xref: /freebsd/sys/compat/linuxkpi/common/src/linux_pci.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/fcntl.h>
43 #include <sys/file.h>
44 #include <sys/filio.h>
45 #include <sys/pciio.h>
46 #include <sys/pctrie.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/stdarg.h>
53 
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58 
59 #include <linux/kernel.h>
60 #include <linux/kobject.h>
61 #include <linux/device.h>
62 #include <linux/slab.h>
63 #include <linux/module.h>
64 #include <linux/cdev.h>
65 #include <linux/file.h>
66 #include <linux/sysfs.h>
67 #include <linux/mm.h>
68 #include <linux/io.h>
69 #include <linux/vmalloc.h>
70 #include <linux/pci.h>
71 #include <linux/compat.h>
72 
73 #include <linux/backlight.h>
74 
75 #include "backlight_if.h"
76 #include "pcib_if.h"
77 
78 /* Undef the linux function macro defined in linux/pci.h */
79 #undef pci_get_class
80 
81 extern int linuxkpi_debug;
82 
83 SYSCTL_DECL(_compat_linuxkpi);
84 
85 static counter_u64_t lkpi_pci_nseg1_fail;
86 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
87     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
88 
89 static device_probe_t linux_pci_probe;
90 static device_attach_t linux_pci_attach;
91 static device_detach_t linux_pci_detach;
92 static device_suspend_t linux_pci_suspend;
93 static device_resume_t linux_pci_resume;
94 static device_shutdown_t linux_pci_shutdown;
95 static pci_iov_init_t linux_pci_iov_init;
96 static pci_iov_uninit_t linux_pci_iov_uninit;
97 static pci_iov_add_vf_t linux_pci_iov_add_vf;
98 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
99 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
101 
102 static device_method_t pci_methods[] = {
103 	DEVMETHOD(device_probe, linux_pci_probe),
104 	DEVMETHOD(device_attach, linux_pci_attach),
105 	DEVMETHOD(device_detach, linux_pci_detach),
106 	DEVMETHOD(device_suspend, linux_pci_suspend),
107 	DEVMETHOD(device_resume, linux_pci_resume),
108 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
109 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
110 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
111 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
112 
113 	/* backlight interface */
114 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
115 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
116 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
117 	DEVMETHOD_END
118 };
119 
120 const char *pci_power_names[] = {
121 	"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
122 };
123 
124 struct linux_dma_priv {
125 	uint64_t	dma_mask;
126 	bus_dma_tag_t	dmat;
127 	uint64_t	dma_coherent_mask;
128 	bus_dma_tag_t	dmat_coherent;
129 	struct mtx	lock;
130 	struct pctrie	ptree;
131 };
132 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
133 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
134 
135 static int
136 linux_pdev_dma_uninit(struct pci_dev *pdev)
137 {
138 	struct linux_dma_priv *priv;
139 
140 	priv = pdev->dev.dma_priv;
141 	if (priv->dmat)
142 		bus_dma_tag_destroy(priv->dmat);
143 	if (priv->dmat_coherent)
144 		bus_dma_tag_destroy(priv->dmat_coherent);
145 	mtx_destroy(&priv->lock);
146 	pdev->dev.dma_priv = NULL;
147 	free(priv, M_DEVBUF);
148 	return (0);
149 }
150 
151 static int
152 linux_pdev_dma_init(struct pci_dev *pdev)
153 {
154 	struct linux_dma_priv *priv;
155 	int error;
156 
157 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
158 
159 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
160 	pctrie_init(&priv->ptree);
161 
162 	pdev->dev.dma_priv = priv;
163 
164 	/* Create a default DMA tags. */
165 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
166 	if (error != 0)
167 		goto err;
168 	/* Coherent is lower 32bit only by default in Linux. */
169 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
170 	if (error != 0)
171 		goto err;
172 
173 	return (error);
174 
175 err:
176 	linux_pdev_dma_uninit(pdev);
177 	return (error);
178 }
179 
180 int
181 linux_dma_tag_init(struct device *dev, u64 dma_mask)
182 {
183 	struct linux_dma_priv *priv;
184 	int error;
185 
186 	priv = dev->dma_priv;
187 
188 	if (priv->dmat) {
189 		if (priv->dma_mask == dma_mask)
190 			return (0);
191 
192 		bus_dma_tag_destroy(priv->dmat);
193 	}
194 
195 	priv->dma_mask = dma_mask;
196 
197 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
198 	    1, 0,			/* alignment, boundary */
199 	    dma_mask,			/* lowaddr */
200 	    BUS_SPACE_MAXADDR,		/* highaddr */
201 	    NULL, NULL,			/* filtfunc, filtfuncarg */
202 	    BUS_SPACE_MAXSIZE,		/* maxsize */
203 	    1,				/* nsegments */
204 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
205 	    0,				/* flags */
206 	    NULL, NULL,			/* lockfunc, lockfuncarg */
207 	    &priv->dmat);
208 	return (-error);
209 }
210 
211 int
212 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
213 {
214 	struct linux_dma_priv *priv;
215 	int error;
216 
217 	priv = dev->dma_priv;
218 
219 	if (priv->dmat_coherent) {
220 		if (priv->dma_coherent_mask == dma_mask)
221 			return (0);
222 
223 		bus_dma_tag_destroy(priv->dmat_coherent);
