1 /****************************************************************************** 2 * 3 * Name: acmacros.h - C macros for the entire subsystem. 4 * 5 *****************************************************************************/ 6 7 /* 8 * Copyright (C) 2000 - 2016, Intel Corp. 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions, and the following disclaimer, 16 * without modification. 17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 18 * substantially similar to the "NO WARRANTY" disclaimer below 19 * ("Disclaimer") and any redistribution must be conditioned upon 20 * including a substantially similar Disclaimer requirement for further 21 * binary redistribution. 22 * 3. Neither the names of the above-listed copyright holders nor the names 23 * of any contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * Alternatively, this software may be distributed under the terms of the 27 * GNU General Public License ("GPL") version 2 as published by the Free 28 * Software Foundation. 29 * 30 * NO WARRANTY 31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 41 * POSSIBILITY OF SUCH DAMAGES. 42 */ 43 44 #ifndef __ACMACROS_H__ 45 #define __ACMACROS_H__ 46 47 48 /* 49 * Extract data using a pointer. Any more than a byte and we 50 * get into potential alignment issues -- see the STORE macros below. 51 * Use with care. 52 */ 53 #define ACPI_CAST8(ptr) ACPI_CAST_PTR (UINT8, (ptr)) 54 #define ACPI_CAST16(ptr) ACPI_CAST_PTR (UINT16, (ptr)) 55 #define ACPI_CAST32(ptr) ACPI_CAST_PTR (UINT32, (ptr)) 56 #define ACPI_CAST64(ptr) ACPI_CAST_PTR (UINT64, (ptr)) 57 #define ACPI_GET8(ptr) (*ACPI_CAST8 (ptr)) 58 #define ACPI_GET16(ptr) (*ACPI_CAST16 (ptr)) 59 #define ACPI_GET32(ptr) (*ACPI_CAST32 (ptr)) 60 #define ACPI_GET64(ptr) (*ACPI_CAST64 (ptr)) 61 #define ACPI_SET8(ptr, val) (*ACPI_CAST8 (ptr) = (UINT8) (val)) 62 #define ACPI_SET16(ptr, val) (*ACPI_CAST16 (ptr) = (UINT16) (val)) 63 #define ACPI_SET32(ptr, val) (*ACPI_CAST32 (ptr) = (UINT32) (val)) 64 #define ACPI_SET64(ptr, val) (*ACPI_CAST64 (ptr) = (UINT64) (val)) 65 66 /* 67 * printf() format helper. This macro is a workaround for the difficulties 68 * with emitting 64-bit integers and 64-bit pointers with the same code 69 * for both 32-bit and 64-bit hosts. 70 */ 71 #define ACPI_FORMAT_UINT64(i) ACPI_HIDWORD(i), ACPI_LODWORD(i) 72 73 74 /* 75 * Macros for moving data around to/from buffers that are possibly unaligned. 76 * If the hardware supports the transfer of unaligned data, just do the store. 77 * Otherwise, we have to move one byte at a time. 78 */ 79 #ifdef ACPI_BIG_ENDIAN 80 /* 81 * Macros for big-endian machines 82 */ 83 84 /* These macros reverse the bytes during the move, converting little-endian to big endian */ 85 86 /* Big Endian <== Little Endian */ 87 /* Hi...Lo Lo...Hi */ 88 /* 16-bit source, 16/32/64 destination */ 89 90 #define ACPI_MOVE_16_TO_16(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[1];\ 91 (( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[0];} 92 93 #define