xref: /freebsd/sys/compat/linuxkpi/common/src/linux_work.c (revision ee51cfe17ce50ca189c85280cbe3c3aa7b6dd7f9)
1 /*-
2  * Copyright (c) 2017 Hans Petter Selasky
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <linux/workqueue.h>
31 #include <linux/wait.h>
32 #include <linux/compat.h>
33 #include <linux/spinlock.h>
34 
35 #include <sys/kernel.h>
36 
37 /*
38  * Define all work struct states
39  */
40 enum {
41 	WORK_ST_IDLE,			/* idle - not started */
42 	WORK_ST_TIMER,			/* timer is being started */
43 	WORK_ST_TASK,			/* taskqueue is being queued */
44 	WORK_ST_EXEC,			/* callback is being called */
45 	WORK_ST_CANCEL,			/* cancel is being requested */
46 	WORK_ST_MAX,
47 };
48 
49 /*
50  * Define global workqueues
51  */
52 static struct workqueue_struct *linux_system_short_wq;
53 static struct workqueue_struct *linux_system_long_wq;
54 
55 struct workqueue_struct *system_wq;
56 struct workqueue_struct *system_long_wq;
57 struct workqueue_struct *system_unbound_wq;
58 struct workqueue_struct *system_power_efficient_wq;
59 
60 static int linux_default_wq_cpus = 4;
61 
62 static void linux_delayed_work_timer_fn(void *);
63 
64 /*
65  * This function atomically updates the work state and returns the
66  * previous state at the time of update.
67  */
68 static uint8_t
69 linux_update_state(atomic_t *v, const uint8_t *pstate)
70 {
71 	int c, old;
72 
73 	c = v->counter;
74 
75 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
76 		c = old;
77 
78 	return (c);
79 }
80 
81 /*
82  * A LinuxKPI task is allowed to free itself inside the callback function
83  * and cannot safely be referred after the callback function has
84  * completed. This function gives the linux_work_fn() function a hint,
85  * that the task is not going away and can have its state checked
86  * again. Without this extra hint LinuxKPI tasks cannot be serialized
87  * accross multiple worker threads.
88  */
89 static bool
90 linux_work_exec_unblock(struct work_struct *work)
91 {
92 	struct workqueue_struct *wq;
93 	struct work_exec *exec;
94 	bool retval = 0;
95 
96 	wq = work->work_queue;
97 	if (unlikely(wq == NULL))
98 		goto done;
99 
100 	WQ_EXEC_LOCK(wq);
101 	TAILQ_FOREACH(exec, &wq->exec_head, entry) {
102 		if (exec->target == work) {
103 			exec->target = NULL;
104 			retval = 1;
105 			break;
106 		}
107 	}
108 	WQ_EXEC_UNLOCK(wq);
109 done:
110 	return (retval);
111 }
112 
113 static void
114 linux_delayed_work_enqueue(struct delayed_work *dwork)
115 {
116 	struct taskqueue *tq;
117 
118 	tq = dwork->work.work_queue->taskqueue;
119 	taskqueue_enqueue(tq, &dwork->work.work_task);
120 }
121 
122 /*
123  * This function queues the given work structure on the given
124  * workqueue. It returns non-zero if the work was successfully
125  * [re-]queued. Else the work is already pending for completion.
126  */
127 bool
128 linux_queue_work_on(int cpu __unused, struct workqueue_struct *wq,
129     struct work_struct *work)
130 {
131 	static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
132 		[WORK_ST_IDLE] = WORK_ST_TASK,		/* start queuing task */
133 		[WORK_ST_TIMER] = WORK_ST_TIMER,	/* NOP */
134 		[WORK_ST_TASK] = WORK_ST_TASK,		/* NOP */
135 		[WORK_ST_EXEC] = WORK_ST_TASK,		/* queue task another time */
136 		[WORK_ST_CANCEL] = WORK_ST_TASK,	/* start queuing task again */
137 	};
138 
139 	if (atomic_read(&wq->draining) != 0)
140 		return (!work_pending(work));
141 
142 	switch (linux_update_state(&work->state, states)) {
143 	case WORK_ST_EXEC:
144 	case WORK_ST_CANCEL:
145 		if (linux_work_exec_unblock(work) != 0)
146 			return (1);
147 		/* FALLTHROUGH */
148 	case WORK_ST_IDLE:
149 		work->work_queue = wq;
150 		taskqueue_enqueue(wq->taskqueue, &work->work_task);
151 		return (1);
152 	default:
153 		return (0);		/* already on a queue */
154 	}
155 }
156 
157 /*
158  * This function queues the given work structure on the given
159  * workqueue after a given delay in ticks. It returns non-zero if the
160  * work was successfully [re-]queued. Else the work is already pending
161  * for completion.