224 	}
225 
226 	priv->dma_coherent_mask = dma_mask;
227 
228 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
229 	    1, 0,			/* alignment, boundary */
230 	    dma_mask,			/* lowaddr */
231 	    BUS_SPACE_MAXADDR,		/* highaddr */
232 	    NULL, NULL,			/* filtfunc, filtfuncarg */
233 	    BUS_SPACE_MAXSIZE,		/* maxsize */
234 	    1,				/* nsegments */
235 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
236 	    0,				/* flags */
237 	    NULL, NULL,			/* lockfunc, lockfuncarg */
238 	    &priv->dmat_coherent);
239 	return (-error);
240 }
241 
242 static struct pci_driver *
243 linux_pci_find(device_t dev, const struct pci_device_id **idp)
244 {
245 	const struct pci_device_id *id;
246 	struct pci_driver *pdrv;
247 	uint16_t vendor;
248 	uint16_t device;
249 	uint16_t subvendor;
250 	uint16_t subdevice;
251 
252 	vendor = pci_get_vendor(dev);
253 	device = pci_get_device(dev);
254 	subvendor = pci_get_subvendor(dev);
255 	subdevice = pci_get_subdevice(dev);
256 
257 	spin_lock(&pci_lock);
258 	list_for_each_entry(pdrv, &pci_drivers, node) {
259 		for (id = pdrv->id_table; id->vendor != 0; id++) {
260 			if (vendor == id->vendor &&
261 			    (PCI_ANY_ID == id->device || device == id->device) &&
262 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
263 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
264 				*idp = id;
265 				spin_unlock(&pci_lock);
266 				return (pdrv);
267 			}
268 		}
269 	}
270 	spin_unlock(&pci_lock);
271 	return (NULL);
272 }
273 
274 static void
275 lkpi_pci_dev_release(struct device *dev)
276 {
277 
278 	lkpi_devres_release_free_list(dev);
279 	spin_lock_destroy(&dev->devres_lock);
280 }
281 
282 static void
283 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
284 {
285 
286 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
287 	pdev->vendor = pci_get_vendor(dev);
288 	pdev->device = pci_get_device(dev);
289 	pdev->subsystem_vendor = pci_get_subvendor(dev);
290 	pdev->subsystem_device = pci_get_subdevice(dev);
291 	pdev->class = pci_get_class(dev);
292 	pdev->revision = pci_get_revid(dev);
293 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
294 	/*
295 	 * This should be the upstream bridge; pci_upstream_bridge()
296 	 * handles that case on demand as otherwise we'll shadow the
297 	 * entire PCI hierarchy.
298 	 */
299 	pdev->bus->self = pdev;
300 	pdev->bus->number = pci_get_bus(dev);
301 	pdev->bus->domain = pci_get_domain(dev);
302 	pdev->dev.bsddev = dev;
303 	pdev->dev.parent = &linux_root_device;
304 	pdev->dev.release = lkpi_pci_dev_release;
305 	INIT_LIST_HEAD(&pdev->dev.irqents);
306 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
307 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
308 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
309 	    kobject_name(&pdev->dev.kobj));
310 	spin_lock_init(&pdev->dev.devres_lock);
311 	INIT_LIST_HEAD(&pdev->dev.devres_head);
312 }
313 
314 static void
315 lkpinew_pci_dev_release(struct device *dev)
316 {
317 	struct pci_dev *pdev;
318 
319 	pdev = to_pci_dev(dev);
320 	if (pdev->root != NULL)
321 		pci_dev_put(pdev->root);
322 	if (pdev->bus->self != pdev)
323 		pci_dev_put(pdev->bus->self);
324 	free(pdev->bus, M_DEVBUF);
325 	free(pdev, M_DEVBUF);
326 }
327 
328 struct pci_dev *
329 lkpinew_pci_dev(device_t dev)
330 {
331 	struct pci_dev *pdev;
332 
333 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
334 	lkpifill_pci_dev(dev, pdev);
335 	pdev->dev.release = lkpinew_pci_dev_release;
336 
337 	return (pdev);
338 }
339 
340 struct pci_dev *
341 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
342 {
343 	device_t dev;
344 	device_t devfrom = NULL;
345 	struct pci_dev *pdev;
346 
347 	if (from != NULL)
348 		devfrom = from->dev.bsddev;
349 
350 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
351 	if (dev == NULL)
352 		return (NULL);
353 
354 	pdev = lkpinew_pci_dev(dev);
355 	return (pdev);
356 }
357 
358 struct pci_dev *
359 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
360     unsigned int devfn)
361 {
362 	device_t dev;
363 	struct pci_dev *pdev;
364 
365 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
366 	if (dev == NULL)
367 		return (NULL);
368 
369 	pdev = lkpinew_pci_dev(dev);
370 	return (pdev);
371 }
372 
373 static int
374 linux_pci_probe(device_t dev)
375 {
376 	const struct pci_device_id *id;
377 	struct pci_driver *pdrv;
378 
379 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
380 		return (ENXIO);
381 	if (device_get_driver(dev) != &pdrv->bsddriver)
382 		return (ENXIO);
383 	device_set_desc(dev, pdrv->name);
384 
385 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
386 	if (pdrv->bsd_probe_return == 0)
387 		return (BUS_PROBE_DEFAULT);
388 	else
389 		return (pdrv->bsd_probe_return);
390 }
391 
392 static int
393 linux_pci_attach(device_t dev)
394 {
395 	const struct pci_device_id *id;
396 	struct pci_driver *pdrv;
397 	struct pci_dev *pdev;
398 
399 	pdrv = linux_pci_find(dev, &id);
400 	pdev = device_get_softc(dev);
401 
402 	MPASS(pdrv != NULL);
403 	MPASS(pdev != NULL);
404 
