xref: /freebsd/sys/compat/linuxkpi/common/src/linux_pci.c (revision 87eea35e3f8bc559a5142d613826100b758c08fe)
1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/sysctl.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/fcntl.h>
40 #include <sys/file.h>
41 #include <sys/filio.h>
42 #include <sys/pciio.h>
43 #include <sys/pctrie.h>
44 #include <sys/rwlock.h>
45 
46 #include <vm/vm.h>
47 #include <vm/pmap.h>
48 
49 #include <machine/stdarg.h>
50 
51 #include <dev/pci/pcivar.h>
52 #include <dev/pci/pci_private.h>
53 #include <dev/pci/pci_iov.h>
54 #include <dev/backlight/backlight.h>
55 
56 #include <linux/kernel.h>
57 #include <linux/kobject.h>
58 #include <linux/device.h>
59 #include <linux/slab.h>
60 #include <linux/module.h>
61 #include <linux/cdev.h>
62 #include <linux/file.h>
63 #include <linux/sysfs.h>
64 #include <linux/mm.h>
65 #include <linux/io.h>
66 #include <linux/vmalloc.h>
67 #include <linux/pci.h>
68 #include <linux/compat.h>
69 
70 #include <linux/backlight.h>
71 
72 #include "backlight_if.h"
73 #include "pcib_if.h"
74 
75 /* Undef the linux function macro defined in linux/pci.h */
76 #undef pci_get_class
77 
78 extern int linuxkpi_debug;
79 
80 SYSCTL_DECL(_compat_linuxkpi);
81 
82 static counter_u64_t lkpi_pci_nseg1_fail;
83 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
84     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
85 
86 static device_probe_t linux_pci_probe;
87 static device_attach_t linux_pci_attach;
88 static device_detach_t linux_pci_detach;
89 static device_suspend_t linux_pci_suspend;
90 static device_resume_t linux_pci_resume;
91 static device_shutdown_t linux_pci_shutdown;
92 static pci_iov_init_t linux_pci_iov_init;
93 static pci_iov_uninit_t linux_pci_iov_uninit;
94 static pci_iov_add_vf_t linux_pci_iov_add_vf;
95 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
96 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
97 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
98 
99 static device_method_t pci_methods[] = {
100 	DEVMETHOD(device_probe, linux_pci_probe),
101 	DEVMETHOD(device_attach, linux_pci_attach),
102 	DEVMETHOD(device_detach, linux_pci_detach),
103 	DEVMETHOD(device_suspend, linux_pci_suspend),
104 	DEVMETHOD(device_resume, linux_pci_resume),
105 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
106 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
107 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
108 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
109 
110 	/* backlight interface */
111 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
112 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
113 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
114 	DEVMETHOD_END
115 };
116 
117 const char *pci_power_names[] = {
118 	"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
119 };
120 
121 struct linux_dma_priv {
122 	uint64_t	dma_mask;
123 	bus_dma_tag_t	dmat;
124 	uint64_t	dma_coherent_mask;
125 	bus_dma_tag_t	dmat_coherent;
126 	struct mtx	lock;
127 	struct pctrie	ptree;
128 };
129 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
130 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
131 
132 static int
133 linux_pdev_dma_uninit(struct pci_dev *pdev)
134 {
135 	struct linux_dma_priv *priv;
136 
137 	priv = pdev->dev.dma_priv;
138 	if (priv->dmat)
139 		bus_dma_tag_destroy(priv->dmat);
140 	if (priv->dmat_coherent)
141 		bus_dma_tag_destroy(priv->dmat_coherent);
142 	mtx_destroy(&priv->lock);
143 	pdev->dev.dma_priv = NULL;
144 	free(priv, M_DEVBUF);
145 	return (0);
146 }
147 
148 static int
149 linux_pdev_dma_init(struct pci_dev *pdev)
150 {
151 	struct linux_dma_priv *priv;
152 	int error;
153 
154 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
155 
156 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
157 	pctrie_init(&priv->ptree);
158 
159 	pdev->dev.dma_priv = priv;
160 
161 	/* Create a default DMA tags. */
162 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
163 	if (error != 0)
164 		goto err;
165 	/* Coherent is lower 32bit only by default in Linux. */
166 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
167 	if (error != 0)
168 		goto err;
169 
170 	return (error);
171 
172 err:
173 	linux_pdev_dma_uninit(pdev);
174 	return (error);
175 }
176 
177 int
178 linux_dma_tag_init(struct device *dev, u64 dma_mask)
179 {
180 	struct linux_dma_priv *priv;
181 	int error;
182 
183 	priv = dev->dma_priv;
184 
185 	if (priv->dmat) {
186 		if (priv->dma_mask == dma_mask)
187 			return (0);
188 
189 		bus_dma_tag_destroy(priv->dmat);
190 	}
191 
192 	priv->dma_mask = dma_mask;
193 
194 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
195 	    1, 0,			/* alignment, boundary */
196 	    dma_mask,			/* lowaddr */
197 	    BUS_SPACE_MAXADDR,		/* highaddr */
198 	    NULL, NULL,			/* filtfunc, filtfuncarg */
199 	    BUS_SPACE_MAXSIZE,		/* maxsize */
200 	    1,				/* nsegments */
201 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
202 	    0,				/* flags */
203 	    NULL, NULL,			/* lockfunc, lockfuncarg */
204 	    &priv->dmat);
205 	return (-error);
206 }
207 
208 int
209 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
210 {
211 	struct linux_dma_priv *priv;
212 	int error;
213 
214 	priv = dev->dma_priv;
215 
216 	if (priv->dmat_coherent) {
217 		if (priv->dma_coherent_mask == dma_mask)
218 			return (0);
219 
220 		bus_dma_tag_destroy(priv->dmat_coherent);
221 	}
222 
