xref: /freebsd/sys/compat/linuxkpi/common/src/linux_pci.c (revision da5137abdf463bb5fee85061958a14dd12bc043e)
1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/fcntl.h>
43 #include <sys/file.h>
44 #include <sys/filio.h>
45 #include <sys/pciio.h>
46 #include <sys/pctrie.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/stdarg.h>
53 
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58 
59 #include <linux/kobject.h>
60 #include <linux/device.h>
61 #include <linux/slab.h>
62 #include <linux/module.h>
63 #include <linux/cdev.h>
64 #include <linux/file.h>
65 #include <linux/sysfs.h>
66 #include <linux/mm.h>
67 #include <linux/io.h>
68 #include <linux/vmalloc.h>
69 #include <linux/pci.h>
70 #include <linux/compat.h>
71 
72 #include <linux/backlight.h>
73 
74 #include "backlight_if.h"
75 #include "pcib_if.h"
76 
77 /* Undef the linux function macro defined in linux/pci.h */
78 #undef pci_get_class
79 
80 static device_probe_t linux_pci_probe;
81 static device_attach_t linux_pci_attach;
82 static device_detach_t linux_pci_detach;
83 static device_suspend_t linux_pci_suspend;
84 static device_resume_t linux_pci_resume;
85 static device_shutdown_t linux_pci_shutdown;
86 static pci_iov_init_t linux_pci_iov_init;
87 static pci_iov_uninit_t linux_pci_iov_uninit;
88 static pci_iov_add_vf_t linux_pci_iov_add_vf;
89 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
90 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
91 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
92 
93 static device_method_t pci_methods[] = {
94 	DEVMETHOD(device_probe, linux_pci_probe),
95 	DEVMETHOD(device_attach, linux_pci_attach),
96 	DEVMETHOD(device_detach, linux_pci_detach),
97 	DEVMETHOD(device_suspend, linux_pci_suspend),
98 	DEVMETHOD(device_resume, linux_pci_resume),
99 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
100 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
101 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
102 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
103 
104 	/* backlight interface */
105 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
106 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
107 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
108 	DEVMETHOD_END
109 };
110 
111 struct linux_dma_priv {
112 	uint64_t	dma_mask;
113 	bus_dma_tag_t	dmat;
114 	uint64_t	dma_coherent_mask;
115 	bus_dma_tag_t	dmat_coherent;
116 	struct mtx	lock;
117 	struct pctrie	ptree;
118 };
119 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
120 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
121 
122 static int
123 linux_pdev_dma_uninit(struct pci_dev *pdev)
124 {
125 	struct linux_dma_priv *priv;
126 
127 	priv = pdev->dev.dma_priv;
128 	if (priv->dmat)
129 		bus_dma_tag_destroy(priv->dmat);
130 	if (priv->dmat_coherent)
131 		bus_dma_tag_destroy(priv->dmat_coherent);
132 	mtx_destroy(&priv->lock);
133 	pdev->dev.dma_priv = NULL;
134 	free(priv, M_DEVBUF);
135 	return (0);
136 }
137 
138 static int
139 linux_pdev_dma_init(struct pci_dev *pdev)
140 {
141 	struct linux_dma_priv *priv;
142 	int error;
143 
144 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
145 
146 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
147 	pctrie_init(&priv->ptree);
148 
149 	pdev->dev.dma_priv = priv;
150 
151 	/* Create a default DMA tags. */
152 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
153 	if (error != 0)
154 		goto err;
155 	/* Coherent is lower 32bit only by default in Linux. */
156 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
157 	if (error != 0)
158 		goto err;
159 
160 	return (error);
161 
162 err:
163 	linux_pdev_dma_uninit(pdev);
164 	return (error);
165 }
166 
167 int
168 linux_dma_tag_init(struct device *dev, u64 dma_mask)
169 {
170 	struct linux_dma_priv *priv;
171 	int error;
172 
173 	priv = dev->dma_priv;
174 
175 	if (priv->dmat) {
176 		if (priv->dma_mask == dma_mask)
177 			return (0);
178 
179 		bus_dma_tag_destroy(priv->dmat);
180 	}
181 
182 	priv->dma_mask = dma_mask;
183 
184 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
185 	    1, 0,			/* alignment, boundary */
186 	    dma_mask,			/* lowaddr */
187 	    BUS_SPACE_MAXADDR,		/* highaddr */
188 	    NULL, NULL,			/* filtfunc, filtfuncarg */