405 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
406 }
407 
408 int
409 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
410     const struct pci_device_id *id, struct pci_dev *pdev)
411 {
412 	struct resource_list_entry *rle;
413 	device_t parent;
414 	uintptr_t rid;
415 	int error;
416 	bool isdrm;
417 
418 	linux_set_current(curthread);
419 
420 	parent = device_get_parent(dev);
421 	isdrm = pdrv != NULL && pdrv->isdrm;
422 
423 	if (isdrm) {
424 		struct pci_devinfo *dinfo;
425 
426 		dinfo = device_get_ivars(parent);
427 		device_set_ivars(dev, dinfo);
428 	}
429 
430 	lkpifill_pci_dev(dev, pdev);
431 	if (isdrm)
432 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
433 	else
434 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
435 	pdev->devfn = rid;
436 	pdev->pdrv = pdrv;
437 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
438 	if (rle != NULL)
439 		pdev->dev.irq = rle->start;
440 	else
441 		pdev->dev.irq = LINUX_IRQ_INVALID;
442 	pdev->irq = pdev->dev.irq;
443 	error = linux_pdev_dma_init(pdev);
444 	if (error)
445 		goto out_dma_init;
446 
447 	TAILQ_INIT(&pdev->mmio);
448 
449 	spin_lock(&pci_lock);
450 	list_add(&pdev->links, &pci_devices);
451 	spin_unlock(&pci_lock);
452 
453 	if (pdrv != NULL) {
454 		error = pdrv->probe(pdev, id);
455 		if (error)
456 			goto out_probe;
457 	}
458 	return (0);
459 
460 out_probe:
461 	free(pdev->bus, M_DEVBUF);
462 	linux_pdev_dma_uninit(pdev);
463 out_dma_init:
464 	spin_lock(&pci_lock);
465 	list_del(&pdev->links);
466 	spin_unlock(&pci_lock);
467 	put_device(&pdev->dev);
468 	return (-error);
469 }
470 
471 static int
472 linux_pci_detach(device_t dev)
473 {
474 	struct pci_dev *pdev;
475 
476 	pdev = device_get_softc(dev);
477 
478 	MPASS(pdev != NULL);
479 
480 	device_set_desc(dev, NULL);
481 
482 	return (linux_pci_detach_device(pdev));
483 }
484 
485 int
486 linux_pci_detach_device(struct pci_dev *pdev)
487 {
488 
489 	linux_set_current(curthread);
490 
491 	if (pdev->pdrv != NULL)
492 		pdev->pdrv->remove(pdev);
493 
494 	if (pdev->root != NULL)
495 		pci_dev_put(pdev->root);
496 	free(pdev->bus, M_DEVBUF);
497 	linux_pdev_dma_uninit(pdev);
498 
499 	spin_lock(&pci_lock);
500 	list_del(&pdev->links);
501 	spin_unlock(&pci_lock);
502 	put_device(&pdev->dev);
503 
504 	return (0);
505 }
506 
507 static int
508 lkpi_pci_disable_dev(struct device *dev)
509 {
510 
511 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
512 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
513 	return (0);
514 }
515 
516 struct pci_devres *
517 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
518 {
519 	struct pci_devres *dr;
520 
521 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
522 	if (dr == NULL) {
523 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
524 		    GFP_KERNEL | __GFP_ZERO);
525 		if (dr != NULL)
526 			lkpi_devres_add(&pdev->dev, dr);
527 	}
528 
529 	return (dr);
530 }
531 
532 void
533 lkpi_pci_devres_release(struct device *dev, void *p)
534 {
535 	struct pci_devres *dr;
536 	struct pci_dev *pdev;
537 	int bar;
538 
539 	pdev = to_pci_dev(dev);
540 	dr = p;
541 
542 	if (pdev->msix_enabled)
543 		lkpi_pci_disable_msix(pdev);
544         if (pdev->msi_enabled)
545 		lkpi_pci_disable_msi(pdev);
546 
547 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
548 		dr->enable_io = false;
549 
550 	if (dr->region_mask == 0)
551 		return;
552 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
553 
554 		if ((dr->region_mask & (1 << bar)) == 0)
555 			continue;
556 		pci_release_region(pdev, bar);
557 	}
558 }
559 
560 struct pcim_iomap_devres *
561 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
562 {
563 	struct pcim_iomap_devres *dr;
564 
565 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
566 	    NULL, NULL);
567 	if (dr == NULL) {
568 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
569 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
570 		if (dr != NULL)
571 			lkpi_devres_add(&pdev->dev, dr);
572 	}
573 
574 	if (dr == NULL)
575 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
576 
577 	return (dr);
578 }
579 
580 void
581 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
582 {
583 	struct pcim_iomap_devres *dr;
584 	struct pci_dev *pdev;
585 	int bar;
586 
587 	dr = p;
588 	pdev = to_pci_dev(dev);
589 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
590 
591 		if (dr->mmio_table[bar] == NULL)
592 			continue;
593 
594 		pci_iounmap(pdev, dr->mmio_table[bar]);
595 	}
596 }
597 
598 static int
599 linux_pci_suspend(device_t dev)
600 {
601 	const struct dev_pm_ops *pmops;
602 	struct pm_message pm = { };
603 	struct pci_dev *pdev;
604 	int error;
605 
606 	error = 0;
607 	linux_set_current(curthread);
608 	pdev = device_get_softc(dev);
609 	pmops = pdev->pdrv->driver.pm;
610 
611 	if (pdev->pdrv->suspend != NULL)
612 		error = -pdev->pdrv->suspend(pdev, pm);
613 	else if (pmops != NULL && pmops->suspend != NULL) {
614 		error = -pmops->suspend(&pdev->dev);
615 		if (error == 0 && pmops->suspend_late != NULL)
616 			error = -pmops->suspend_late(&pdev->dev);
