xref: /freebsd/sys/compat/linuxkpi/common/src/linux_xarray.c (revision 7be9a3b45356747f9fcb6d69a722c1c95f8060bf)
1 /*-
2  * Copyright (c) 2020 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <linux/xarray.h>
31 
32 #include <vm/vm_pageout.h>
33 
34 /*
35  * This function removes the element at the given index and returns
36  * the pointer to the removed element, if any.
37  */
38 void *
39 __xa_erase(struct xarray *xa, uint32_t index)
40 {
41 	XA_ASSERT_LOCKED(xa);
42 
43 	return (radix_tree_delete(&xa->root, index));
44 }
45 
46 void *
47 xa_erase(struct xarray *xa, uint32_t index)
48 {
49 	void *retval;
50 
51 	xa_lock(xa);
52 	retval = __xa_erase(xa, index);
53 	xa_unlock(xa);
54 
55 	return (retval);
56 }
57 
58 /*
59  * This function returns the element pointer at the given index. A
60  * value of NULL is returned if the element does not exist.
61  */
62 void *
63 xa_load(struct xarray *xa, uint32_t index)
64 {
65 	void *retval;
66 
67 	xa_lock(xa);
68 	retval = radix_tree_lookup(&xa->root, index);
69 	xa_unlock(xa);
70 
71 	return (retval);
72 }
73 
74 /*
75  * This is an internal function used to sleep until more memory
76  * becomes available.
77  */
78 static void
79 xa_vm_wait_locked(struct xarray *xa)
80 {
81 	xa_unlock(xa);
82 	vm_wait(NULL);
83 	xa_lock(xa);
84 }
85 
86 /*
87  * This function iterates the xarray until it finds a free slot where
88  * it can insert the element pointer to by "ptr". It starts at the
89  * index pointed to by "pindex" and updates this value at return. The
90  * "mask" argument defines the maximum index allowed, inclusivly, and
91  * must be a power of two minus one value. The "gfp" argument
92  * basically tells if we can wait for more memory to become available
93  * or not. This function returns zero upon success or a negative error
94  * code on failure. A typical error code is -ENOMEM which means either
95  * the xarray is full, or there was not enough internal memory
96  * available to complete the radix tree insertion.
97  */
98 int
99 __xa_alloc(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, gfp_t gfp)
100 {
101 	int retval;
102 
103 	XA_ASSERT_LOCKED(xa);
104 
105 	/* mask should allow to allocate at least one item */
106 	MPASS(mask > (xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0);
107 
108 	/* mask can be any power of two value minus one */
109 	MPASS((mask & (mask + 1)) == 0);
110 
111 	*pindex = (xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0;
112 retry:
113 	retval = radix_tree_insert(&xa->root, *pindex, ptr);
114 
115 	switch (retval) {
116 	case -EEXIST:
117 		if (likely(*pindex != mask)) {
118 			(*pindex)++;
119 			goto retry;
120 		}
121 		retval = -ENOMEM;
122 		break;
123 	case -ENOMEM:
124 		if (likely(gfp & M_WAITOK)) {
125 			xa_vm_wait_locked(xa);
126 			goto retry;
127 		}
128 		break;
129 	default:
130 		break;
131 	}
132 	return (retval);
133 }
134 
135 int
136 xa_alloc(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, gfp_t gfp)
137 {
138 	int retval;
139 
140 	xa_lock(xa);
141 	retval = __xa_alloc(xa, pindex, ptr, mask, gfp);
142 	xa_unlock(xa);
143 
144 	return (retval);
145 }
146 
147 /*
148  * This function works the same like the "xa_alloc" function, except
149  * it wraps the next index value to zero when there are no entries
150  * left at the end of the xarray searching for a free slot from the
151  * beginning of the array. If the xarray is full -ENOMEM is returned.
152  */
153 int
154 __xa_alloc_cyclic(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask,
155     uint32_t *pnext_index, gfp_t gfp)
156 {
157 	int retval;
158 	int timeout = 1;
159 
160 	XA_ASSERT_LOCKED(xa);
161 
162 	/* mask should allow to allocate at least one item */
163 	MPASS(mask > (xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0);
164 
165 	/* mask can be any power of two value minus one */
166 	MPASS((mask & (mask + 1)) == 0);
167 
168 	*pnext_index = (xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0;
169 retry:
170 	retval = radix_tree_insert(&xa->root, *pnext_index, ptr);
171 
172 	switch (retval) {
173 	case -EEXIST:
174 		if (unlikely(*pnext_index == mask) && !timeout--) {
175 			retval = -ENOMEM;
176 			break;
177 		}
178 		(*pnext_index)++;
179 		(*pnext_index) &= mask;
180 		if (*pnext_index == 0 && (xa->flags & XA_FLAGS_ALLOC1) != 0)
181 			(*pnext_index)++;
182 		goto retry;
183 	case -ENOMEM:
184 		if (likely(gfp & M_WAITOK)) {
185 			xa_vm_wait_locked(xa);
186 			goto retry;
187 		}
188 		break;
189 	default:
190 		break;
191 	}
192 	*pindex = *pnext_index;
193 
194 	return (retval);
195 }
196 
197 int
198 xa_alloc_cyclic(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask,
199     uint32_t *pnext_index, gfp_t gfp)
200 {
201 	int retval;
202 
203 	xa_lock(xa);
204 	retval = __xa_alloc_cyclic(xa, pindex, ptr, mask, pnext_index, gfp);
205 	xa_unlock(xa);
206 
207 	return (retval);
208 }
209 
210 /*
211  * This function tries to insert an element at the given index. The
212  * "gfp" argument basically decides of this function can sleep or not
213  * trying to allocate internal memory for its radix tree.  The
214  * function returns an error code upon failure. Typical error codes
215  * are element exists (-EEXIST) or out of memory (-ENOMEM).
