items
4279 **  to ensure they are consistent with the endian requirements for the platform
4280 **  they are being compiled for
4281 **
4282 **  \param eh    Pointer to the EEPROM data structure
4283 **  \return N/A
4284 */
4285 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
4286 void
4287 ar9300_swap_eeprom(ar9300_eeprom_t *eep)
4288 {
4289     u_int32_t dword;
4290     u_int16_t word;
4291     int          i;
4292 
4293     word = __bswap16(eep->base_eep_header.reg_dmn[0]);
4294     eep->base_eep_header.reg_dmn[0] = word;
4295 
4296     word = __bswap16(eep->base_eep_header.reg_dmn[1]);
4297     eep->base_eep_header.reg_dmn[1] = word;
4298 
4299     dword = __bswap32(eep->base_eep_header.swreg);
4300     eep->base_eep_header.swreg = dword;
4301 
4302     dword = __bswap32(eep->modal_header_2g.ant_ctrl_common);
4303     eep->modal_header_2g.ant_ctrl_common = dword;
4304 
4305     dword = __bswap32(eep->modal_header_2g.ant_ctrl_common2);
4306     eep->modal_header_2g.ant_ctrl_common2 = dword;
4307 
4308     dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht20);
4309     eep->modal_header_2g.paprd_rate_mask_ht20 = dword;
4310 
4311     dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht40);
4312     eep->modal_header_2g.paprd_rate_mask_ht40 = dword;
4313 
4314     dword = __bswap32(eep->modal_header_5g.ant_ctrl_common);
4315     eep->modal_header_5g.ant_ctrl_common = dword;
4316 
4317     dword = __bswap32(eep->modal_header_5g.ant_ctrl_common2);
4318     eep->modal_header_5g.ant_ctrl_common2 = dword;
4319 
4320     dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht20);
4321     eep->modal_header_5g.paprd_rate_mask_ht20 = dword;
4322 
4323     dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht40);
4324     eep->modal_header_5g.paprd_rate_mask_ht40 = dword;
4325 
4326     for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
4327         word = __bswap16(eep->modal_header_2g.ant_ctrl_chain[i]);
4328         eep->modal_header_2g.ant_ctrl_chain[i] = word;
4329 
4330         word = __bswap16(eep->modal_header_5g.ant_ctrl_chain[i]);
4331         eep->modal_header_5g.ant_ctrl_chain[i] = word;
4332     }
4333 }
4334 
4335 void ar9300_eeprom_template_swap(void)
4336 {
4337     int it;
4338     ar9300_eeprom_t *dptr;
4339 
4340     for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
4341         dptr = ar9300_eeprom_struct_default(it);
4342         if (dptr != 0) {
4343             ar9300_swap_eeprom(dptr);
4344         }
4345     }
4346 }
4347 #endif
4348 
4349 
4350 /*
4351  * Restore the configuration structure by reading the eeprom.
4352  * This function destroys any existing in-memory structure content.
4353  */
4354 HAL_BOOL
4355 ar9300_eeprom_restore(struct ath_hal *ah)
4356 {
4357     struct ath_hal_9300 *ahp = AH9300(ah);
4358     ar9300_eeprom_t *mptr;
4359     int mdata_size;
4360     HAL_BOOL status = AH_FALSE;
4361 
4362     mptr = &ahp->ah_eeprom;
4363     mdata_size = ar9300_eeprom_struct_size();
4364 
4365     if (mptr != 0 && mdata_size > 0) {
4366 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
4367         ar9300_eeprom_template_swap();
4368         ar9300_swap_eeprom(mptr);
4369 #endif
4370         /*
4371          * At this point, mptr points to the eeprom data structure
4372          * in it's "default" state.  If this is big endian, swap the
4373          * data structures back to "little endian" form.
