xref: /freebsd/sys/compat/linuxkpi/common/src/linux_tasklet.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /*-
2  * Copyright (c) 2017 Hans Petter Selasky
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/malloc.h>
29 #include <sys/gtaskqueue.h>
30 #include <sys/proc.h>
31 #include <sys/sched.h>
32 
33 #include <linux/compiler.h>
34 #include <linux/interrupt.h>
35 #include <linux/compat.h>
36 
37 #define	TASKLET_ST_IDLE 0
38 #define	TASKLET_ST_BUSY 1
39 #define	TASKLET_ST_EXEC 2
40 #define	TASKLET_ST_LOOP 3
41 
42 #define	TASKLET_ST_CMPSET(ts, old, new)	\
43 	atomic_cmpset_int((volatile u_int *)&(ts)->tasklet_state, old, new)
44 
45 #define	TASKLET_ST_SET(ts, new)	\
46 	WRITE_ONCE(*(volatile u_int *)&(ts)->tasklet_state, new)
47 
48 #define	TASKLET_ST_GET(ts) \
49 	READ_ONCE(*(volatile u_int *)&(ts)->tasklet_state)
50 
51 struct tasklet_worker {
52 	struct mtx mtx;
53 	TAILQ_HEAD(tasklet_list, tasklet_struct) head;
54 	struct grouptask gtask;
55 } __aligned(CACHE_LINE_SIZE);
56 
57 #define	TASKLET_WORKER_LOCK(tw) mtx_lock(&(tw)->mtx)
58 #define	TASKLET_WORKER_UNLOCK(tw) mtx_unlock(&(tw)->mtx)
59 
60 DPCPU_DEFINE_STATIC(struct tasklet_worker, tasklet_worker);
61 
62 static void
63 tasklet_handler(void *arg)
64 {
65 	struct tasklet_worker *tw = (struct tasklet_worker *)arg;
66 	struct tasklet_struct *ts;
67 	struct tasklet_struct *last;
68 
69 	linux_set_current(curthread);
70 
71 	TASKLET_WORKER_LOCK(tw);
72 	last = TAILQ_LAST(&tw->head, tasklet_list);
73 	while (1) {
74 		ts = TAILQ_FIRST(&tw->head);
75 		if (ts == NULL)
76 			break;
77 		TAILQ_REMOVE(&tw->head, ts, entry);
78 
79 		if (!atomic_read(&ts->count)) {
80 			TASKLET_WORKER_UNLOCK(tw);
81 			do {
82 				/* reset executing state */
83 				TASKLET_ST_SET(ts, TASKLET_ST_EXEC);
84 
85 				if (ts->use_callback)
86 					ts->callback(ts);
87 				else
88 					ts->func(ts->data);
89 
90 			} while (TASKLET_ST_CMPSET(ts, TASKLET_ST_EXEC,
91 			        TASKLET_ST_IDLE) == 0);
92 			TASKLET_WORKER_LOCK(tw);
93 		} else {
94 			TAILQ_INSERT_TAIL(&tw->head, ts, entry);
95 		}
96 		if (ts == last)
97 			break;
98 	}
99 	TASKLET_WORKER_UNLOCK(tw);
100 }
101 
102 static void
103 tasklet_subsystem_init(void *arg __unused)
104 {
105 	struct tasklet_worker *tw;
106 	char buf[32];
107 	int i;
108 
109 	CPU_FOREACH(i) {
110 		if (CPU_ABSENT(i))
111 			continue;
112 
113 		tw = DPCPU_ID_PTR(i, tasklet_worker);
114 
115 		mtx_init(&tw->mtx, "linux_tasklet", NULL, MTX_DEF);
116 		TAILQ_INIT(&tw->head);
117 		GROUPTASK_INIT(&tw->gtask, 0, tasklet_handler, tw);
118 		snprintf(buf, sizeof(buf), "softirq%d", i);
119 		taskqgroup_attach_cpu(qgroup_softirq, &tw->gtask,
120 		    "tasklet", i, NULL, NULL, buf);
121        }
122 }
123 SYSINIT(linux_tasklet, SI_SUB_TASKQ, SI_ORDER_THIRD, tasklet_subsystem_init, NULL);
124 
125 static void
126 tasklet_subsystem_uninit(void *arg __unused)
127 {
128 	struct tasklet_worker *tw;
129 	int i;
130 
131 	taskqgroup_drain_all(qgroup_softirq);
132 
133 	CPU_FOREACH(i) {
134 		if (CPU_ABSENT(i))
135 			continue;
136 
137 		tw = DPCPU_ID_PTR(i, tasklet_worker);
138 
139 		taskqgroup_detach(qgroup_softirq, &tw->gtask);
140 		mtx_destroy(&tw->mtx);
141 	}
142 }
143 SYSUNINIT(linux_tasklet, SI_SUB_TASKQ, SI_ORDER_THIRD, tasklet_subsystem_uninit, NULL);