223 	priv->dma_coherent_mask = dma_mask;
224 
225 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
226 	    1, 0,			/* alignment, boundary */
227 	    dma_mask,			/* lowaddr */
228 	    BUS_SPACE_MAXADDR,		/* highaddr */
229 	    NULL, NULL,			/* filtfunc, filtfuncarg */
230 	    BUS_SPACE_MAXSIZE,		/* maxsize */
231 	    1,				/* nsegments */
232 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
233 	    0,				/* flags */
234 	    NULL, NULL,			/* lockfunc, lockfuncarg */
235 	    &priv->dmat_coherent);
236 	return (-error);
237 }
238 
239 static struct pci_driver *
240 linux_pci_find(device_t dev, const struct pci_device_id **idp)
241 {
242 	const struct pci_device_id *id;
243 	struct pci_driver *pdrv;
244 	uint16_t vendor;
245 	uint16_t device;
246 	uint16_t subvendor;
247 	uint16_t subdevice;
248 
249 	vendor = pci_get_vendor(dev);
250 	device = pci_get_device(dev);
251 	subvendor = pci_get_subvendor(dev);
252 	subdevice = pci_get_subdevice(dev);
253 
254 	spin_lock(&pci_lock);
255 	list_for_each_entry(pdrv, &pci_drivers, node) {
256 		for (id = pdrv->id_table; id->vendor != 0; id++) {
257 			if (vendor == id->vendor &&
258 			    (PCI_ANY_ID == id->device || device == id->device) &&
259 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
260 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
261 				*idp = id;
262 				spin_unlock(&pci_lock);
263 				return (pdrv);
264 			}
265 		}
266 	}
267 	spin_unlock(&pci_lock);
268 	return (NULL);
269 }
270 
271 struct pci_dev *
272 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
273 {
274 	struct pci_dev *pdev;
275 
276 	KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
277 
278 	spin_lock(&pci_lock);
279 	list_for_each_entry(pdev, &pci_devices, links) {
280 		if (pdev->vendor == vendor && pdev->device == device)
281 			break;
282 	}
283 	spin_unlock(&pci_lock);
284 
285 	return (pdev);
286 }
287 
288 static void
289 lkpi_pci_dev_release(struct device *dev)
290 {
291 
292 	lkpi_devres_release_free_list(dev);
293 	spin_lock_destroy(&dev->devres_lock);
294 }
295 
296 static void
297 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
298 {
299 
300 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
301 	pdev->vendor = pci_get_vendor(dev);
302 	pdev->device = pci_get_device(dev);
303 	pdev->subsystem_vendor = pci_get_subvendor(dev);
304 	pdev->subsystem_device = pci_get_subdevice(dev);
305 	pdev->class = pci_get_class(dev);
306 	pdev->revision = pci_get_revid(dev);
307 	pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
308 	    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
309 	    pci_get_function(dev));
310 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
311 	/*
312 	 * This should be the upstream bridge; pci_upstream_bridge()
313 	 * handles that case on demand as otherwise we'll shadow the
314 	 * entire PCI hierarchy.
315 	 */
316 	pdev->bus->self = pdev;
317 	pdev->bus->number = pci_get_bus(dev);
318 	pdev->bus->domain = pci_get_domain(dev);
319 	pdev->dev.bsddev = dev;
320 	pdev->dev.parent = &linux_root_device;
321 	pdev->dev.release = lkpi_pci_dev_release;
322 	INIT_LIST_HEAD(&pdev->dev.irqents);
323 
324 	if (pci_msi_count(dev) > 0)
325 		pdev->msi_desc = malloc(pci_msi_count(dev) *
326 		    sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
327 
328 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
329 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
330 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
331 	    kobject_name(&pdev->dev.kobj));
332 	spin_lock_init(&pdev->dev.devres_lock);
333 	INIT_LIST_HEAD(&pdev->dev.devres_head);
334 }
335 
336 static void
337 lkpinew_pci_dev_release(struct device *dev)
338 {
339 	struct pci_dev *pdev;
340 	int i;
341 
342 	pdev = to_pci_dev(dev);
343 	if (pdev->root != NULL)
344 		pci_dev_put(pdev->root);
345 	if (pdev->bus->self != pdev)
346 		pci_dev_put(pdev->bus->self);
347 	free(pdev->bus, M_DEVBUF);
348 	if (pdev->msi_desc != NULL) {
349 		for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
350 			free(pdev->msi_desc[i], M_DEVBUF);
351 		free(pdev->msi_desc, M_DEVBUF);
352 	}
353 	kfree(pdev->path_name);
354 	free(pdev, M_DEVBUF);
355 }
356 
357 struct pci_dev *
358 lkpinew_pci_dev(device_t dev)
359 {
360 	struct pci_dev *pdev;
361 
362 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
363 	lkpifill_pci_dev(dev, pdev);
364 	pdev->dev.release = lkpinew_pci_dev_release;
365 
366 	return (pdev);
367 }
368 
369 struct pci_dev *
370 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
371 {
372 	device_t dev;
373 	device_t devfrom = NULL;
374 	struct pci_dev *pdev;
375 
376 	if (from != NULL)
377 		devfrom = from->dev.bsddev;
378 
379 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
380 	if (dev == NULL)
381 		return (NULL);
382 
383 	pdev = lkpinew_pci_dev(dev);
384 	return (pdev);
385 }
386 
387 struct pci_dev *
388 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
389     unsigned int devfn)
390 {
391 	device_t dev;
392 	struct pci_dev *pdev;
393 
394 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
395 	if (dev == NULL)
396 		return (NULL);
397 
398 	pdev = lkpinew_pci_dev(dev);
399 	return (pdev);
400 }
401 
402 static int
403 linux_pci_probe(device_t dev)
404 {
405 	const struct pci_device_id *id;
406 	struct pci_driver *pdrv;
407 
408 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
409 		return (ENXIO);
410 	if (device_get_driver(dev) != &pdrv->bsddriver)