ACPI_MOVE_16_TO_32(d, s) {(*(UINT32 *)(void *)(d))=0;\ 94 ((UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[1];\ 95 ((UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[0];} 96 97 #define ACPI_MOVE_16_TO_64(d, s) {(*(UINT64 *)(void *)(d))=0;\ 98 ((UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[1];\ 99 ((UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[0];} 100 101 /* 32-bit source, 16/32/64 destination */ 102 103 #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 104 105 #define ACPI_MOVE_32_TO_32(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[3];\ 106 (( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[2];\ 107 (( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[1];\ 108 (( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[0];} 109 110 #define ACPI_MOVE_32_TO_64(d, s) {(*(UINT64 *)(void *)(d))=0;\ 111 ((UINT8 *)(void *)(d))[4] = ((UINT8 *)(void *)(s))[3];\ 112 ((UINT8 *)(void *)(d))[5] = ((UINT8 *)(void *)(s))[2];\ 113 ((UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[1];\ 114 ((UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[0];} 115 116 /* 64-bit source, 16/32/64 destination */ 117 118 #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 119 120 #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ 121 122 #define ACPI_MOVE_64_TO_64(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[7];\ 123 (( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[6];\ 124 (( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[5];\ 125 (( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[4];\ 126 (( UINT8 *)(void *)(d))[4] = ((UINT8 *)(void *)(s))[3];\ 127 (( UINT8 *)(void *)(d))[5] = ((UINT8 *)(void *)(s))[2];\ 128 (( UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[1];\ 129 (( UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[0];} 130 #else 131 /* 132 * Macros for little-endian machines 133 */ 134 135 #ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED 136 137 /* The hardware supports unaligned transfers, just do the little-endian move */ 138 139 /* 16-bit source, 16/32/64 destination */ 140 141 #define ACPI_MOVE_16_TO_16(d, s) *(UINT16 *)(void *)(d) = *(UINT16 *)(void *)(s) 142 #define ACPI_MOVE_16_TO_32(d, s) *(UINT32 *)(void *)(d) = *(UINT16 *)(void *)(s) 143 #define ACPI_MOVE_16_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT16 *)(void *)(s) 144 145 /* 32-bit source, 16/32/64 destination */ 146 147 #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 148 #define ACPI_MOVE_32_TO_32(d, s) *(UINT32 *)(void *)(d) = *(UINT32 *)(void *)(s) 149 #define ACPI_MOVE_32_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT32 *)(void *)(s) 150 151 /* 64-bit source, 16/32/64 destination */ 152 153 #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 154 #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ 155 #define ACPI_MOVE_64_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT64 *)(void *)(s) 156 157 #else 158 /* 159 * The hardware does not support unaligned transfers. We must move