617 	}
618 	return (error);
619 }
620 
621 static int
622 linux_pci_resume(device_t dev)
623 {
624 	const struct dev_pm_ops *pmops;
625 	struct pci_dev *pdev;
626 	int error;
627 
628 	error = 0;
629 	linux_set_current(curthread);
630 	pdev = device_get_softc(dev);
631 	pmops = pdev->pdrv->driver.pm;
632 
633 	if (pdev->pdrv->resume != NULL)
634 		error = -pdev->pdrv->resume(pdev);
635 	else if (pmops != NULL && pmops->resume != NULL) {
636 		if (pmops->resume_early != NULL)
637 			error = -pmops->resume_early(&pdev->dev);
638 		if (error == 0 && pmops->resume != NULL)
639 			error = -pmops->resume(&pdev->dev);
640 	}
641 	return (error);
642 }
643 
644 static int
645 linux_pci_shutdown(device_t dev)
646 {
647 	struct pci_dev *pdev;
648 
649 	linux_set_current(curthread);
650 	pdev = device_get_softc(dev);
651 	if (pdev->pdrv->shutdown != NULL)
652 		pdev->pdrv->shutdown(pdev);
653 	return (0);
654 }
655 
656 static int
657 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
658 {
659 	struct pci_dev *pdev;
660 	int error;
661 
662 	linux_set_current(curthread);
663 	pdev = device_get_softc(dev);
664 	if (pdev->pdrv->bsd_iov_init != NULL)
665 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
666 	else
667 		error = EINVAL;
668 	return (error);
669 }
670 
671 static void
672 linux_pci_iov_uninit(device_t dev)
673 {
674 	struct pci_dev *pdev;
675 
676 	linux_set_current(curthread);
677 	pdev = device_get_softc(dev);
678 	if (pdev->pdrv->bsd_iov_uninit != NULL)
679 		pdev->pdrv->bsd_iov_uninit(dev);
680 }
681 
682 static int
683 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
684 {
685 	struct pci_dev *pdev;
686 	int error;
687 
688 	linux_set_current(curthread);
689 	pdev = device_get_softc(dev);
690 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
691 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
692 	else
693 		error = EINVAL;
694 	return (error);
695 }
696 
697 static int
698 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
699 {
700 	int error;
701 
702 	linux_set_current(curthread);
703 	spin_lock(&pci_lock);
704 	list_add(&pdrv->node, &pci_drivers);
705 	spin_unlock(&pci_lock);
706 	if (pdrv->bsddriver.name == NULL)
707 		pdrv->bsddriver.name = pdrv->name;
708 	pdrv->bsddriver.methods = pci_methods;
709 	pdrv->bsddriver.size = sizeof(struct pci_dev);
710 
711 	bus_topo_lock();
712 	error = devclass_add_driver(dc, &pdrv->bsddriver,
713 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
714 	bus_topo_unlock();
715 	return (-error);
716 }
717 
718 int
719 linux_pci_register_driver(struct pci_driver *pdrv)
720 {
721 	devclass_t dc;
722 
723 	dc = devclass_find("pci");
724 	if (dc == NULL)
725 		return (-ENXIO);
726 	pdrv->isdrm = false;
727 	return (_linux_pci_register_driver(pdrv, dc));
728 }
729 
730 struct resource_list_entry *
731 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
732     int type, int rid)
733 {
734 	device_t dev;
735 	struct resource *res;
736 
737 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
738 	    ("trying to reserve non-BAR type %d", type));
739 
740 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
741 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
742 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
743 	    1, 1, 0);
744 	if (res == NULL)
745 		return (NULL);
746 	return (resource_list_find(rl, type, rid));
747 }
748 
749 unsigned long
750 pci_resource_start(struct pci_dev *pdev, int bar)
751 {
752 	struct resource_list_entry *rle;
753 	rman_res_t newstart;
754 	device_t dev;
755 	int error;
756 
757 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
758 		return (0);
759 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
760 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
761 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
762 	if (error != 0) {
763 		device_printf(pdev->dev.bsddev,
764 		    "translate of %#jx failed: %d\n",
765 		    (uintmax_t)rle->start, error);
766 		return (0);
767 	}
768 	return (newstart);
769 }
770 
771 unsigned long
772 pci_resource_len(struct pci_dev *pdev, int bar)
773 {
774 	struct resource_list_entry *rle;
775 
776 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
777 		return (0);
778 	return (rle->count);
779 }
780 
781 int
782 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
783 {
784 	struct resource *res;
785 	struct pci_devres *dr;
786 	struct pci_mmio_region *mmio;
787 	int rid;
788 	int type;
789 
790 	type = pci_resource_type(pdev, bar);
791 	if (type < 0)
792 		return (-ENODEV);
793 	rid = PCIR_BAR(bar);
794 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
795 	    RF_ACTIVE|RF_SHAREABLE);
796 	if (res == NULL) {
797 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
798 		    "bar %d type %d rid %d\n",
799 		    __func__, bar, type, PCIR_BAR(bar));
800 		return (-ENODEV);
801 	}
802 
803 	/*
804 	 * It seems there is an implicit devres tracking on these if the device
805 	 * is managed; otherwise the resources are not automatiaclly freed on
806 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
807 	 * drivers.
