1 /*- 2 * Copyright (c) 2015-2016 Mellanox Technologies, Ltd. 3 * All rights reserved. 4 * Copyright (c) 2020-2022 The FreeBSD Foundation 5 * 6 * Portions of this software were developed by Björn Zeeb 7 * under sponsorship from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/bus.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/sysctl.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/fcntl.h> 43 #include <sys/file.h> 44 #include <sys/filio.h> 45 #include <sys/pciio.h> 46 #include <sys/pctrie.h> 47 #include <sys/rwlock.h> 48 49 #include <vm/vm.h> 50 #include <vm/pmap.h> 51 52 #include <machine/stdarg.h> 53 54 #include <dev/pci/pcivar.h> 55 #include <dev/pci/pci_private.h> 56 #include <dev/pci/pci_iov.h> 57 #include <dev/backlight/backlight.h> 58 59 #include <linux/kernel.h> 60 #include <linux/kobject.h> 61 #include <linux/device.h> 62 #include <linux/slab.h> 63 #include <linux/module.h> 64 #include <linux/cdev.h> 65 #include <linux/file.h> 66 #include <linux/sysfs.h> 67 #include <linux/mm.h> 68 #include <linux/io.h> 69 #include <linux/vmalloc.h> 70 #include <linux/pci.h> 71 #include <linux/compat.h> 72 73 #include <linux/backlight.h> 74 75 #include "backlight_if.h" 76 #include "pcib_if.h" 77 78 /* Undef the linux function macro defined in linux/pci.h */ 79 #undef pci_get_class 80 81 extern int linuxkpi_debug; 82 83 SYSCTL_DECL(_compat_linuxkpi); 84 85 static counter_u64_t lkpi_pci_nseg1_fail; 86 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD, 87 &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment"); 88 89 static device_probe_t linux_pci_probe; 90 static device_attach_t linux_pci_attach; 91 static device_detach_t linux_pci_detach; 92 static device_suspend_t linux_pci_suspend; 93 static device_resume_t linux_pci_resume; 94 static device_shutdown_t linux_pci_shutdown; 95 static pci_iov_init_t linux_pci_iov_init; 96 static pci_iov_uninit_t linux_pci_iov_uninit; 97 static pci_iov_add_vf_t linux_pci_iov_add_vf; 98 static int linux_backlight_get_status(device_t dev, struct backlight_props *props); 99 static int linux_backlight_update_status(device_t dev, struct backlight_props *props); 100 static int linux_backlight_get_info(device_t dev, struct backlight_info *info); 101 102 static device_method_t pci_methods[] = { 103 DEVMETHOD(device_probe, linux_pci_probe), 104 DEVMETHOD(device_attach, linux_pci_attach), 105 DEVMETHOD(device_detach, linux_pci_detach), 106 DEVMETHOD(device_suspend, linux_pci_suspend), 107 DEVMETHOD(device_resume, linux_pci_resume), 108 DEVMETHOD(device_shutdown, linux_pci_shutdown), 109 DEVMETHOD(pci_iov_init, linux_pci_iov_init), 110 DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit), 111 DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf), 112 113 /* backlight interface */ 114 DEVMETHOD(backlight_update_status, linux_backlight_update_status), 115 DEVMETHOD(backlight_get_status, linux_backlight_get_status), 116 DEVMETHOD(backlight_get_info, linux_backlight_get_info), 117 DEVMETHOD_END 118 }; 119 120 struct linux_dma_priv { 121 uint64_t dma_mask; 122 bus_dma_tag_t dmat; 123 uint64_t dma_coherent_mask; 124 bus_dma_tag_t dmat_coherent; 125 struct mtx lock; 126 struct pctrie ptree; 127 }; 128 #define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock) 129 #define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock) 130 131 static int 132 linux_pdev_dma_uninit(struct pci_dev *pdev) 133 { 134 struct linux_dma_priv *priv; 135 136 priv = pdev->dev.dma_priv; 137 if (priv->dmat) 138 bus_dma_tag_destroy(priv->dmat); 139 if (priv->dmat_coherent) 140 bus_dma_tag_destroy(priv->dmat_coherent); 141 mtx_destroy(&priv->lock); 142 pdev->dev.dma_priv = NULL; 143 free(priv, M_DEVBUF); 144 return (0); 145 } 146 147 static int 148 linux_pdev_dma_init(struct pci_dev *pdev) 149 { 150 struct linux_dma_priv *priv; 151 int error; 152 153 priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO); 154 155 mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF); 156 pctrie_init(&priv->ptree); 157 158 pdev->dev.dma_priv = priv; 159 160 /* Create a default DMA tags. */ 161 error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64)); 162 if (error != 0) 163 goto err; 164 /* Coherent is lower 32bit only by default in Linux. */ 165 error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32)); 