xref: /freebsd/sys/compat/linuxkpi/common/src/linux_tasklet.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*-
2  * Copyright (c) 2017 Hans Petter Selasky
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/types.h>
31 #include <sys/malloc.h>
32 #include <sys/gtaskqueue.h>
33 #include <sys/proc.h>
34 #include <sys/sched.h>
35 
36 #include <linux/compiler.h>
37 #include <linux/interrupt.h>
38 #include <linux/compat.h>
39 
40 #define	TASKLET_ST_IDLE 0
41 #define	TASKLET_ST_BUSY 1
42 #define	TASKLET_ST_EXEC 2
43 #define	TASKLET_ST_LOOP 3
44 
45 #define	TASKLET_ST_CMPSET(ts, old, new)	\
46 	atomic_cmpset_int((volatile u_int *)&(ts)->tasklet_state, old, new)
47 
48 #define	TASKLET_ST_SET(ts, new)	\
49 	WRITE_ONCE(*(volatile u_int *)&(ts)->tasklet_state, new)
50 
51 #define	TASKLET_ST_GET(ts) \
52 	READ_ONCE(*(volatile u_int *)&(ts)->tasklet_state)
53 
54 struct tasklet_worker {
55 	struct mtx mtx;
56 	TAILQ_HEAD(tasklet_list, tasklet_struct) head;
57 	struct grouptask gtask;
58 } __aligned(CACHE_LINE_SIZE);
59 
60 #define	TASKLET_WORKER_LOCK(tw) mtx_lock(&(tw)->mtx)
61 #define	TASKLET_WORKER_UNLOCK(tw) mtx_unlock(&(tw)->mtx)
62 
63 DPCPU_DEFINE_STATIC(struct tasklet_worker, tasklet_worker);
64 
65 static void
66 tasklet_handler(void *arg)
67 {
68 	struct tasklet_worker *tw = (struct tasklet_worker *)arg;
69 	struct tasklet_struct *ts;
70 	struct tasklet_struct *last;
71 
72 	linux_set_current(curthread);
73 
74 	TASKLET_WORKER_LOCK(tw);
75 	last = TAILQ_LAST(&tw->head, tasklet_list);
76 	while (1) {
77 		ts = TAILQ_FIRST(&tw->head);
78 		if (ts == NULL)
79 			break;
80 		TAILQ_REMOVE(&tw->head, ts, entry);
81 
82 		if (!atomic_read(&ts->count)) {
83 			TASKLET_WORKER_UNLOCK(tw);
84 			do {
85 				/* reset executing state */
86 				TASKLET_ST_SET(ts, TASKLET_ST_EXEC);
87 
88 				if (ts->use_callback)
89 					ts->callback(ts);
90 				else
91 					ts->func(ts->data);
92 
93 			} while (TASKLET_ST_CMPSET(ts, TASKLET_ST_EXEC,
94 			        TASKLET_ST_IDLE) == 0);
95 			TASKLET_WORKER_LOCK(tw);
96 		} else {
97 			TAILQ_INSERT_TAIL(&tw->head, ts, entry);
98 		}
99 		if (ts == last)
100 			break;
101 	}
102 	TASKLET_WORKER_UNLOCK(tw);
103 }
104 
105 static void
106 tasklet_subsystem_init(void *arg __unused)
107 {
108 	struct tasklet_worker *tw;
109 	char buf[32];
110 	int i;
111 
112 	CPU_FOREACH(i) {
113 		if (CPU_ABSENT(i))
114 			continue;
115 
116 		tw = DPCPU_ID_PTR(i, tasklet_worker);
117 
118 		mtx_init(&tw->mtx, "linux_tasklet", NULL, MTX_DEF);
119 		TAILQ_INIT(&tw->head);
120 		GROUPTASK_INIT(&tw->gtask, 0, tasklet_handler, tw);
121 		snprintf(buf, sizeof(buf), "softirq%d", i);
122 		taskqgroup_attach_cpu(qgroup_softirq, &tw->gtask,
123 		    "tasklet", i, NULL, NULL, buf);
124        }
125 }
126 SYSINIT(linux_tasklet, SI_SUB_TASKQ, SI_ORDER_THIRD, tasklet_subsystem_init, NULL);
127 
128 static void
129 tasklet_subsystem_uninit(void *arg __unused)
130 {
131 	struct tasklet_worker *tw;
132 	int i;
133 
134 	taskqgroup_drain_all(qgroup_softirq);
135 
136 	CPU_FOREACH(i) {
137 		if (CPU_ABSENT(i))
138 			continue;
139 
140 		tw = DPCPU_ID_PTR(i, tasklet_worker);
141 
142 		taskqgroup_detach(qgroup_softirq, &tw->gtask);
143 		mtx_destroy(&tw->mtx);
144 	}
145 }
146 SYSUNINIT(linux_tasklet, SI_SUB_TASKQ, SI_ORDER_THIRD, tasklet_subsystem_uninit, NULL);