808 	 */
809 	dr = lkpi_pci_devres_find(pdev);
810 	if (dr != NULL) {
811 		dr->region_mask |= (1 << bar);
812 		dr->region_table[bar] = res;
813 	}
814 
815 	/* Even if the device is not managed we need to track it for iomap. */
816 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
817 	mmio->rid = PCIR_BAR(bar);
818 	mmio->type = type;
819 	mmio->res = res;
820 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
821 
822 	return (0);
823 }
824 
825 struct resource *
826 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
827 {
828 	struct pci_mmio_region *mmio, *p;
829 	int type;
830 
831 	type = pci_resource_type(pdev, bar);
832 	if (type < 0) {
833 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
834 		     __func__, bar, type);
835 		return (NULL);
836 	}
837 
838 	/*
839 	 * Check for duplicate mappings.
840 	 * This can happen if a driver calls pci_request_region() first.
841 	 */
842 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
843 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
844 			return (mmio->res);
845 		}
846 	}
847 
848 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
849 	mmio->rid = PCIR_BAR(bar);
850 	mmio->type = type;
851 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
852 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
853 	if (mmio->res == NULL) {
854 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
855 		    "bar %d type %d rid %d\n",
856 		    __func__, bar, type, PCIR_BAR(bar));
857 		free(mmio, M_DEVBUF);
858 		return (NULL);
859 	}
860 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
861 
862 	return (mmio->res);
863 }
864 
865 int
866 linux_pci_register_drm_driver(struct pci_driver *pdrv)
867 {
868 	devclass_t dc;
869 
870 	dc = devclass_create("vgapci");
871 	if (dc == NULL)
872 		return (-ENXIO);
873 	pdrv->isdrm = true;
874 	pdrv->name = "drmn";
875 	return (_linux_pci_register_driver(pdrv, dc));
876 }
877 
878 void
879 linux_pci_unregister_driver(struct pci_driver *pdrv)
880 {
881 	devclass_t bus;
882 
883 	bus = devclass_find("pci");
884 
885 	spin_lock(&pci_lock);
886 	list_del(&pdrv->node);
887 	spin_unlock(&pci_lock);
888 	bus_topo_lock();
889 	if (bus != NULL)
890 		devclass_delete_driver(bus, &pdrv->bsddriver);
891 	bus_topo_unlock();
892 }
893 
894 void
895 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
896 {
897 	devclass_t bus;
898 
899 	bus = devclass_find("vgapci");
900 
901 	spin_lock(&pci_lock);
902 	list_del(&pdrv->node);
903 	spin_unlock(&pci_lock);
904 	bus_topo_lock();
905 	if (bus != NULL)
906 		devclass_delete_driver(bus, &pdrv->bsddriver);
907 	bus_topo_unlock();
908 }
909 
910 int
911 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
912     unsigned int flags)
913 {
914 	int error;
915 
916 	if (flags & PCI_IRQ_MSIX) {
917 		struct msix_entry *entries;
918 		int i;
919 
920 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
921 		if (entries == NULL) {
922 			error = -ENOMEM;
923 			goto out;
924 		}
925 		for (i = 0; i < maxv; ++i)
926 			entries[i].entry = i;
927 		error = pci_enable_msix(pdev, entries, maxv);
928 out:
929 		kfree(entries);
930 		if (error == 0 && pdev->msix_enabled)
931 			return (pdev->dev.irq_end - pdev->dev.irq_start);
932 	}
933 	if (flags & PCI_IRQ_MSI) {
934 		error = pci_enable_msi(pdev);
935 		if (error == 0 && pdev->msi_enabled)
936 			return (pdev->dev.irq_end - pdev->dev.irq_start);
937 	}
938 	if (flags & PCI_IRQ_LEGACY) {
939 		if (pdev->irq)
940 			return (1);
941 	}
942 
943 	return (-EINVAL);
944 }
945 
946 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
947 
948 struct linux_dma_obj {
949 	void		*vaddr;
950 	uint64_t	dma_addr;
951 	bus_dmamap_t	dmamap;
952 	bus_dma_tag_t	dmat;
953 };
954 
955 static uma_zone_t linux_dma_trie_zone;
956 static uma_zone_t linux_dma_obj_zone;
957 
958 static void
959 linux_dma_init(void *arg)
960 {
961 
962 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
963 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
964 	    UMA_ALIGN_PTR, 0);
965 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
966 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
967 	    UMA_ALIGN_PTR, 0);
968 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
969 }
970 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
971 
972 static void
973 linux_dma_uninit(void *arg)
974 {
975 
976 	counter_u64_free(lkpi_pci_nseg1_fail);
977 	uma_zdestroy(linux_dma_obj_zone);
978 	uma_zdestroy(linux_dma_trie_zone);
979 }
980 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
981 
982 static void *
983 linux_dma_trie_alloc(struct pctrie *ptree)
984 {
985 
986 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
987 }
988 
989 static void
990 linux_dma_trie_free(struct pctrie *ptree, void *node)
991 {
992 
993 	uma_zfree(linux_dma_trie_zone, node);
994 }
995 
996 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
997     linux_dma_trie_free);
998 
999 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1000 static dma_addr_t
1001 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1002     bus_dma_tag_t dmat)
1003 {
1004 	struct linux_dma_priv *priv;
1005 	struct linux_dma_obj *obj;
1006 	int error, nseg;
1007 	bus_dma_segment_t seg;
1008 
1009 	priv = dev->dma_priv;
1010 
1011 	/*
1012 	 * If the resultant mapping will be entirely 1:1 with the
1013 	 * physical address, short-circuit the remainder of the
1014 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1015 	 * with the additional benefit of reducing overhead.