4374          */
4375         if (ar9300_eeprom_restore_internal(ah, mptr, mdata_size) >= 0) {
4376             status = AH_TRUE;
4377         }
4378 
4379 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
4380         /* Second Swap, back to Big Endian */
4381         ar9300_eeprom_template_swap();
4382         ar9300_swap_eeprom(mptr);
4383 #endif
4384 
4385     }
4386     ahp->ah_2g_paprd_rate_mask_ht40 =
4387         mptr->modal_header_2g.paprd_rate_mask_ht40;
4388     ahp->ah_2g_paprd_rate_mask_ht20 =
4389         mptr->modal_header_2g.paprd_rate_mask_ht20;
4390     ahp->ah_5g_paprd_rate_mask_ht40 =
4391         mptr->modal_header_5g.paprd_rate_mask_ht40;
4392     ahp->ah_5g_paprd_rate_mask_ht20 =
4393         mptr->modal_header_5g.paprd_rate_mask_ht20;
4394     return status;
4395 }
4396 
4397 int32_t ar9300_thermometer_get(struct ath_hal *ah)
4398 {
4399     struct ath_hal_9300 *ahp = AH9300(ah);
4400     int thermometer;
4401     thermometer =
4402         (ahp->ah_eeprom.base_eep_header.misc_configuration >> 1) & 0x3;
4403     thermometer--;
4404     return thermometer;
4405 }
4406 
4407 HAL_BOOL ar9300_thermometer_apply(struct ath_hal *ah)
4408 {
4409     int thermometer = ar9300_thermometer_get(ah);
4410 
4411 /* ch0_RXTX4 */
4412 /*#define AR_PHY_65NM_CH0_RXTX4       AR_PHY_65NM(ch0_RXTX4)*/
4413 #define AR_PHY_65NM_CH1_RXTX4       AR_PHY_65NM(ch1_RXTX4)
4414 #define AR_PHY_65NM_CH2_RXTX4       AR_PHY_65NM(ch2_RXTX4)
4415 /*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON          0x10000000*/
4416 /*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_S        28*/
4417 #define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S      29
4418 #define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR        \
4419     (0x1<<AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S)
4420 
4421     if (thermometer < 0) {
4422         OS_REG_RMW_FIELD(ah,
4423             AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
4424         if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4425             OS_REG_RMW_FIELD(ah,
4426                 AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
4427             if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)  ) {
4428                 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4429                     AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
4430             }
4431         }
4432         OS_REG_RMW_FIELD(ah,
4433             AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4434         if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4435             OS_REG_RMW_FIELD(ah,
4436                 AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4437             if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
4438                 OS_REG_RMW_FIELD(ah,
4439                     AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4440             }
4441         }
4442     } else {
4443         OS_REG_RMW_FIELD(ah,
4444             AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
4445         if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4446             OS_REG_RMW_FIELD(ah,
4447                 AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
4448             if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)  ) {
4449                 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4450                     AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
4451             }
4452         }
4453         if (thermometer == 0) {
4454             OS_REG_RMW_FIELD(ah,
4455                 AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
4456             if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4457                 OS_REG_RMW_FIELD(ah,
4458                     AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4459                 if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
4460                     OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4461                         AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4462                 }
4463             }
4464         } else if (thermometer == 1) {
4465             OS_REG_RMW_FIELD(ah,
4466                 AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4467             if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4468                 OS_REG_RMW_FIELD(ah,
4469                     AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
4470                 if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
4471                     OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4472                         AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4473                 }
4474             }
4475         } else if (thermometer == 2) {
4476             OS_REG_RMW_FIELD(ah,
4477                 AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4478             if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4479                 OS_REG_RMW_FIELD(ah,
4480                     AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4481                 if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
4482                     OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4483                         AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
4484                 }
4485             }
4486         }
4487     }
4488     return AH_TRUE;
4489 }
4490 
4491 static int32_t ar9300_tuning_caps_params_get(struct ath_hal *ah)
4492 {
4493     int tuning_caps_params;
4494     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4495     tuning_caps_params = eep->base_eep_header.params_for_tuning_caps[0];
4496     return tuning_caps_params;
4497 }
4498 
4499 /*
4500  * Read the tuning caps params from eeprom and set to correct register.
4501  * To regulation the frequency accuracy.
4502  */
4503 HAL_BOOL ar9300_tuning_caps_apply(struct ath_hal *ah)
4504 {
4505     int tuning_caps_params;
4506     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4507     tuning_caps_params = ar9300_tuning_caps_params_get(ah);
4508     if ((eep->base_eep_header.feature_enable & 0x40) >> 6) {
4509         tuning_caps_params &= 0x7f;
4510 
4511         if (AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) {
4512             return true;
4513         } else if (AR_SREV_HORNET(ah)) {
4514             OS_REG_RMW_FIELD(ah,
4515                 AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
4516                 tuning_caps_params);
4517             OS_REG_RMW_FIELD(ah,
4518                 AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
4519                 tuning_caps_params);
4520         } else if (AR_SREV_SCORPION(ah)) {
4521             OS_REG_RMW_FIELD(ah,
4522                 AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
4523                 tuning_caps_params);
4524             OS_REG_RMW_FIELD(ah,
4525                 AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
4526                 tuning_caps_params);
4527         } else {
4528             OS_REG_RMW_FIELD(ah,
4529                 AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
4530                 tuning_caps_params);
4531             OS_REG_RMW_FIELD(ah,
4532                 AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
4533                 tuning_caps_params);
4534         }
4535 
4536     }
4537     return AH_TRUE;
4538 }
4539 
4540 /*
4541  * Read the tx_frame_to_xpa_on param from eeprom and apply the value to
4542  * correct register.
