xref: /freebsd/sys/compat/linuxkpi/common/src/linux_rcu.c (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 /*-
2  * Copyright (c) 2016 Matthew Macy (mmacy@mattmacy.io)
3  * Copyright (c) 2017-2021 Hans Petter Selasky (hselasky@freebsd.org)
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/kernel.h>
33 #include <sys/lock.h>
34 #include <sys/mutex.h>
35 #include <sys/proc.h>
36 #include <sys/sched.h>
37 #include <sys/smp.h>
38 #include <sys/queue.h>
39 #include <sys/taskqueue.h>
40 #include <sys/kdb.h>
41 
42 #include <ck_epoch.h>
43 
44 #include <linux/rcupdate.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/kernel.h>
48 #include <linux/compat.h>
49 #include <linux/llist.h>
50 #include <linux/irq_work.h>
51 
52 /*
53  * By defining CONFIG_NO_RCU_SKIP LinuxKPI RCU locks and asserts will
54  * not be skipped during panic().
55  */
56 #ifdef CONFIG_NO_RCU_SKIP
57 #define	RCU_SKIP(void) 0
58 #else
59 #define	RCU_SKIP(void)	unlikely(SCHEDULER_STOPPED() || kdb_active)
60 #endif
61 
62 struct callback_head {
63 	union {
64 		STAILQ_ENTRY(callback_head) entry;
65 		struct llist_node node;
66 	};
67 	rcu_callback_t func;
68 };
69 
70 struct linux_epoch_head {
71 	struct llist_head cb_head;
72 	struct task task;
73 } __aligned(CACHE_LINE_SIZE);
74 
75 struct linux_epoch_record {
76 	ck_epoch_record_t epoch_record;
77 	TAILQ_HEAD(, task_struct) ts_head;
78 	int cpuid;
79 	int type;
80 } __aligned(CACHE_LINE_SIZE);
81 
82 /*
83  * Verify that "struct rcu_head" is big enough to hold "struct
84  * callback_head". This has been done to avoid having to add special
85  * compile flags for including ck_epoch.h to all clients of the
86  * LinuxKPI.
87  */
88 CTASSERT(sizeof(struct rcu_head) == sizeof(struct callback_head));
89 
90 /*
91  * Verify that "rcu_section[0]" has the same size as
92  * "ck_epoch_section_t". This has been done to avoid having to add
93  * special compile flags for including ck_epoch.h to all clients of
94  * the LinuxKPI.
95  */
96 CTASSERT(sizeof(((struct task_struct *)0)->rcu_section[0] ==
97     sizeof(ck_epoch_section_t)));
98 
99 /*
100  * Verify that "epoch_record" is at beginning of "struct
101  * linux_epoch_record":
102  */
103 CTASSERT(offsetof(struct linux_epoch_record, epoch_record) == 0);
104 
105 CTASSERT(TS_RCU_TYPE_MAX == RCU_TYPE_MAX);
106 
107 static ck_epoch_t linux_epoch[RCU_TYPE_MAX];
108 static struct linux_epoch_head linux_epoch_head[RCU_TYPE_MAX];
109 DPCPU_DEFINE_STATIC(struct linux_epoch_record, linux_epoch_record[RCU_TYPE_MAX]);
110 
111 static void linux_rcu_cleaner_func(void *, int);
112 
113 static void
114 linux_rcu_runtime_init(void *arg __unused)
115 {
116 	struct linux_epoch_head *head;
117 	int i;
118 	int j;
119 
120 	for (j = 0; j != RCU_TYPE_MAX; j++) {
121 		ck_epoch_init(&linux_epoch[j]);
122 
123 		head = &linux_epoch_head[j];
124 
125 		TASK_INIT(&head->task, 0, linux_rcu_cleaner_func, head);
126 		init_llist_head(&head->cb_head);
127 
128 		CPU_FOREACH(i) {
129 			struct linux_epoch_record *record;
130 
131 			record = &DPCPU_ID_GET(i, linux_epoch_record[j]);
132 
133 			record->cpuid = i;
134 			record->type = j;
135 			ck_epoch_register(&linux_epoch[j],
136 			    &record->epoch_record, NULL);
137 			TAILQ_INIT(&record->ts_head);
138 		}
139 	}
140 }
141 SYSINIT(linux_rcu_runtime, SI_SUB_CPU, SI_ORDER_ANY, linux_rcu_runtime_init, NULL);
142 
143 static void
144 linux_rcu_cleaner_func(void *context, int pending __unused)
145 {
146 	struct linux_epoch_head *head = context;
147 	struct callback_head *rcu;
148 	STAILQ_HEAD(, callback_head) tmp_head;
149 	struct llist_node *node, *next;
150 	uintptr_t offset;
151 
152 	/* move current callbacks into own queue */
153 	STAILQ_INIT(&tmp_head);
154 	llist_for_each_safe(node, next, llist_del_all(&head->cb_head)) {
155 		rcu = container_of(node, struct callback_head, node);