166 if (error != 0) 167 goto err; 168 169 return (error); 170 171 err: 172 linux_pdev_dma_uninit(pdev); 173 return (error); 174 } 175 176 int 177 linux_dma_tag_init(struct device *dev, u64 dma_mask) 178 { 179 struct linux_dma_priv *priv; 180 int error; 181 182 priv = dev->dma_priv; 183 184 if (priv->dmat) { 185 if (priv->dma_mask == dma_mask) 186 return (0); 187 188 bus_dma_tag_destroy(priv->dmat); 189 } 190 191 priv->dma_mask = dma_mask; 192 193 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 194 1, 0, /* alignment, boundary */ 195 dma_mask, /* lowaddr */ 196 BUS_SPACE_MAXADDR, /* highaddr */ 197 NULL, NULL, /* filtfunc, filtfuncarg */ 198 BUS_SPACE_MAXSIZE, /* maxsize */ 199 1, /* nsegments */ 200 BUS_SPACE_MAXSIZE, /* maxsegsz */ 201 0, /* flags */ 202 NULL, NULL, /* lockfunc, lockfuncarg */ 203 &priv->dmat); 204 return (-error); 205 } 206 207 int 208 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask) 209 { 210 struct linux_dma_priv *priv; 211 int error; 212 213 priv = dev->dma_priv; 214 215 if (priv->dmat_coherent) { 216 if (priv->dma_coherent_mask == dma_mask) 217 return (0); 218 219 bus_dma_tag_destroy(priv->dmat_coherent); 220 } 221 222 priv->dma_coherent_mask = dma_mask; 223 224 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 225 1, 0, /* alignment, boundary */ 226 dma_mask, /* lowaddr */ 227 BUS_SPACE_MAXADDR, /* highaddr */ 228 NULL, NULL, /* filtfunc, filtfuncarg */ 229 BUS_SPACE_MAXSIZE, /* maxsize */ 230 1, /* nsegments */ 231 BUS_SPACE_MAXSIZE, /* maxsegsz */ 232 0, /* flags */ 233 NULL, NULL, /* lockfunc, lockfuncarg */ 234 &priv->dmat_coherent); 235 return (-error); 236 } 237 238 static struct pci_driver * 239 linux_pci_find(device_t dev, const struct pci_device_id **idp) 240 { 241 const struct pci_device_id *id; 242 struct pci_driver *pdrv; 243 uint16_t vendor; 244 uint16_t device; 245 uint16_t subvendor; 246 uint16_t subdevice; 247 248 vendor = pci_get_vendor(dev); 249 device = pci_get_device(dev); 250 subvendor = pci_get_subvendor(dev); 251 subdevice = pci_get_subdevice(dev); 252 253 spin_lock(&pci_lock); 254 list_for_each_entry(pdrv, &pci_drivers, node) { 255 for (id = pdrv->id_table; id->vendor != 0; id++) { 256 if (vendor == id->vendor && 257 (PCI_ANY_ID == id->device || device == id->device) && 258 (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) && 259 (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) { 260 *idp = id; 261 spin_unlock(&pci_lock); 262 return (pdrv); 263 } 264 } 265 } 266 spin_unlock(&pci_lock); 267 return (NULL); 268 } 269 270 static void 271 lkpi_pci_dev_release(struct device *dev) 272 { 273 274 lkpi_devres_release_free_list(dev); 275 spin_lock_destroy(&dev->devres_lock); 276 } 277 278 static void 279 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev) 280 { 281 282 pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev)); 283 pdev->vendor = pci_get_vendor(dev); 284 pdev->device = pci_get_device(dev); 285 pdev->subsystem_vendor = pci_get_subvendor(dev); 286 pdev->subsystem_device = pci_get_subdevice(dev); 287 pdev->class = pci_get_class(dev); 288 pdev->revision = pci_get_revid(dev); 289 pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO); 290 /* 291 * This should be the upstream bridge; pci_upstream_bridge() 292 * handles that case on demand as otherwise we'll shadow the 293 * entire PCI hierarchy. 294 */ 295 pdev->bus->self = pdev; 296 pdev->bus->number = pci_get_bus(dev); 297 pdev->bus->domain = pci_get_domain(dev); 298 pdev->dev.bsddev = dev; 299 pdev->dev.parent = &linux_root_device; 300 pdev->dev.release = lkpi_pci_dev_release; 301 INIT_LIST_HEAD(&pdev->dev.irqents); 302 kobject_init(&pdev->dev.kobj, &linux_dev_ktype); 303 kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev)); 304 kobject_add(&pdev->dev.kobj, &linux_root_device.kobj, 305 kobject_name(&pdev->dev.kobj)); 306 spin_lock_init(&pdev->dev.devres_lock); 307 INIT_LIST_HEAD(&pdev->dev.devres_head); 308 } 309 310 static void 311 lkpinew_pci_dev_release(struct device *dev) 312 { 313 struct pci_dev *pdev; 314 315 pdev = to_pci_dev(dev); 316 if (pdev->root != NULL) 317 pci_dev_put(pdev->root); 318 if (pdev->bus->self != pdev) 319 pci_dev_put(pdev->bus->self); 320 free(pdev->bus, M_DEVBUF); 321 free(pdev, M_DEVBUF); 322 } 323 324 struct pci_dev * 325 lkpinew_pci_dev(device_t