the 160 * data one byte at a time. These macros work whether the source or 161 * the destination (or both) is/are unaligned. (Little-endian move) 162 */ 163 164 /* 16-bit source, 16/32/64 destination */ 165 166 #define ACPI_MOVE_16_TO_16(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[0];\ 167 (( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[1];} 168 169 #define ACPI_MOVE_16_TO_32(d, s) {(*(UINT32 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);} 170 #define ACPI_MOVE_16_TO_64(d, s) {(*(UINT64 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);} 171 172 /* 32-bit source, 16/32/64 destination */ 173 174 #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 175 176 #define ACPI_MOVE_32_TO_32(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[0];\ 177 (( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[1];\ 178 (( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[2];\ 179 (( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[3];} 180 181 #define ACPI_MOVE_32_TO_64(d, s) {(*(UINT64 *)(void *)(d)) = 0; ACPI_MOVE_32_TO_32(d, s);} 182 183 /* 64-bit source, 16/32/64 destination */ 184 185 #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 186 #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ 187 #define ACPI_MOVE_64_TO_64(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[0];\ 188 (( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[1];\ 189 (( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[2];\ 190 (( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[3];\ 191 (( UINT8 *)(void *)(d))[4] = ((UINT8 *)(void *)(s))[4];\ 192 (( UINT8 *)(void *)(d))[5] = ((UINT8 *)(void *)(s))[5];\ 193 (( UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[6];\ 194 (( UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[7];} 195 #endif 196 #endif 197 198 199 /* 200 * Fast power-of-two math macros for non-optimized compilers 201 */ 202 #define _ACPI_DIV(value, PowerOf2) ((UINT32) ((value) >> (PowerOf2))) 203 #define _ACPI_MUL(value, PowerOf2) ((UINT32) ((value) << (PowerOf2))) 204 #define _ACPI_MOD(value, Divisor) ((UINT32) ((value) & ((Divisor) -1))) 205 206 #define ACPI_DIV_2(a) _ACPI_DIV(a, 1) 207 #define ACPI_MUL_2(a) _ACPI_MUL(a, 1) 208 #define ACPI_MOD_2(a) _ACPI_MOD(a, 2) 209 210 #define ACPI_DIV_4(a) _ACPI_DIV(a, 2) 211 #define ACPI_MUL_4(a) _ACPI_MUL(a, 2) 212 #define ACPI_MOD_4(a) _ACPI_MOD(a, 4) 213 214 #define ACPI_DIV_8(a) _ACPI_DIV(a, 3) 215 #define ACPI_MUL_8(a) _ACPI_MUL(a, 3) 216 #define ACPI_MOD_8(a) _ACPI_MOD(a, 8) 217 218 #define ACPI_DIV_16(a) _ACPI_DIV(a, 4) 219 #define ACPI_MUL_16(a) _ACPI_MUL(a, 4) 220 #define ACPI_MOD_16(a) _ACPI_MOD(a, 16) 221 222 #define ACPI_DIV_32(a) _ACPI_DIV(a, 5) 223 #define ACPI_MUL_32(a) _ACPI_MUL(a, 5) 224 #define ACPI_MOD_32(a) _ACPI_MOD(a, 32) 225 226 /* Test for ASCII character */ 227 228 #define ACPI_IS_ASCII(c) ((c) < 0x80) 229 230 /* Signed integers */ 231 232 #define ACPI_SIGN_POSITIVE 0 233 #define ACPI_SIGN_NEGATIVE 1 234 235 236 /* 237 * Rounding macros (Power of