xref: /freebsd/sys/contrib/ck/src/ck_epoch.c (revision 7f9dff23d3092aa33ad45b2b63e52469b3c13a6e)
1 /*
2  * Copyright 2011-2015 Samy Al Bahra.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * The implementation here is inspired from the work described in:
29  *   Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University
30  *   of Cambridge Computing Laboratory.
31  */
32 
33 #include <ck_backoff.h>
34 #include <ck_cc.h>
35 #include <ck_epoch.h>
36 #include <ck_pr.h>
37 #include <ck_stack.h>
38 #include <ck_stdbool.h>
39 #include <ck_string.h>
40 
41 /*
42  * Only three distinct values are used for reclamation, but reclamation occurs
43  * at e+2 rather than e+1. Any thread in a "critical section" would have
44  * acquired some snapshot (e) of the global epoch value (e_g) and set an active
45  * flag. Any hazardous references will only occur after a full memory barrier.
46  * For example, assume an initial e_g value of 1, e value of 0 and active value
47  * of 0.
48  *
49  * ck_epoch_begin(...)
50  *   e = e_g
51  *   active = 1
52  *   memory_barrier();
53  *
54  * Any serialized reads may observe e = 0 or e = 1 with active = 0, or e = 0 or
55  * e = 1 with active = 1. The e_g value can only go from 1 to 2 if every thread
56  * has already observed the value of "1" (or the value we are incrementing
57  * from). This guarantees us that for any given value e_g, any threads with-in
58  * critical sections (referred to as "active" threads from here on) would have
59  * an e value of e_g-1 or e_g. This also means that hazardous references may be
60  * shared in both e_g-1 and e_g even if they are logically deleted in e_g.
61  *
62  * For example, assume all threads have an e value of e_g. Another thread may
63  * increment to e_g to e_g+1. Older threads may have a reference to an object
64  * which is only deleted in e_g+1. It could be that reader threads are
65  * executing some hash table look-ups, while some other writer thread (which
66  * causes epoch counter tick) actually deletes the same items that reader
67  * threads are looking up (this writer thread having an e value of e_g+1).
68  * This is possible if the writer thread re-observes the epoch after the
69  * counter tick.
70  *
71  * Psuedo-code for writer:
72  *   ck_epoch_begin()
73  *   ht_delete(x)
74  *   ck_epoch_end()
75  *   ck_epoch_begin()
76  *   ht_delete(x)
77  *   ck_epoch_end()
78  *
79  * Psuedo-code for reader:
80  *   for (;;) {
81  *      x = ht_lookup(x)
82  *      ck_pr_inc(&x->value);
83  *   }
84  *
85  * Of course, it is also possible for references logically deleted at e_g-1 to
86  * still be accessed at e_g as threads are "active" at the same time
87  * (real-world time) mutating shared objects.
88  *
89  * Now, if the epoch counter is ticked to e_g+1, then no new hazardous
90  * references could exist to objects logically deleted at e_g-1. The reason for
91  * this is that at e_g+1, all epoch read-side critical sections started at
92  * e_g-1 must have been completed. If any epoch read-side critical sections at
93  * e_g-1 were still active, then we would never increment to e_g+1 (active != 0
94  * ^ e != e_g).  Additionally, e_g may still have hazardous references to
95  * objects logically deleted at e_g-1 which means objects logically deleted at
96  * e_g-1 cannot be deleted at e_g+1 unless all threads have observed e_g+1
97  * (since it is valid for active threads to be at e_g and threads at e_g still
98  * require safe memory accesses).
99  *
100  * However, at e_g+2, all active threads must be either at e_g+1 or e_g+2.
101  * Though e_g+2 may share hazardous references with e_g+1, and e_g+1 shares
102  * hazardous references to e_g, no active threads are at e_g or e_g-1. This
103  * means no hazardous references could exist to objects deleted at e_g-1 (at
104  * e_g+2).
105  *
106  * To summarize these important points,
107  *   1) Active threads will always have a value of e_g or e_g-1.
108  *   2) Items that are logically deleted e_g or e_g-1 cannot be physically
109  *      deleted.
110  *   3) Objects logically deleted at e_g-1 can be physically destroyed at e_g+2
111  *      or at e_g+1 if no threads are at e_g.
112  *
113  * Last but not least, if we are at e_g+2, then no active thread is at e_g
114  * which means it is safe to apply modulo-3 arithmetic to e_g value in order to
115  * re-use e_g to represent the e_g+3 state. This means it is sufficient to
116  * represent e_g using only the values 0, 1 or 2. Every time a thread re-visits
117  * a e_g (which can be determined with a non-empty deferral list) it can assume
118  * objects in the e_g deferral list involved at least three e_g transitions and
119  * are thus, safe, for physical deletion.