411 		return (ENXIO);
412 	device_set_desc(dev, pdrv->name);
413 
414 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
415 	if (pdrv->bsd_probe_return == 0)
416 		return (BUS_PROBE_DEFAULT);
417 	else
418 		return (pdrv->bsd_probe_return);
419 }
420 
421 static int
422 linux_pci_attach(device_t dev)
423 {
424 	const struct pci_device_id *id;
425 	struct pci_driver *pdrv;
426 	struct pci_dev *pdev;
427 
428 	pdrv = linux_pci_find(dev, &id);
429 	pdev = device_get_softc(dev);
430 
431 	MPASS(pdrv != NULL);
432 	MPASS(pdev != NULL);
433 
434 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
435 }
436 
437 int
438 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
439     const struct pci_device_id *id, struct pci_dev *pdev)
440 {
441 	struct resource_list_entry *rle;
442 	device_t parent;
443 	uintptr_t rid;
444 	int error;
445 	bool isdrm;
446 
447 	linux_set_current(curthread);
448 
449 	parent = device_get_parent(dev);
450 	isdrm = pdrv != NULL && pdrv->isdrm;
451 
452 	if (isdrm) {
453 		struct pci_devinfo *dinfo;
454 
455 		dinfo = device_get_ivars(parent);
456 		device_set_ivars(dev, dinfo);
457 	}
458 
459 	lkpifill_pci_dev(dev, pdev);
460 	if (isdrm)
461 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
462 	else
463 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
464 	pdev->devfn = rid;
465 	pdev->pdrv = pdrv;
466 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
467 	if (rle != NULL)
468 		pdev->dev.irq = rle->start;
469 	else
470 		pdev->dev.irq = LINUX_IRQ_INVALID;
471 	pdev->irq = pdev->dev.irq;
472 	error = linux_pdev_dma_init(pdev);
473 	if (error)
474 		goto out_dma_init;
475 
476 	TAILQ_INIT(&pdev->mmio);
477 
478 	spin_lock(&pci_lock);
479 	list_add(&pdev->links, &pci_devices);
480 	spin_unlock(&pci_lock);
481 
482 	if (pdrv != NULL) {
483 		error = pdrv->probe(pdev, id);
484 		if (error)
485 			goto out_probe;
486 	}
487 	return (0);
488 
489 out_probe:
490 	free(pdev->bus, M_DEVBUF);
491 	linux_pdev_dma_uninit(pdev);
492 out_dma_init:
493 	spin_lock(&pci_lock);
494 	list_del(&pdev->links);
495 	spin_unlock(&pci_lock);
496 	put_device(&pdev->dev);
497 	return (-error);
498 }
499 
500 static int
501 linux_pci_detach(device_t dev)
502 {
503 	struct pci_dev *pdev;
504 
505 	pdev = device_get_softc(dev);
506 
507 	MPASS(pdev != NULL);
508 
509 	device_set_desc(dev, NULL);
510 
511 	return (linux_pci_detach_device(pdev));
512 }
513 
514 int
515 linux_pci_detach_device(struct pci_dev *pdev)
516 {
517 
518 	linux_set_current(curthread);
519 
520 	if (pdev->pdrv != NULL)
521 		pdev->pdrv->remove(pdev);
522 
523 	if (pdev->root != NULL)
524 		pci_dev_put(pdev->root);
525 	free(pdev->bus, M_DEVBUF);
526 	linux_pdev_dma_uninit(pdev);
527 
528 	spin_lock(&pci_lock);
529 	list_del(&pdev->links);
530 	spin_unlock(&pci_lock);
531 	put_device(&pdev->dev);
532 
533 	return (0);
534 }
535 
536 static int
537 lkpi_pci_disable_dev(struct device *dev)
538 {
539 
540 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
541 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
542 	return (0);
543 }
544 
545 struct pci_devres *
546 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
547 {
548 	struct pci_devres *dr;
549 
550 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
551 	if (dr == NULL) {
552 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
553 		    GFP_KERNEL | __GFP_ZERO);
554 		if (dr != NULL)
555 			lkpi_devres_add(&pdev->dev, dr);
556 	}
557 
558 	return (dr);
559 }
560 
561 void
562 lkpi_pci_devres_release(struct device *dev, void *p)
563 {
564 	struct pci_devres *dr;
565 	struct pci_dev *pdev;
566 	int bar;
567 
568 	pdev = to_pci_dev(dev);
569 	dr = p;
570 
571 	if (pdev->msix_enabled)
572 		lkpi_pci_disable_msix(pdev);
573         if (pdev->msi_enabled)
574 		lkpi_pci_disable_msi(pdev);
575 
576 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
577 		dr->enable_io = false;
578 
579 	if (dr->region_mask == 0)
580 		return;
581 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
582 
583 		if ((dr->region_mask & (1 << bar)) == 0)
584 			continue;
585 		pci_release_region(pdev, bar);
586 	}
587 }
588 
589 struct pcim_iomap_devres *
590 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
591 {
592 	struct pcim_iomap_devres *dr;
593 
594 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
595 	    NULL, NULL);
596 	if (dr == NULL) {
597 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
598 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
599 		if (dr != NULL)
600 			lkpi_devres_add(&pdev->dev, dr);
601 	}
602 
603 	if (dr == NULL)
604 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
605 
606 	return (dr);
607 }
608 
609 void
610 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
611 {
612 	struct pcim_iomap_devres *dr;
613 	struct pci_dev *pdev;
614 	int bar;
615 
616 	dr = p;
617 	pdev = to_pci_dev(dev);
618 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
619 
620 		if (dr->mmio_table[bar] == NULL)
621 			continue;
622 
623 		pci_iounmap(pdev, dr->mmio_table[bar]);
624 	}
625 }
626 
627 static int
628 linux_pci_suspend(device_t dev)
629 {
630 	const struct dev_pm_ops *pmops;
631 	struct pm_message pm = { };
632 	struct pci_dev *pdev;
633 	int error;
634 
635 	error = 0;
636 	linux_set_current(curthread);
637 	pdev = device_get_softc(dev);
638 	pmops = pdev->pdrv->driver.pm;
639 
640 	if (pdev->pdrv->suspend != NULL)