dev) 326 { 327 struct pci_dev *pdev; 328 329 pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO); 330 lkpifill_pci_dev(dev, pdev); 331 pdev->dev.release = lkpinew_pci_dev_release; 332 333 return (pdev); 334 } 335 336 struct pci_dev * 337 lkpi_pci_get_class(unsigned int class, struct pci_dev *from) 338 { 339 device_t dev; 340 device_t devfrom = NULL; 341 struct pci_dev *pdev; 342 343 if (from != NULL) 344 devfrom = from->dev.bsddev; 345 346 dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom); 347 if (dev == NULL) 348 return (NULL); 349 350 pdev = lkpinew_pci_dev(dev); 351 return (pdev); 352 } 353 354 struct pci_dev * 355 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus, 356 unsigned int devfn) 357 { 358 device_t dev; 359 struct pci_dev *pdev; 360 361 dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); 362 if (dev == NULL) 363 return (NULL); 364 365 pdev = lkpinew_pci_dev(dev); 366 return (pdev); 367 } 368 369 static int 370 linux_pci_probe(device_t dev) 371 { 372 const struct pci_device_id *id; 373 struct pci_driver *pdrv; 374 375 if ((pdrv = linux_pci_find(dev, &id)) == NULL) 376 return (ENXIO); 377 if (device_get_driver(dev) != &pdrv->bsddriver) 378 return (ENXIO); 379 device_set_desc(dev, pdrv->name); 380 381 /* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */ 382 if (pdrv->bsd_probe_return == 0) 383 return (BUS_PROBE_DEFAULT); 384 else 385 return (pdrv->bsd_probe_return); 386 } 387 388 static int 389 linux_pci_attach(device_t dev) 390 { 391 const struct pci_device_id *id; 392 struct pci_driver *pdrv; 393 struct pci_dev *pdev; 394 395 pdrv = linux_pci_find(dev, &id); 396 pdev = device_get_softc(dev); 397 398 MPASS(pdrv != NULL); 399 MPASS(pdev != NULL); 400 401 return (linux_pci_attach_device(dev, pdrv, id, pdev)); 402 } 403 404 int 405 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv, 406 const struct pci_device_id *id, struct pci_dev *pdev) 407 { 408 struct resource_list_entry *rle; 409 device_t parent; 410 uintptr_t rid; 411 int error; 412 bool isdrm; 413 414 linux_set_current(curthread); 415 416 parent = device_get_parent(dev); 417 isdrm = pdrv != NULL && pdrv->isdrm; 418 419 if (isdrm) { 420 struct pci_devinfo *dinfo; 421 422 dinfo = device_get_ivars(parent); 423 device_set_ivars(dev, dinfo); 424 } 425 426 lkpifill_pci_dev(dev, pdev); 427 if (isdrm) 428 PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid); 429 else 430 PCI_GET_ID(parent, dev, PCI_ID_RID, &rid); 431 pdev->devfn = rid; 432 pdev->pdrv = pdrv; 433 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false); 434 if (rle != NULL) 435 pdev->dev.irq = rle->start; 436 else 437 pdev->dev.irq = LINUX_IRQ_INVALID; 438 pdev->irq = pdev->dev.irq; 439 error = linux_pdev_dma_init(pdev); 440 if (error) 441 goto out_dma_init; 442 443 TAILQ_INIT(&pdev->mmio); 444 445 spin_lock(&pci_lock); 446 list_add(&pdev->links, &pci_devices); 447 spin_unlock(&pci_lock); 448 449 if (pdrv != NULL) { 450 error = pdrv->probe(pdev, id); 451 if (error) 452 goto out_probe; 453 } 454 return (0); 455 456 out_probe: 457 free(pdev->bus, M_DEVBUF); 458 linux_pdev_dma_uninit(pdev); 459 out_dma_init: 460 spin_lock(&pci_lock); 461 list_del(&pdev->links); 462 spin_unlock(&pci_lock); 463 put_device(&pdev->dev); 464 return (-error); 465 } 466 467 static int 468 linux_pci_detach(device_t dev) 469 { 470 struct pci_dev *pdev; 471 472 pdev = device_get_softc(dev); 473 474 MPASS(pdev != NULL); 475 476 device_set_desc(dev, NULL); 477 478 return (linux_pci_detach_device(pdev)); 479 } 480 481 int 482 linux_pci_detach_device(struct pci_dev *pdev) 483 { 484 485 linux_set_current(curthread); 486 487 if (pdev->pdrv != NULL) 488 pdev->pdrv->remove(pdev); 489 490 if (pdev->root != NULL) 491 pci_dev_put(pdev->root); 492 free(pdev->bus, M_DEVBUF); 493 linux_pdev_dma_uninit(pdev); 494 495 spin_lock(&pci_lock); 496 list_del(&pdev->links); 497 spin_unlock(&pci_lock); 498 put_device(&pdev->dev); 499 500 return (0); 501 } 502 503 static int 504 lkpi_pci_disable_dev(struct device *dev) 505 { 506 507 (void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY); 508 (void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT); 509 return (0); 510 } 511 512 void 513 lkpi_pci_devres_release(struct device *dev, void *p) 514 { 515 struct pci_devres *dr; 516 struct pci_dev *pdev; 517 