120  *
121  * Blocking semantics for epoch reclamation have additional restrictions.
122  * Though we only require three deferral lists, reasonable blocking semantics
123  * must be able to more gracefully handle bursty write work-loads which could
124  * easily cause e_g wrap-around if modulo-3 arithmetic is used. This allows for
125  * easy-to-trigger live-lock situations. The work-around to this is to not
126  * apply modulo arithmetic to e_g but only to deferral list indexing.
127  */
128 #define CK_EPOCH_GRACE 3U
129 
130 enum {
131 	CK_EPOCH_STATE_USED = 0,
132 	CK_EPOCH_STATE_FREE = 1
133 };
134 
135 CK_STACK_CONTAINER(struct ck_epoch_record, record_next,
136     ck_epoch_record_container)
137 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
138     ck_epoch_entry_container)
139 
140 #define CK_EPOCH_SENSE_MASK	(CK_EPOCH_SENSE - 1)
141 
142 void
143 _ck_epoch_delref(struct ck_epoch_record *record,
144     struct ck_epoch_section *section)
145 {
146 	struct ck_epoch_ref *current, *other;
147 	unsigned int i = section->bucket;
148 
149 	current = &record->local.bucket[i];
150 	current->count--;
151 
152 	if (current->count > 0)
153 		return;
154 
155 	/*
156 	 * If the current bucket no longer has any references, then
157 	 * determine whether we have already transitioned into a newer
158 	 * epoch. If so, then make sure to update our shared snapshot
159 	 * to allow for forward progress.
160 	 *
161 	 * If no other active bucket exists, then the record will go
162 	 * inactive in order to allow for forward progress.
163 	 */
164 	other = &record->local.bucket[(i + 1) &
165 	    CK_EPOCH_SENSE_MASK];
166 	if (other->count > 0 &&
167 	    ((int)(current->epoch - other->epoch) < 0)) {
168 		/*
169 		 * The other epoch value is actually the newest,
170 		 * transition to it.
171 		 */
172 		ck_pr_store_uint(&record->epoch, other->epoch);
173 	}
174 
175 	return;
176 }
177 
178 void
179 _ck_epoch_addref(struct ck_epoch_record *record,
180     struct ck_epoch_section *section)
181 {
182 	struct ck_epoch *global = record->global;
183 	struct ck_epoch_ref *ref;
184 	unsigned int epoch, i;
185 
186 	epoch = ck_pr_load_uint(&global->epoch);
187 	i = epoch & CK_EPOCH_SENSE_MASK;
188 	ref = &record->local.bucket[i];
189 
190 	if (ref->count++ == 0) {
191 #ifndef CK_MD_TSO
192 		struct ck_epoch_ref *previous;
193 
194 		/*
195 		 * The system has already ticked. If another non-zero bucket
196 		 * exists, make sure to order our observations with respect
197 		 * to it. Otherwise, it is possible to acquire a reference
198 		 * from the previous epoch generation.
199 		 *
200 		 * On TSO architectures, the monoticity of the global counter
201 		 * and load-{store, load} ordering are sufficient to guarantee
202 		 * this ordering.
203 		 */
204 		previous = &record->local.bucket[(i + 1) &
205 		    CK_EPOCH_SENSE_MASK];
206 		if (previous->count > 0)
207 			ck_pr_fence_acqrel();
208 #endif /* !CK_MD_TSO */
209 
210 		/*
211 		 * If this is this is a new reference into the current
212 		 * bucket then cache the associated epoch value.