641 		error = -pdev->pdrv->suspend(pdev, pm);
642 	else if (pmops != NULL && pmops->suspend != NULL) {
643 		error = -pmops->suspend(&pdev->dev);
644 		if (error == 0 && pmops->suspend_late != NULL)
645 			error = -pmops->suspend_late(&pdev->dev);
646 		if (error == 0 && pmops->suspend_noirq != NULL)
647 			error = -pmops->suspend_noirq(&pdev->dev);
648 	}
649 	return (error);
650 }
651 
652 static int
653 linux_pci_resume(device_t dev)
654 {
655 	const struct dev_pm_ops *pmops;
656 	struct pci_dev *pdev;
657 	int error;
658 
659 	error = 0;
660 	linux_set_current(curthread);
661 	pdev = device_get_softc(dev);
662 	pmops = pdev->pdrv->driver.pm;
663 
664 	if (pdev->pdrv->resume != NULL)
665 		error = -pdev->pdrv->resume(pdev);
666 	else if (pmops != NULL && pmops->resume != NULL) {
667 		if (pmops->resume_early != NULL)
668 			error = -pmops->resume_early(&pdev->dev);
669 		if (error == 0 && pmops->resume != NULL)
670 			error = -pmops->resume(&pdev->dev);
671 	}
672 	return (error);
673 }
674 
675 static int
676 linux_pci_shutdown(device_t dev)
677 {
678 	struct pci_dev *pdev;
679 
680 	linux_set_current(curthread);
681 	pdev = device_get_softc(dev);
682 	if (pdev->pdrv->shutdown != NULL)
683 		pdev->pdrv->shutdown(pdev);
684 	return (0);
685 }
686 
687 static int
688 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
689 {
690 	struct pci_dev *pdev;
691 	int error;
692 
693 	linux_set_current(curthread);
694 	pdev = device_get_softc(dev);
695 	if (pdev->pdrv->bsd_iov_init != NULL)
696 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
697 	else
698 		error = EINVAL;
699 	return (error);
700 }
701 
702 static void
703 linux_pci_iov_uninit(device_t dev)
704 {
705 	struct pci_dev *pdev;
706 
707 	linux_set_current(curthread);
708 	pdev = device_get_softc(dev);
709 	if (pdev->pdrv->bsd_iov_uninit != NULL)
710 		pdev->pdrv->bsd_iov_uninit(dev);
711 }
712 
713 static int
714 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
715 {
716 	struct pci_dev *pdev;
717 	int error;
718 
719 	linux_set_current(curthread);
720 	pdev = device_get_softc(dev);
721 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
722 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
723 	else
724 		error = EINVAL;
725 	return (error);
726 }
727 
728 static int
729 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
730 {
731 	int error;
732 
733 	linux_set_current(curthread);
734 	spin_lock(&pci_lock);
735 	list_add(&pdrv->node, &pci_drivers);
736 	spin_unlock(&pci_lock);
737 	if (pdrv->bsddriver.name == NULL)
738 		pdrv->bsddriver.name = pdrv->name;
739 	pdrv->bsddriver.methods = pci_methods;
740 	pdrv->bsddriver.size = sizeof(struct pci_dev);
741 
742 	bus_topo_lock();
743 	error = devclass_add_driver(dc, &pdrv->bsddriver,
744 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
745 	bus_topo_unlock();
746 	return (-error);
747 }
748 
749 int
750 linux_pci_register_driver(struct pci_driver *pdrv)
751 {
752 	devclass_t dc;
753 
754 	dc = devclass_find("pci");
755 	if (dc == NULL)
756 		return (-ENXIO);
757 	pdrv->isdrm = false;
758 	return (_linux_pci_register_driver(pdrv, dc));
759 }
760 
761 struct resource_list_entry *
762 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
763     int type, int rid)
764 {
765 	device_t dev;
766 	struct resource *res;
767 
768 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
769 	    ("trying to reserve non-BAR type %d", type));
770 
771 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
772 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
773 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
774 	    1, 1, 0);
775 	if (res == NULL)
776 		return (NULL);
777 	return (resource_list_find(rl, type, rid));
778 }
779 
780 unsigned long
781 pci_resource_start(struct pci_dev *pdev, int bar)
782 {
783 	struct resource_list_entry *rle;
784 	rman_res_t newstart;
785 	device_t dev;
786 	int error;
787 
788 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
789 		return (0);
790 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
791 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
792 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
793 	if (error != 0) {
794 		device_printf(pdev->dev.bsddev,
795 		    "translate of %#jx failed: %d\n",
796 		    (uintmax_t)rle->start, error);
797 		return (0);
798 	}
799 	return (newstart);
800 }
801 
802 unsigned long
803 pci_resource_len(struct pci_dev *pdev, int bar)
804 {
805 	struct resource_list_entry *rle;
806 
807 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
808 		return (0);
809 	return (rle->count);
810 }
811 
812 int
813 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
814 {
815 	struct resource *res;
816 	struct pci_devres *dr;
817 	struct pci_mmio_region *mmio;
818 	int rid;
819 	int type;
820 
821 	type = pci_resource_type(pdev, bar);
822 	if (type < 0)
823 		return (-ENODEV);
824 	rid = PCIR_BAR(bar);
825 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
826 	    RF_ACTIVE|RF_SHAREABLE);
827 	if (res == NULL) {
828 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
829 		    "bar %d type %d rid %d\n",
830 		    __func__, bar, type, PCIR_BAR(bar));
831 		return (-ENODEV);
832 	}
833 
834 	/*
835 	 * It seems there is an implicit devres tracking on these if the device
836 	 * is managed; otherwise the resources are not automatiaclly freed on
837 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
838 	 * drivers.
