xref: /freebsd/sys/compat/linuxkpi/common/src/linux_pci.c (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/sysctl.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/fcntl.h>
40 #include <sys/file.h>
41 #include <sys/filio.h>
42 #include <sys/pciio.h>
43 #include <sys/pctrie.h>
44 #include <sys/rman.h>
45 #include <sys/rwlock.h>
46 
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49 
50 #include <machine/bus.h>
51 #include <machine/resource.h>
52 #include <machine/stdarg.h>
53 
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58 
59 #include <linux/kernel.h>
60 #include <linux/kobject.h>
61 #include <linux/device.h>
62 #include <linux/slab.h>
63 #include <linux/module.h>
64 #include <linux/cdev.h>
65 #include <linux/file.h>
66 #include <linux/sysfs.h>
67 #include <linux/mm.h>
68 #include <linux/io.h>
69 #include <linux/vmalloc.h>
70 #include <linux/pci.h>
71 #include <linux/compat.h>
72 
73 #include <linux/backlight.h>
74 
75 #include "backlight_if.h"
76 #include "pcib_if.h"
77 
78 /* Undef the linux function macro defined in linux/pci.h */
79 #undef pci_get_class
80 
81 extern int linuxkpi_debug;
82 
83 SYSCTL_DECL(_compat_linuxkpi);
84 
85 static counter_u64_t lkpi_pci_nseg1_fail;
86 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
87     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
88 
89 static device_probe_t linux_pci_probe;
90 static device_attach_t linux_pci_attach;
91 static device_detach_t linux_pci_detach;
92 static device_suspend_t linux_pci_suspend;
93 static device_resume_t linux_pci_resume;
94 static device_shutdown_t linux_pci_shutdown;
95 static pci_iov_init_t linux_pci_iov_init;
96 static pci_iov_uninit_t linux_pci_iov_uninit;
97 static pci_iov_add_vf_t linux_pci_iov_add_vf;
98 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
99 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
101 static void lkpi_pcim_iomap_table_release(struct device *, void *);
102 
103 static device_method_t pci_methods[] = {
104 	DEVMETHOD(device_probe, linux_pci_probe),
105 	DEVMETHOD(device_attach, linux_pci_attach),
106 	DEVMETHOD(device_detach, linux_pci_detach),
107 	DEVMETHOD(device_suspend, linux_pci_suspend),
108 	DEVMETHOD(device_resume, linux_pci_resume),
109 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
110 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
111 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
112 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
113 
114 	/* backlight interface */
115 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
116 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
117 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
118 	DEVMETHOD_END
119 };
120 
121 const char *pci_power_names[] = {
122 	"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
123 };
124 
125 /* We need some meta-struct to keep track of these for devres. */
126 struct pci_devres {
127 	bool		enable_io;
128 	/* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */
129 	uint8_t		region_mask;
130 	struct resource	*region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */
131 };
132 struct pcim_iomap_devres {
133 	void		*mmio_table[PCIR_MAX_BAR_0 + 1];
134 	struct resource	*res_table[PCIR_MAX_BAR_0 + 1];
135 };
136 
137 struct linux_dma_priv {
138 	uint64_t	dma_mask;
139 	bus_dma_tag_t	dmat;
140 	uint64_t	dma_coherent_mask;
141 	bus_dma_tag_t	dmat_coherent;
142 	struct mtx	lock;
143 	struct pctrie	ptree;
144 };
145 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
146 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
147 
148 static int
149 linux_pdev_dma_uninit(struct pci_dev *pdev)
150 {
151 	struct linux_dma_priv *priv;
152 
153 	priv = pdev->dev.dma_priv;
154 	if (priv->dmat)
155 		bus_dma_tag_destroy(priv->dmat);
156 	if (priv->dmat_coherent)
157 		bus_dma_tag_destroy(priv->dmat_coherent);
158 	mtx_destroy(&priv->lock);
159 	pdev->dev.dma_priv = NULL;
160 	free(priv, M_DEVBUF);
161 	return (0);
162 }
163 
164 static int
165 linux_pdev_dma_init(struct pci_dev *pdev)
166 {
167 	struct linux_dma_priv *priv;
168 	int error;
169 
170 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
171 
172 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
173 	pctrie_init(&priv->ptree);
174 
175 	pdev->dev.dma_priv = priv;
176 
177 	/* Create a default DMA tags. */
178 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
179 	if (error != 0)
180 		goto err;
181 	/* Coherent is lower 32bit only by default in Linux. */
182 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
183 	if (error != 0)
184 		goto err;
185 
186 	return (error);
187 
188 err:
189 	linux_pdev_dma_uninit(pdev);
190 	return (error);
191 }
192 
193 int
194 linux_dma_tag_init(struct device *dev, u64 dma_mask)
195 {
196 	struct linux_dma_priv *priv;
197 	int error;
198 
199 	priv = dev->dma_priv;
200 
201 	if (priv->dmat) {
202 		if (priv->dma_mask == dma_mask)
203 			return (0);
204 
205 		bus_dma_tag_destroy(priv->dmat);
206 	}
207 
208 	priv->dma_mask = dma_mask;
209 
210 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
211 	    1, 0,			/* alignment, boundary */
212 	    dma_mask,			/* lowaddr */
213 	    BUS_SPACE_MAXADDR,		/* highaddr */
214 	    NULL, NULL,			/* filtfunc, filtfuncarg */
215 	    BUS_SPACE_MAXSIZE,		/* maxsize */
216 	    1,				/* nsegments */
217 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
218 	    0,				/* flags */
219 	    NULL, NULL,			/* lockfunc, lockfuncarg */
220 	    &priv->dmat);
221 	return (-error);
222 }
223 
224 int
225 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
226 {
227 	struct linux_dma_priv *priv;
228 	int error;
229 
230 	priv = dev->dma_priv;
231 
232 	if (priv->dmat_coherent) {
233 		if (priv->dma_coherent_mask == dma_mask)
234 			return (0);
235 
236 		bus_dma_tag_destroy(priv->dmat_coherent);
237 	}
238 
239 	priv->dma_coherent_mask = dma_mask;
240 
241 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
242 	    1, 0,			/* alignment, boundary */
243 	    dma_mask,			/* lowaddr */
244 	    BUS_SPACE_MAXADDR,		/* highaddr */
245 	    NULL, NULL,			/* filtfunc, filtfuncarg */
246 	    BUS_SPACE_MAXSIZE,		/* maxsize */
247 	    1,				/* nsegments */
248 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
249 	    0,				/* flags */
250 	    NULL, NULL,			/* lockfunc, lockfuncarg */