4543  */
4544 HAL_BOOL ar9300_xpa_timing_control_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
4545 {
4546     u_int8_t xpa_timing_control;
4547     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4548     if ((eep->base_eep_header.feature_enable & 0x80) >> 7) {
4549 		if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) {
4550 			if (is_2ghz) {
4551                 xpa_timing_control = eep->modal_header_2g.tx_frame_to_xpa_on;
4552                 OS_REG_RMW_FIELD(ah,
4553 						AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON,
4554 						xpa_timing_control);
4555 			} else {
4556                 xpa_timing_control = eep->modal_header_5g.tx_frame_to_xpa_on;
4557                 OS_REG_RMW_FIELD(ah,
4558 						AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON,
4559 						xpa_timing_control);
4560 			}
4561 		}
4562 	}
4563     return AH_TRUE;
4564 }
4565 
4566 
4567 /*
4568  * Read the xLNA_bias_strength param from eeprom and apply the value to
4569  * correct register.
4570  */
4571 HAL_BOOL ar9300_x_lNA_bias_strength_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
4572 {
4573     u_int8_t x_lNABias;
4574     u_int32_t value = 0;
4575     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4576 
4577     if ((eep->base_eep_header.misc_configuration & 0x40) >> 6) {
4578         if (AR_SREV_OSPREY(ah)) {
4579             if (is_2ghz) {
4580                 x_lNABias = eep->modal_header_2g.xLNA_bias_strength;
4581             } else {
4582                 x_lNABias = eep->modal_header_5g.xLNA_bias_strength;
4583             }
4584             value = x_lNABias & ( 0x03 );	// bit0,1 for chain0
4585             OS_REG_RMW_FIELD(ah,
4586 					AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
4587             value = (x_lNABias >> 2) & ( 0x03 );	// bit2,3 for chain1
4588             OS_REG_RMW_FIELD(ah,
4589 					AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
4590             value = (x_lNABias >> 4) & ( 0x03 );	// bit4,5 for chain2
4591             OS_REG_RMW_FIELD(ah,
4592 					AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
4593         }
4594     }
4595     return AH_TRUE;
4596 }
4597 
4598 
4599 /*
4600  * Read EEPROM header info and program the device for correct operation
4601  * given the channel value.
4602  */
4603 HAL_BOOL
4604 ar9300_eeprom_set_board_values(struct ath_hal *ah, const struct ieee80211_channel *chan)
4605 {
4606     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
4607 
4608     ar9300_xpa_bias_level_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4609 
4610     ar9300_xpa_timing_control_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4611 
4612     ar9300_ant_ctrl_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4613     ar9300_drive_strength_apply(ah);
4614 
4615     ar9300_x_lNA_bias_strength_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4616 
4617 	/* wait for Poseidon internal regular turnning */
4618     /* for Hornet we move it before initPLL to avoid an access issue */
4619     /* Function not used when EMULATION. */
4620     if (!AR_SREV_HORNET(ah) && !AR_SREV_WASP(ah) && !AR_SREV_HONEYBEE(ah)) {
4621         ar9300_internal_regulator_apply(ah);
4622     }
4623 
4624     ar9300_attenuation_apply(ah, ichan->channel);
4625     ar9300_quick_drop_apply(ah, ichan->channel);
4626     ar9300_thermometer_apply(ah);
4627     if(!AR_SREV_WASP(ah))
4628     {
4629         ar9300_tuning_caps_apply(ah);
4630     }
4631 
4632     ar9300_tx_end_to_xpab_off_apply(ah, ichan->channel);
4633 
4634     return AH_TRUE;
4635 }
4636 
4637 u_int8_t *
4638 ar9300_eeprom_get_spur_chans_ptr(struct ath_hal *ah, HAL_BOOL is_2ghz)
4639 {
4640     ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4641 
4642     if (is_2ghz) {
4643         return &(eep->modal_header_2g.spur_chans[0]);
4644     } else {
4645         return &(eep->modal_header_5g.spur_chans[0]);
4646     }
4647 }
4648 
4649 static u_int8_t ar9300_eeprom_get_tx_gain_table_number_max(struct ath_hal *ah)