839 	 */
840 	dr = lkpi_pci_devres_find(pdev);
841 	if (dr != NULL) {
842 		dr->region_mask |= (1 << bar);
843 		dr->region_table[bar] = res;
844 	}
845 
846 	/* Even if the device is not managed we need to track it for iomap. */
847 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
848 	mmio->rid = PCIR_BAR(bar);
849 	mmio->type = type;
850 	mmio->res = res;
851 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
852 
853 	return (0);
854 }
855 
856 struct resource *
857 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
858 {
859 	struct pci_mmio_region *mmio, *p;
860 	int type;
861 
862 	type = pci_resource_type(pdev, bar);
863 	if (type < 0) {
864 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
865 		     __func__, bar, type);
866 		return (NULL);
867 	}
868 
869 	/*
870 	 * Check for duplicate mappings.
871 	 * This can happen if a driver calls pci_request_region() first.
872 	 */
873 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
874 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
875 			return (mmio->res);
876 		}
877 	}
878 
879 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
880 	mmio->rid = PCIR_BAR(bar);
881 	mmio->type = type;
882 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
883 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
884 	if (mmio->res == NULL) {
885 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
886 		    "bar %d type %d rid %d\n",
887 		    __func__, bar, type, PCIR_BAR(bar));
888 		free(mmio, M_DEVBUF);
889 		return (NULL);
890 	}
891 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
892 
893 	return (mmio->res);
894 }
895 
896 int
897 linux_pci_register_drm_driver(struct pci_driver *pdrv)
898 {
899 	devclass_t dc;
900 
901 	dc = devclass_create("vgapci");
902 	if (dc == NULL)
903 		return (-ENXIO);
904 	pdrv->isdrm = true;
905 	pdrv->name = "drmn";
906 	return (_linux_pci_register_driver(pdrv, dc));
907 }
908 
909 void
910 linux_pci_unregister_driver(struct pci_driver *pdrv)
911 {
912 	devclass_t bus;
913 
914 	bus = devclass_find("pci");
915 
916 	spin_lock(&pci_lock);
917 	list_del(&pdrv->node);
918 	spin_unlock(&pci_lock);
919 	bus_topo_lock();
920 	if (bus != NULL)
921 		devclass_delete_driver(bus, &pdrv->bsddriver);
922 	bus_topo_unlock();
923 }
924 
925 void
926 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
927 {
928 	devclass_t bus;
929 
930 	bus = devclass_find("vgapci");
931 
932 	spin_lock(&pci_lock);
933 	list_del(&pdrv->node);
934 	spin_unlock(&pci_lock);
935 	bus_topo_lock();
936 	if (bus != NULL)
937 		devclass_delete_driver(bus, &pdrv->bsddriver);
938 	bus_topo_unlock();
939 }
940 
941 int
942 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
943     unsigned int flags)
944 {
945 	int error;
946 
947 	if (flags & PCI_IRQ_MSIX) {
948 		struct msix_entry *entries;
949 		int i;
950 
951 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
952 		if (entries == NULL) {
953 			error = -ENOMEM;
954 			goto out;
955 		}
956 		for (i = 0; i < maxv; ++i)
957 			entries[i].entry = i;
958 		error = pci_enable_msix(pdev, entries, maxv);
959 out:
960 		kfree(entries);
961 		if (error == 0 && pdev->msix_enabled)
962 			return (pdev->dev.irq_end - pdev->dev.irq_start);
963 	}
964 	if (flags & PCI_IRQ_MSI) {
965 		if (pci_msi_count(pdev->dev.bsddev) < minv)
966 			return (-ENOSPC);
967 		error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
968 		if (error == 0 && pdev->msi_enabled)
969 			return (pdev->dev.irq_end - pdev->dev.irq_start);
970 	}
971 	if (flags & PCI_IRQ_LEGACY) {
972 		if (pdev->irq)
973 			return (1);
974 	}
975 
976 	return (-EINVAL);
977 }
978 
979 struct msi_desc *
980 lkpi_pci_msi_desc_alloc(int irq)
981 {
982 	struct device *dev;
983 	struct pci_dev *pdev;
984 	struct msi_desc *desc;
985 	struct pci_devinfo *dinfo;
986 	struct pcicfg_msi *msi;
987 	int vec;
988 
989 	dev = linux_pci_find_irq_dev(irq);
990 	if (dev == NULL)
991 		return (NULL);
992 
993 	pdev = to_pci_dev(dev);
994 
995 	if (pdev->msi_desc == NULL)
996 		return (NULL);
997 
998 	if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
999 		return (NULL);
1000 
1001 	vec = pdev->dev.irq_start - irq;
1002 
1003 	if (pdev->msi_desc[vec] != NULL)
1004 		return (pdev->msi_desc[vec]);
1005 
1006 	dinfo = device_get_ivars(dev->bsddev);
1007 	msi = &dinfo->cfg.msi;
1008 
1009 	desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1010 
1011 	desc->pci.msi_attrib.is_64 =
1012 	   (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1013 	desc->msg.data = msi->msi_data;
1014 
1015 	pdev->msi_desc[vec] = desc;
1016 
1017 	return (desc);
1018 }
1019 
1020 bool
1021 pci_device_is_present(struct pci_dev *pdev)
1022 {
1023 	device_t dev;
1024 
1025 	dev = pdev->dev.bsddev;
1026 
1027 	return (bus_child_present(dev));
1028 }
1029 
1030 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1031 
1032 struct linux_dma_obj {
1033 	void		*vaddr;
1034 	uint64_t	dma_addr;
1035 	bus_dmamap_t	dmamap;
1036 	bus_dma_tag_t	dmat;
1037 };
1038 
1039 static uma_zone_t linux_dma_trie_zone;
1040 static uma_zone_t linux_dma_obj_zone;
1041 
1042 static void
1043 linux_dma_init(void *arg)
1044 {
1045 
1046 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1047 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1048 	    UMA_ALIGN_PTR, 0);