189 	    BUS_SPACE_MAXSIZE,		/* maxsize */
190 	    1,				/* nsegments */
191 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
192 	    0,				/* flags */
193 	    NULL, NULL,			/* lockfunc, lockfuncarg */
194 	    &priv->dmat);
195 	return (-error);
196 }
197 
198 int
199 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
200 {
201 	struct linux_dma_priv *priv;
202 	int error;
203 
204 	priv = dev->dma_priv;
205 
206 	if (priv->dmat_coherent) {
207 		if (priv->dma_coherent_mask == dma_mask)
208 			return (0);
209 
210 		bus_dma_tag_destroy(priv->dmat_coherent);
211 	}
212 
213 	priv->dma_coherent_mask = dma_mask;
214 
215 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
216 	    1, 0,			/* alignment, boundary */
217 	    dma_mask,			/* lowaddr */
218 	    BUS_SPACE_MAXADDR,		/* highaddr */
219 	    NULL, NULL,			/* filtfunc, filtfuncarg */
220 	    BUS_SPACE_MAXSIZE,		/* maxsize */
221 	    1,				/* nsegments */
222 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
223 	    0,				/* flags */
224 	    NULL, NULL,			/* lockfunc, lockfuncarg */
225 	    &priv->dmat_coherent);
226 	return (-error);
227 }
228 
229 static struct pci_driver *
230 linux_pci_find(device_t dev, const struct pci_device_id **idp)
231 {
232 	const struct pci_device_id *id;
233 	struct pci_driver *pdrv;
234 	uint16_t vendor;
235 	uint16_t device;
236 	uint16_t subvendor;
237 	uint16_t subdevice;
238 
239 	vendor = pci_get_vendor(dev);
240 	device = pci_get_device(dev);
241 	subvendor = pci_get_subvendor(dev);
242 	subdevice = pci_get_subdevice(dev);
243 
244 	spin_lock(&pci_lock);
245 	list_for_each_entry(pdrv, &pci_drivers, node) {
246 		for (id = pdrv->id_table; id->vendor != 0; id++) {
247 			if (vendor == id->vendor &&
248 			    (PCI_ANY_ID == id->device || device == id->device) &&
249 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
250 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
251 				*idp = id;
252 				spin_unlock(&pci_lock);
253 				return (pdrv);
254 			}
255 		}
256 	}
257 	spin_unlock(&pci_lock);
258 	return (NULL);
259 }
260 
261 static void
262 lkpi_pci_dev_release(struct device *dev)
263 {
264 
265 	lkpi_devres_release_free_list(dev);
266 	spin_lock_destroy(&dev->devres_lock);
267 }
268 
269 static void
270 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
271 {
272 
273 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
274 	pdev->vendor = pci_get_vendor(dev);
275 	pdev->device = pci_get_device(dev);
276 	pdev->subsystem_vendor = pci_get_subvendor(dev);
277 	pdev->subsystem_device = pci_get_subdevice(dev);
278 	pdev->class = pci_get_class(dev);
279 	pdev->revision = pci_get_revid(dev);
280 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
281 	/*
282 	 * This should be the upstream bridge; pci_upstream_bridge()
283 	 * handles that case on demand as otherwise we'll shadow the
284 	 * entire PCI hierarchy.
285 	 */
286 	pdev->bus->self = pdev;
287 	pdev->bus->number = pci_get_bus(dev);
288 	pdev->bus->domain = pci_get_domain(dev);
289 	pdev->dev.bsddev = dev;
290 	pdev->dev.parent = &linux_root_device;
291 	pdev->dev.release = lkpi_pci_dev_release;
292 	INIT_LIST_HEAD(&pdev->dev.irqents);
293 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
294 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
295 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
296 	    kobject_name(&pdev->dev.kobj));
297 	spin_lock_init(&pdev->dev.devres_lock);
298 	INIT_LIST_HEAD(&pdev->dev.devres_head);
299 }
300 
301 static void
302 lkpinew_pci_dev_release(struct device *dev)
303 {
304 	struct pci_dev *pdev;
305 
306 	pdev = to_pci_dev(dev);
307 	if (pdev->root != NULL)
308 		pci_dev_put(pdev->root);
309 	if (pdev->bus->self != pdev)
310 		pci_dev_put(pdev->bus->self);
311 	free(pdev->bus, M_DEVBUF);
312 	free(pdev, M_DEVBUF);
313 }
314 
315 struct pci_dev *
316 lkpinew_pci_dev(device_t dev)
317 {
318 	struct pci_dev *pdev;
319 
320 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
321 	lkpifill_pci_dev(dev, pdev);
322 	pdev->dev.release = lkpinew_pci_dev_release;
323 
324 	return (pdev);
325 }
326 
327 struct pci_dev *
328 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
329 {
330 	device_t dev;