two boundaries only) 238 */ 239 #define ACPI_ROUND_DOWN(value, boundary) (((ACPI_SIZE)(value)) & \ 240 (~(((ACPI_SIZE) boundary)-1))) 241 242 #define ACPI_ROUND_UP(value, boundary) ((((ACPI_SIZE)(value)) + \ 243 (((ACPI_SIZE) boundary)-1)) & \ 244 (~(((ACPI_SIZE) boundary)-1))) 245 246 /* Note: sizeof(ACPI_SIZE) evaluates to either 4 or 8 (32- vs 64-bit mode) */ 247 248 #define ACPI_ROUND_DOWN_TO_32BIT(a) ACPI_ROUND_DOWN(a, 4) 249 #define ACPI_ROUND_DOWN_TO_64BIT(a) ACPI_ROUND_DOWN(a, 8) 250 #define ACPI_ROUND_DOWN_TO_NATIVE_WORD(a) ACPI_ROUND_DOWN(a, sizeof(ACPI_SIZE)) 251 252 #define ACPI_ROUND_UP_TO_32BIT(a) ACPI_ROUND_UP(a, 4) 253 #define ACPI_ROUND_UP_TO_64BIT(a) ACPI_ROUND_UP(a, 8) 254 #define ACPI_ROUND_UP_TO_NATIVE_WORD(a) ACPI_ROUND_UP(a, sizeof(ACPI_SIZE)) 255 256 #define ACPI_ROUND_BITS_UP_TO_BYTES(a) ACPI_DIV_8((a) + 7) 257 #define ACPI_ROUND_BITS_DOWN_TO_BYTES(a) ACPI_DIV_8((a)) 258 259 #define ACPI_ROUND_UP_TO_1K(a) (((a) + 1023) >> 10) 260 261 /* Generic (non-power-of-two) rounding */ 262 263 #define ACPI_ROUND_UP_TO(value, boundary) (((value) + ((boundary)-1)) / (boundary)) 264 265 #define ACPI_IS_MISALIGNED(value) (((ACPI_SIZE) value) & (sizeof(ACPI_SIZE)-1)) 266 267 /* Generic bit manipulation */ 268 269 #ifndef ACPI_USE_NATIVE_BIT_FINDER 270 271 #define __ACPI_FIND_LAST_BIT_2(a, r) ((((UINT8) (a)) & 0x02) ? (r)+1 : (r)) 272 #define __ACPI_FIND_LAST_BIT_4(a, r) ((((UINT8) (a)) & 0x0C) ? \ 273 __ACPI_FIND_LAST_BIT_2 ((a)>>2, (r)+2) : \ 274 __ACPI_FIND_LAST_BIT_2 ((a), (r))) 275 #define __ACPI_FIND_LAST_BIT_8(a, r) ((((UINT8) (a)) & 0xF0) ? \ 276 __ACPI_FIND_LAST_BIT_4 ((a)>>4, (r)+4) : \ 277 __ACPI_FIND_LAST_BIT_4 ((a), (r))) 278 #define __ACPI_FIND_LAST_BIT_16(a, r) ((((UINT16) (a)) & 0xFF00) ? \ 279 __ACPI_FIND_LAST_BIT_8 ((a)>>8, (r)+8) : \ 280 __ACPI_FIND_LAST_BIT_8 ((a), (r))) 281 #define __ACPI_FIND_LAST_BIT_32(a, r) ((((UINT32) (a)) & 0xFFFF0000) ? \ 282 __ACPI_FIND_LAST_BIT_16 ((a)>>16, (r)+16) : \ 283 __ACPI_FIND_LAST_BIT_16 ((a), (r))) 284 #define __ACPI_FIND_LAST_BIT_64(a, r) ((((UINT64) (a)) & 0xFFFFFFFF00000000) ? \ 285 __ACPI_FIND_LAST_BIT_32 ((a)>>32, (r)+32) : \ 286 __ACPI_FIND_LAST_BIT_32 ((a), (r))) 287 288 #define ACPI_FIND_LAST_BIT_8(a) ((a) ? __ACPI_FIND_LAST_BIT_8 (a, 1) : 0) 289 #define ACPI_FIND_LAST_BIT_16(a) ((a) ? __ACPI_FIND_LAST_BIT_16 (a, 1) : 0) 290 #define ACPI_FIND_LAST_BIT_32(a) ((a) ? __ACPI_FIND_LAST_BIT_32 (a, 1) : 0) 291 #define ACPI_FIND_LAST_BIT_64(a) ((a) ? __ACPI_FIND_LAST_BIT_64 (a, 1) : 0) 292 293 #define __ACPI_FIND_FIRST_BIT_2(a, r) ((((UINT8) (a)) & 0x01) ? (r) : (r)+1) 294 #define __ACPI_FIND_FIRST_BIT_4(a, r) ((((UINT8) (a)) & 0x03) ? \ 295 __ACPI_FIND_FIRST_BIT_2 ((a), (r)) : \ 296 __ACPI_FIND_FIRST_BIT_2 ((a)>>2, (r)+2)) 297 #define __ACPI_FIND_FIRST_BIT_8(a, r) ((((UINT8) (a)) & 0x0F) ? \ 298 __ACPI_FIND_FIRST_BIT_4 ((a), (r)) : \ 299 __ACPI_FIND_FIRST_BIT_4 ((a)>>4, (r)+4)) 300 #define __ACPI_FIND_FIRST_BIT_16(a, r) ((((UINT16) (a)) & 0x00FF) ? \ 301 __ACPI_FIND_FIRST_BIT_8 ((a), (r)) : \ 302 __ACPI_FIND_FIRST_BIT_8 ((a)>>8, (r)+8)) 303 #define __ACPI_FIND_FIRST_BIT_32(a, r) ((((UINT32) (a)) & 0x0000FFFF) ? \ 304 __ACPI_FIND_FIRST_BIT_16 ((a), (r)) : \ 305 __ACPI_FIND_FIRST_BIT_16 ((a)>>16, (r)+16)) 306 #define __ACPI_FIND_FIRST_BIT_64(a, r) ((((UINT64) (a)) & 0x00000000FFFFFFFF) ? \ 307 __ACPI_FIND_FIRST_BIT_32 ((a), (r)) : \ 308 __ACPI_FIND_FIRST_BIT_32 ((a)>>32, (r)+32)) 309 310 #define ACPI_FIND_FIRST_BIT_8(a) ((a) ? __ACPI_FIND_FIRST_BIT_8 (a, 1) : 0) 311 #define ACPI_FIND_FIRST_BIT_16(a) ((a) ? __ACPI_FIND_FIRST_BIT_16 (a, 1) : 0) 312 #define ACPI_FIND_FIRST_BIT_32(a) ((a) ? __ACPI_FIND_FIRST_BIT_32 (a, 1) : 0) 313 #define ACPI_FIND_FIRST_BIT_64(a) ((a) ? __ACPI_FIND_FIRST_BIT_64 (a, 1) : 0) 314 315 #endif /* ACPI_USE_NATIVE_BIT_FINDER */ 316 317 /* Generic (power-of-two) rounding */ 318 319 #define ACPI_ROUND_UP_POWER_OF_TWO_8(a) ((UINT8) \ 320 (((UINT16) 1) << ACPI_FIND_LAST_BIT_8 ((a) - 1))) 321 #define ACPI_ROUND_DOWN_POWER_OF_TWO_8(a) ((UINT8) \ 322 (((UINT16) 1) << (ACPI_FIND_LAST_BIT_8 ((a)) - 1))) 323 #define ACPI_ROUND_UP_POWER_OF_TWO_16(a) ((UINT16) \ 324 (((UINT32) 1) << ACPI_FIND_LAST_BIT_16 ((a) - 1))) 325 #define ACPI_ROUND_DOWN_POWER_OF_TWO_16(a) ((UINT16) \ 326 (((UINT32) 1) << (ACPI_FIND_LAST_BIT_16 ((a)) - 1))) 327 #define ACPI_ROUND_UP_POWER_OF_TWO_32(a) ((UINT32) \ 328 (((UINT64) 1) << ACPI_FIND_LAST_BIT_32 ((a) - 1))) 329 #define ACPI_ROUND_DOWN_POWER_OF_TWO_32(a) ((UINT32) \ 330 (((UINT64) 1) << (ACPI_FIND_LAST_BIT_32 ((a)) - 1))) 331 #define ACPI_IS_ALIGNED(a, s) (((a) & ((s) - 1)) == 0) 332 #define ACPI_IS_POWER_OF_TWO(a) ACPI_IS_ALIGNED(a, a) 333 334 /* 335 * Bitmask creation 336 * Bit positions start at zero. 337 * MASK_BITS_ABOVE creates a mask starting AT the position and above 338 * MASK_BITS_BELOW creates a mask starting one bit BELOW the position 339 * MASK_BITS_ABOVE/BELOW accepts a bit offset to create a mask 340 * MASK_BITS_ABOVE/BELOW_32/64 accepts a bit width to create a mask 341 * Note: The ACPI_INTEGER_BIT_SIZE check is used to bypass compiler 342 * differences with the shift operator 343 */ 344 #define ACPI_MASK_BITS_ABOVE(position) (~((ACPI_UINT64_MAX) << ((UINT32) (position)))) 345 #define ACPI_MASK_BITS_BELOW(position) ((ACPI_UINT64_MAX) << ((UINT32) (position))) 346 #define ACPI_MASK_BITS_ABOVE_32(width) ((UINT32) ACPI_MASK_BITS_ABOVE(width)) 347 #define ACPI_MASK_BITS_BELOW_32(width) ((UINT32) ACPI_MASK_BITS_BELOW(width)) 348 #define ACPI_MASK_BITS_ABOVE_64(width) ((width) == ACPI_INTEGER_BIT_SIZE ? \ 349 ACPI_UINT64_MAX : \ 350 ACPI_MASK_BITS_ABOVE(width)) 351 #define ACPI_MASK_BITS_BELOW_64(width) ((width) == ACPI_INTEGER_BIT_SIZE ? \ 352 (UINT64) 0 : \ 353 ACPI_MASK_BITS_BELOW(width)) 354 355 /* Bitfields within ACPI registers */ 356 357 #define ACPI_REGISTER_PREPARE_BITS(Val, Pos, Mask) \ 358 ((Val << Pos) & Mask) 359 360 #define ACPI_REGISTER_INSERT_VALUE(Reg, Pos, Mask, Val) \ 361 Reg = (Reg & (~(Mask))) | ACPI_REGISTER_PREPARE_BITS(Val, Pos, Mask) 362 363 #define ACPI_INSERT_BITS(Target, Mask, Source) \ 