int bar; 518 519 pdev = to_pci_dev(dev); 520 dr = p; 521 522 if (pdev->msix_enabled) 523 lkpi_pci_disable_msix(pdev); 524 if (pdev->msi_enabled) 525 lkpi_pci_disable_msi(pdev); 526 527 if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0) 528 dr->enable_io = false; 529 530 if (dr->region_mask == 0) 531 return; 532 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { 533 534 if ((dr->region_mask & (1 << bar)) == 0) 535 continue; 536 pci_release_region(pdev, bar); 537 } 538 } 539 540 void 541 lkpi_pcim_iomap_table_release(struct device *dev, void *p) 542 { 543 struct pcim_iomap_devres *dr; 544 struct pci_dev *pdev; 545 int bar; 546 547 dr = p; 548 pdev = to_pci_dev(dev); 549 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { 550 551 if (dr->mmio_table[bar] == NULL) 552 continue; 553 554 pci_iounmap(pdev, dr->mmio_table[bar]); 555 } 556 } 557 558 static int 559 linux_pci_suspend(device_t dev) 560 { 561 const struct dev_pm_ops *pmops; 562 struct pm_message pm = { }; 563 struct pci_dev *pdev; 564 int error; 565 566 error = 0; 567 linux_set_current(curthread); 568 pdev = device_get_softc(dev); 569 pmops = pdev->pdrv->driver.pm; 570 571 if (pdev->pdrv->suspend != NULL) 572 error = -pdev->pdrv->suspend(pdev, pm); 573 else if (pmops != NULL && pmops->suspend != NULL) { 574 error = -pmops->suspend(&pdev->dev); 575 if (error == 0 && pmops->suspend_late != NULL) 576 error = -pmops->suspend_late(&pdev->dev); 577 } 578 return (error); 579 } 580 581 static int 582 linux_pci_resume(device_t dev) 583 { 584 const struct dev_pm_ops *pmops; 585 struct pci_dev *pdev; 586 int error; 587 588 error = 0; 589 linux_set_current(curthread); 590 pdev = device_get_softc(dev); 591 pmops = pdev->pdrv->driver.pm; 592 593 if (pdev->pdrv->resume != NULL) 594 error = -pdev->pdrv->resume(pdev); 595 else if (pmops != NULL && pmops->resume != NULL) { 596 if (pmops->resume_early != NULL) 597 error = -pmops->resume_early(&pdev->dev); 598 if (error == 0 && pmops->resume != NULL) 599 error = -pmops->resume(&pdev->dev); 600 } 601 return (error); 602 } 603 604 static int 605 linux_pci_shutdown(device_t dev) 606 { 607 struct pci_dev *pdev; 608 609 linux_set_current(curthread); 610 pdev = device_get_softc(dev); 611 if (pdev->pdrv->shutdown != NULL) 612 pdev->pdrv->shutdown(pdev); 613 return (0); 614 } 615 616 static int 617 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config) 618 { 619 struct pci_dev *pdev; 620 int error; 621 622 linux_set_current(curthread); 623 pdev = device_get_softc(dev); 624 if (pdev->pdrv->bsd_iov_init != NULL) 625 error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config); 626 else 627 error = EINVAL; 628 return (error); 629 } 630 631 static void 632 linux_pci_iov_uninit(device_t dev) 633 { 634 struct pci_dev *pdev; 635 636 linux_set_current(curthread); 637 pdev = device_get_softc(dev); 638 if (pdev->pdrv->bsd_iov_uninit != NULL) 639 pdev->pdrv->bsd_iov_uninit(dev); 640 } 641 642 static int 643 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config) 644 { 645 struct pci_dev *pdev; 646 int error; 647 648 linux_set_current(curthread); 649 pdev = device_get_softc(dev); 650 if (pdev->pdrv->bsd_iov_add_vf != NULL) 651 error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config); 652 else 653 error = EINVAL; 654 return (error); 655 } 656 657 static int 658 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc) 659 { 660 int error; 661 662 linux_set_current(curthread); 663 spin_lock(&pci_lock); 664 list_add(&pdrv->node, &pci_drivers); 665 spin_unlock(&pci_lock); 666 if (pdrv->bsddriver.name == NULL) 667 pdrv->bsddriver.name = pdrv->name; 668 pdrv->bsddriver.methods = pci_methods; 669 pdrv->bsddriver.size = sizeof(struct pci_dev); 670 671 bus_topo_lock(); 672 error = devclass_add_driver(dc, &pdrv->bsddriver, 673 BUS_PASS_DEFAULT, &pdrv->bsdclass); 674 bus_topo_unlock(); 675 return (-error); 676 } 677 678 int 679 linux_pci_register_driver(struct pci_driver *pdrv) 680 { 681 devclass_t dc; 682 683 dc = devclass_find("pci"); 684 if (dc == NULL) 685 return (-ENXIO); 686 pdrv->isdrm = false; 687 return (_linux_pci_register_driver(pdrv, dc)); 688 } 689 690 struct resource_list_entry * 691 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl, 692 int type, int rid) 693 { 694 device_t dev; 695 struct resource *res; 696 697 KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY, 698 ("trying to reserve non-BAR type %d", type)); 699 700 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? 