331 	device_t devfrom = NULL;
332 	struct pci_dev *pdev;
333 
334 	if (from != NULL)
335 		devfrom = from->dev.bsddev;
336 
337 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
338 	if (dev == NULL)
339 		return (NULL);
340 
341 	pdev = lkpinew_pci_dev(dev);
342 	return (pdev);
343 }
344 
345 struct pci_dev *
346 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
347     unsigned int devfn)
348 {
349 	device_t dev;
350 	struct pci_dev *pdev;
351 
352 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
353 	if (dev == NULL)
354 		return (NULL);
355 
356 	pdev = lkpinew_pci_dev(dev);
357 	return (pdev);
358 }
359 
360 static int
361 linux_pci_probe(device_t dev)
362 {
363 	const struct pci_device_id *id;
364 	struct pci_driver *pdrv;
365 
366 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
367 		return (ENXIO);
368 	if (device_get_driver(dev) != &pdrv->bsddriver)
369 		return (ENXIO);
370 	device_set_desc(dev, pdrv->name);
371 
372 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
373 	if (pdrv->bsd_probe_return == 0)
374 		return (BUS_PROBE_DEFAULT);
375 	else
376 		return (pdrv->bsd_probe_return);
377 }
378 
379 static int
380 linux_pci_attach(device_t dev)
381 {
382 	const struct pci_device_id *id;
383 	struct pci_driver *pdrv;
384 	struct pci_dev *pdev;
385 
386 	pdrv = linux_pci_find(dev, &id);
387 	pdev = device_get_softc(dev);
388 
389 	MPASS(pdrv != NULL);
390 	MPASS(pdev != NULL);
391 
392 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
393 }
394 
395 int
396 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
397     const struct pci_device_id *id, struct pci_dev *pdev)
398 {
399 	struct resource_list_entry *rle;
400 	device_t parent;
401 	uintptr_t rid;
402 	int error;
403 	bool isdrm;
404 
405 	linux_set_current(curthread);
406 
407 	parent = device_get_parent(dev);
408 	isdrm = pdrv != NULL && pdrv->isdrm;
409 
410 	if (isdrm) {
411 		struct pci_devinfo *dinfo;
412 
413 		dinfo = device_get_ivars(parent);
414 		device_set_ivars(dev, dinfo);
415 	}
416 
417 	lkpifill_pci_dev(dev, pdev);
418 	if (isdrm)
419 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
420 	else
421 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
422 	pdev->devfn = rid;
423 	pdev->pdrv = pdrv;
424 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
425 	if (rle != NULL)
426 		pdev->dev.irq = rle->start;
427 	else
428 		pdev->dev.irq = LINUX_IRQ_INVALID;
429 	pdev->irq = pdev->dev.irq;
430 	error = linux_pdev_dma_init(pdev);
431 	if (error)
432 		goto out_dma_init;
433 
434 	TAILQ_INIT(&pdev->mmio);
435 
436 	spin_lock(&pci_lock);
437 	list_add(&pdev->links, &pci_devices);
438 	spin_unlock(&pci_lock);
439 
440 	if (pdrv != NULL) {
441 		error = pdrv->probe(pdev, id);
442 		if (error)
443 			goto out_probe;
444 	}
445 	return (0);
446 
447 out_probe:
448 	free(pdev->bus, M_DEVBUF);
449 	linux_pdev_dma_uninit(pdev);
450 out_dma_init:
451 	spin_lock(&pci_lock);
452 	list_del(&pdev->links);
453 	spin_unlock(&pci_lock);
454 	put_device(&pdev->dev);
455 	return (-error);
456 }
457 
458 static int
459 linux_pci_detach(device_t dev)
460 {
461 	struct pci_dev *pdev;
462 
463 	pdev = device_get_softc(dev);
464 
465 	MPASS(pdev != NULL);
466 
467 	device_set_desc(dev, NULL);
468 
469 	return (linux_pci_detach_device(pdev));
470 }
471 
472 int
473 linux_pci_detach_device(struct pci_dev *pdev)
474 {
475 
476 	linux_set_current(curthread);
477 
478 	if (pdev->pdrv != NULL)
479 		pdev->pdrv->remove(pdev);
480 
481 	if (pdev->root != NULL)
482 		pci_dev_put(pdev->root);
483 	free(pdev->bus, M_DEVBUF);
484 	linux_pdev_dma_uninit(pdev);
485 
486 	spin_lock(&pci_lock);
487 	list_del(&pdev->links);
488 	spin_unlock(&pci_lock);
489 	put_device(&pdev->dev);
490 
491 	return (0);
492 }
493 
494 static int
495 lkpi_pci_disable_dev(struct device *dev)
496 {
497 
498 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
499 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
500 	return (0);
501 }
502 
503 void
504 lkpi_pci_devres_release(struct device *dev, void *p)
505 {
506 	struct pci_devres *dr;
507 	struct pci_dev *pdev;
508 	int bar;
509 
510 	pdev = to_pci_dev(dev);
511 	dr = p;
512 
513 	if (pdev->msix_enabled)
514 		lkpi_pci_disable_msix(pdev);