1016 	 */
1017 	if (bus_dma_id_mapped(dmat, phys, len))
1018 		return (phys);
1019 
1020 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1021 	if (obj == NULL) {
1022 		return (0);
1023 	}
1024 	obj->dmat = dmat;
1025 
1026 	DMA_PRIV_LOCK(priv);
1027 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1028 		DMA_PRIV_UNLOCK(priv);
1029 		uma_zfree(linux_dma_obj_zone, obj);
1030 		return (0);
1031 	}
1032 
1033 	nseg = -1;
1034 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1035 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1036 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1037 		DMA_PRIV_UNLOCK(priv);
1038 		uma_zfree(linux_dma_obj_zone, obj);
1039 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1040 		if (linuxkpi_debug)
1041 			dump_stack();
1042 		return (0);
1043 	}
1044 
1045 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1046 	obj->dma_addr = seg.ds_addr;
1047 
1048 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1049 	if (error != 0) {
1050 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1051 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1052 		DMA_PRIV_UNLOCK(priv);
1053 		uma_zfree(linux_dma_obj_zone, obj);
1054 		return (0);
1055 	}
1056 	DMA_PRIV_UNLOCK(priv);
1057 	return (obj->dma_addr);
1058 }
1059 #else
1060 static dma_addr_t
1061 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1062     size_t len __unused, bus_dma_tag_t dmat __unused)
1063 {
1064 	return (phys);
1065 }
1066 #endif
1067 
1068 dma_addr_t
1069 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1070 {
1071 	struct linux_dma_priv *priv;
1072 
1073 	priv = dev->dma_priv;
1074 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1075 }
1076 
1077 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1078 void
1079 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1080 {
1081 	struct linux_dma_priv *priv;
1082 	struct linux_dma_obj *obj;
1083 
1084 	priv = dev->dma_priv;
1085 
1086 	if (pctrie_is_empty(&priv->ptree))
1087 		return;
1088 
1089 	DMA_PRIV_LOCK(priv);
1090 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1091 	if (obj == NULL) {
1092 		DMA_PRIV_UNLOCK(priv);
1093 		return;
1094 	}
1095 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1096 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1097 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1098 	DMA_PRIV_UNLOCK(priv);
1099 
1100 	uma_zfree(linux_dma_obj_zone, obj);
1101 }
1102 #else
1103 void
1104 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1105 {
1106 }
1107 #endif
1108 
1109 void *
1110 linux_dma_alloc_coherent(struct device *dev, size_t size,
1111     dma_addr_t *dma_handle, gfp_t flag)
1112 {
1113 	struct linux_dma_priv *priv;
1114 	vm_paddr_t high;
1115 	size_t align;
1116 	void *mem;
1117 
1118 	if (dev == NULL || dev->dma_priv == NULL) {
1119 		*dma_handle = 0;
1120 		return (NULL);
1121 	}
1122 	priv = dev->dma_priv;
1123 	if (priv->dma_coherent_mask)
1124 		high = priv->dma_coherent_mask;
1125 	else
1126 		/* Coherent is lower 32bit only by default in Linux. */
1127 		high = BUS_SPACE_MAXADDR_32BIT;
1128 	align = PAGE_SIZE << get_order(size);
1129 	/* Always zero the allocation. */
1130 	flag |= M_ZERO;
1131 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1132 	    align, 0, VM_MEMATTR_DEFAULT);
1133 	if (mem != NULL) {
1134 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1135 		    priv->dmat_coherent);
1136 		if (*dma_handle == 0) {
1137 			kmem_free(mem, size);
1138 			mem = NULL;
1139 		}
1140 	} else {
1141 		*dma_handle = 0;
1142 	}
1143 	return (mem);
1144 }
1145 
1146 struct lkpi_devres_dmam_coherent {
1147 	size_t size;
1148 	dma_addr_t *handle;
1149 	void *mem;
1150 };
1151 
1152 static void
1153 lkpi_dmam_free_coherent(struct device *dev, void *p)
1154 {
1155 	struct lkpi_devres_dmam_coherent *dr;
1156 
1157 	dr = p;
1158 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1159 }
1160 
1161 void *
1162 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1163     gfp_t flag)
1164 {
1165 	struct lkpi_devres_dmam_coherent *dr;
1166 
1167 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1168 	   sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1169 
1170 	if (dr == NULL)
1171 		return (NULL);
1172 
1173 	dr->size = size;
1174 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1175 	dr->handle = dma_handle;
1176 	if (dr->mem == NULL) {
1177 		lkpi_devres_free(dr);
1178 		return (NULL);
1179 	}
1180 
1181 	lkpi_devres_add(dev, dr);
1182 	return (dr->mem);
1183 }
1184 
1185 void
1186 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1187     bus_dmasync_op_t op)
1188 {
1189 	struct linux_dma_priv *priv;
1190 	struct linux_dma_obj *obj;
1191 
1192 	priv = dev->dma_priv;
1193 
1194 	if (pctrie_is_empty(&priv->ptree))
1195 		return;