1049 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1050 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1051 	    UMA_ALIGN_PTR, 0);
1052 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1053 }
1054 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1055 
1056 static void
1057 linux_dma_uninit(void *arg)
1058 {
1059 
1060 	counter_u64_free(lkpi_pci_nseg1_fail);
1061 	uma_zdestroy(linux_dma_obj_zone);
1062 	uma_zdestroy(linux_dma_trie_zone);
1063 }
1064 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1065 
1066 static void *
1067 linux_dma_trie_alloc(struct pctrie *ptree)
1068 {
1069 
1070 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1071 }
1072 
1073 static void
1074 linux_dma_trie_free(struct pctrie *ptree, void *node)
1075 {
1076 
1077 	uma_zfree(linux_dma_trie_zone, node);
1078 }
1079 
1080 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1081     linux_dma_trie_free);
1082 
1083 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1084 static dma_addr_t
1085 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1086     bus_dma_tag_t dmat)
1087 {
1088 	struct linux_dma_priv *priv;
1089 	struct linux_dma_obj *obj;
1090 	int error, nseg;
1091 	bus_dma_segment_t seg;
1092 
1093 	priv = dev->dma_priv;
1094 
1095 	/*
1096 	 * If the resultant mapping will be entirely 1:1 with the
1097 	 * physical address, short-circuit the remainder of the
1098 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1099 	 * with the additional benefit of reducing overhead.
1100 	 */
1101 	if (bus_dma_id_mapped(dmat, phys, len))
1102 		return (phys);
1103 
1104 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1105 	if (obj == NULL) {
1106 		return (0);
1107 	}
1108 	obj->dmat = dmat;
1109 
1110 	DMA_PRIV_LOCK(priv);
1111 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1112 		DMA_PRIV_UNLOCK(priv);
1113 		uma_zfree(linux_dma_obj_zone, obj);
1114 		return (0);
1115 	}
1116 
1117 	nseg = -1;
1118 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1119 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1120 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1121 		DMA_PRIV_UNLOCK(priv);
1122 		uma_zfree(linux_dma_obj_zone, obj);
1123 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1124 		if (linuxkpi_debug)
1125 			dump_stack();
1126 		return (0);
1127 	}
1128 
1129 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1130 	obj->dma_addr = seg.ds_addr;
1131 
1132 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1133 	if (error != 0) {
1134 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1135 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1136 		DMA_PRIV_UNLOCK(priv);
1137 		uma_zfree(linux_dma_obj_zone, obj);
1138 		return (0);
1139 	}
1140 	DMA_PRIV_UNLOCK(priv);
1141 	return (obj->dma_addr);
1142 }
1143 #else
1144 static dma_addr_t
1145 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1146     size_t len __unused, bus_dma_tag_t dmat __unused)
1147 {
1148 	return (phys);
1149 }
1150 #endif
1151 
1152 dma_addr_t
1153 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1154 {
1155 	struct linux_dma_priv *priv;
1156 
1157 	priv = dev->dma_priv;
1158 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1159 }
1160 
1161 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1162 void
1163 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1164 {
1165 	struct linux_dma_priv *priv;
1166 	struct linux_dma_obj *obj;
1167 
1168 	priv = dev->dma_priv;
1169 
1170 	if (pctrie_is_empty(&priv->ptree))
1171 		return;
1172 
1173 	DMA_PRIV_LOCK(priv);
1174 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1175 	if (obj == NULL) {
1176 		DMA_PRIV_UNLOCK(priv);
1177 		return;
1178 	}
1179 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1180 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1181 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1182 	DMA_PRIV_UNLOCK(priv);
1183 
1184 	uma_zfree(linux_dma_obj_zone, obj);
1185 }
1186 #else
1187 void
1188 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1189 {
1190 }
1191 #endif
1192 
1193 void *
1194 linux_dma_alloc_coherent(struct device *dev, size_t size,
1195     dma_addr_t *dma_handle, gfp_t flag)
1196 {
1197 	struct linux_dma_priv *priv;
1198 	vm_paddr_t high;
1199 	size_t align;
1200 	void *mem;
1201 
1202 	if (dev == NULL || dev->dma_priv == NULL) {
1203 		*dma_handle = 0;
1204 		return (NULL);
1205 	}
1206 	priv = dev->dma_priv;
1207 	if (priv->dma_coherent_mask)
1208 		high = priv->dma_coherent_mask;
1209 	else
1210 		/* Coherent is lower 32bit only by default in Linux. */
1211 		high = BUS_SPACE_MAXADDR_32BIT;
1212 	align = PAGE_SIZE << get_order(size);
1213 	/* Always zero the allocation. */
1214 	flag |= M_ZERO;
1215 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1216 	    align, 0, VM_MEMATTR_DEFAULT);
1217 	if (mem != NULL) {
1218 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1219 		    priv->dmat_coherent);
1220 		if (*dma_handle == 0) {
1221 			kmem_free(mem, size);
1222 			mem = NULL;
1223 		}
1224 	} else {
1225 		*dma_handle = 0;
1226 	}
1227 	return (mem);
1228 }
1229 
1230 struct lkpi_devres_dmam_coherent {
1231 	size_t size;
1232 	dma_addr_t *handle;
1233 	void *mem;
1234 };
1235 
1236 static void
1237 lkpi_dmam_free_coherent(struct device *dev, void *p)