701 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; 702 res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0, 703 1, 1, 0); 704 if (res == NULL) 705 return (NULL); 706 return (resource_list_find(rl, type, rid)); 707 } 708 709 unsigned long 710 pci_resource_start(struct pci_dev *pdev, int bar) 711 { 712 struct resource_list_entry *rle; 713 rman_res_t newstart; 714 device_t dev; 715 int error; 716 717 if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL) 718 return (0); 719 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? 720 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; 721 error = bus_translate_resource(dev, rle->type, rle->start, &newstart); 722 if (error != 0) { 723 device_printf(pdev->dev.bsddev, 724 "translate of %#jx failed: %d\n", 725 (uintmax_t)rle->start, error); 726 return (0); 727 } 728 return (newstart); 729 } 730 731 unsigned long 732 pci_resource_len(struct pci_dev *pdev, int bar) 733 { 734 struct resource_list_entry *rle; 735 736 if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL) 737 return (0); 738 return (rle->count); 739 } 740 741 int 742 linux_pci_register_drm_driver(struct pci_driver *pdrv) 743 { 744 devclass_t dc; 745 746 dc = devclass_create("vgapci"); 747 if (dc == NULL) 748 return (-ENXIO); 749 pdrv->isdrm = true; 750 pdrv->name = "drmn"; 751 return (_linux_pci_register_driver(pdrv, dc)); 752 } 753 754 void 755 linux_pci_unregister_driver(struct pci_driver *pdrv) 756 { 757 devclass_t bus; 758 759 bus = devclass_find("pci"); 760 761 spin_lock(&pci_lock); 762 list_del(&pdrv->node); 763 spin_unlock(&pci_lock); 764 bus_topo_lock(); 765 if (bus != NULL) 766 devclass_delete_driver(bus, &pdrv->bsddriver); 767 bus_topo_unlock(); 768 } 769 770 void 771 linux_pci_unregister_drm_driver(struct pci_driver *pdrv) 772 { 773 devclass_t bus; 774 775 bus = devclass_find("vgapci"); 776 777 spin_lock(&pci_lock); 778 list_del(&pdrv->node); 779 spin_unlock(&pci_lock); 780 bus_topo_lock(); 781 if (bus != NULL) 782 devclass_delete_driver(bus, &pdrv->bsddriver); 783 bus_topo_unlock(); 784 } 785 786 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t)); 787 788 struct linux_dma_obj { 789 void *vaddr; 790 uint64_t dma_addr; 791 bus_dmamap_t dmamap; 792 bus_dma_tag_t dmat; 793 }; 794 795 static uma_zone_t linux_dma_trie_zone; 796 static uma_zone_t linux_dma_obj_zone; 797 798 static void 799 linux_dma_init(void *arg) 800 { 801 802 linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie", 803 pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL, 804 UMA_ALIGN_PTR, 0); 805 linux_dma_obj_zone = uma_zcreate("linux_dma_object", 806 sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL, 807 UMA_ALIGN_PTR, 0); 808 lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK); 809 } 810 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL); 811 812 static void 813 linux_dma_uninit(void *arg) 814 { 815 816 counter_u64_free(lkpi_pci_nseg1_fail); 817 uma_zdestroy(linux_dma_obj_zone); 818 uma_zdestroy(linux_dma_trie_zone); 819 } 820 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL); 821 822 static void * 823 linux_dma_trie_alloc(struct pctrie *ptree) 824 { 825 826 return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT)); 827 } 828 829 static void 830 linux_dma_trie_free(struct pctrie *ptree, void *node) 831 { 832 833 uma_zfree(linux_dma_trie_zone, node); 834 } 835 836 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc, 837 linux_dma_trie_free); 838 839 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 840 static dma_addr_t 841 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len, 842 bus_dma_tag_t dmat) 843 { 844 struct linux_dma_priv *priv; 845 struct linux_dma_obj *obj; 846 int error, nseg; 847 bus_dma_segment_t seg; 848 849 priv = dev->dma_priv; 850 851 /* 852 * If the resultant mapping will be entirely 1:1 with the 853 * physical address, short-circuit the remainder of the 854 * bus_dma API. This avoids tracking collisions in the pctrie 855 * with the additional benefit of reducing overhead. 