144 
145 void
146 tasklet_init(struct tasklet_struct *ts,
147     tasklet_func_t *func, unsigned long data)
148 {
149 	ts->entry.tqe_prev = NULL;
150 	ts->entry.tqe_next = NULL;
151 	ts->func = func;
152 	ts->callback = NULL;
153 	ts->data = data;
154 	atomic_set_int(&ts->tasklet_state, TASKLET_ST_IDLE);
155 	atomic_set(&ts->count, 0);
156 	ts->use_callback = false;
157 }
158 
159 void
160 tasklet_setup(struct tasklet_struct *ts, tasklet_callback_t *c)
161 {
162 	ts->entry.tqe_prev = NULL;
163 	ts->entry.tqe_next = NULL;
164 	ts->func = NULL;
165 	ts->callback = c;
166 	ts->data = 0;
167 	atomic_set_int(&ts->tasklet_state, TASKLET_ST_IDLE);
168 	atomic_set(&ts->count, 0);
169 	ts->use_callback = true;
170 }
171 
172 void
173 local_bh_enable(void)
174 {
175 	sched_unpin();
176 }
177 
178 void
179 local_bh_disable(void)
180 {
181 	sched_pin();
182 }
183 
184 void
185 tasklet_schedule(struct tasklet_struct *ts)
186 {
187 
188 	/* tasklet is paused */
189 	if (atomic_read(&ts->count))
190 		return;
191 
192 	if (TASKLET_ST_CMPSET(ts, TASKLET_ST_EXEC, TASKLET_ST_LOOP)) {
193 		/* tasklet_handler() will loop */
194 	} else if (TASKLET_ST_CMPSET(ts, TASKLET_ST_IDLE, TASKLET_ST_BUSY)) {
195 		struct tasklet_worker *tw;
196 
197 		tw = &DPCPU_GET(tasklet_worker);
198 
199 		/* tasklet_handler() was not queued */
200 		TASKLET_WORKER_LOCK(tw);
201 		/* enqueue tasklet */
202 		TAILQ_INSERT_TAIL(&tw->head, ts, entry);
203 		/* schedule worker */
204 		GROUPTASK_ENQUEUE(&tw->gtask);
205 		TASKLET_WORKER_UNLOCK(tw);
206 	} else {
207 		/*
208 		 * tasklet_handler() is already executing
209 		 *
210 		 * If the state is neither EXEC nor IDLE, it is either
211 		 * LOOP or BUSY. If the state changed between the two
212 		 * CMPSET's above the only possible transitions by
213 		 * elimination are LOOP->EXEC and BUSY->EXEC. If a
214 		 * EXEC->LOOP transition was missed that is not a
215 		 * problem because the callback function is then
216 		 * already about to be called again.
217 		 */
218 	}
219 }
220 
221 void
222 tasklet_kill(struct tasklet_struct *ts)
223 {
224 
225 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "tasklet_kill() can sleep");
226 
227 	/* wait until tasklet is no longer busy */
228 	while (TASKLET_ST_GET(ts) != TASKLET_ST_IDLE)
229 		pause("W", 1);
230 }
231 
232 void
233 tasklet_enable(struct tasklet_struct *ts)
234 {
235 
236 	atomic_dec(&ts->count);
237 }
238 
239 void
240 tasklet_disable(struct tasklet_struct *ts)
241 {
242 
243 	atomic_inc(&ts->count);
244 	tasklet_unlock_wait(ts);
245 }
246 
247 void
248 tasklet_disable_nosync(struct tasklet_struct *ts)
249 {
250 	atomic_inc(&ts->count);
251 	barrier();
252 }
253 
254 int
255 tasklet_trylock(struct tasklet_struct *ts)
256 {
257 
258 	return (TASKLET_ST_CMPSET(ts, TASKLET_ST_IDLE, TASKLET_ST_BUSY));
259 }
260 
261 void
262 tasklet_unlock(struct tasklet_struct *ts)
263 {
264 
265 	TASKLET_ST_SET(ts, TASKLET_ST_IDLE);
266 }
267 
268 void
269 tasklet_unlock_wait(struct tasklet_struct *ts)
270 {
271 
272 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "tasklet_kill() can sleep");
273 
274 	/* wait until tasklet is no longer busy */
275 	while (TASKLET_ST_GET(ts) != TASKLET_ST_IDLE)
276 		pause("W", 1);
277 }
278