162  */
163 bool
164 linux_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
165     struct delayed_work *dwork, unsigned delay)
166 {
167 	static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
168 		[WORK_ST_IDLE] = WORK_ST_TIMER,		/* start timeout */
169 		[WORK_ST_TIMER] = WORK_ST_TIMER,	/* NOP */
170 		[WORK_ST_TASK] = WORK_ST_TASK,		/* NOP */
171 		[WORK_ST_EXEC] = WORK_ST_TIMER,		/* start timeout */
172 		[WORK_ST_CANCEL] = WORK_ST_TIMER,	/* start timeout */
173 	};
174 
175 	if (atomic_read(&wq->draining) != 0)
176 		return (!work_pending(&dwork->work));
177 
178 	switch (linux_update_state(&dwork->work.state, states)) {
179 	case WORK_ST_EXEC:
180 	case WORK_ST_CANCEL:
181 		if (delay == 0 && linux_work_exec_unblock(&dwork->work) != 0) {
182 			dwork->timer.expires = jiffies;
183 			return (1);
184 		}
185 		/* FALLTHROUGH */
186 	case WORK_ST_IDLE:
187 		dwork->work.work_queue = wq;
188 		dwork->timer.expires = jiffies + delay;
189 
190 		if (delay == 0) {
191 			linux_delayed_work_enqueue(dwork);
192 		} else if (unlikely(cpu != WORK_CPU_UNBOUND)) {
193 			mtx_lock(&dwork->timer.mtx);
194 			callout_reset_on(&dwork->timer.callout, delay,
195 			    &linux_delayed_work_timer_fn, dwork, cpu);
196 			mtx_unlock(&dwork->timer.mtx);
197 		} else {
198 			mtx_lock(&dwork->timer.mtx);
199 			callout_reset(&dwork->timer.callout, delay,
200 			    &linux_delayed_work_timer_fn, dwork);
201 			mtx_unlock(&dwork->timer.mtx);
202 		}
203 		return (1);
204 	default:
205 		return (0);		/* already on a queue */
206 	}
207 }
208 
209 void
210 linux_work_fn(void *context, int pending)
211 {
212 	static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
213 		[WORK_ST_IDLE] = WORK_ST_IDLE,		/* NOP */
214 		[WORK_ST_TIMER] = WORK_ST_EXEC,		/* delayed work w/o timeout */
215 		[WORK_ST_TASK] = WORK_ST_EXEC,		/* call callback */
216 		[WORK_ST_EXEC] = WORK_ST_IDLE,		/* complete callback */
217 		[WORK_ST_CANCEL] = WORK_ST_EXEC,	/* failed to cancel */
218 	};
219 	struct work_struct *work;
220 	struct workqueue_struct *wq;
221 	struct work_exec exec;
222 
223 	linux_set_current(curthread);
224 
225 	/* setup local variables */
226 	work = context;
227 	wq = work->work_queue;
228 
229 	/* store target pointer */
230 	exec.target = work;
231 
232 	/* insert executor into list */
233 	WQ_EXEC_LOCK(wq);
234 	TAILQ_INSERT_TAIL(&wq->exec_head, &exec, entry);
235 	while (1) {
236 		switch (linux_update_state(&work->state, states)) {
237 		case WORK_ST_TIMER:
238 		case WORK_ST_TASK:
239 		case WORK_ST_CANCEL:
240 			WQ_EXEC_UNLOCK(wq);
241 
242 			/* call work function */
243 			work->func(work);
244 
245 			WQ_EXEC_LOCK(wq);
246 			/* check if unblocked */
247 			if (exec.target != work) {
248 				/* reapply block */
249 				exec.target = work;
250 				break;
251 			}
252 			/* FALLTHROUGH */
253 		default:
254 			goto done;
255 		}
256 	}
257 done:
258 	/* remove executor from list */
259 	TAILQ_REMOVE(&wq->exec_head, &exec, entry);
260 	WQ_EXEC_UNLOCK(wq);
261 }
262 
263 static void
264 linux_delayed_work_timer_fn(void *arg)
265 {
266 	static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
267 		[WORK_ST_IDLE] = WORK_ST_IDLE,		/* NOP */
268 		[WORK_ST_TIMER] = WORK_ST_TASK,		/* start queueing task */
269 		[WORK_ST_TASK] = WORK_ST_TASK,		/* NOP */
270 		[WORK_ST_EXEC] = WORK_ST_EXEC,		/* NOP */
271 		[WORK_ST_CANCEL] = WORK_ST_TASK,	/* failed to cancel */
272 	};
273 	struct delayed_work *dwork = arg;
274 
275 	switch (linux_update_state(&dwork->work.state, states)) {
276 	case WORK_ST_TIMER:
277 	case WORK_ST_CANCEL:
278 		linux_delayed_work_enqueue(dwork);
279 		break;
280 	default:
281 		break;
282 	}
283 }
284 
285 /*
286  * This function cancels the given work structure in a synchronous
287  * fashion. It returns non-zero if the work was successfully
288  * cancelled. Else the work was already cancelled.