251 	    &priv->dmat_coherent);
252 	return (-error);
253 }
254 
255 static struct pci_driver *
256 linux_pci_find(device_t dev, const struct pci_device_id **idp)
257 {
258 	const struct pci_device_id *id;
259 	struct pci_driver *pdrv;
260 	uint16_t vendor;
261 	uint16_t device;
262 	uint16_t subvendor;
263 	uint16_t subdevice;
264 
265 	vendor = pci_get_vendor(dev);
266 	device = pci_get_device(dev);
267 	subvendor = pci_get_subvendor(dev);
268 	subdevice = pci_get_subdevice(dev);
269 
270 	spin_lock(&pci_lock);
271 	list_for_each_entry(pdrv, &pci_drivers, node) {
272 		for (id = pdrv->id_table; id->vendor != 0; id++) {
273 			if (vendor == id->vendor &&
274 			    (PCI_ANY_ID == id->device || device == id->device) &&
275 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
276 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
277 				*idp = id;
278 				spin_unlock(&pci_lock);
279 				return (pdrv);
280 			}
281 		}
282 	}
283 	spin_unlock(&pci_lock);
284 	return (NULL);
285 }
286 
287 struct pci_dev *
288 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
289 {
290 	struct pci_dev *pdev;
291 
292 	KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
293 
294 	spin_lock(&pci_lock);
295 	list_for_each_entry(pdev, &pci_devices, links) {
296 		if (pdev->vendor == vendor && pdev->device == device)
297 			break;
298 	}
299 	spin_unlock(&pci_lock);
300 
301 	return (pdev);
302 }
303 
304 static void
305 lkpi_pci_dev_release(struct device *dev)
306 {
307 
308 	lkpi_devres_release_free_list(dev);
309 	spin_lock_destroy(&dev->devres_lock);
310 }
311 
312 static void
313 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
314 {
315 
316 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
317 	pdev->vendor = pci_get_vendor(dev);
318 	pdev->device = pci_get_device(dev);
319 	pdev->subsystem_vendor = pci_get_subvendor(dev);
320 	pdev->subsystem_device = pci_get_subdevice(dev);
321 	pdev->class = pci_get_class(dev);
322 	pdev->revision = pci_get_revid(dev);
323 	pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
324 	    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
325 	    pci_get_function(dev));
326 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
327 	/*
328 	 * This should be the upstream bridge; pci_upstream_bridge()
329 	 * handles that case on demand as otherwise we'll shadow the
330 	 * entire PCI hierarchy.
331 	 */
332 	pdev->bus->self = pdev;
333 	pdev->bus->number = pci_get_bus(dev);
334 	pdev->bus->domain = pci_get_domain(dev);
335 	pdev->dev.bsddev = dev;
336 	pdev->dev.parent = &linux_root_device;
337 	pdev->dev.release = lkpi_pci_dev_release;
338 	INIT_LIST_HEAD(&pdev->dev.irqents);
339 
340 	if (pci_msi_count(dev) > 0)
341 		pdev->msi_desc = malloc(pci_msi_count(dev) *
342 		    sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
343 
344 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
345 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
346 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
347 	    kobject_name(&pdev->dev.kobj));
348 	spin_lock_init(&pdev->dev.devres_lock);
349 	INIT_LIST_HEAD(&pdev->dev.devres_head);
350 }
351 
352 static void
353 lkpinew_pci_dev_release(struct device *dev)
354 {
355 	struct pci_dev *pdev;
356 	int i;
357 
358 	pdev = to_pci_dev(dev);
359 	if (pdev->root != NULL)
360 		pci_dev_put(pdev->root);
361 	if (pdev->bus->self != pdev)
362 		pci_dev_put(pdev->bus->self);
363 	free(pdev->bus, M_DEVBUF);
364 	if (pdev->msi_desc != NULL) {
365 		for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
366 			free(pdev->msi_desc[i], M_DEVBUF);
367 		free(pdev->msi_desc, M_DEVBUF);
368 	}
369 	kfree(pdev->path_name);
370 	free(pdev, M_DEVBUF);
371 }
372 
373 struct pci_dev *
374 lkpinew_pci_dev(device_t dev)
375 {
376 	struct pci_dev *pdev;
377 
378 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
379 	lkpifill_pci_dev(dev, pdev);
380 	pdev->dev.release = lkpinew_pci_dev_release;
381 
382 	return (pdev);
383 }
384 
385 struct pci_dev *
386 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
387 {
388 	device_t dev;
389 	device_t devfrom = NULL;
390 	struct pci_dev *pdev;
391 
392 	if (from != NULL)
393 		devfrom = from->dev.bsddev;
394 
395 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
396 	if (dev == NULL)
397 		return (NULL);
398 
399 	pdev = lkpinew_pci_dev(dev);
400 	return (pdev);
401 }
402 
403 struct pci_dev *
404 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
405     unsigned int devfn)
406 {
407 	device_t dev;
408 	struct pci_dev *pdev;
409 
410 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
411 	if (dev == NULL)
412 		return (NULL);
413 
414 	pdev = lkpinew_pci_dev(dev);
415 	return (pdev);
416 }
417 
418 static int
419 linux_pci_probe(device_t dev)
420 {
421 	const struct pci_device_id *id;
422 	struct pci_driver *pdrv;
423 
424 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
425 		return (ENXIO);
426 	if (device_get_driver(dev) != &pdrv->bsddriver)
427 		return (ENXIO);
428 	device_set_desc(dev, pdrv->name);
429 
430 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
431 	if (pdrv->bsd_probe_return == 0)
432 		return (BUS_PROBE_DEFAULT);
433 	else
434 		return (pdrv->bsd_probe_return);
435 }
436 
437 static int
438 linux_pci_attach(device_t dev)
439 {
440 	const struct pci_device_id *id;
441 	struct pci_driver *pdrv;
442 	struct pci_dev *pdev;
443 
444 	pdrv = linux_pci_find(dev, &id);
445 	pdev = device_get_softc(dev);
446 
447 	MPASS(pdrv != NULL);
448 	MPASS(pdev != NULL);
449 
450 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
451 }
452 
453 static struct resource_list_entry *
454 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
455     int type, int rid)
456 {
457 	device_t dev;
458 	struct resource *res;
459 
460 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
461 	    ("trying to reserve non-BAR type %d", type));
462 
463 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
464 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
465 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
466 	    1, 1, 0);
467 	if (res == NULL)
468 		return (NULL);
469 	return (resource_list_find(rl, type, rid));
470 }
471 
472 static struct resource_list_entry *
473 linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar)
474 {
475 	struct pci_devinfo *dinfo;