515         if (pdev->msi_enabled)
516 		lkpi_pci_disable_msi(pdev);
517 
518 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
519 		dr->enable_io = false;
520 
521 	if (dr->region_mask == 0)
522 		return;
523 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
524 
525 		if ((dr->region_mask & (1 << bar)) == 0)
526 			continue;
527 		pci_release_region(pdev, bar);
528 	}
529 }
530 
531 void
532 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
533 {
534 	struct pcim_iomap_devres *dr;
535 	struct pci_dev *pdev;
536 	int bar;
537 
538 	dr = p;
539 	pdev = to_pci_dev(dev);
540 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
541 
542 		if (dr->mmio_table[bar] == NULL)
543 			continue;
544 
545 		pci_iounmap(pdev, dr->mmio_table[bar]);
546 	}
547 }
548 
549 static int
550 linux_pci_suspend(device_t dev)
551 {
552 	const struct dev_pm_ops *pmops;
553 	struct pm_message pm = { };
554 	struct pci_dev *pdev;
555 	int error;
556 
557 	error = 0;
558 	linux_set_current(curthread);
559 	pdev = device_get_softc(dev);
560 	pmops = pdev->pdrv->driver.pm;
561 
562 	if (pdev->pdrv->suspend != NULL)
563 		error = -pdev->pdrv->suspend(pdev, pm);
564 	else if (pmops != NULL && pmops->suspend != NULL) {
565 		error = -pmops->suspend(&pdev->dev);
566 		if (error == 0 && pmops->suspend_late != NULL)
567 			error = -pmops->suspend_late(&pdev->dev);
568 	}
569 	return (error);
570 }
571 
572 static int
573 linux_pci_resume(device_t dev)
574 {
575 	const struct dev_pm_ops *pmops;
576 	struct pci_dev *pdev;
577 	int error;
578 
579 	error = 0;
580 	linux_set_current(curthread);
581 	pdev = device_get_softc(dev);
582 	pmops = pdev->pdrv->driver.pm;
583 
584 	if (pdev->pdrv->resume != NULL)
585 		error = -pdev->pdrv->resume(pdev);
586 	else if (pmops != NULL && pmops->resume != NULL) {
587 		if (pmops->resume_early != NULL)
588 			error = -pmops->resume_early(&pdev->dev);
589 		if (error == 0 && pmops->resume != NULL)
590 			error = -pmops->resume(&pdev->dev);
591 	}
592 	return (error);
593 }
594 
595 static int
596 linux_pci_shutdown(device_t dev)
597 {
598 	struct pci_dev *pdev;
599 
600 	linux_set_current(curthread);
601 	pdev = device_get_softc(dev);
602 	if (pdev->pdrv->shutdown != NULL)
603 		pdev->pdrv->shutdown(pdev);
604 	return (0);
605 }
606 
607 static int
608 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
609 {
610 	struct pci_dev *pdev;
611 	int error;
612 
613 	linux_set_current(curthread);
614 	pdev = device_get_softc(dev);
615 	if (pdev->pdrv->bsd_iov_init != NULL)
616 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
617 	else
618 		error = EINVAL;
619 	return (error);
620 }
621 
622 static void
623 linux_pci_iov_uninit(device_t dev)
624 {
625 	struct pci_dev *pdev;
626 
627 	linux_set_current(curthread);
628 	pdev = device_get_softc(dev);
629 	if (pdev->pdrv->bsd_iov_uninit != NULL)
630 		pdev->pdrv->bsd_iov_uninit(dev);
631 }
632 
633 static int
634 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
635 {
636 	struct pci_dev *pdev;
637 	int error;
638 
639 	linux_set_current(curthread);
640 	pdev = device_get_softc(dev);
641 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
642 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
643 	else
644 		error = EINVAL;
645 	return (error);
646 }
647 
648 static int
649 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
650 {
651 	int error;
652 
653 	linux_set_current(curthread);
654 	spin_lock(&pci_lock);
655 	list_add(&pdrv->node, &pci_drivers);
656 	spin_unlock(&pci_lock);
657 	if (pdrv->bsddriver.name == NULL)
658 		pdrv->bsddriver.name = pdrv->name;
659 	pdrv->bsddriver.methods = pci_methods;
660 	pdrv->bsddriver.size = sizeof(struct pci_dev);
661 
662 	bus_topo_lock();
663 	error = devclass_add_driver(dc, &pdrv->bsddriver,
664 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
665 	bus_topo_unlock();
666 	return (-error);
667 }
668 
669 int
670 linux_pci_register_driver(struct pci_driver *pdrv)
671 {
672 	devclass_t dc;
673 
674 	dc = devclass_find("pci");
675 	if (dc == NULL)
676 		return (-ENXIO);
677 	pdrv->isdrm = false;
678 	return (_linux_pci_register_driver(pdrv, dc));
679 }
680 
681 struct resource_list_entry *
682 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