856 */ 857 if (bus_dma_id_mapped(dmat, phys, len)) 858 return (phys); 859 860 obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT); 861 if (obj == NULL) { 862 return (0); 863 } 864 obj->dmat = dmat; 865 866 DMA_PRIV_LOCK(priv); 867 if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) { 868 DMA_PRIV_UNLOCK(priv); 869 uma_zfree(linux_dma_obj_zone, obj); 870 return (0); 871 } 872 873 nseg = -1; 874 if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len, 875 BUS_DMA_NOWAIT, &seg, &nseg) != 0) { 876 bus_dmamap_destroy(obj->dmat, obj->dmamap); 877 DMA_PRIV_UNLOCK(priv); 878 uma_zfree(linux_dma_obj_zone, obj); 879 counter_u64_add(lkpi_pci_nseg1_fail, 1); 880 if (linuxkpi_debug) 881 dump_stack(); 882 return (0); 883 } 884 885 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); 886 obj->dma_addr = seg.ds_addr; 887 888 error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj); 889 if (error != 0) { 890 bus_dmamap_unload(obj->dmat, obj->dmamap); 891 bus_dmamap_destroy(obj->dmat, obj->dmamap); 892 DMA_PRIV_UNLOCK(priv); 893 uma_zfree(linux_dma_obj_zone, obj); 894 return (0); 895 } 896 DMA_PRIV_UNLOCK(priv); 897 return (obj->dma_addr); 898 } 899 #else 900 static dma_addr_t 901 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys, 902 size_t len __unused, bus_dma_tag_t dmat __unused) 903 { 904 return (phys); 905 } 906 #endif 907 908 dma_addr_t 909 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len) 910 { 911 struct linux_dma_priv *priv; 912 913 priv = dev->dma_priv; 914 return (linux_dma_map_phys_common(dev, phys, len, priv->dmat)); 915 } 916 917 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 918 void 919 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) 920 { 921 struct linux_dma_priv *priv; 922 struct linux_dma_obj *obj; 923 924 priv = dev->dma_priv; 925 926 if (pctrie_is_empty(&priv->ptree)) 927 return; 928 929 DMA_PRIV_LOCK(priv); 930 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); 931 if (obj == NULL) { 932 DMA_PRIV_UNLOCK(priv); 933 return; 934 } 935 LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr); 936 bus_dmamap_unload(obj->dmat, obj->dmamap); 937 bus_dmamap_destroy(obj->dmat, obj->dmamap); 938 DMA_PRIV_UNLOCK(priv); 939 940 uma_zfree(linux_dma_obj_zone, obj); 941 } 942 #else 943 void 944 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) 945 { 946 } 947 #endif 948 949 void * 950 linux_dma_alloc_coherent(struct device *dev, size_t size, 951 dma_addr_t *dma_handle, gfp_t flag) 952 { 953 struct linux_dma_priv *priv; 954 vm_paddr_t high; 955 size_t align; 956 void *mem; 957 958 if (dev == NULL || dev->dma_priv == NULL) { 959 *dma_handle = 0; 960 return (NULL); 961 } 962 priv = dev->dma_priv; 963 if (priv->dma_coherent_mask) 964 high = priv->dma_coherent_mask; 965 else 966 /* Coherent is lower 32bit only by default in Linux. */ 967 high = BUS_SPACE_MAXADDR_32BIT; 968 align = PAGE_SIZE << get_order(size); 969 /* Always zero the allocation. */ 970 flag |= M_ZERO; 971 mem = (void *)kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high, 972 align, 0, VM_MEMATTR_DEFAULT); 973 if (mem != NULL) { 974 *dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size, 975 priv->dmat_coherent); 976 if (*dma_handle == 0) { 977 kmem_free((vm_offset_t)mem, size); 978 mem = NULL; 979 } 980 } else { 981 *dma_handle = 0; 982 } 983 return (mem); 984 } 985 986 void 987 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size, 988 bus_dmasync_op_t op) 989 { 990 struct linux_dma_priv *priv; 991 struct linux_dma_obj *obj; 992 993 priv = dev->dma_priv; 994 995 if (pctrie_is_empty(&priv->ptree)) 996 return; 997 998 DMA_PRIV_LOCK(priv); 999 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); 1000 if (obj == NULL) { 1001 DMA_PRIV_UNLOCK(priv); 1002 return; 1003 } 1004 1005 bus_dmamap_sync(obj->dmat, obj->dmamap, op); 1006 DMA_PRIV_UNLOCK(priv); 1007 } 1008 1009 int 1010 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents, 1011 enum dma_data_direction direction, unsigned long attrs __unused) 1012 { 1013 struct linux_dma_priv *priv; 1014 struct scatterlist *sg; 1015 int i, nseg; 1016 bus_dma_segment_t seg; 1017 1018 priv = dev->dma_priv; 1019 1020 DMA_PRIV_LOCK(priv); 1021 1022 /* create common DMA map in the first S/G entry */ 1023 if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) { 1024 DMA_PRIV_UNLOCK(priv); 1025 return (0); 1026 } 1027 1028 /* load all S/G list entries */ 1029 