476 	struct resource_list *rl;
477 	struct resource_list_entry *rle;
478 
479 	dinfo = device_get_ivars(pdev->dev.bsddev);
480 	rl = &dinfo->resources;
481 	rle = resource_list_find(rl, type, rid);
482 	/* Reserve resources for this BAR if needed. */
483 	if (rle == NULL && reserve_bar)
484 		rle = linux_pci_reserve_bar(pdev, rl, type, rid);
485 	return (rle);
486 }
487 
488 int
489 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
490     const struct pci_device_id *id, struct pci_dev *pdev)
491 {
492 	struct resource_list_entry *rle;
493 	device_t parent;
494 	uintptr_t rid;
495 	int error;
496 	bool isdrm;
497 
498 	linux_set_current(curthread);
499 
500 	parent = device_get_parent(dev);
501 	isdrm = pdrv != NULL && pdrv->isdrm;
502 
503 	if (isdrm) {
504 		struct pci_devinfo *dinfo;
505 
506 		dinfo = device_get_ivars(parent);
507 		device_set_ivars(dev, dinfo);
508 	}
509 
510 	lkpifill_pci_dev(dev, pdev);
511 	if (isdrm)
512 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
513 	else
514 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
515 	pdev->devfn = rid;
516 	pdev->pdrv = pdrv;
517 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
518 	if (rle != NULL)
519 		pdev->dev.irq = rle->start;
520 	else
521 		pdev->dev.irq = LINUX_IRQ_INVALID;
522 	pdev->irq = pdev->dev.irq;
523 	error = linux_pdev_dma_init(pdev);
524 	if (error)
525 		goto out_dma_init;
526 
527 	TAILQ_INIT(&pdev->mmio);
528 	spin_lock_init(&pdev->pcie_cap_lock);
529 
530 	spin_lock(&pci_lock);
531 	list_add(&pdev->links, &pci_devices);
532 	spin_unlock(&pci_lock);
533 
534 	if (pdrv != NULL) {
535 		error = pdrv->probe(pdev, id);
536 		if (error)
537 			goto out_probe;
538 	}
539 	return (0);
540 
541 out_probe:
542 	free(pdev->bus, M_DEVBUF);
543 	spin_lock_destroy(&pdev->pcie_cap_lock);
544 	linux_pdev_dma_uninit(pdev);
545 out_dma_init:
546 	spin_lock(&pci_lock);
547 	list_del(&pdev->links);
548 	spin_unlock(&pci_lock);
549 	put_device(&pdev->dev);
550 	return (-error);
551 }
552 
553 static int
554 linux_pci_detach(device_t dev)
555 {
556 	struct pci_dev *pdev;
557 
558 	pdev = device_get_softc(dev);
559 
560 	MPASS(pdev != NULL);
561 
562 	device_set_desc(dev, NULL);
563 
564 	return (linux_pci_detach_device(pdev));
565 }
566 
567 int
568 linux_pci_detach_device(struct pci_dev *pdev)
569 {
570 
571 	linux_set_current(curthread);
572 
573 	if (pdev->pdrv != NULL)
574 		pdev->pdrv->remove(pdev);
575 
576 	if (pdev->root != NULL)
577 		pci_dev_put(pdev->root);
578 	free(pdev->bus, M_DEVBUF);
579 	linux_pdev_dma_uninit(pdev);
580 
581 	spin_lock(&pci_lock);
582 	list_del(&pdev->links);
583 	spin_unlock(&pci_lock);
584 	spin_lock_destroy(&pdev->pcie_cap_lock);
585 	put_device(&pdev->dev);
586 
587 	return (0);
588 }
589 
590 static int
591 lkpi_pci_disable_dev(struct device *dev)
592 {
593 
594 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
595 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
596 	return (0);
597 }
598 
599 static struct pci_devres *
600 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
601 {
602 	struct pci_devres *dr;
603 
604 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
605 	if (dr == NULL) {
606 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
607 		    GFP_KERNEL | __GFP_ZERO);
608 		if (dr != NULL)
609 			lkpi_devres_add(&pdev->dev, dr);
610 	}
611 
612 	return (dr);
613 }
614 
615 static struct pci_devres *
616 lkpi_pci_devres_find(struct pci_dev *pdev)
617 {
618 	if (!pdev->managed)
619 		return (NULL);
620 
621 	return (lkpi_pci_devres_get_alloc(pdev));
622 }
623 
624 void
625 lkpi_pci_devres_release(struct device *dev, void *p)
626 {
627 	struct pci_devres *dr;
628 	struct pci_dev *pdev;
629 	int bar;
630 
631 	pdev = to_pci_dev(dev);
632 	dr = p;
633 
634 	if (pdev->msix_enabled)
635 		lkpi_pci_disable_msix(pdev);
636         if (pdev->msi_enabled)
637 		lkpi_pci_disable_msi(pdev);
638 
639 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
640 		dr->enable_io = false;
641 
642 	if (dr->region_mask == 0)
643 		return;
644 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
645 
646 		if ((dr->region_mask & (1 << bar)) == 0)
647 			continue;
648 		pci_release_region(pdev, bar);
649 	}
650 }
651 
652 int
653 linuxkpi_pcim_enable_device(struct pci_dev *pdev)
654 {
655 	struct pci_devres *dr;
656 	int error;
657 
658 	/* Here we cannot run through the pdev->managed check. */
659 	dr = lkpi_pci_devres_get_alloc(pdev);
660 	if (dr == NULL)
661 		return (-ENOMEM);
662 
663 	/* If resources were enabled before do not do it again. */
664 	if (dr->enable_io)
665 		return (0);
666 
667 	error = pci_enable_device(pdev);
668 	if (error == 0)
669 		dr->enable_io = true;
670 
671 	/* This device is not managed. */
672 	pdev->managed = true;
673 
674 	return (error);
675 }
676 
677 static struct pcim_iomap_devres *
678 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
679 {
680 	struct pcim_iomap_devres *dr;
681 
682 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
683 	    NULL, NULL);
684 	if (dr == NULL) {
685 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
686 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
687 		if (dr != NULL)
688 			lkpi_devres_add(&pdev->dev, dr);
689 	}
690 
691 	if (dr == NULL)
692 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
693 
694 	return (dr);
695 }
696 
697 void __iomem **
698 linuxkpi_pcim_iomap_table(struct pci_dev *pdev)
699 {
700 	struct pcim_iomap_devres *dr;
701 
702 	dr = lkpi_pcim_iomap_devres_find(pdev);
703 	if (dr == NULL)
704 		return (NULL);
705 
706 	/*
707 	 * If the driver has manually set a flag to be able to request the
708 	 * resource to use bus_read/write_<n>, return the shadow table.
709 	 */
710 	if (pdev->want_iomap_res)
711 		return ((void **)dr->res_table);
712 
713 	/* This is the Linux default. */
714 	return (dr->mmio_table);
715 }
716 
717 static struct resource *
718 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
719 {
720 	struct pci_mmio_region *mmio, *p;
721 	int type;
722 
723 	type = pci_resource_type(pdev, bar);
724 	if (type < 0) {
725 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
726 		     __func__, bar, type);
727 		return (NULL);
728 	}
729 
730 	/*
731 	 * Check for duplicate mappings.
732 	 * This can happen if a driver calls pci_request_region() first.