1196 
1197 	DMA_PRIV_LOCK(priv);
1198 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1199 	if (obj == NULL) {
1200 		DMA_PRIV_UNLOCK(priv);
1201 		return;
1202 	}
1203 
1204 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1205 	DMA_PRIV_UNLOCK(priv);
1206 }
1207 
1208 int
1209 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1210     enum dma_data_direction direction, unsigned long attrs __unused)
1211 {
1212 	struct linux_dma_priv *priv;
1213 	struct scatterlist *sg;
1214 	int i, nseg;
1215 	bus_dma_segment_t seg;
1216 
1217 	priv = dev->dma_priv;
1218 
1219 	DMA_PRIV_LOCK(priv);
1220 
1221 	/* create common DMA map in the first S/G entry */
1222 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1223 		DMA_PRIV_UNLOCK(priv);
1224 		return (0);
1225 	}
1226 
1227 	/* load all S/G list entries */
1228 	for_each_sg(sgl, sg, nents, i) {
1229 		nseg = -1;
1230 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1231 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1232 		    &seg, &nseg) != 0) {
1233 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1234 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1235 			DMA_PRIV_UNLOCK(priv);
1236 			return (0);
1237 		}
1238 		KASSERT(nseg == 0,
1239 		    ("More than one segment (nseg=%d)", nseg + 1));
1240 
1241 		sg_dma_address(sg) = seg.ds_addr;
1242 	}
1243 
1244 	switch (direction) {
1245 	case DMA_BIDIRECTIONAL:
1246 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1247 		break;
1248 	case DMA_TO_DEVICE:
1249 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1250 		break;
1251 	case DMA_FROM_DEVICE:
1252 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1253 		break;
1254 	default:
1255 		break;
1256 	}
1257 
1258 	DMA_PRIV_UNLOCK(priv);
1259 
1260 	return (nents);
1261 }
1262 
1263 void
1264 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1265     int nents __unused, enum dma_data_direction direction,
1266     unsigned long attrs __unused)
1267 {
1268 	struct linux_dma_priv *priv;
1269 
1270 	priv = dev->dma_priv;
1271 
1272 	DMA_PRIV_LOCK(priv);
1273 
1274 	switch (direction) {
1275 	case DMA_BIDIRECTIONAL:
1276 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1277 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1278 		break;
1279 	case DMA_TO_DEVICE:
1280 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1281 		break;
1282 	case DMA_FROM_DEVICE:
1283 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1284 		break;
1285 	default:
1286 		break;
1287 	}
1288 
1289 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1290 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1291 	DMA_PRIV_UNLOCK(priv);
1292 }
1293 
1294 struct dma_pool {
1295 	struct device  *pool_device;
1296 	uma_zone_t	pool_zone;
1297 	struct mtx	pool_lock;
1298 	bus_dma_tag_t	pool_dmat;
1299 	size_t		pool_entry_size;
1300 	struct pctrie	pool_ptree;
1301 };
1302 
1303 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1304 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1305 
1306 static inline int
1307 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1308 {
1309 	struct linux_dma_obj *obj = mem;
1310 	struct dma_pool *pool = arg;
1311 	int error, nseg;
1312 	bus_dma_segment_t seg;
1313 
1314 	nseg = -1;
1315 	DMA_POOL_LOCK(pool);
1316 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1317 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1318 	    &seg, &nseg);
1319 	DMA_POOL_UNLOCK(pool);
1320 	if (error != 0) {
1321 		return (error);
1322 	}
1323 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1324 	obj->dma_addr = seg.ds_addr;
1325 
1326 	return (0);
1327 }
1328 
1329 static void
1330 dma_pool_obj_dtor(void *mem, int size, void *arg)
1331 {
1332 	struct linux_dma_obj *obj = mem;
1333 	struct dma_pool *pool = arg;
1334 
1335 	DMA_POOL_LOCK(pool);
1336 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1337 	DMA_POOL_UNLOCK(pool);
1338 }
1339 
1340 static int
1341 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1342     int flags)
1343 {
1344 	struct dma_pool *pool = arg;
1345 	struct linux_dma_obj *obj;
1346 	int error, i;
1347 
1348 	for (i = 0; i < count; i++) {
1349 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1350 		if (obj == NULL)
1351 			break;
1352 
1353 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1354 		    BUS_DMA_NOWAIT, &obj->dmamap);
1355 		if (error!= 0) {
1356 			uma_zfree(linux_dma_obj_zone, obj);
1357 			break;
1358 		}
1359 
1360 		store[i] = obj;
1361 	}
1362 
1363 	return (i);
1364 }
1365 
1366 static void
1367 dma_pool_obj_release(void *arg, void **store, int count)
1368 {
1369 	struct dma_pool *pool = arg;
1370 	struct linux_dma_obj *obj;
1371 	int i;
1372 
1373 	for (i = 0; i < count; i++) {
1374 		obj = store[i];