289  */
290 bool
291 linux_cancel_work_sync(struct work_struct *work)
292 {
293 	static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
294 		[WORK_ST_IDLE] = WORK_ST_IDLE,		/* NOP */
295 		[WORK_ST_TIMER] = WORK_ST_TIMER,	/* can't happen */
296 		[WORK_ST_TASK] = WORK_ST_IDLE,		/* cancel and drain */
297 		[WORK_ST_EXEC] = WORK_ST_IDLE,		/* too late, drain */
298 		[WORK_ST_CANCEL] = WORK_ST_IDLE,	/* cancel and drain */
299 	};
300 	struct taskqueue *tq;
301 
302 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
303 	    "linux_cancel_work_sync() might sleep");
304 
305 	switch (linux_update_state(&work->state, states)) {
306 	case WORK_ST_IDLE:
307 	case WORK_ST_TIMER:
308 		return (0);
309 	case WORK_ST_EXEC:
310 		tq = work->work_queue->taskqueue;
311 		if (taskqueue_cancel(tq, &work->work_task, NULL) != 0)
312 			taskqueue_drain(tq, &work->work_task);
313 		return (0);
314 	default:
315 		tq = work->work_queue->taskqueue;
316 		if (taskqueue_cancel(tq, &work->work_task, NULL) != 0)
317 			taskqueue_drain(tq, &work->work_task);
318 		return (1);
319 	}
320 }
321 
322 /*
323  * This function atomically stops the timer and callback. The timer
324  * callback will not be called after this function returns. This
325  * functions returns true when the timeout was cancelled. Else the
326  * timeout was not started or has already been called.
327  */
328 static inline bool
329 linux_cancel_timer(struct delayed_work *dwork, bool drain)
330 {
331 	bool cancelled;
332 
333 	mtx_lock(&dwork->timer.mtx);
334 	cancelled = (callout_stop(&dwork->timer.callout) == 1);
335 	mtx_unlock(&dwork->timer.mtx);
336 
337 	/* check if we should drain */
338 	if (drain)
339 		callout_drain(&dwork->timer.callout);
340 	return (cancelled);
341 }
342 
343 /*
344  * This function cancels the given delayed work structure in a
345  * non-blocking fashion. It returns non-zero if the work was
346  * successfully cancelled. Else the work may still be busy or already
347  * cancelled.
348  */
349 bool
350 linux_cancel_delayed_work(struct delayed_work *dwork)
351 {
352 	static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
353 		[WORK_ST_IDLE] = WORK_ST_IDLE,		/* NOP */
354 		[WORK_ST_TIMER] = WORK_ST_CANCEL,	/* try to cancel */
355 		[WORK_ST_TASK] = WORK_ST_CANCEL,	/* try to cancel */
356 		[WORK_ST_EXEC] = WORK_ST_EXEC,		/* NOP */
357 		[WORK_ST_CANCEL] = WORK_ST_CANCEL,	/* NOP */
358 	};
359 	struct taskqueue *tq;
360 
361 	switch (linux_update_state(&dwork->work.state, states)) {
362 	case WORK_ST_TIMER:
363 	case WORK_ST_CANCEL:
364 		if (linux_cancel_timer(dwork, 0)) {
365 			atomic_cmpxchg(&dwork->work.state,
366 			    WORK_ST_CANCEL, WORK_ST_IDLE);
367 			return (1);
368 		}
369 		/* FALLTHROUGH */
370 	case WORK_ST_TASK:
371 		tq = dwork->work.work_queue->taskqueue;
372 		if (taskqueue_cancel(tq, &dwork->work.work_task, NULL) == 0) {
373 			atomic_cmpxchg(&dwork->work.state,
374 			    WORK_ST_CANCEL, WORK_ST_IDLE);
375 			return (1);
376 		}
377 		/* FALLTHROUGH */
378 	default:
379 		return (0);
380 	}
381 }
382 
383 /*
384  * This function cancels the given work structure in a synchronous
385  * fashion. It returns non-zero if the work was successfully
386  * cancelled. Else the work was already cancelled.