733 	 */
734 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
735 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
736 			return (mmio->res);
737 		}
738 	}
739 
740 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
741 	mmio->rid = PCIR_BAR(bar);
742 	mmio->type = type;
743 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
744 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
745 	if (mmio->res == NULL) {
746 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
747 		    "bar %d type %d rid %d\n",
748 		    __func__, bar, type, PCIR_BAR(bar));
749 		free(mmio, M_DEVBUF);
750 		return (NULL);
751 	}
752 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
753 
754 	return (mmio->res);
755 }
756 
757 void *
758 linuxkpi_pci_iomap(struct pci_dev *pdev, int mmio_bar, int mmio_size)
759 {
760 	struct resource *res;
761 
762 	res = _lkpi_pci_iomap(pdev, mmio_bar, mmio_size);
763 	if (res == NULL)
764 		return (NULL);
765 	/* This is a FreeBSD extension so we can use bus_*(). */
766 	if (pdev->want_iomap_res)
767 		return (res);
768 	return ((void *)rman_get_bushandle(res));
769 }
770 
771 void
772 linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res)
773 {
774 	struct pci_mmio_region *mmio, *p;
775 
776 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
777 		if (res != (void *)rman_get_bushandle(mmio->res))
778 			continue;
779 		bus_release_resource(pdev->dev.bsddev,
780 		    mmio->type, mmio->rid, mmio->res);
781 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
782 		free(mmio, M_DEVBUF);
783 		return;
784 	}
785 }
786 
787 int
788 linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name)
789 {
790 	struct pcim_iomap_devres *dr;
791 	void *res;
792 	uint32_t mappings;
793 	int bar;
794 
795 	dr = lkpi_pcim_iomap_devres_find(pdev);
796 	if (dr == NULL)
797 		return (-ENOMEM);
798 
799 	/* Now iomap all the requested (by "mask") ones. */
800 	for (bar = mappings = 0; mappings != mask; bar++) {
801 		if ((mask & (1 << bar)) == 0)
802 			continue;
803 
804 		/* Request double is not allowed. */
805 		if (dr->mmio_table[bar] != NULL) {
806 			device_printf(pdev->dev.bsddev, "%s: bar %d %p\n",
807 			    __func__, bar, dr->mmio_table[bar]);
808 			goto err;
809 		}
810 
811 		res = _lkpi_pci_iomap(pdev, bar, 0);
812 		if (res == NULL)
813 			goto err;
814 		dr->mmio_table[bar] = (void *)rman_get_bushandle(res);
815 		dr->res_table[bar] = res;
816 
817 		mappings |= (1 << bar);
818 	}
819 
820 	return (0);
821 err:
822 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
823 		if ((mappings & (1 << bar)) != 0) {
824 			res = dr->mmio_table[bar];
825 			if (res == NULL)
826 				continue;
827 			pci_iounmap(pdev, res);
828 		}
829 	}
830 
831 	return (-EINVAL);
832 }
833 
834 static void
835 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
836 {
837 	struct pcim_iomap_devres *dr;
838 	struct pci_dev *pdev;
839 	int bar;
840 
841 	dr = p;
842 	pdev = to_pci_dev(dev);
843 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
844 
845 		if (dr->mmio_table[bar] == NULL)
846 			continue;
847 
848 		pci_iounmap(pdev, dr->mmio_table[bar]);
849 	}
850 }
851 
852 static int
853 linux_pci_suspend(device_t dev)
854 {
855 	const struct dev_pm_ops *pmops;
856 	struct pm_message pm = { };
857 	struct pci_dev *pdev;
858 	int error;
859 
860 	error = 0;
861 	linux_set_current(curthread);
862 	pdev = device_get_softc(dev);
863 	pmops = pdev->pdrv->driver.pm;
864 
865 	if (pdev->pdrv->suspend != NULL)
866 		error = -pdev->pdrv->suspend(pdev, pm);
867 	else if (pmops != NULL && pmops->suspend != NULL) {
868 		error = -pmops->suspend(&pdev->dev);
869 		if (error == 0 && pmops->suspend_late != NULL)
870 			error = -pmops->suspend_late(&pdev->dev);
871 		if (error == 0 && pmops->suspend_noirq != NULL)
872 			error = -pmops->suspend_noirq(&pdev->dev);
873 	}
874 	return (error);
875 }
876 
877 static int
878 linux_pci_resume(device_t dev)
879 {
880 	const struct dev_pm_ops *pmops;
881 	struct pci_dev *pdev;
882 	int error;
883 
884 	error = 0;
885 	linux_set_current(curthread);
886 	pdev = device_get_softc(dev);
887 	pmops = pdev->pdrv->driver.pm;
888 
889 	if (pdev->pdrv->resume != NULL)
890 		error = -pdev->pdrv->resume(pdev);
891 	else if (pmops != NULL && pmops->resume != NULL) {
892 		if (pmops->resume_early != NULL)
893 			error = -pmops->resume_early(&pdev->dev);
894 		if (error == 0 && pmops->resume != NULL)
895 			error = -pmops->resume(&pdev->dev);
896 	}
897 	return (error);
898 }
899 
900 static int
901 linux_pci_shutdown(device_t dev)
902 {
903 	struct pci_dev *pdev;
904 
905 	linux_set_current(curthread);
906 	pdev = device_get_softc(dev);
907 	if (pdev->pdrv->shutdown != NULL)
908 		pdev->pdrv->shutdown(pdev);
909 	return (0);
910 }
911 
912 static int
913 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
914 {
915 	struct pci_dev *pdev;
916 	int error;
917 
918 	linux_set_current(curthread);
919 	pdev = device_get_softc(dev);
920 	if (pdev->pdrv->bsd_iov_init != NULL)
921 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
922 	else
923 		error = EINVAL;
924 	return (error);
925 }
926 
927 static void
928 linux_pci_iov_uninit(device_t dev)
929 {
930 	struct pci_dev *pdev;
931 
932 	linux_set_current(curthread);
933 	pdev = device_get_softc(dev);
934 	if (pdev->pdrv->bsd_iov_uninit != NULL)
935 		pdev->pdrv->bsd_iov_uninit(dev);
936 }
937 
938 static int
939 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
940 {
941 	struct pci_dev *pdev;
942 	int error;
943 
944 	linux_set_current(curthread);
945 	pdev = device_get_softc(dev);
946 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
947 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
948 	else
949 		error = EINVAL;
950 	return (error);
951 }
952 
953 static int
954 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
955 {
956 	int error;
957 
958 	linux_set_current(curthread);
959 	spin_lock(&pci_lock);
960 	list_add(&pdrv->node, &pci_drivers);
961 	spin_unlock(&pci_lock);
962 	if (pdrv->bsddriver.name == NULL)
963 		pdrv->bsddriver.name = pdrv->name;
964 	pdrv->bsddriver.methods = pci_methods;