156 		/* re-reverse list to restore chronological order */
157 		STAILQ_INSERT_HEAD(&tmp_head, rcu, entry);
158 	}
159 
160 	/* synchronize */
161 	linux_synchronize_rcu(head - linux_epoch_head);
162 
163 	/* dispatch all callbacks, if any */
164 	while ((rcu = STAILQ_FIRST(&tmp_head)) != NULL) {
165 		STAILQ_REMOVE_HEAD(&tmp_head, entry);
166 
167 		offset = (uintptr_t)rcu->func;
168 
169 		if (offset < LINUX_KFREE_RCU_OFFSET_MAX)
170 			kfree((char *)rcu - offset);
171 		else
172 			rcu->func((struct rcu_head *)rcu);
173 	}
174 }
175 
176 void
177 linux_rcu_read_lock(unsigned type)
178 {
179 	struct linux_epoch_record *record;
180 	struct task_struct *ts;
181 
182 	MPASS(type < RCU_TYPE_MAX);
183 
184 	if (RCU_SKIP())
185 		return;
186 
187 	ts = current;
188 
189 	/* assert valid refcount */
190 	MPASS(ts->rcu_recurse[type] != INT_MAX);
191 
192 	if (++(ts->rcu_recurse[type]) != 1)
193 		return;
194 
195 	/*
196 	 * Pin thread to current CPU so that the unlock code gets the
197 	 * same per-CPU epoch record:
198 	 */
199 	sched_pin();
200 
201 	record = &DPCPU_GET(linux_epoch_record[type]);
202 
203 	/*
204 	 * Use a critical section to prevent recursion inside
205 	 * ck_epoch_begin(). Else this function supports recursion.
206 	 */
207 	critical_enter();
208 	ck_epoch_begin(&record->epoch_record,
209 	    (ck_epoch_section_t *)&ts->rcu_section[type]);
210 	TAILQ_INSERT_TAIL(&record->ts_head, ts, rcu_entry[type]);
211 	critical_exit();
212 }
213 
214 void
215 linux_rcu_read_unlock(unsigned type)
216 {
217 	struct linux_epoch_record *record;
218 	struct task_struct *ts;
219 
220 	MPASS(type < RCU_TYPE_MAX);
221 
222 	if (RCU_SKIP())
223 		return;
224 
225 	ts = current;
226 
227 	/* assert valid refcount */
228 	MPASS(ts->rcu_recurse[type] > 0);
229 
230 	if (--(ts->rcu_recurse[type]) != 0)
231 		return;
232 
233 	record = &DPCPU_GET(linux_epoch_record[type]);
234 
235 	/*
236 	 * Use a critical section to prevent recursion inside
237 	 * ck_epoch_end(). Else this function supports recursion.
238 	 */
239 	critical_enter();
240 	ck_epoch_end(&record->epoch_record,
241 	    (ck_epoch_section_t *)&ts->rcu_section[type]);
242 	TAILQ_REMOVE(&record->ts_head, ts, rcu_entry[type]);
243 	critical_exit();
244 
245 	sched_unpin();
246 }
247 
248 static void
249 linux_synchronize_rcu_cb(ck_epoch_t *epoch __unused, ck_epoch_record_t *epoch_record, void *arg __unused)
250 {
251 	struct linux_epoch_record *record =
252 	    container_of(epoch_record, struct linux_epoch_record, epoch_record);
253 	struct thread *td = curthread;
254 	struct task_struct *ts;
255 
256 	/* check if blocked on the current CPU */
257 	if (record->cpuid == PCPU_GET(cpuid)) {
258 		bool is_sleeping = 0;
259 		u_char prio = 0;
260 
261 		/*
262 		 * Find the lowest priority or sleeping thread which
263 		 * is blocking synchronization on this CPU core. All
264 		 * the threads in the queue are CPU-pinned and cannot
265 		 * go anywhere while the current thread is locked.
266 		 */
267 		TAILQ_FOREACH(ts, &record->ts_head, rcu_entry[record->type]) {
268 			if (ts->task_thread->td_priority > prio)
269 				prio = ts->task_thread->td_priority;
270 			is_sleeping |= (ts->task_thread->td_inhibitors != 0);
271 		}
272 
273 		if (is_sleeping) {
274 			thread_unlock(td);
275 			pause("W", 1);
276 			thread_lock(td);
277 		} else {
278 			/* set new thread priority */
279 			sched_prio(td, prio);
280 			/* task switch */
281 			mi_switch(SW_VOL | SWT_RELINQUISH);
282 			/*
283 			 * It is important the thread lock is dropped
284 			 * while yielding to allow other threads to
285 			 * acquire the lock pointed to by
286 			 * TDQ_LOCKPTR(td). Currently mi_switch() will
287 			 * unlock the thread lock before
288 			 * returning. Else a deadlock like situation
289 			 * might happen.