216  */
217 int
218 __xa_insert(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
219 {
220 	int retval;
221 
222 	XA_ASSERT_LOCKED(xa);
223 retry:
224 	retval = radix_tree_insert(&xa->root, index, ptr);
225 
226 	switch (retval) {
227 	case -ENOMEM:
228 		if (likely(gfp & M_WAITOK)) {
229 			xa_vm_wait_locked(xa);
230 			goto retry;
231 		}
232 		break;
233 	default:
234 		break;
235 	}
236 	return (retval);
237 }
238 
239 int
240 xa_insert(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
241 {
242 	int retval;
243 
244 	xa_lock(xa);
245 	retval = __xa_insert(xa, index, ptr, gfp);
246 	xa_unlock(xa);
247 
248 	return (retval);
249 }
250 
251 /*
252  * This function updates the element at the given index and returns a
253  * pointer to the old element. The "gfp" argument basically decides of
254  * this function can sleep or not trying to allocate internal memory
255  * for its radix tree. The function returns an XA_ERROR() pointer code
256  * upon failure. Code using this function must always check if the
257  * return value is an XA_ERROR() code before using the returned value.
258  */
259 void *
260 __xa_store(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
261 {
262 	int retval;
263 
264 	XA_ASSERT_LOCKED(xa);
265 retry:
266 	retval = radix_tree_store(&xa->root, index, &ptr);
267 
268 	switch (retval) {
269 	case 0:
270 		break;
271 	case -ENOMEM:
272 		if (likely(gfp & M_WAITOK)) {
273 			xa_vm_wait_locked(xa);
274 			goto retry;
275 		}
276 		ptr = XA_ERROR(retval);
277 		break;
278 	default:
279 		ptr = XA_ERROR(retval);
280 		break;
281 	}
282 	return (ptr);
283 }
284 
285 void *
286 xa_store(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
287 {
288 	void *retval;
289 
290 	xa_lock(xa);
291 	retval = __xa_store(xa, index, ptr, gfp);
292 	xa_unlock(xa);
293 
294 	return (retval);
295 }
296 
297 /*
298  * This function initialize an xarray structure.
299  */
300 void
301 xa_init_flags(struct xarray *xa, uint32_t flags)
302 {
303 	memset(xa, 0, sizeof(*xa));
304 
305 	mtx_init(&xa->mtx, "lkpi-xarray", NULL, MTX_DEF | MTX_RECURSE);
306 	xa->root.gfp_mask = GFP_NOWAIT;
307 	xa->flags = flags;
308 }
309 
310 /*
311  * This function destroys an xarray structure and all its internal
312  * memory and locks.
313  */
314 void
315 xa_destroy(struct xarray *xa)
316 {
317 	struct radix_tree_iter iter;
318 	void **ppslot;
319 
320 	radix_tree_for_each_slot(ppslot, &xa->root, &iter, 0)
321 		radix_tree_iter_delete(&xa->root, &iter, ppslot);
322 	mtx_destroy(&xa->mtx);
323 }
324 
325 /*
326  * This function checks if an xarray is empty or not.
327  * It returns true if empty, else false.
328  */
329 bool
330 __xa_empty(struct xarray *xa)
331 {
332 	struct radix_tree_iter iter = {};
333 	void **temp;
334 
335 	XA_ASSERT_LOCKED(xa);
336 
337 	return (!radix_tree_iter_find(&xa->root, &iter, &temp));
338 }
339 
340 bool
341 xa_empty(struct xarray *xa)
342 {
343 	bool retval;
344 
345 	xa_lock(xa);
346 	retval = __xa_empty(xa);
347 	xa_unlock(xa);
348 
349 	return (retval);
350 }
351 
352 /*
353  * This function returns the next valid xarray entry based on the
354  * index given by "pindex". The valued pointed to by "pindex" is
355  * updated before return.
356  */
357 void *
358 __xa_next(struct xarray *xa, unsigned long *pindex, bool not_first)
359 {
360 	struct radix_tree_iter iter = { .index = *pindex };
361 	void **ppslot;
362 	void *retval;
363 	bool found;
364 
365 	XA_ASSERT_LOCKED(xa);
366 
367 	if (not_first) {
368 		/* advance to next index, if any */
369 		iter.index++;
370 		if (iter.index == 0)
371 			return (NULL);
372 	}
373 
374 	found = radix_tree_iter_find(&xa->root, &iter, &ppslot);
375 	if (likely(found)) {
376 		retval = *ppslot;
377 		*pindex = iter.index;
378 	} else {
379 		retval = NULL;
380 	}
381 	return (retval);
382 }
383 
384 void *
385 xa_next(struct xarray *xa, unsigned long *pindex, bool not_first)
386 {
387 	void *retval;
388 
389 	xa_lock(xa);
390 	retval = __xa_next(xa, pindex, not_first);
391 	xa_unlock(xa);
392 
393 	return (retval);
394 }
395