147 
148 void
149 tasklet_init(struct tasklet_struct *ts,
150     tasklet_func_t *func, unsigned long data)
151 {
152 	ts->entry.tqe_prev = NULL;
153 	ts->entry.tqe_next = NULL;
154 	ts->func = func;
155 	ts->callback = NULL;
156 	ts->data = data;
157 	atomic_set_int(&ts->tasklet_state, TASKLET_ST_IDLE);
158 	atomic_set(&ts->count, 0);
159 	ts->use_callback = false;
160 }
161 
162 void
163 tasklet_setup(struct tasklet_struct *ts, tasklet_callback_t *c)
164 {
165 	ts->entry.tqe_prev = NULL;
166 	ts->entry.tqe_next = NULL;
167 	ts->func = NULL;
168 	ts->callback = c;
169 	ts->data = 0;
170 	atomic_set_int(&ts->tasklet_state, TASKLET_ST_IDLE);
171 	atomic_set(&ts->count, 0);
172 	ts->use_callback = true;
173 }
174 
175 void
176 local_bh_enable(void)
177 {
178 	sched_unpin();
179 }
180 
181 void
182 local_bh_disable(void)
183 {
184 	sched_pin();
185 }
186 
187 void
188 tasklet_schedule(struct tasklet_struct *ts)
189 {
190 
191 	/* tasklet is paused */
192 	if (atomic_read(&ts->count))
193 		return;
194 
195 	if (TASKLET_ST_CMPSET(ts, TASKLET_ST_EXEC, TASKLET_ST_LOOP)) {
196 		/* tasklet_handler() will loop */
197 	} else if (TASKLET_ST_CMPSET(ts, TASKLET_ST_IDLE, TASKLET_ST_BUSY)) {
198 		struct tasklet_worker *tw;
199 
200 		tw = &DPCPU_GET(tasklet_worker);
201 
202 		/* tasklet_handler() was not queued */
203 		TASKLET_WORKER_LOCK(tw);
204 		/* enqueue tasklet */
205 		TAILQ_INSERT_TAIL(&tw->head, ts, entry);
206 		/* schedule worker */
207 		GROUPTASK_ENQUEUE(&tw->gtask);
208 		TASKLET_WORKER_UNLOCK(tw);
209 	} else {
210 		/*
211 		 * tasklet_handler() is already executing
212 		 *
213 		 * If the state is neither EXEC nor IDLE, it is either
214 		 * LOOP or BUSY. If the state changed between the two
215 		 * CMPSET's above the only possible transitions by
216 		 * elimination are LOOP->EXEC and BUSY->EXEC. If a
217 		 * EXEC->LOOP transition was missed that is not a
218 		 * problem because the callback function is then
219 		 * already about to be called again.
220 		 */
221 	}
222 }
223 
224 void
225 tasklet_kill(struct tasklet_struct *ts)
226 {
227 
228 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "tasklet_kill() can sleep");
229 
230 	/* wait until tasklet is no longer busy */
231 	while (TASKLET_ST_GET(ts) != TASKLET_ST_IDLE)
232 		pause("W", 1);
233 }
234 
235 void
236 tasklet_enable(struct tasklet_struct *ts)
237 {
238 
239 	atomic_dec(&ts->count);
240 }
241 
242 void
243 tasklet_disable(struct tasklet_struct *ts)
244 {
245 
246 	atomic_inc(&ts->count);
247 	tasklet_unlock_wait(ts);
248 }
249 
250 void
251 tasklet_disable_nosync(struct tasklet_struct *ts)
252 {
253 	atomic_inc(&ts->count);
254 	barrier();
255 }
256 
257 int
258 tasklet_trylock(struct tasklet_struct *ts)
259 {
260 
261 	return (TASKLET_ST_CMPSET(ts, TASKLET_ST_IDLE, TASKLET_ST_BUSY));
262 }
263 
264 void
265 tasklet_unlock(struct tasklet_struct *ts)
266 {
267 
268 	TASKLET_ST_SET(ts, TASKLET_ST_IDLE);
269 }
270 
271 void
272 tasklet_unlock_wait(struct tasklet_struct *ts)
273 {
274 
275 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "tasklet_kill() can sleep");
276 
277 	/* wait until tasklet is no longer busy */
278 	while (TASKLET_ST_GET(ts) != TASKLET_ST_IDLE)
279 		pause("W", 1);
280 }
281