290 			 */
291 			thread_lock(td);
292 		}
293 	} else {
294 		/*
295 		 * To avoid spinning move execution to the other CPU
296 		 * which is blocking synchronization. Set highest
297 		 * thread priority so that code gets run. The thread
298 		 * priority will be restored later.
299 		 */
300 		sched_prio(td, 0);
301 		sched_bind(td, record->cpuid);
302 	}
303 }
304 
305 void
306 linux_synchronize_rcu(unsigned type)
307 {
308 	struct thread *td;
309 	int was_bound;
310 	int old_cpu;
311 	int old_pinned;
312 	u_char old_prio;
313 
314 	MPASS(type < RCU_TYPE_MAX);
315 
316 	if (RCU_SKIP())
317 		return;
318 
319 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
320 	    "linux_synchronize_rcu() can sleep");
321 
322 	td = curthread;
323 	DROP_GIANT();
324 
325 	/*
326 	 * Synchronizing RCU might change the CPU core this function
327 	 * is running on. Save current values:
328 	 */
329 	thread_lock(td);
330 
331 	old_cpu = PCPU_GET(cpuid);
332 	old_pinned = td->td_pinned;
333 	old_prio = td->td_priority;
334 	was_bound = sched_is_bound(td);
335 	sched_unbind(td);
336 	td->td_pinned = 0;
337 	sched_bind(td, old_cpu);
338 
339 	ck_epoch_synchronize_wait(&linux_epoch[type],
340 	    &linux_synchronize_rcu_cb, NULL);
341 
342 	/* restore CPU binding, if any */
343 	if (was_bound != 0) {
344 		sched_bind(td, old_cpu);
345 	} else {
346 		/* get thread back to initial CPU, if any */
347 		if (old_pinned != 0)
348 			sched_bind(td, old_cpu);
349 		sched_unbind(td);
350 	}
351 	/* restore pinned after bind */
352 	td->td_pinned = old_pinned;
353 
354 	/* restore thread priority */
355 	sched_prio(td, old_prio);
356 	thread_unlock(td);
357 
358 	PICKUP_GIANT();
359 }
360 
361 void
362 linux_rcu_barrier(unsigned type)
363 {
364 	struct linux_epoch_head *head;
365 
366 	MPASS(type < RCU_TYPE_MAX);
367 
368 	/*
369 	 * This function is not obligated to wait for a grace period.
370 	 * It only waits for RCU callbacks that have already been posted.
371 	 * If there are no RCU callbacks posted, rcu_barrier() can return
372 	 * immediately.
373 	 */
374 	head = &linux_epoch_head[type];
375 
376 	/* wait for callbacks to complete */
377 	taskqueue_drain(linux_irq_work_tq, &head->task);
378 }
379 
380 void
381 linux_call_rcu(unsigned type, struct rcu_head *context, rcu_callback_t func)
382 {
383 	struct callback_head *rcu;
384 	struct linux_epoch_head *head;
385 
386 	MPASS(type < RCU_TYPE_MAX);
387 
388 	rcu = (struct callback_head *)context;
389 	head = &linux_epoch_head[type];
390 
391 	rcu->func = func;
392 	llist_add(&rcu->node, &head->cb_head);
393 	taskqueue_enqueue(linux_irq_work_tq, &head->task);
394 }
395 
396 int
397 init_srcu_struct(struct srcu_struct *srcu)
398 {
399 	return (0);
400 }
401 
402 void
403 cleanup_srcu_struct(struct srcu_struct *srcu)
404 {
405 }
406 
407 int
408 srcu_read_lock(struct srcu_struct *srcu)
409 {
410 	linux_rcu_read_lock(RCU_TYPE_SLEEPABLE);
411 	return (0);
412 }
413 
414 void
415 srcu_read_unlock(struct srcu_struct *srcu, int key __unused)
416 {
417 	linux_rcu_read_unlock(RCU_TYPE_SLEEPABLE);
418 }
419 
420 void
421 synchronize_srcu(struct srcu_struct *srcu)
422 {
423 	linux_synchronize_rcu(RCU_TYPE_SLEEPABLE);
424 }
425 
426 void
427 srcu_barrier(struct srcu_struct *srcu)
428 {
429 	linux_rcu_barrier(RCU_TYPE_SLEEPABLE);
430 }
431