for_each_sg(sgl, sg, nents, i) { 1030 nseg = -1; 1031 if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map, 1032 sg_phys(sg), sg->length, BUS_DMA_NOWAIT, 1033 &seg, &nseg) != 0) { 1034 bus_dmamap_unload(priv->dmat, sgl->dma_map); 1035 bus_dmamap_destroy(priv->dmat, sgl->dma_map); 1036 DMA_PRIV_UNLOCK(priv); 1037 return (0); 1038 } 1039 KASSERT(nseg == 0, 1040 ("More than one segment (nseg=%d)", nseg + 1)); 1041 1042 sg_dma_address(sg) = seg.ds_addr; 1043 } 1044 1045 switch (direction) { 1046 case DMA_BIDIRECTIONAL: 1047 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); 1048 break; 1049 case DMA_TO_DEVICE: 1050 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); 1051 break; 1052 case DMA_FROM_DEVICE: 1053 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); 1054 break; 1055 default: 1056 break; 1057 } 1058 1059 DMA_PRIV_UNLOCK(priv); 1060 1061 return (nents); 1062 } 1063 1064 void 1065 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, 1066 int nents __unused, enum dma_data_direction direction, 1067 unsigned long attrs __unused) 1068 { 1069 struct linux_dma_priv *priv; 1070 1071 priv = dev->dma_priv; 1072 1073 DMA_PRIV_LOCK(priv); 1074 1075 switch (direction) { 1076 case DMA_BIDIRECTIONAL: 1077 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); 1078 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); 1079 break; 1080 case DMA_TO_DEVICE: 1081 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE); 1082 break; 1083 case DMA_FROM_DEVICE: 1084 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); 1085 break; 1086 default: 1087 break; 1088 } 1089 1090 bus_dmamap_unload(priv->dmat, sgl->dma_map); 1091 bus_dmamap_destroy(priv->dmat, sgl->dma_map); 1092 DMA_PRIV_UNLOCK(priv); 1093 } 1094 1095 struct dma_pool { 1096 struct device *pool_device; 1097 uma_zone_t pool_zone; 1098 struct mtx pool_lock; 1099 bus_dma_tag_t pool_dmat; 1100 size_t pool_entry_size; 1101 struct pctrie pool_ptree; 1102 }; 1103 1104 #define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock) 1105 #define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock) 1106 1107 static inline int 1108 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags) 1109 { 1110 struct linux_dma_obj *obj = mem; 1111 struct dma_pool *pool = arg; 1112 int error, nseg; 1113 bus_dma_segment_t seg; 1114 1115 nseg = -1; 1116 DMA_POOL_LOCK(pool); 1117 error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap, 1118 vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT, 1119 &seg, &nseg); 1120 DMA_POOL_UNLOCK(pool); 1121 if (error != 0) { 1122 return (error); 1123 } 1124 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); 1125 obj->dma_addr = seg.ds_addr; 1126 1127 return (0); 1128 } 1129 1130 static void 1131 dma_pool_obj_dtor(void *mem, int size, void *arg) 1132 { 1133 struct linux_dma_obj *obj = mem; 1134 struct dma_pool *pool = arg; 1135 1136 DMA_POOL_LOCK(pool); 1137 bus_dmamap_unload(pool->pool_dmat, obj->dmamap); 1138 DMA_POOL_UNLOCK(pool); 1139 } 1140 1141 static int 1142 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused, 1143 int flags) 1144 { 1145 struct dma_pool *pool = arg; 1146 struct linux_dma_obj *obj; 1147 int error, i; 1148 1149 for (i = 0; i < count; i++) { 1150 obj = uma_zalloc(linux_dma_obj_zone, flags); 1151 if (obj == NULL) 1152 break; 1153 1154 error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr, 1155 BUS_DMA_NOWAIT, &obj->dmamap); 1156 if (error!= 0) { 1157 uma_zfree(linux_dma_obj_zone, obj); 1158 break; 1159 } 1160 1161 store[i] = obj; 1162 } 1163 1164 return (i); 1165 } 1166 1167 static void 1168 dma_pool_obj_release(void *arg, void **store, int count) 1169 { 1170 struct dma_pool *pool = arg; 1171 struct linux_dma_obj *obj; 1172 int i; 1173 1174 for (i = 0; i < count; i++) { 1175 obj = store[i]; 1176 bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap); 1177 uma_zfree(linux_dma_obj_zone, obj); 1178 } 1179 } 1180 1181 struct dma_pool * 1182 linux_dma_pool_create(char *name, struct device *dev, size_t size, 1183 size_t align, size_t boundary) 1184 { 1185 struct linux_dma_priv *priv; 1186 struct dma_pool *pool; 1187 1188 priv = dev->dma_priv; 1189 1190 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 1191 pool->pool_device = dev; 1192 pool->pool_entry_size = size; 1193 1194 