4650 {
4651     unsigned long tx_gain_table_max;
4652     tx_gain_table_max = OS_REG_READ_FIELD(ah,
4653         AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX);
4654     return tx_gain_table_max;
4655 }
4656 
4657 u_int8_t ar9300_eeprom_tx_gain_table_index_max_apply(struct ath_hal *ah, u_int16_t channel)
4658 {
4659     unsigned int index;
4660     ar9300_eeprom_t *ahp_Eeprom;
4661     struct ath_hal_9300 *ahp = AH9300(ah);
4662 
4663     ahp_Eeprom = &ahp->ah_eeprom;
4664 
4665     if (ahp_Eeprom->base_ext1.misc_enable == 0)
4666         return AH_FALSE;
4667 
4668     if (channel < 4000)
4669     {
4670         index = ahp_Eeprom->modal_header_2g.tx_gain_cap;
4671     }
4672     else
4673     {
4674         index = ahp_Eeprom->modal_header_5g.tx_gain_cap;
4675     }
4676 
4677     OS_REG_RMW_FIELD(ah,
4678         AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX, index);
4679     return AH_TRUE;
4680 }
4681 
4682 static u_int8_t ar9300_eeprom_get_pcdac_tx_gain_table_i(struct ath_hal *ah,
4683                                                int i, u_int8_t *pcdac)
4684 {
4685     unsigned long tx_gain;
4686     u_int8_t tx_gain_table_max;
4687     tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
4688     if (i <= 0 || i > tx_gain_table_max) {
4689         *pcdac = 0;
4690         return AH_FALSE;
4691     }
4692 
4693     tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4);
4694     *pcdac = ((tx_gain >> 24) & 0xff);
4695     return AH_TRUE;
4696 }
4697 
4698 u_int8_t ar9300_eeprom_set_tx_gain_cap(struct ath_hal *ah,
4699                                                int *tx_gain_max)
4700 // pcdac read back from reg, read back value depends on reset 2GHz/5GHz ini
4701 // tx_gain_table, this function will be called twice after each
4702 // band's calibration.
4703 // after 2GHz cal, tx_gain_max[0] has 2GHz, calibration max txgain,
4704 // tx_gain_max[1]=-100
4705 // after 5GHz cal, tx_gain_max[0],tx_gain_max[1] have calibration
4706 // value for both band
4707 // reset is on 5GHz, reg reading from tx_gain_table is for 5GHz,
4708 // so program can't recalculate 2g.tx_gain_cap at this point.
4709 {
4710     int i = 0, ig, im = 0;
4711     u_int8_t pcdac = 0;
4712     u_int8_t tx_gain_table_max;
4713     ar9300_eeprom_t *ahp_Eeprom;
4714     struct ath_hal_9300 *ahp = AH9300(ah);
4715 
4716     ahp_Eeprom = &ahp->ah_eeprom;
4717 
4718     if (ahp_Eeprom->base_ext1.misc_enable == 0)
4719         return AH_FALSE;
4720 
4721     tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
4722 
4723     for (i = 0; i < 2; i++) {
4724         if (tx_gain_max[i]>-100) {	// -100 didn't cal that band.
4725             if ( i== 0) {
4726                 if (tx_gain_max[1]>-100) {
4727                     continue;
4728                     // both band are calibrated, skip 2GHz 2g.tx_gain_cap reset
4729                 }
4730             }
4731             for (ig = 1; ig <= tx_gain_table_max; ig++) {
4732                 if (ah != 0 && ah->ah_reset != 0)
4733                 {
4734                     ar9300_eeprom_get_pcdac_tx_gain_table_i(ah, ig, &pcdac);
4735                     if (pcdac >= tx_gain_max[i])
4736                         break;
4737                 }
4738             }
4739             if (ig+1 <= tx_gain_table_max) {
4740                 if (pcdac == tx_gain_max[i])
4741                     im = ig;
4742                 else
4743                     im = ig + 1;
4744                 if (i == 0) {
4745                     ahp_Eeprom->modal_header_2g.tx_gain_cap = im;
4746                 } else {
4747                     ahp_Eeprom->modal_header_5g.tx_gain_cap = im;
4748                 }
4749             } else {
4750                 if (i == 0) {
4751                     ahp_Eeprom->modal_header_2g.tx_gain_cap = ig;
4752                 } else {
4753                     ahp_Eeprom->modal_header_5g.tx_gain_cap = ig;
4754                 }
4755             }
4756         }
4757     }
4758     return AH_TRUE;
4759 }
4760