213 		 */
214 		ref->epoch = epoch;
215 	}
216 
217 	section->bucket = i;
218 	return;
219 }
220 
221 void
222 ck_epoch_init(struct ck_epoch *global)
223 {
224 
225 	ck_stack_init(&global->records);
226 	global->epoch = 1;
227 	global->n_free = 0;
228 	ck_pr_fence_store();
229 	return;
230 }
231 
232 struct ck_epoch_record *
233 ck_epoch_recycle(struct ck_epoch *global)
234 {
235 	struct ck_epoch_record *record;
236 	ck_stack_entry_t *cursor;
237 	unsigned int state;
238 
239 	if (ck_pr_load_uint(&global->n_free) == 0)
240 		return NULL;
241 
242 	CK_STACK_FOREACH(&global->records, cursor) {
243 		record = ck_epoch_record_container(cursor);
244 
245 		if (ck_pr_load_uint(&record->state) == CK_EPOCH_STATE_FREE) {
246 			/* Serialize with respect to deferral list clean-up. */
247 			ck_pr_fence_load();
248 			state = ck_pr_fas_uint(&record->state,
249 			    CK_EPOCH_STATE_USED);
250 			if (state == CK_EPOCH_STATE_FREE) {
251 				ck_pr_dec_uint(&global->n_free);
252 				return record;
253 			}
254 		}
255 	}
256 
257 	return NULL;
258 }
259 
260 void
261 ck_epoch_register(struct ck_epoch *global, struct ck_epoch_record *record)
262 {
263 	size_t i;
264 
265 	record->global = global;
266 	record->state = CK_EPOCH_STATE_USED;
267 	record->active = 0;
268 	record->epoch = 0;
269 	record->n_dispatch = 0;
270 	record->n_peak = 0;
271 	record->n_pending = 0;
272 	memset(&record->local, 0, sizeof record->local);
273 
274 	for (i = 0; i < CK_EPOCH_LENGTH; i++)
275 		ck_stack_init(&record->pending[i]);
276 
277 	ck_pr_fence_store();
278 	ck_stack_push_upmc(&global->records, &record->record_next);
279 	return;
280 }
281 
282 void
283 ck_epoch_unregister(struct ck_epoch_record *record)
284 {
285 	struct ck_epoch *global = record->global;
286 	size_t i;
287 
288 	record->active = 0;
289 	record->epoch = 0;
290 	record->n_dispatch = 0;
291 	record->n_peak = 0;
292 	record->n_pending = 0;
293 	memset(&record->local, 0, sizeof record->local);
294 
295 	for (i = 0; i < CK_EPOCH_LENGTH; i++)
296 		ck_stack_init(&record->pending[i]);
297 
298 	ck_pr_fence_store();
299 	ck_pr_store_uint(&record->state, CK_EPOCH_STATE_FREE);
300 	ck_pr_inc_uint(&global->n_free);
301 	return;
302 }
303 
304 static struct ck_epoch_record *
305 ck_epoch_scan(struct ck_epoch *global,
306     struct ck_epoch_record *cr,
307     unsigned int epoch,
308     bool *af)
309 {
310 	ck_stack_entry_t *cursor;
311 
312 	*af = false;
313 	if (cr == NULL) {
314 		cursor = CK_STACK_FIRST(&global->records);
315 	} else {
316 		cursor = &cr->record_next;
317 	}
318 
319 	while (cursor != NULL) {
320 		unsigned int state, active;
321 
322 		cr = ck_epoch_record_container(cursor);
323 
324 		state = ck_pr_load_uint(&cr->state);
325 		if (state & CK_EPOCH_STATE_FREE) {
326 			cursor = CK_STACK_NEXT(cursor);
327 			continue;
328 		}
329 
330 		active = ck_pr_load_uint(&cr->active);
331 		*af |= active;
332 
333 		if (active != 0 && ck_pr_load_uint(&cr->epoch) != epoch)
334 			return cr;
335 
336 		cursor = CK_STACK_NEXT(cursor);
337 	}
338 
339 	return NULL;
340 }
341 
342 static void
343 ck_epoch_dispatch(struct ck_epoch_record *record, unsigned int e)
344 {
345 	unsigned int epoch = e & (CK_EPOCH_LENGTH - 1);
346 	ck_stack_entry_t *head, *next, *cursor;
347 	unsigned int i = 0;
348 
349 	head = CK_STACK_FIRST(&record->pending[epoch]);
350 	ck_stack_init(&record->pending[epoch]);
351 
352 	for (cursor = head; cursor != NULL; cursor = next) {
353 		struct ck_epoch_entry *entry =
354 		    ck_epoch_entry_container(cursor);
355 
356 		next = CK_STACK_NEXT(cursor);
357 		entry->function(entry);
358 		i++;
359 	}
360 
361 	if (record->n_pending > record->n_peak)
362 		record->n_peak = record->n_pending;
363 
364 	record->n_dispatch += i;
365 	record->n_pending -= i;
366 	return;
367 }
368 
369 /*
370  * Reclaim all objects associated with a record.
371  */
372 void
373 ck_epoch_reclaim(struct ck_epoch_record *record)
374 {
375 	unsigned int epoch;
376 
377 	for (epoch = 0; epoch < CK_EPOCH_LENGTH; epoch++)
378 		ck_epoch_dispatch(record, epoch);
379 
380 	return;
381 }
382 
383 /*
384  * This function must not be called with-in read section.
385  */
386 void
387 ck_epoch_synchronize(struct ck_epoch_record *record)
388 {
389 	struct ck_epoch *global = record->global;
390 	struct ck_epoch_record *cr;
391 	unsigned int delta, epoch, goal, i;
392 	bool active;
393 
394 	ck_pr_fence_memory();
395 
396 	/*
397 	 * The observation of the global epoch must be ordered with respect to
398 	 * all prior operations. The re-ordering of loads is permitted given
399 	 * monoticity of global epoch counter.
400 	 *
401 	 * If UINT_MAX concurrent mutations were to occur then it is possible
402 	 * to encounter an ABA-issue. If this is a concern, consider tuning
403 	 * write-side concurrency.