965 	pdrv->bsddriver.size = sizeof(struct pci_dev);
966 
967 	bus_topo_lock();
968 	error = devclass_add_driver(dc, &pdrv->bsddriver,
969 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
970 	bus_topo_unlock();
971 	return (-error);
972 }
973 
974 int
975 linux_pci_register_driver(struct pci_driver *pdrv)
976 {
977 	devclass_t dc;
978 
979 	dc = devclass_find("pci");
980 	if (dc == NULL)
981 		return (-ENXIO);
982 	pdrv->isdrm = false;
983 	return (_linux_pci_register_driver(pdrv, dc));
984 }
985 
986 static struct resource_list_entry *
987 lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve)
988 {
989 	int type;
990 
991 	type = pci_resource_type(pdev, bar);
992 	if (type < 0)
993 		return (NULL);
994 	bar = PCIR_BAR(bar);
995 	return (linux_pci_get_rle(pdev, type, bar, reserve));
996 }
997 
998 struct device *
999 lkpi_pci_find_irq_dev(unsigned int irq)
1000 {
1001 	struct pci_dev *pdev;
1002 	struct device *found;
1003 
1004 	found = NULL;
1005 	spin_lock(&pci_lock);
1006 	list_for_each_entry(pdev, &pci_devices, links) {
1007 		if (irq == pdev->dev.irq ||
1008 		    (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) {
1009 			found = &pdev->dev;
1010 			break;
1011 		}
1012 	}
1013 	spin_unlock(&pci_lock);
1014 	return (found);
1015 }
1016 
1017 unsigned long
1018 pci_resource_start(struct pci_dev *pdev, int bar)
1019 {
1020 	struct resource_list_entry *rle;
1021 	rman_res_t newstart;
1022 	device_t dev;
1023 	int error;
1024 
1025 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1026 		return (0);
1027 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
1028 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
1029 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
1030 	if (error != 0) {
1031 		device_printf(pdev->dev.bsddev,
1032 		    "translate of %#jx failed: %d\n",
1033 		    (uintmax_t)rle->start, error);
1034 		return (0);
1035 	}
1036 	return (newstart);
1037 }
1038 
1039 unsigned long
1040 pci_resource_len(struct pci_dev *pdev, int bar)
1041 {
1042 	struct resource_list_entry *rle;
1043 
1044 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1045 		return (0);
1046 	return (rle->count);
1047 }
1048 
1049 int
1050 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1051 {
1052 	struct resource *res;
1053 	struct pci_devres *dr;
1054 	struct pci_mmio_region *mmio;
1055 	int rid;
1056 	int type;
1057 
1058 	type = pci_resource_type(pdev, bar);
1059 	if (type < 0)
1060 		return (-ENODEV);
1061 	rid = PCIR_BAR(bar);
1062 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
1063 	    RF_ACTIVE|RF_SHAREABLE);
1064 	if (res == NULL) {
1065 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
1066 		    "bar %d type %d rid %d\n",
1067 		    __func__, bar, type, PCIR_BAR(bar));
1068 		return (-ENODEV);
1069 	}
1070 
1071 	/*
1072 	 * It seems there is an implicit devres tracking on these if the device
1073 	 * is managed; otherwise the resources are not automatiaclly freed on
1074 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
1075 	 * drivers.
1076 	 */
1077 	dr = lkpi_pci_devres_find(pdev);
1078 	if (dr != NULL) {
1079 		dr->region_mask |= (1 << bar);
1080 		dr->region_table[bar] = res;
1081 	}
1082 
1083 	/* Even if the device is not managed we need to track it for iomap. */
1084 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
1085 	mmio->rid = PCIR_BAR(bar);
1086 	mmio->type = type;
1087 	mmio->res = res;
1088 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
1089 
1090 	return (0);
1091 }
1092 
1093 int
1094 linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name)
1095 {
1096 	int error;
1097 	int i;
1098 
1099 	for (i = 0; i <= PCIR_MAX_BAR_0; i++) {
1100 		error = pci_request_region(pdev, i, res_name);
1101 		if (error && error != -ENODEV) {
1102 			pci_release_regions(pdev);
1103 			return (error);
1104 		}
1105 	}
1106 	return (0);
1107 }
1108 
1109 void
1110 linuxkpi_pci_release_region(struct pci_dev *pdev, int bar)
1111 {
1112 	struct resource_list_entry *rle;
1113 	struct pci_devres *dr;
1114 	struct pci_mmio_region *mmio, *p;
1115 
1116 	if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL)
1117 		return;
1118 
1119 	/*
1120 	 * As we implicitly track the requests we also need to clear them on
1121 	 * release.  Do clear before resource release.
1122 	 */
1123 	dr = lkpi_pci_devres_find(pdev);
1124 	if (dr != NULL) {
1125 		KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d"
1126 		    " region_table res %p != rel->res %p\n", __func__, pdev,
1127 		    bar, dr->region_table[bar], rle->res));
1128 		dr->region_table[bar] = NULL;
1129 		dr->region_mask &= ~(1 << bar);
1130 	}
1131 
1132 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
1133 		if (rle->res != (void *)rman_get_bushandle(mmio->res))
1134 			continue;
1135 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
1136 		free(mmio, M_DEVBUF);
1137 	}
1138 
1139 	bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res);
1140 }
1141 
1142 void
1143 linuxkpi_pci_release_regions(struct pci_dev *pdev)
1144 {
1145 	int i;
1146 
1147 	for (i = 0; i <= PCIR_MAX_BAR_0; i++)
1148 		pci_release_region(pdev, i);
1149 }
1150 
1151 int
1152 linux_pci_register_drm_driver(struct pci_driver *pdrv)
1153 {
1154 	devclass_t dc;
1155 
1156 	dc = devclass_create("vgapci");
1157 	if (dc == NULL)
1158 		return (-ENXIO);
1159 	pdrv->isdrm = true;
1160 	pdrv->name = "drmn";
1161 	return (_linux_pci_register_driver(pdrv, dc));
1162 }
1163 
1164 void
1165 linux_pci_unregister_driver(struct pci_driver *pdrv)
1166 {
1167 	devclass_t bus;
1168 
1169 	bus = devclass_find("pci");
1170 
1171 	spin_lock(&pci_lock);
1172 	list_del(&pdrv->node);
1173 	spin_unlock(&pci_lock);
1174 	bus_topo_lock();
1175 	if (bus != NULL)
1176 		devclass_delete_driver(bus, &pdrv->bsddriver);
1177 	bus_topo_unlock();
1178 }
1179 
1180 void
1181 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
1182 {
1183 	devclass_t bus;
1184 
1185 	bus = devclass_find("vgapci");
1186 
1187 	spin_lock(&pci_lock);
1188 	list_del(&pdrv->node);
1189 	spin_unlock(&pci_lock);
1190 	bus_topo_lock();
1191 	if (bus != NULL)
1192 		devclass_delete_driver(bus, &pdrv->bsddriver);