387  */
388 bool
389 linux_cancel_delayed_work_sync(struct delayed_work *dwork)
390 {
391 	static const uint8_t states[WORK_ST_MAX] __aligned(8) = {
392 		[WORK_ST_IDLE] = WORK_ST_IDLE,		/* NOP */
393 		[WORK_ST_TIMER] = WORK_ST_IDLE,		/* cancel and drain */
394 		[WORK_ST_TASK] = WORK_ST_IDLE,		/* cancel and drain */
395 		[WORK_ST_EXEC] = WORK_ST_IDLE,		/* too late, drain */
396 		[WORK_ST_CANCEL] = WORK_ST_IDLE,	/* cancel and drain */
397 	};
398 	struct taskqueue *tq;
399 
400 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
401 	    "linux_cancel_delayed_work_sync() might sleep");
402 
403 	switch (linux_update_state(&dwork->work.state, states)) {
404 	case WORK_ST_IDLE:
405 		return (0);
406 	case WORK_ST_EXEC:
407 		tq = dwork->work.work_queue->taskqueue;
408 		if (taskqueue_cancel(tq, &dwork->work.work_task, NULL) != 0)
409 			taskqueue_drain(tq, &dwork->work.work_task);
410 		return (0);
411 	case WORK_ST_TIMER:
412 	case WORK_ST_CANCEL:
413 		if (linux_cancel_timer(dwork, 1)) {
414 			/*
415 			 * Make sure taskqueue is also drained before
416 			 * returning:
417 			 */
418 			tq = dwork->work.work_queue->taskqueue;
419 			taskqueue_drain(tq, &dwork->work.work_task);
420 			return (1);
421 		}
422 		/* FALLTHROUGH */
423 	default:
424 		tq = dwork->work.work_queue->taskqueue;
425 		if (taskqueue_cancel(tq, &dwork->work.work_task, NULL) != 0)
426 			taskqueue_drain(tq, &dwork->work.work_task);
427 		return (1);
428 	}
429 }
430 
431 /*
432  * This function waits until the given work structure is completed.
433  * It returns non-zero if the work was successfully
434  * waited for. Else the work was not waited for.
435  */
436 bool
437 linux_flush_work(struct work_struct *work)
438 {
439 	struct taskqueue *tq;
440 
441 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
442 	    "linux_flush_work() might sleep");
443 
444 	switch (atomic_read(&work->state)) {
445 	case WORK_ST_IDLE:
446 		return (0);
447 	default:
448 		tq = work->work_queue->taskqueue;
449 		taskqueue_drain(tq, &work->work_task);
450 		return (1);
451 	}
452 }
453 
454 /*
455  * This function waits until the given delayed work structure is
456  * completed. It returns non-zero if the work was successfully waited
457  * for. Else the work was not waited for.
458  */
459 bool
460 linux_flush_delayed_work(struct delayed_work *dwork)
461 {
462 	struct taskqueue *tq;
463 
464 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
465 	    "linux_flush_delayed_work() might sleep");
466 
467 	switch (atomic_read(&dwork->work.state)) {
468 	case WORK_ST_IDLE:
469 		return (0);
470 	case WORK_ST_TIMER:
471 		if (linux_cancel_timer(dwork, 1))
472 			linux_delayed_work_enqueue(dwork);
473 		/* FALLTHROUGH */
474 	default:
475 		tq = dwork->work.work_queue->taskqueue;
476 		taskqueue_drain(tq, &dwork->work.work_task);
477 		return (1);
478 	}
479 }
480 
481 /*
482  * This function returns true if the given work is pending, and not
483  * yet executing:
484  */
485 bool
486 linux_work_pending(struct work_struct *work)
487 {
488 	switch (atomic_read(&work->state)) {
489 	case WORK_ST_TIMER:
490 	case WORK_ST_TASK:
491 	case WORK_ST_CANCEL:
492 		return (1);
493 	default:
494 		return (0);
495 	}
496 }
497 
498 /*
499  * This function returns true if the given work is busy.