404 	 */
405 	delta = epoch = ck_pr_load_uint(&global->epoch);
406 	goal = epoch + CK_EPOCH_GRACE;
407 
408 	for (i = 0, cr = NULL; i < CK_EPOCH_GRACE - 1; cr = NULL, i++) {
409 		bool r;
410 
411 		/*
412 		 * Determine whether all threads have observed the current
413 		 * epoch with respect to the updates on invocation.
414 		 */
415 		while (cr = ck_epoch_scan(global, cr, delta, &active),
416 		    cr != NULL) {
417 			unsigned int e_d;
418 
419 			ck_pr_stall();
420 
421 			/*
422 			 * Another writer may have already observed a grace
423 			 * period.
424 			 */
425 			e_d = ck_pr_load_uint(&global->epoch);
426 			if (e_d != delta) {
427 				delta = e_d;
428 				goto reload;
429 			}
430 		}
431 
432 		/*
433 		 * If we have observed all threads as inactive, then we assume
434 		 * we are at a grace period.
435 		 */
436 		if (active == false)
437 			break;
438 
439 		/*
440 		 * Increment current epoch. CAS semantics are used to eliminate
441 		 * increment operations for synchronization that occurs for the
442 		 * same global epoch value snapshot.
443 		 *
444 		 * If we can guarantee there will only be one active barrier or
445 		 * epoch tick at a given time, then it is sufficient to use an
446 		 * increment operation. In a multi-barrier workload, however,
447 		 * it is possible to overflow the epoch value if we apply
448 		 * modulo-3 arithmetic.
449 		 */
450 		r = ck_pr_cas_uint_value(&global->epoch, delta, delta + 1,
451 		    &delta);
452 
453 		/* Order subsequent thread active checks. */
454 		ck_pr_fence_atomic_load();
455 
456 		/*
457 		 * If CAS has succeeded, then set delta to latest snapshot.
458 		 * Otherwise, we have just acquired latest snapshot.
459 		 */
460 		delta = delta + r;
461 		continue;
462 
463 reload:
464 		if ((goal > epoch) & (delta >= goal)) {
465 			/*
466 			 * Right now, epoch overflow is handled as an edge
467 			 * case. If we have already observed an epoch
468 			 * generation, then we can be sure no hazardous
469 			 * references exist to objects from this generation. We
470 			 * can actually avoid an addtional scan step at this
471 			 * point.
472 			 */
473 			break;
474 		}
475 	}
476 
477 	/*
478 	 * A majority of use-cases will not require full barrier semantics.
479 	 * However, if non-temporal instructions are used, full barrier
480 	 * semantics are necessary.
481 	 */
482 	ck_pr_fence_memory();
483 	record->epoch = delta;
484 	return;
485 }
486 
487 void
488 ck_epoch_barrier(struct ck_epoch_record *record)
489 {
490 
491 	ck_epoch_synchronize(record);
492 	ck_epoch_reclaim(record);
493 	return;
494 }
495 
496 /*
497  * It may be worth it to actually apply these deferral semantics to an epoch
498  * that was observed at ck_epoch_call time. The problem is that the latter
499  * would require a full fence.
500  *
501  * ck_epoch_call will dispatch to the latest epoch snapshot that was observed.
502  * There are cases where it will fail to reclaim as early as it could. If this
503  * becomes a problem, we could actually use a heap for epoch buckets but that
504  * is far from ideal too.
505  */
506 bool
507 ck_epoch_poll(struct ck_epoch_record *record)
508 {
509 	bool active;
510 	unsigned int epoch;
511 	unsigned int snapshot;
512 	struct ck_epoch_record *cr = NULL;
513 	struct ck_epoch *global = record->global;
514 
515 	epoch = ck_pr_load_uint(&global->epoch);
516 
517 	/* Serialize epoch snapshots with respect to global epoch. */
518 	ck_pr_fence_memory();
519 	cr = ck_epoch_scan(global, cr, epoch, &active);
520 	if (cr != NULL) {
521 		record->epoch = epoch;
522 		return false;
523 	}
524 
525 	/* We are at a grace period if all threads are inactive. */
526 	if (active == false) {
527 		record->epoch = epoch;
528 		for (epoch = 0; epoch < CK_EPOCH_LENGTH; epoch++)
529 			ck_epoch_dispatch(record, epoch);
530 
531 		return true;
532 	}
533 
534 	/* If an active thread exists, rely on epoch observation. */
535 	if (ck_pr_cas_uint_value(&global->epoch, epoch, epoch + 1,
536 	    &snapshot) == false) {
537 		record->epoch = snapshot;
538 	} else {
539 		record->epoch = epoch + 1;
540 	}
541 
542 	ck_epoch_dispatch(record, epoch + 1);
543 	return true;
544 }
545