1193 	bus_topo_unlock();
1194 }
1195 
1196 int
1197 linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries,
1198     int nreq)
1199 {
1200 	struct resource_list_entry *rle;
1201 	int error;
1202 	int avail;
1203 	int i;
1204 
1205 	avail = pci_msix_count(pdev->dev.bsddev);
1206 	if (avail < nreq) {
1207 		if (avail == 0)
1208 			return -EINVAL;
1209 		return avail;
1210 	}
1211 	avail = nreq;
1212 	if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0)
1213 		return error;
1214 	/*
1215 	* Handle case where "pci_alloc_msix()" may allocate less
1216 	* interrupts than available and return with no error:
1217 	*/
1218 	if (avail < nreq) {
1219 		pci_release_msi(pdev->dev.bsddev);
1220 		return avail;
1221 	}
1222 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1223 	pdev->dev.irq_start = rle->start;
1224 	pdev->dev.irq_end = rle->start + avail;
1225 	for (i = 0; i < nreq; i++)
1226 		entries[i].vector = pdev->dev.irq_start + i;
1227 	pdev->msix_enabled = true;
1228 	return (0);
1229 }
1230 
1231 int
1232 _lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec)
1233 {
1234 	struct resource_list_entry *rle;
1235 	int error;
1236 	int nvec;
1237 
1238 	if (maxvec < minvec)
1239 		return (-EINVAL);
1240 
1241 	nvec = pci_msi_count(pdev->dev.bsddev);
1242 	if (nvec < 1 || nvec < minvec)
1243 		return (-ENOSPC);
1244 
1245 	nvec = min(nvec, maxvec);
1246 	if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0)
1247 		return error;
1248 
1249 	/* Native PCI might only ever ask for 32 vectors. */
1250 	if (nvec < minvec) {
1251 		pci_release_msi(pdev->dev.bsddev);
1252 		return (-ENOSPC);
1253 	}
1254 
1255 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1256 	pdev->dev.irq_start = rle->start;
1257 	pdev->dev.irq_end = rle->start + nvec;
1258 	pdev->irq = rle->start;
1259 	pdev->msi_enabled = true;
1260 	return (0);
1261 }
1262 
1263 int
1264 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
1265     unsigned int flags)
1266 {
1267 	int error;
1268 
1269 	if (flags & PCI_IRQ_MSIX) {
1270 		struct msix_entry *entries;
1271 		int i;
1272 
1273 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
1274 		if (entries == NULL) {
1275 			error = -ENOMEM;
1276 			goto out;
1277 		}
1278 		for (i = 0; i < maxv; ++i)
1279 			entries[i].entry = i;
1280 		error = pci_enable_msix(pdev, entries, maxv);
1281 out:
1282 		kfree(entries);
1283 		if (error == 0 && pdev->msix_enabled)
1284 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1285 	}
1286 	if (flags & PCI_IRQ_MSI) {
1287 		if (pci_msi_count(pdev->dev.bsddev) < minv)
1288 			return (-ENOSPC);
1289 		error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
1290 		if (error == 0 && pdev->msi_enabled)
1291 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1292 	}
1293 	if (flags & PCI_IRQ_LEGACY) {
1294 		if (pdev->irq)
1295 			return (1);
1296 	}
1297 
1298 	return (-EINVAL);
1299 }
1300 
1301 struct msi_desc *
1302 lkpi_pci_msi_desc_alloc(int irq)
1303 {
1304 	struct device *dev;
1305 	struct pci_dev *pdev;
1306 	struct msi_desc *desc;
1307 	struct pci_devinfo *dinfo;
1308 	struct pcicfg_msi *msi;
1309 	int vec;
1310 
1311 	dev = lkpi_pci_find_irq_dev(irq);
1312 	if (dev == NULL)
1313 		return (NULL);
1314 
1315 	pdev = to_pci_dev(dev);
1316 
1317 	if (pdev->msi_desc == NULL)
1318 		return (NULL);
1319 
1320 	if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
1321 		return (NULL);
1322 
1323 	vec = pdev->dev.irq_start - irq;
1324 
1325 	if (pdev->msi_desc[vec] != NULL)
1326 		return (pdev->msi_desc[vec]);
1327 
1328 	dinfo = device_get_ivars(dev->bsddev);
1329 	msi = &dinfo->cfg.msi;
1330 
1331 	desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1332 
1333 	desc->pci.msi_attrib.is_64 =
1334 	   (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1335 	desc->msg.data = msi->msi_data;
1336 
1337 	pdev->msi_desc[vec] = desc;
1338 
1339 	return (desc);
1340 }
1341 
1342 bool
1343 pci_device_is_present(struct pci_dev *pdev)
1344 {
1345 	device_t dev;
1346 
1347 	dev = pdev->dev.bsddev;
1348 
1349 	return (bus_child_present(dev));
1350 }
1351 
1352 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1353 
1354 struct linux_dma_obj {
1355 	void		*vaddr;
1356 	uint64_t	dma_addr;
1357 	bus_dmamap_t	dmamap;
1358 	bus_dma_tag_t	dmat;
1359 };
1360 
1361 static uma_zone_t linux_dma_trie_zone;
1362 static uma_zone_t linux_dma_obj_zone;
1363 
1364 static void
1365 linux_dma_init(void *arg)
1366 {
1367 
1368 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1369 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1370 	    UMA_ALIGN_PTR, 0);
1371 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1372 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1373 	    UMA_ALIGN_PTR, 0);
1374 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1375 }
1376 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1377 
1378 static void
1379 linux_dma_uninit(void *arg)
1380 {
1381 
1382 	counter_u64_free(lkpi_pci_nseg1_fail);
1383 	uma_zdestroy(linux_dma_obj_zone);
1384 	uma_zdestroy(linux_dma_trie_zone);
1385 }
1386 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1387 
1388 static void *
1389 linux_dma_trie_alloc(struct pctrie *ptree)
1390 {
1391 
1392 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1393 }
1394 
1395 static void
1396 linux_dma_trie_free(struct pctrie *ptree, void *node)
1397 {
1398 
1399 	uma_zfree(linux_dma_trie_zone, node);
1400 }
1401 
1402 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1403     linux_dma_trie_free);
1404 
1405 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1406 static dma_addr_t
1407 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1408     bus_dma_tag_t dmat)
1409 {
1410 	struct linux_dma_priv *priv;
1411 	struct linux_dma_obj *obj;
1412 	int error, nseg;
1413 	bus_dma_segment_t seg;
1414 
1415 	priv = dev->dma_priv;
1416 
1417 	/*
1418 	 * If the resultant mapping will be entirely 1:1 with the
1419 	 * physical address, short-circuit the remainder of the
1420 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1421 	 * with the additional benefit of reducing overhead.