683     int type, int rid)
684 {
685 	device_t dev;
686 	struct resource *res;
687 
688 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
689 	    ("trying to reserve non-BAR type %d", type));
690 
691 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
692 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
693 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
694 	    1, 1, 0);
695 	if (res == NULL)
696 		return (NULL);
697 	return (resource_list_find(rl, type, rid));
698 }
699 
700 unsigned long
701 pci_resource_start(struct pci_dev *pdev, int bar)
702 {
703 	struct resource_list_entry *rle;
704 	rman_res_t newstart;
705 	device_t dev;
706 	int error;
707 
708 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
709 		return (0);
710 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
711 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
712 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
713 	if (error != 0) {
714 		device_printf(pdev->dev.bsddev,
715 		    "translate of %#jx failed: %d\n",
716 		    (uintmax_t)rle->start, error);
717 		return (0);
718 	}
719 	return (newstart);
720 }
721 
722 unsigned long
723 pci_resource_len(struct pci_dev *pdev, int bar)
724 {
725 	struct resource_list_entry *rle;
726 
727 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
728 		return (0);
729 	return (rle->count);
730 }
731 
732 int
733 linux_pci_register_drm_driver(struct pci_driver *pdrv)
734 {
735 	devclass_t dc;
736 
737 	dc = devclass_create("vgapci");
738 	if (dc == NULL)
739 		return (-ENXIO);
740 	pdrv->isdrm = true;
741 	pdrv->name = "drmn";
742 	return (_linux_pci_register_driver(pdrv, dc));
743 }
744 
745 void
746 linux_pci_unregister_driver(struct pci_driver *pdrv)
747 {
748 	devclass_t bus;
749 
750 	bus = devclass_find("pci");
751 
752 	spin_lock(&pci_lock);
753 	list_del(&pdrv->node);
754 	spin_unlock(&pci_lock);
755 	bus_topo_lock();
756 	if (bus != NULL)
757 		devclass_delete_driver(bus, &pdrv->bsddriver);
758 	bus_topo_unlock();
759 }
760 
761 void
762 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
763 {
764 	devclass_t bus;
765 
766 	bus = devclass_find("vgapci");
767 
768 	spin_lock(&pci_lock);
769 	list_del(&pdrv->node);
770 	spin_unlock(&pci_lock);
771 	bus_topo_lock();
772 	if (bus != NULL)
773 		devclass_delete_driver(bus, &pdrv->bsddriver);
774 	bus_topo_unlock();
775 }
776 
777 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
778 
779 struct linux_dma_obj {
780 	void		*vaddr;
781 	uint64_t	dma_addr;
782 	bus_dmamap_t	dmamap;
783 	bus_dma_tag_t	dmat;
784 };
785 
786 static uma_zone_t linux_dma_trie_zone;
787 static uma_zone_t linux_dma_obj_zone;
788 
789 static void
790 linux_dma_init(void *arg)
791 {
792 
793 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
794 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
795 	    UMA_ALIGN_PTR, 0);
796 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
797 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
798 	    UMA_ALIGN_PTR, 0);
799 
800 }
801 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
802 
803 static void
804 linux_dma_uninit(void *arg)
805 {
806 
807 	uma_zdestroy(linux_dma_obj_zone);
808 	uma_zdestroy(linux_dma_trie_zone);
809 }
810 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
811 
812 static void *
813 linux_dma_trie_alloc(struct pctrie *ptree)
814 {
815 
816 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
817 }
818 
819 static void
820 linux_dma_trie_free(struct pctrie *ptree, void *node)
821 {
822 
823 	uma_zfree(linux_dma_trie_zone, node);
824 }
825 
826 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
827     linux_dma_trie_free);
828 
829 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
830 static dma_addr_t
831 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
832     bus_dma_tag_t dmat)
833 {
834 	struct linux_dma_priv *priv;
835 	struct linux_dma_obj *obj;
836 	int error, nseg;
837 	bus_dma_segment_t seg;
838 
839 	priv = dev->dma_priv;
840 
841 	/*
842 	 * If the resultant mapping will be entirely 1:1 with the
843 	 * physical address, short-circuit the remainder of the
844 	 * bus_dma API.  This avoids tracking collisions in the pctrie
845 	 * with the additional benefit of reducing overhead.