1375 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1376 		uma_zfree(linux_dma_obj_zone, obj);
1377 	}
1378 }
1379 
1380 struct dma_pool *
1381 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1382     size_t align, size_t boundary)
1383 {
1384 	struct linux_dma_priv *priv;
1385 	struct dma_pool *pool;
1386 
1387 	priv = dev->dma_priv;
1388 
1389 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1390 	pool->pool_device = dev;
1391 	pool->pool_entry_size = size;
1392 
1393 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1394 	    align, boundary,		/* alignment, boundary */
1395 	    priv->dma_mask,		/* lowaddr */
1396 	    BUS_SPACE_MAXADDR,		/* highaddr */
1397 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1398 	    size,			/* maxsize */
1399 	    1,				/* nsegments */
1400 	    size,			/* maxsegsz */
1401 	    0,				/* flags */
1402 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1403 	    &pool->pool_dmat)) {
1404 		kfree(pool);
1405 		return (NULL);
1406 	}
1407 
1408 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1409 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1410 	    dma_pool_obj_release, pool, 0);
1411 
1412 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1413 	pctrie_init(&pool->pool_ptree);
1414 
1415 	return (pool);
1416 }
1417 
1418 void
1419 linux_dma_pool_destroy(struct dma_pool *pool)
1420 {
1421 
1422 	uma_zdestroy(pool->pool_zone);
1423 	bus_dma_tag_destroy(pool->pool_dmat);
1424 	mtx_destroy(&pool->pool_lock);
1425 	kfree(pool);
1426 }
1427 
1428 void
1429 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1430 {
1431 	struct dma_pool *pool;
1432 
1433 	pool = *(struct dma_pool **)p;
1434 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1435 	linux_dma_pool_destroy(pool);
1436 }
1437 
1438 void *
1439 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1440     dma_addr_t *handle)
1441 {
1442 	struct linux_dma_obj *obj;
1443 
1444 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1445 	if (obj == NULL)
1446 		return (NULL);
1447 
1448 	DMA_POOL_LOCK(pool);
1449 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1450 		DMA_POOL_UNLOCK(pool);
1451 		uma_zfree_arg(pool->pool_zone, obj, pool);
1452 		return (NULL);
1453 	}
1454 	DMA_POOL_UNLOCK(pool);
1455 
1456 	*handle = obj->dma_addr;
1457 	return (obj->vaddr);
1458 }
1459 
1460 void
1461 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1462 {
1463 	struct linux_dma_obj *obj;
1464 
1465 	DMA_POOL_LOCK(pool);
1466 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1467 	if (obj == NULL) {
1468 		DMA_POOL_UNLOCK(pool);
1469 		return;
1470 	}
1471 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1472 	DMA_POOL_UNLOCK(pool);
1473 
1474 	uma_zfree_arg(pool->pool_zone, obj, pool);
1475 }
1476 
1477 static int
1478 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1479 {
1480 	struct pci_dev *pdev;
1481 
1482 	linux_set_current(curthread);
1483 	pdev = device_get_softc(dev);
1484 
1485 	props->brightness = pdev->dev.bd->props.brightness;
1486 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1487 	props->nlevels = 0;
1488 
1489 	return (0);
1490 }
1491 
1492 static int
1493 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1494 {
1495 	struct pci_dev *pdev;
1496 
1497 	linux_set_current(curthread);
1498 	pdev = device_get_softc(dev);
1499 
1500 	info->type = BACKLIGHT_TYPE_PANEL;
1501 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1502 	return (0);
1503 }
1504 
1505 static int
1506 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1507 {
1508 	struct pci_dev *pdev;
1509 
1510 	linux_set_current(curthread);
1511 	pdev = device_get_softc(dev);
1512 
1513 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1514 		props->brightness / 100;
1515 	pdev->dev.bd->props.power = props->brightness == 0 ?
1516 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1517 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1518 }
1519 
1520 struct backlight_device *
1521 linux_backlight_device_register(const char *name, struct device *dev,
1522     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1523 {
1524 
1525 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1526 	dev->bd->ops = ops;
1527 	dev->bd->props.type = props->type;
1528 	dev->bd->props.max_brightness = props->max_brightness;
1529 	dev->bd->props.brightness = props->brightness;
1530 	dev->bd->props.power = props->power;
1531 	dev->bd->data = data;
1532 	dev->bd->dev = dev;
1533 	dev->bd->name = strdup(name, M_DEVBUF);
1534 
1535 	dev->backlight_dev = backlight_register(name, dev->bsddev);
1536 
1537 	return (dev->bd);
1538 }
1539 
1540 void
1541 linux_backlight_device_unregister(struct backlight_device *bd)
1542 {
1543 
1544 	backlight_destroy(bd->dev->backlight_dev);
1545 	free(bd->name, M_DEVBUF);
1546 	free(bd, M_DEVBUF);
1547 }
1548