1238 {
1239 	struct lkpi_devres_dmam_coherent *dr;
1240 
1241 	dr = p;
1242 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1243 }
1244 
1245 void *
1246 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1247     gfp_t flag)
1248 {
1249 	struct lkpi_devres_dmam_coherent *dr;
1250 
1251 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1252 	    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1253 
1254 	if (dr == NULL)
1255 		return (NULL);
1256 
1257 	dr->size = size;
1258 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1259 	dr->handle = dma_handle;
1260 	if (dr->mem == NULL) {
1261 		lkpi_devres_free(dr);
1262 		return (NULL);
1263 	}
1264 
1265 	lkpi_devres_add(dev, dr);
1266 	return (dr->mem);
1267 }
1268 
1269 void
1270 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1271     bus_dmasync_op_t op)
1272 {
1273 	struct linux_dma_priv *priv;
1274 	struct linux_dma_obj *obj;
1275 
1276 	priv = dev->dma_priv;
1277 
1278 	if (pctrie_is_empty(&priv->ptree))
1279 		return;
1280 
1281 	DMA_PRIV_LOCK(priv);
1282 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1283 	if (obj == NULL) {
1284 		DMA_PRIV_UNLOCK(priv);
1285 		return;
1286 	}
1287 
1288 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1289 	DMA_PRIV_UNLOCK(priv);
1290 }
1291 
1292 int
1293 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1294     enum dma_data_direction direction, unsigned long attrs __unused)
1295 {
1296 	struct linux_dma_priv *priv;
1297 	struct scatterlist *sg;
1298 	int i, nseg;
1299 	bus_dma_segment_t seg;
1300 
1301 	priv = dev->dma_priv;
1302 
1303 	DMA_PRIV_LOCK(priv);
1304 
1305 	/* create common DMA map in the first S/G entry */
1306 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1307 		DMA_PRIV_UNLOCK(priv);
1308 		return (0);
1309 	}
1310 
1311 	/* load all S/G list entries */
1312 	for_each_sg(sgl, sg, nents, i) {
1313 		nseg = -1;
1314 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1315 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1316 		    &seg, &nseg) != 0) {
1317 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1318 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1319 			DMA_PRIV_UNLOCK(priv);
1320 			return (0);
1321 		}
1322 		KASSERT(nseg == 0,
1323 		    ("More than one segment (nseg=%d)", nseg + 1));
1324 
1325 		sg_dma_address(sg) = seg.ds_addr;
1326 	}
1327 
1328 	switch (direction) {
1329 	case DMA_BIDIRECTIONAL:
1330 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1331 		break;
1332 	case DMA_TO_DEVICE:
1333 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1334 		break;
1335 	case DMA_FROM_DEVICE:
1336 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1337 		break;
1338 	default:
1339 		break;
1340 	}
1341 
1342 	DMA_PRIV_UNLOCK(priv);
1343 
1344 	return (nents);
1345 }
1346 
1347 void
1348 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1349     int nents __unused, enum dma_data_direction direction,
1350     unsigned long attrs __unused)
1351 {
1352 	struct linux_dma_priv *priv;
1353 
1354 	priv = dev->dma_priv;
1355 
1356 	DMA_PRIV_LOCK(priv);
1357 
1358 	switch (direction) {
1359 	case DMA_BIDIRECTIONAL:
1360 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1361 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1362 		break;
1363 	case DMA_TO_DEVICE:
1364 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1365 		break;
1366 	case DMA_FROM_DEVICE:
1367 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1368 		break;
1369 	default:
1370 		break;
1371 	}
1372 
1373 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1374 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1375 	DMA_PRIV_UNLOCK(priv);
1376 }
1377 
1378 struct dma_pool {
1379 	struct device  *pool_device;
1380 	uma_zone_t	pool_zone;
1381 	struct mtx	pool_lock;
1382 	bus_dma_tag_t	pool_dmat;
1383 	size_t		pool_entry_size;
1384 	struct pctrie	pool_ptree;
1385 };
1386 
1387 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1388 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1389 
1390 static inline int
1391 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1392 {
1393 	struct linux_dma_obj *obj = mem;
1394 	struct dma_pool *pool = arg;
1395 	int error, nseg;
1396 	bus_dma_segment_t seg;
1397 
1398 	nseg = -1;
1399 	DMA_POOL_LOCK(pool);
1400 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1401 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1402 	    &seg, &nseg);
1403 	DMA_POOL_UNLOCK(pool);
1404 	if (error != 0) {
1405 		return (error);
1406 	}
1407 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1408 	obj->dma_addr = seg.ds_addr;
1409 
1410 	return (0);
1411 }
1412 
1413 static void
1414 dma_pool_obj_dtor(void *mem, int size, void *arg)
1415 {
1416 	struct linux_dma_obj *obj = mem;
1417 	struct dma_pool *pool = arg;
1418 
1419 	DMA_POOL_LOCK(pool);
1420 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1421 	DMA_POOL_UNLOCK(pool);
1422 }
1423 
1424 static int
1425 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1426     int flags)
1427 {
1428 	struct dma_pool *pool = arg;
1429 	struct linux_dma_obj *obj;
1430 	int error, i;
1431 
1432 	for (i = 0; i < count; i++) {
1433 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1434 		if (obj == NULL)
1435 			break;
1436 