846 	 */
847 	if (bus_dma_id_mapped(dmat, phys, len))
848 		return (phys);
849 
850 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
851 	if (obj == NULL) {
852 		return (0);
853 	}
854 	obj->dmat = dmat;
855 
856 	DMA_PRIV_LOCK(priv);
857 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
858 		DMA_PRIV_UNLOCK(priv);
859 		uma_zfree(linux_dma_obj_zone, obj);
860 		return (0);
861 	}
862 
863 	nseg = -1;
864 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
865 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
866 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
867 		DMA_PRIV_UNLOCK(priv);
868 		uma_zfree(linux_dma_obj_zone, obj);
869 		return (0);
870 	}
871 
872 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
873 	obj->dma_addr = seg.ds_addr;
874 
875 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
876 	if (error != 0) {
877 		bus_dmamap_unload(obj->dmat, obj->dmamap);
878 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
879 		DMA_PRIV_UNLOCK(priv);
880 		uma_zfree(linux_dma_obj_zone, obj);
881 		return (0);
882 	}
883 	DMA_PRIV_UNLOCK(priv);
884 	return (obj->dma_addr);
885 }
886 #else
887 static dma_addr_t
888 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
889     size_t len __unused, bus_dma_tag_t dmat __unused)
890 {
891 	return (phys);
892 }
893 #endif
894 
895 dma_addr_t
896 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
897 {
898 	struct linux_dma_priv *priv;
899 
900 	priv = dev->dma_priv;
901 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
902 }
903 
904 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
905 void
906 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
907 {
908 	struct linux_dma_priv *priv;
909 	struct linux_dma_obj *obj;
910 
911 	priv = dev->dma_priv;
912 
913 	if (pctrie_is_empty(&priv->ptree))
914 		return;
915 
916 	DMA_PRIV_LOCK(priv);
917 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
918 	if (obj == NULL) {
919 		DMA_PRIV_UNLOCK(priv);
920 		return;
921 	}
922 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
923 	bus_dmamap_unload(obj->dmat, obj->dmamap);
924 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
925 	DMA_PRIV_UNLOCK(priv);
926 
927 	uma_zfree(linux_dma_obj_zone, obj);
928 }
929 #else
930 void
931 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
932 {
933 }
934 #endif
935 
936 void *
937 linux_dma_alloc_coherent(struct device *dev, size_t size,
938     dma_addr_t *dma_handle, gfp_t flag)
939 {
940 	struct linux_dma_priv *priv;
941 	vm_paddr_t high;
942 	size_t align;
943 	void *mem;
944 
945 	if (dev == NULL || dev->dma_priv == NULL) {
946 		*dma_handle = 0;
947 		return (NULL);
948 	}
949 	priv = dev->dma_priv;
950 	if (priv->dma_coherent_mask)
951 		high = priv->dma_coherent_mask;
952 	else
953 		/* Coherent is lower 32bit only by default in Linux. */
954 		high = BUS_SPACE_MAXADDR_32BIT;
955 	align = PAGE_SIZE << get_order(size);
956 	/* Always zero the allocation. */
957 	flag |= M_ZERO;
958 	mem = (void *)kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
959 	    align, 0, VM_MEMATTR_DEFAULT);
960 	if (mem != NULL) {
961 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
962 		    priv->dmat_coherent);
963 		if (*dma_handle == 0) {
964 			kmem_free((vm_offset_t)mem, size);
965 			mem = NULL;
966 		}
967 	} else {
968 		*dma_handle = 0;
969 	}
970 	return (mem);
971 }
972 
973 void
974 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
975     bus_dmasync_op_t op)
976 {
977 	struct linux_dma_priv *priv;
978 	struct linux_dma_obj *obj;
979 
980 	priv = dev->dma_priv;
981 
982 	if (pctrie_is_empty(&priv->ptree))
983 		return;
984 
985 	DMA_PRIV_LOCK(priv);
986 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
987 	if (obj == NULL) {
988 		DMA_PRIV_UNLOCK(priv);
989 		return;
990 	}
991 
992 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
993 	DMA_PRIV_UNLOCK(priv);
994 }
995 
996 int
997 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
998     enum dma_data_direction direction, unsigned long attrs __unused)
999 {
1000 	struct linux_dma_priv *priv;
1001 	struct scatterlist *sg;
1002 	int i, nseg;
1003 	bus_dma_segment_t seg;
1004 
1005 	priv = dev->dma_priv;
1006 
1007 	DMA_PRIV_LOCK(priv);
1008 
1009 	/* create common DMA map in the first S/G entry */
1010 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1011 		DMA_PRIV_UNLOCK(priv);
1012 		return (0);