364 Target = ((Target & (~(Mask))) | (Source & Mask)) 365 366 /* Generic bitfield macros and masks */ 367 368 #define ACPI_GET_BITS(SourcePtr, Position, Mask) \ 369 ((*(SourcePtr) >> (Position)) & (Mask)) 370 371 #define ACPI_SET_BITS(TargetPtr, Position, Mask, Value) \ 372 (*(TargetPtr) |= (((Value) & (Mask)) << (Position))) 373 374 #define ACPI_1BIT_MASK 0x00000001 375 #define ACPI_2BIT_MASK 0x00000003 376 #define ACPI_3BIT_MASK 0x00000007 377 #define ACPI_4BIT_MASK 0x0000000F 378 #define ACPI_5BIT_MASK 0x0000001F 379 #define ACPI_6BIT_MASK 0x0000003F 380 #define ACPI_7BIT_MASK 0x0000007F 381 #define ACPI_8BIT_MASK 0x000000FF 382 #define ACPI_16BIT_MASK 0x0000FFFF 383 #define ACPI_24BIT_MASK 0x00FFFFFF 384 385 /* Macros to extract flag bits from position zero */ 386 387 #define ACPI_GET_1BIT_FLAG(Value) ((Value) & ACPI_1BIT_MASK) 388 #define ACPI_GET_2BIT_FLAG(Value) ((Value) & ACPI_2BIT_MASK) 389 #define ACPI_GET_3BIT_FLAG(Value) ((Value) & ACPI_3BIT_MASK) 390 #define ACPI_GET_4BIT_FLAG(Value) ((Value) & ACPI_4BIT_MASK) 391 392 /* Macros to extract flag bits from position one and above */ 393 394 #define ACPI_EXTRACT_1BIT_FLAG(Field, Position) (ACPI_GET_1BIT_FLAG ((Field) >> Position)) 395 #define ACPI_EXTRACT_2BIT_FLAG(Field, Position) (ACPI_GET_2BIT_FLAG ((Field) >> Position)) 396 #define ACPI_EXTRACT_3BIT_FLAG(Field, Position) (ACPI_GET_3BIT_FLAG ((Field) >> Position)) 397 #define ACPI_EXTRACT_4BIT_FLAG(Field, Position) (ACPI_GET_4BIT_FLAG ((Field) >> Position)) 398 399 /* ACPI Pathname helpers */ 400 401 #define ACPI_IS_ROOT_PREFIX(c) ((c) == (UINT8) 0x5C) /* Backslash */ 402 #define ACPI_IS_PARENT_PREFIX(c) ((c) == (UINT8) 0x5E) /* Carat */ 403 #define ACPI_IS_PATH_SEPARATOR(c) ((c) == (UINT8) 0x2E) /* Period (dot) */ 404 405 /* 406 * An object of type ACPI_NAMESPACE_NODE can appear in some contexts 407 * where a pointer to an object of type ACPI_OPERAND_OBJECT can also 408 * appear. This macro is used to distinguish them. 409 * 410 * The "DescriptorType" field is the second field in both structures. 411 */ 412 #define ACPI_GET_DESCRIPTOR_PTR(d) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.CommonPointer) 413 #define ACPI_SET_DESCRIPTOR_PTR(d, p) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.CommonPointer = (p)) 414 #define ACPI_GET_DESCRIPTOR_TYPE(d) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.DescriptorType) 415 #define ACPI_SET_DESCRIPTOR_TYPE(d, t) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.DescriptorType = (t)) 416 417 /* 418 * Macros for the master AML opcode table 419 */ 420 #if defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUG_OUTPUT) 421 #define ACPI_OP(Name, PArgs, IArgs, ObjType, Class, Type, Flags) \ 422 {Name, (UINT32)(PArgs), (UINT32)(IArgs), (UINT32)(Flags), ObjType, Class, Type} 423 #else 424 #define ACPI_OP(Name, PArgs, IArgs, ObjType, Class, Type, Flags) \ 425 {(UINT32)(PArgs), (UINT32)(IArgs), (UINT32)(Flags), ObjType, Class, Type} 426 #endif 427 428 #define ARG_TYPE_WIDTH 5 429 #define ARG_1(x) ((UINT32)(x)) 430 #define ARG_2(x) ((UINT32)(x) << (1 * ARG_TYPE_WIDTH)) 431 #define ARG_3(x) ((UINT32)(x) << (2 * ARG_TYPE_WIDTH)) 432 #define ARG_4(x) ((UINT32)(x) << (3 * ARG_TYPE_WIDTH)) 433 #define ARG_5(x) ((UINT32)(x) << (4 * ARG_TYPE_WIDTH)) 434 #define ARG_6(x) ((UINT32)(x) << (5 * ARG_TYPE_WIDTH)) 435 436 #define ARGI_LIST1(a) (ARG_1(a)) 437 #define ARGI_LIST2(a, b) (ARG_1(b)|ARG_2(a)) 438 #define ARGI_LIST3(a, b, c) (ARG_1(c)|ARG_2(b)|ARG_3(a)) 439 #define ARGI_LIST4(a, b, c, d) (ARG_1(d)|ARG_2(c)|ARG_3(b)|ARG_4(a)) 440 #define ARGI_LIST5(a, b, c, d, e) (ARG_1(e)|ARG_2(d)|ARG_3(c)|ARG_4(b)|ARG_5(a)) 441 #define ARGI_LIST6(a, b, c, d, e, f) (ARG_1(f)|ARG_2(e)|ARG_3(d)|ARG_4(c)|ARG_5(b)|ARG_6(a)) 442 443 #define ARGP_LIST1(a) (ARG_1(a)) 444 #define ARGP_LIST2(a, b) (ARG_1(a)|ARG_2(b)) 445 #define ARGP_LIST3(a, b, c) (ARG_1(a)|ARG_2(b)|ARG_3(c)) 446 #define ARGP_LIST4(a, b, c, d) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)) 447 #define ARGP_LIST5(a, b, c, d, e) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)) 448 #define ARGP_LIST6(a, b, c, d, e, f) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)|ARG_6(f)) 449 450 #define GET_CURRENT_ARG_TYPE(List) (List & ((UINT32) 0x1F)) 451 #define INCREMENT_ARG_LIST(List) (List >>= ((UINT32) ARG_TYPE_WIDTH)) 452 453 /* 454 * Ascii error messages can be configured out 455 */ 456 #ifndef ACPI_NO_ERROR_MESSAGES 457 /* 458 * Error reporting. The callers module and line number are inserted by AE_INFO, 459 * the plist contains a set of parens to allow variable-length lists. 460 * These macros are used for both the debug and non-debug versions of the code. 461 */ 462 #define ACPI_ERROR_NAMESPACE(s, e) AcpiUtNamespaceError (AE_INFO, s, e); 463 #define ACPI_ERROR_METHOD(s, n, p, e) AcpiUtMethodError (AE_INFO, s, n, p, e); 464 #define ACPI_WARN_PREDEFINED(plist) AcpiUtPredefinedWarning plist 465 #define ACPI_INFO_PREDEFINED(plist) AcpiUtPredefinedInfo plist 466 #define ACPI_BIOS_ERROR_PREDEFINED(plist) AcpiUtPredefinedBiosError plist 467 468 #else 469 470 /* No error messages */ 471 472 #define ACPI_ERROR_NAMESPACE(s, e) 473 #define ACPI_ERROR_METHOD(s, n, p, e) 474 #define ACPI_WARN_PREDEFINED(plist) 475 #define ACPI_INFO_PREDEFINED(plist) 476 #define ACPI_BIOS_ERROR_PREDEFINED(plist) 477 478 #endif /* ACPI_NO_ERROR_MESSAGES */ 479 480 #if (!ACPI_REDUCED_HARDWARE) 481 #define ACPI_HW_OPTIONAL_FUNCTION(addr) addr 482 #else 483 #define ACPI_HW_OPTIONAL_FUNCTION(addr) NULL 484 #endif 485 486 487 /* 488 * Macros used for ACPICA utilities only 489 */ 490 491 /* Generate a UUID */ 492 493 #define ACPI_INIT_UUID(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 494 (a) & 0xFF, ((a) >> 8) & 0xFF, ((a) >> 16) & 0xFF, ((a) >> 24) & 0xFF, \ 495 (b) & 0xFF, ((b) >> 8) & 0xFF, \ 496 (c) & 0xFF, ((c) >> 8) & 0xFF, \ 497 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) 498 499 #define ACPI_IS_OCTAL_DIGIT(d) (((char)(d) >= '0') && ((char)(d) <= '7')) 500 501 502 #endif /* ACMACROS_H */ 503