1437 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1438 		    BUS_DMA_NOWAIT, &obj->dmamap);
1439 		if (error!= 0) {
1440 			uma_zfree(linux_dma_obj_zone, obj);
1441 			break;
1442 		}
1443 
1444 		store[i] = obj;
1445 	}
1446 
1447 	return (i);
1448 }
1449 
1450 static void
1451 dma_pool_obj_release(void *arg, void **store, int count)
1452 {
1453 	struct dma_pool *pool = arg;
1454 	struct linux_dma_obj *obj;
1455 	int i;
1456 
1457 	for (i = 0; i < count; i++) {
1458 		obj = store[i];
1459 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1460 		uma_zfree(linux_dma_obj_zone, obj);
1461 	}
1462 }
1463 
1464 struct dma_pool *
1465 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1466     size_t align, size_t boundary)
1467 {
1468 	struct linux_dma_priv *priv;
1469 	struct dma_pool *pool;
1470 
1471 	priv = dev->dma_priv;
1472 
1473 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1474 	pool->pool_device = dev;
1475 	pool->pool_entry_size = size;
1476 
1477 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1478 	    align, boundary,		/* alignment, boundary */
1479 	    priv->dma_mask,		/* lowaddr */
1480 	    BUS_SPACE_MAXADDR,		/* highaddr */
1481 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1482 	    size,			/* maxsize */
1483 	    1,				/* nsegments */
1484 	    size,			/* maxsegsz */
1485 	    0,				/* flags */
1486 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1487 	    &pool->pool_dmat)) {
1488 		kfree(pool);
1489 		return (NULL);
1490 	}
1491 
1492 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1493 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1494 	    dma_pool_obj_release, pool, 0);
1495 
1496 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1497 	pctrie_init(&pool->pool_ptree);
1498 
1499 	return (pool);
1500 }
1501 
1502 void
1503 linux_dma_pool_destroy(struct dma_pool *pool)
1504 {
1505 
1506 	uma_zdestroy(pool->pool_zone);
1507 	bus_dma_tag_destroy(pool->pool_dmat);
1508 	mtx_destroy(&pool->pool_lock);
1509 	kfree(pool);
1510 }
1511 
1512 void
1513 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1514 {
1515 	struct dma_pool *pool;
1516 
1517 	pool = *(struct dma_pool **)p;
1518 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1519 	linux_dma_pool_destroy(pool);
1520 }
1521 
1522 void *
1523 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1524     dma_addr_t *handle)
1525 {
1526 	struct linux_dma_obj *obj;
1527 
1528 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1529 	if (obj == NULL)
1530 		return (NULL);
1531 
1532 	DMA_POOL_LOCK(pool);
1533 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1534 		DMA_POOL_UNLOCK(pool);
1535 		uma_zfree_arg(pool->pool_zone, obj, pool);
1536 		return (NULL);
1537 	}
1538 	DMA_POOL_UNLOCK(pool);
1539 
1540 	*handle = obj->dma_addr;
1541 	return (obj->vaddr);
1542 }
1543 
1544 void
1545 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1546 {
1547 	struct linux_dma_obj *obj;
1548 
1549 	DMA_POOL_LOCK(pool);
1550 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1551 	if (obj == NULL) {
1552 		DMA_POOL_UNLOCK(pool);
1553 		return;
1554 	}
1555 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1556 	DMA_POOL_UNLOCK(pool);
1557 
1558 	uma_zfree_arg(pool->pool_zone, obj, pool);
1559 }
1560 
1561 static int
1562 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1563 {
1564 	struct pci_dev *pdev;
1565 
1566 	linux_set_current(curthread);
1567 	pdev = device_get_softc(dev);
1568 
1569 	props->brightness = pdev->dev.bd->props.brightness;
1570 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1571 	props->nlevels = 0;
1572 
1573 	return (0);
1574 }
1575 
1576 static int
1577 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1578 {
1579 	struct pci_dev *pdev;
1580 
1581 	linux_set_current(curthread);
1582 	pdev = device_get_softc(dev);
1583 
1584 	info->type = BACKLIGHT_TYPE_PANEL;
1585 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1586 	return (0);
1587 }
1588 
1589 static int
1590 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1591 {
1592 	struct pci_dev *pdev;
1593 
1594 	linux_set_current(curthread);
1595 	pdev = device_get_softc(dev);
1596 
1597 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1598 		props->brightness / 100;
1599 	pdev->dev.bd->props.power = props->brightness == 0 ?
1600 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1601 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1602 }
1603 
1604 struct backlight_device *
1605 linux_backlight_device_register(const char *name, struct device *dev,
1606     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1607 {
1608 
1609 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1610 	dev->bd->ops = ops;
1611 	dev->bd->props.type = props->type;
1612 	dev->bd->props.max_brightness = props->max_brightness;
1613 	dev->bd->props.brightness = props->brightness;
1614 	dev->bd->props.power = props->power;
1615 	dev->bd->data = data;
1616 	dev->bd->dev = dev;
1617 	dev->bd->name = strdup(name, M_DEVBUF);
1618 
1619 	dev->backlight_dev = backlight_register(name, dev->bsddev);
1620 
1621 	return (dev->bd);
1622 }
1623 
1624 void
1625 linux_backlight_device_unregister(struct backlight_device *bd)
1626 {
1627 
1628 	backlight_destroy(bd->dev->backlight_dev);
1629 	free(bd->name, M_DEVBUF);
1630 	free(bd, M_DEVBUF);
1631 }
1632