1013 	}
1014 
1015 	/* load all S/G list entries */
1016 	for_each_sg(sgl, sg, nents, i) {
1017 		nseg = -1;
1018 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1019 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1020 		    &seg, &nseg) != 0) {
1021 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1022 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1023 			DMA_PRIV_UNLOCK(priv);
1024 			return (0);
1025 		}
1026 		KASSERT(nseg == 0,
1027 		    ("More than one segment (nseg=%d)", nseg + 1));
1028 
1029 		sg_dma_address(sg) = seg.ds_addr;
1030 	}
1031 
1032 	switch (direction) {
1033 	case DMA_BIDIRECTIONAL:
1034 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1035 		break;
1036 	case DMA_TO_DEVICE:
1037 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1038 		break;
1039 	case DMA_FROM_DEVICE:
1040 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1041 		break;
1042 	default:
1043 		break;
1044 	}
1045 
1046 	DMA_PRIV_UNLOCK(priv);
1047 
1048 	return (nents);
1049 }
1050 
1051 void
1052 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1053     int nents __unused, enum dma_data_direction direction,
1054     unsigned long attrs __unused)
1055 {
1056 	struct linux_dma_priv *priv;
1057 
1058 	priv = dev->dma_priv;
1059 
1060 	DMA_PRIV_LOCK(priv);
1061 
1062 	switch (direction) {
1063 	case DMA_BIDIRECTIONAL:
1064 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1065 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1066 		break;
1067 	case DMA_TO_DEVICE:
1068 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1069 		break;
1070 	case DMA_FROM_DEVICE:
1071 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1072 		break;
1073 	default:
1074 		break;
1075 	}
1076 
1077 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1078 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1079 	DMA_PRIV_UNLOCK(priv);
1080 }
1081 
1082 struct dma_pool {
1083 	struct device  *pool_device;
1084 	uma_zone_t	pool_zone;
1085 	struct mtx	pool_lock;
1086 	bus_dma_tag_t	pool_dmat;
1087 	size_t		pool_entry_size;
1088 	struct pctrie	pool_ptree;
1089 };
1090 
1091 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1092 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1093 
1094 static inline int
1095 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1096 {
1097 	struct linux_dma_obj *obj = mem;
1098 	struct dma_pool *pool = arg;
1099 	int error, nseg;
1100 	bus_dma_segment_t seg;
1101 
1102 	nseg = -1;
1103 	DMA_POOL_LOCK(pool);
1104 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1105 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1106 	    &seg, &nseg);
1107 	DMA_POOL_UNLOCK(pool);
1108 	if (error != 0) {
1109 		return (error);
1110 	}
1111 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1112 	obj->dma_addr = seg.ds_addr;
1113 
1114 	return (0);
1115 }
1116 
1117 static void
1118 dma_pool_obj_dtor(void *mem, int size, void *arg)
1119 {
1120 	struct linux_dma_obj *obj = mem;
1121 	struct dma_pool *pool = arg;
1122 
1123 	DMA_POOL_LOCK(pool);
1124 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1125 	DMA_POOL_UNLOCK(pool);
1126 }
1127 
1128 static int
1129 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1130     int flags)
1131 {
1132 	struct dma_pool *pool = arg;
1133 	struct linux_dma_obj *obj;
1134 	int error, i;
1135 
1136 	for (i = 0; i < count; i++) {
1137 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1138 		if (obj == NULL)
1139 			break;
1140 
1141 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1142 		    BUS_DMA_NOWAIT, &obj->dmamap);
1143 		if (error!= 0) {
1144 			uma_zfree(linux_dma_obj_zone, obj);
1145 			break;
1146 		}
1147 
1148 		store[i] = obj;
1149 	}
1150 
1151 	return (i);
1152 }
1153 
1154 static void
1155 dma_pool_obj_release(void *arg, void **store, int count)
1156 {
1157 	struct dma_pool *pool = arg;
1158 	struct linux_dma_obj *obj;
1159 	int i;
1160 
1161 	for (i = 0; i < count; i++) {
1162 		obj = store[i];
1163 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1164 		uma_zfree(linux_dma_obj_zone, obj);
1165 	}
1166 }
1167 
1168 struct dma_pool *
1169 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1170     size_t align, size_t boundary)
1171 {
1172 	struct linux_dma_priv *priv;
1173 	struct dma_pool *pool;
1174 
1175 	priv = dev->dma_priv;
1176 
1177 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1178 	pool->pool_device = dev;