if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 1195 align, boundary, /* alignment, boundary */ 1196 priv->dma_mask, /* lowaddr */ 1197 BUS_SPACE_MAXADDR, /* highaddr */ 1198 NULL, NULL, /* filtfunc, filtfuncarg */ 1199 size, /* maxsize */ 1200 1, /* nsegments */ 1201 size, /* maxsegsz */ 1202 0, /* flags */ 1203 NULL, NULL, /* lockfunc, lockfuncarg */ 1204 &pool->pool_dmat)) { 1205 kfree(pool); 1206 return (NULL); 1207 } 1208 1209 pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor, 1210 dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import, 1211 dma_pool_obj_release, pool, 0); 1212 1213 mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF); 1214 pctrie_init(&pool->pool_ptree); 1215 1216 return (pool); 1217 } 1218 1219 void 1220 linux_dma_pool_destroy(struct dma_pool *pool) 1221 { 1222 1223 uma_zdestroy(pool->pool_zone); 1224 bus_dma_tag_destroy(pool->pool_dmat); 1225 mtx_destroy(&pool->pool_lock); 1226 kfree(pool); 1227 } 1228 1229 void 1230 lkpi_dmam_pool_destroy(struct device *dev, void *p) 1231 { 1232 struct dma_pool *pool; 1233 1234 pool = *(struct dma_pool **)p; 1235 LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree); 1236 linux_dma_pool_destroy(pool); 1237 } 1238 1239 void * 1240 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 1241 dma_addr_t *handle) 1242 { 1243 struct linux_dma_obj *obj; 1244 1245 obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK); 1246 if (obj == NULL) 1247 return (NULL); 1248 1249 DMA_POOL_LOCK(pool); 1250 if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) { 1251 DMA_POOL_UNLOCK(pool); 1252 uma_zfree_arg(pool->pool_zone, obj, pool); 1253 return (NULL); 1254 } 1255 DMA_POOL_UNLOCK(pool); 1256 1257 *handle = obj->dma_addr; 1258 return (obj->vaddr); 1259 } 1260 1261 void 1262 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr) 1263 { 1264 struct linux_dma_obj *obj; 1265 1266 DMA_POOL_LOCK(pool); 1267 obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr); 1268 if (obj == NULL) { 1269 DMA_POOL_UNLOCK(pool); 1270 return; 1271 } 1272 LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr); 1273 DMA_POOL_UNLOCK(pool); 1274 1275 uma_zfree_arg(pool->pool_zone, obj, pool); 1276 } 1277 1278 static int 1279 linux_backlight_get_status(device_t dev, struct backlight_props *props) 1280 { 1281 struct pci_dev *pdev; 1282 1283 linux_set_current(curthread); 1284 pdev = device_get_softc(dev); 1285 1286 props->brightness = pdev->dev.bd->props.brightness; 1287 props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness; 1288 props->nlevels = 0; 1289 1290 return (0); 1291 } 1292 1293 static int 1294 linux_backlight_get_info(device_t dev, struct backlight_info *info) 1295 { 1296 struct pci_dev *pdev; 1297 1298 linux_set_current(curthread); 1299 pdev = device_get_softc(dev); 1300 1301 info->type = BACKLIGHT_TYPE_PANEL; 1302 strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH); 1303 return (0); 1304 } 1305 1306 static int 1307 linux_backlight_update_status(device_t dev, struct backlight_props *props) 1308 { 1309 struct pci_dev *pdev; 1310 1311 linux_set_current(curthread); 1312 pdev = device_get_softc(dev); 1313 1314 pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness * 1315 props->brightness / 100; 1316 pdev->dev.bd->props.power = props->brightness == 0 ? 1317 4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */; 1318 return (pdev->dev.bd->ops->update_status(pdev->dev.bd)); 1319 } 1320 1321 struct backlight_device * 1322 linux_backlight_device_register(const char *name, struct device *dev, 1323 void *data, const struct backlight_ops *ops, struct backlight_properties *props) 1324 { 1325 1326 dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO); 1327 dev->bd->ops = ops; 1328 dev->bd->props.type = props->type; 1329 dev->bd->props.max_brightness = props->max_brightness; 1330 dev->bd->props.brightness = props->brightness; 1331 dev->bd->props.power = props->power; 1332 dev->bd->data = data; 1333 dev->bd->dev = dev; 1334 dev->bd->name = strdup(name, M_DEVBUF); 1335 1336 dev->backlight_dev = backlight_register(name, dev->bsddev); 1337 1338 return (dev->bd); 1339 } 1340 1341 void 1342 linux_backlight_device_unregister(struct backlight_device *bd) 1343 { 1344 1345 backlight_destroy(bd->dev->backlight_dev); 1346 free(bd->name, M_DEVBUF); 1347 free(bd, M_DEVBUF); 1348 } 1349