500  */
501 bool
502 linux_work_busy(struct work_struct *work)
503 {
504 	struct taskqueue *tq;
505 
506 	switch (atomic_read(&work->state)) {
507 	case WORK_ST_IDLE:
508 		return (0);
509 	case WORK_ST_EXEC:
510 		tq = work->work_queue->taskqueue;
511 		return (taskqueue_poll_is_busy(tq, &work->work_task));
512 	default:
513 		return (1);
514 	}
515 }
516 
517 struct workqueue_struct *
518 linux_create_workqueue_common(const char *name, int cpus)
519 {
520 	struct workqueue_struct *wq;
521 
522 	/*
523 	 * If zero CPUs are specified use the default number of CPUs:
524 	 */
525 	if (cpus == 0)
526 		cpus = linux_default_wq_cpus;
527 
528 	wq = kmalloc(sizeof(*wq), M_WAITOK | M_ZERO);
529 	wq->taskqueue = taskqueue_create(name, M_WAITOK,
530 	    taskqueue_thread_enqueue, &wq->taskqueue);
531 	atomic_set(&wq->draining, 0);
532 	taskqueue_start_threads(&wq->taskqueue, cpus, PWAIT, "%s", name);
533 	TAILQ_INIT(&wq->exec_head);
534 	mtx_init(&wq->exec_mtx, "linux_wq_exec", NULL, MTX_DEF);
535 
536 	return (wq);
537 }
538 
539 void
540 linux_destroy_workqueue(struct workqueue_struct *wq)
541 {
542 	atomic_inc(&wq->draining);
543 	drain_workqueue(wq);
544 	taskqueue_free(wq->taskqueue);
545 	mtx_destroy(&wq->exec_mtx);
546 	kfree(wq);
547 }
548 
549 void
550 linux_init_delayed_work(struct delayed_work *dwork, work_func_t func)
551 {
552 	memset(dwork, 0, sizeof(*dwork));
553 	INIT_WORK(&dwork->work, func);
554 	mtx_init(&dwork->timer.mtx, spin_lock_name("lkpi-dwork"), NULL,
555 	    MTX_DEF | MTX_NOWITNESS);
556 	callout_init_mtx(&dwork->timer.callout, &dwork->timer.mtx, 0);
557 }
558 
559 static void
560 linux_work_init(void *arg)
561 {
562 	int max_wq_cpus = mp_ncpus + 1;
563 
564 	/* avoid deadlock when there are too few threads */
565 	if (max_wq_cpus < 4)
566 		max_wq_cpus = 4;
567 
568 	/* set default number of CPUs */
569 	linux_default_wq_cpus = max_wq_cpus;
570 
571 	linux_system_short_wq = alloc_workqueue("linuxkpi_short_wq", 0, max_wq_cpus);
572 	linux_system_long_wq = alloc_workqueue("linuxkpi_long_wq", 0, max_wq_cpus);
573 
574 	/* populate the workqueue pointers */
575 	system_long_wq = linux_system_long_wq;
576 	system_wq = linux_system_short_wq;
577 	system_power_efficient_wq = linux_system_short_wq;
578 	system_unbound_wq = linux_system_short_wq;
579 }
580 SYSINIT(linux_work_init, SI_SUB_INIT_IF, SI_ORDER_THIRD, linux_work_init, NULL);
581 
582 static void
583 linux_work_uninit(void *arg)
584 {
585 	destroy_workqueue(linux_system_short_wq);
586 	destroy_workqueue(linux_system_long_wq);
587 
588 	/* clear workqueue pointers */
589 	system_long_wq = NULL;
590 	system_wq = NULL;
591 	system_power_efficient_wq = NULL;
592 	system_unbound_wq = NULL;
593 }
594 SYSUNINIT(linux_work_uninit, SI_SUB_INIT_IF, SI_ORDER_THIRD, linux_work_uninit, NULL);
595