1179 	pool->pool_entry_size = size;
1180 
1181 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1182 	    align, boundary,		/* alignment, boundary */
1183 	    priv->dma_mask,		/* lowaddr */
1184 	    BUS_SPACE_MAXADDR,		/* highaddr */
1185 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1186 	    size,			/* maxsize */
1187 	    1,				/* nsegments */
1188 	    size,			/* maxsegsz */
1189 	    0,				/* flags */
1190 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1191 	    &pool->pool_dmat)) {
1192 		kfree(pool);
1193 		return (NULL);
1194 	}
1195 
1196 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1197 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1198 	    dma_pool_obj_release, pool, 0);
1199 
1200 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1201 	pctrie_init(&pool->pool_ptree);
1202 
1203 	return (pool);
1204 }
1205 
1206 void
1207 linux_dma_pool_destroy(struct dma_pool *pool)
1208 {
1209 
1210 	uma_zdestroy(pool->pool_zone);
1211 	bus_dma_tag_destroy(pool->pool_dmat);
1212 	mtx_destroy(&pool->pool_lock);
1213 	kfree(pool);
1214 }
1215 
1216 void
1217 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1218 {
1219 	struct dma_pool *pool;
1220 
1221 	pool = *(struct dma_pool **)p;
1222 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1223 	linux_dma_pool_destroy(pool);
1224 }
1225 
1226 void *
1227 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1228     dma_addr_t *handle)
1229 {
1230 	struct linux_dma_obj *obj;
1231 
1232 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1233 	if (obj == NULL)
1234 		return (NULL);
1235 
1236 	DMA_POOL_LOCK(pool);
1237 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1238 		DMA_POOL_UNLOCK(pool);
1239 		uma_zfree_arg(pool->pool_zone, obj, pool);
1240 		return (NULL);
1241 	}
1242 	DMA_POOL_UNLOCK(pool);
1243 
1244 	*handle = obj->dma_addr;
1245 	return (obj->vaddr);
1246 }
1247 
1248 void
1249 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1250 {
1251 	struct linux_dma_obj *obj;
1252 
1253 	DMA_POOL_LOCK(pool);
1254 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1255 	if (obj == NULL) {
1256 		DMA_POOL_UNLOCK(pool);
1257 		return;
1258 	}
1259 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1260 	DMA_POOL_UNLOCK(pool);
1261 
1262 	uma_zfree_arg(pool->pool_zone, obj, pool);
1263 }
1264 
1265 static int
1266 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1267 {
1268 	struct pci_dev *pdev;
1269 
1270 	linux_set_current(curthread);
1271 	pdev = device_get_softc(dev);
1272 
1273 	props->brightness = pdev->dev.bd->props.brightness;
1274 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1275 	props->nlevels = 0;
1276 
1277 	return (0);
1278 }
1279 
1280 static int
1281 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1282 {
1283 	struct pci_dev *pdev;
1284 
1285 	linux_set_current(curthread);
1286 	pdev = device_get_softc(dev);
1287 
1288 	info->type = BACKLIGHT_TYPE_PANEL;
1289 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1290 	return (0);
1291 }
1292 
1293 static int
1294 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1295 {
1296 	struct pci_dev *pdev;
1297 
1298 	linux_set_current(curthread);
1299 	pdev = device_get_softc(dev);
1300 
1301 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1302 		props->brightness / 100;
1303 	pdev->dev.bd->props.power = props->brightness == 0 ?
1304 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1305 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1306 }
1307 
1308 struct backlight_device *
1309 linux_backlight_device_register(const char *name, struct device *dev,
1310     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1311 {
1312 
1313 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1314 	dev->bd->ops = ops;
1315 	dev->bd->props.type = props->type;
1316 	dev->bd->props.max_brightness = props->max_brightness;
1317 	dev->bd->props.brightness = props->brightness;
1318 	dev->bd->props.power = props->power;
1319 	dev->bd->data = data;
1320 	dev->bd->dev = dev;
1321 	dev->bd->name = strdup(name, M_DEVBUF);
1322 
1323 	dev->backlight_dev = backlight_register(name, dev->bsddev);
1324 
1325 	return (dev->bd);
1326 }
1327 
1328 void
1329 linux_backlight_device_unregister(struct backlight_device *bd)
1330 {
1331 
1332 	backlight_destroy(bd->dev->backlight_dev);
1333 	free(bd->name, M_DEVBUF);
1334 	free(bd, M_DEVBUF);
1335 }
1336