1422 	 */
1423 	if (bus_dma_id_mapped(dmat, phys, len))
1424 		return (phys);
1425 
1426 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1427 	if (obj == NULL) {
1428 		return (0);
1429 	}
1430 	obj->dmat = dmat;
1431 
1432 	DMA_PRIV_LOCK(priv);
1433 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1434 		DMA_PRIV_UNLOCK(priv);
1435 		uma_zfree(linux_dma_obj_zone, obj);
1436 		return (0);
1437 	}
1438 
1439 	nseg = -1;
1440 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1441 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1442 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1443 		DMA_PRIV_UNLOCK(priv);
1444 		uma_zfree(linux_dma_obj_zone, obj);
1445 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1446 		if (linuxkpi_debug)
1447 			dump_stack();
1448 		return (0);
1449 	}
1450 
1451 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1452 	obj->dma_addr = seg.ds_addr;
1453 
1454 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1455 	if (error != 0) {
1456 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1457 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1458 		DMA_PRIV_UNLOCK(priv);
1459 		uma_zfree(linux_dma_obj_zone, obj);
1460 		return (0);
1461 	}
1462 	DMA_PRIV_UNLOCK(priv);
1463 	return (obj->dma_addr);
1464 }
1465 #else
1466 static dma_addr_t
1467 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1468     size_t len __unused, bus_dma_tag_t dmat __unused)
1469 {
1470 	return (phys);
1471 }
1472 #endif
1473 
1474 dma_addr_t
1475 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1476 {
1477 	struct linux_dma_priv *priv;
1478 
1479 	priv = dev->dma_priv;
1480 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1481 }
1482 
1483 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1484 void
1485 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1486 {
1487 	struct linux_dma_priv *priv;
1488 	struct linux_dma_obj *obj;
1489 
1490 	priv = dev->dma_priv;
1491 
1492 	if (pctrie_is_empty(&priv->ptree))
1493 		return;
1494 
1495 	DMA_PRIV_LOCK(priv);
1496 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1497 	if (obj == NULL) {
1498 		DMA_PRIV_UNLOCK(priv);
1499 		return;
1500 	}
1501 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1502 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1503 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1504 	DMA_PRIV_UNLOCK(priv);
1505 
1506 	uma_zfree(linux_dma_obj_zone, obj);
1507 }
1508 #else
1509 void
1510 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1511 {
1512 }
1513 #endif
1514 
1515 void *
1516 linux_dma_alloc_coherent(struct device *dev, size_t size,
1517     dma_addr_t *dma_handle, gfp_t flag)
1518 {
1519 	struct linux_dma_priv *priv;
1520 	vm_paddr_t high;
1521 	size_t align;
1522 	void *mem;
1523 
1524 	if (dev == NULL || dev->dma_priv == NULL) {
1525 		*dma_handle = 0;
1526 		return (NULL);
1527 	}
1528 	priv = dev->dma_priv;
1529 	if (priv->dma_coherent_mask)
1530 		high = priv->dma_coherent_mask;
1531 	else
1532 		/* Coherent is lower 32bit only by default in Linux. */
1533 		high = BUS_SPACE_MAXADDR_32BIT;
1534 	align = PAGE_SIZE << get_order(size);
1535 	/* Always zero the allocation. */
1536 	flag |= M_ZERO;
1537 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1538 	    align, 0, VM_MEMATTR_DEFAULT);
1539 	if (mem != NULL) {
1540 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1541 		    priv->dmat_coherent);
1542 		if (*dma_handle == 0) {
1543 			kmem_free(mem, size);
1544 			mem = NULL;
1545 		}
1546 	} else {
1547 		*dma_handle = 0;
1548 	}
1549 	return (mem);
1550 }
1551 
1552 struct lkpi_devres_dmam_coherent {
1553 	size_t size;
1554 	dma_addr_t *handle;
1555 	void *mem;
1556 };
1557 
1558 static void
1559 lkpi_dmam_free_coherent(struct device *dev, void *p)
1560 {
1561 	struct lkpi_devres_dmam_coherent *dr;
1562 
1563 	dr = p;
1564 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1565 }
1566 
1567 void *
1568 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1569     gfp_t flag)
1570 {
1571 	struct lkpi_devres_dmam_coherent *dr;
1572 
1573 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1574 	    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1575 
1576 	if (dr == NULL)
1577 		return (NULL);
1578 
1579 	dr->size = size;
1580 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1581 	dr->handle = dma_handle;
1582 	if (dr->mem == NULL) {
1583 		lkpi_devres_free(dr);
1584 		return (NULL);
1585 	}
1586 
1587 	lkpi_devres_add(dev, dr);
1588 	return (dr->mem);
1589 }
1590 
1591 void
1592 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1593     bus_dmasync_op_t op)
1594 {
1595 	struct linux_dma_priv *priv;
1596 	struct linux_dma_obj *obj;
1597 
1598 	priv = dev->dma_priv;
1599 
1600 	if (pctrie_is_empty(&priv->ptree))
1601 		return;
1602 
1603 	DMA_PRIV_LOCK(priv);
1604 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1605 	if (obj == NULL) {
1606 		DMA_PRIV_UNLOCK(priv);
1607 		return;
1608 	}
1609 
1610 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1611 	DMA_PRIV_UNLOCK(priv);
1612 }
1613 
1614 int
1615 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1616     enum dma_data_direction direction, unsigned long attrs __unused)
1617 {
1618 	struct linux_dma_priv *priv;
1619 	struct scatterlist *sg;
1620 	int i, nseg;
1621 	bus_dma_segment_t seg;
1622 
1623 	priv = dev->dma_priv;
1624 
1625 	DMA_PRIV_LOCK(priv);
1626 
1627 	/* create common DMA map in the first S/G entry */
1628 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1629 		DMA_PRIV_UNLOCK(priv);
1630 		return (0);
1631 	}
1632 
1633 	/* load all S/G list entries */
1634 	for_each_sg(sgl, sg, nents, i) {
1635 		nseg = -1;
1636 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1637 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1638 		    &seg, &nseg) != 0) {
1639 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1640 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1641 			DMA_PRIV_UNLOCK(priv);
1642 			return (0);
1643 		}
1644 		KASSERT(nseg == 0,
1645 		    ("More than one segment (nseg=%d)", nseg + 1));
1646 
1647 		sg_dma_address(sg) = seg.ds_addr;
1648 	}
1649 
1650 	switch (direction) {
1651 	case DMA_BIDIRECTIONAL:
1652 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1653 		break;
1654 	case DMA_TO_DEVICE:
1655 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1656 		break;
1657 	case DMA_FROM_DEVICE:
1658 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1659 		break;
1660 	default:
1661 		break;
1662 	}
1663 
1664 	DMA_PRIV_UNLOCK(priv);
1665 
1666 	return (nents);
1667 }
1668 
1669 void
1670 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1671     int nents __unused, enum dma_data_direction direction,
1672     unsigned long attrs __unused)
1673 {
1674 	struct linux_dma_priv *priv;
1675 
1676 	priv = dev->dma_priv;
1677 
1678 	DMA_PRIV_LOCK(priv);
1679 
1680 	switch (direction) {
1681 	case DMA_BIDIRECTIONAL:
1682 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1683 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1684 		break;
1685 	case DMA_TO_DEVICE:
1686 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1687 		break;
1688 	case DMA_FROM_DEVICE:
1689 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1690 		break;
1691 	default:
1692 		break;
1693 	}
1694 
1695 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1696 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1697 	DMA_PRIV_UNLOCK(priv);
1698 }
1699 
1700 struct dma_pool {
1701 	struct device  *pool_device;
1702 	uma_zone_t	pool_zone;
1703 	struct mtx	pool_lock;
1704 	bus_dma_tag_t	pool_dmat;
1705 	size_t		pool_entry_size;
1706 	struct pctrie	pool_ptree;
1707 };
1708 
1709 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1710 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1711 
1712 static inline int
1713 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1714 {
1715 	struct linux_dma_obj *obj = mem;
1716 	struct dma_pool *pool = arg;
1717 	int error, nseg;
1718 	bus_dma_segment_t seg;
1719 
1720 	nseg = -1;
1721 	DMA_POOL_LOCK(pool);
1722 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1723 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1724 	    &seg, &nseg);
1725 	DMA_POOL_UNLOCK(pool);
1726 	if (error != 0) {
1727 		return (error);
1728 	}
1729 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1730 	obj->dma_addr = seg.ds_addr;
1731 
1732 	return (0);
1733 }
1734 
1735 static void
1736 dma_pool_obj_dtor(void *mem, int size, void *arg)
1737 {
1738 	struct linux_dma_obj *obj = mem;
1739 	struct dma_pool *pool = arg;
1740 
1741 	DMA_POOL_LOCK(pool);
1742 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1743 	DMA_POOL_UNLOCK(pool);
1744 }
1745 
1746 static int
1747 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1748     int flags)
1749 {
1750 	struct dma_pool *pool = arg;
1751 	struct linux_dma_obj *obj;
1752 	int error, i;
1753 
1754 	for (i = 0; i < count; i++) {
1755 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1756 		if (obj == NULL)
1757 			break;
1758 
1759 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1760 		    BUS_DMA_NOWAIT, &obj->dmamap);
1761 		if (error!= 0) {
1762 			uma_zfree(linux_dma_obj_zone, obj);
1763 			break;
1764 		}
1765 
1766 		store[i] = obj;
1767 	}
1768 
1769 	return (i);
1770 }
1771 
1772 static void
1773 dma_pool_obj_release(void *arg, void **store, int count)
1774 {
1775 	struct dma_pool *pool = arg;
1776 	struct linux_dma_obj *obj;
1777 	int i;
1778 
1779 	for (i = 0; i < count; i++) {
1780 		obj = store[i];
1781 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1782 		uma_zfree(linux_dma_obj_zone, obj);
1783 	}
1784 }
1785 
1786 struct dma_pool *
1787 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1788     size_t align, size_t boundary)
1789 {
1790 	struct linux_dma_priv *priv;
1791 	struct dma_pool *pool;
1792 
1793 	priv = dev->dma_priv;
1794 
1795 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1796 	pool->pool_device = dev;
1797 	pool->pool_entry_size = size;
1798 
1799 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1800 	    align, boundary,		/* alignment, boundary */
1801 	    priv->dma_mask,		/* lowaddr */
1802 	    BUS_SPACE_MAXADDR,		/* highaddr */
1803 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1804 	    size,			/* maxsize */
1805 	    1,				/* nsegments */
1806 	    size,			/* maxsegsz */
1807 	    0,				/* flags */
1808 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1809 	    &pool->pool_dmat)) {
1810 		kfree(pool);
1811 		return (NULL);
1812 	}
1813 
1814 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1815 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1816 	    dma_pool_obj_release, pool, 0);
1817 
1818 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1819 	pctrie_init(&pool->pool_ptree);
1820 
1821 	return (pool);
1822 }
1823 
1824 void
1825 linux_dma_pool_destroy(struct dma_pool *pool)
1826 {
1827 
1828 	uma_zdestroy(pool->pool_zone);
1829 	bus_dma_tag_destroy(pool->pool_dmat);
1830 	mtx_destroy(&pool->pool_lock);
1831 	kfree(pool);
1832 }
1833 
1834 void
1835 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1836 {
1837 	struct dma_pool *pool;
1838 
1839 	pool = *(struct dma_pool **)p;
1840 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1841 	linux_dma_pool_destroy(pool);
1842 }
1843 
1844 void *
1845 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1846     dma_addr_t *handle)
1847 {
1848 	struct linux_dma_obj *obj;
1849 
1850 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1851 	if (obj == NULL)
1852 		return (NULL);
1853 
1854 	DMA_POOL_LOCK(pool);
1855 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1856 		DMA_POOL_UNLOCK(pool);
1857 		uma_zfree_arg(pool->pool_zone, obj, pool);
1858 		return (NULL);
1859 	}
1860 	DMA_POOL_UNLOCK(pool);
1861 
1862 	*handle = obj->dma_addr;
1863 	return (obj->vaddr);
1864 }
1865 
1866 void
1867 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1868 {
1869 	struct linux_dma_obj *obj;
1870 
1871 	DMA_POOL_LOCK(pool);
1872 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1873 	if (obj == NULL) {
1874 		DMA_POOL_UNLOCK(pool);
1875 		return;
1876 	}
1877 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1878 	DMA_POOL_UNLOCK(pool);
1879 
1880 	uma_zfree_arg(pool->pool_zone, obj, pool);
1881 }
1882 
1883 static int
1884 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1885 {
1886 	struct pci_dev *pdev;
1887 
1888 	linux_set_current(curthread);
1889 	pdev = device_get_softc(dev);
1890 
1891 	props->brightness = pdev->dev.bd->props.brightness;
1892 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1893 	props->nlevels = 0;
1894 
1895 	return (0);
1896 }
1897 
1898 static int
1899 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1900 {
1901 	struct pci_dev *pdev;
1902 
1903 	linux_set_current(curthread);
1904 	pdev = device_get_softc(dev);
1905 
1906 	info->type = BACKLIGHT_TYPE_PANEL;
1907 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1908 	return (0);
1909 }
1910 
1911 static int
1912 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1913 {
1914 	struct pci_dev *pdev;
1915 
1916 	linux_set_current(curthread);
1917 	pdev = device_get_softc(dev);
1918 
1919 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1920 		props->brightness / 100;
1921 	pdev->dev.bd->props.power = props->brightness == 0 ?
1922 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1923 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1924 }
1925 
1926 struct backlight_device *
1927 linux_backlight_device_register(const char *name, struct device *dev,
1928     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1929 {
1930 
1931 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1932 	dev->bd->ops = ops;
1933 	dev->bd->props.type = props->type;
1934 	dev->bd->props.max_brightness = props->max_brightness;
1935 	dev->bd->props.brightness = props->brightness;
1936 	dev->bd->props.power = props->power;
1937 	dev->bd->data = data;
1938 	dev->bd->dev = dev;
1939 	dev->bd->name = strdup(name, M_DEVBUF);
1940 
1941 	dev->backlight_dev = backlight_register(name, dev->bsddev);
1942 
1943 	return (dev->bd);
1944 }
1945 
1946 void
1947 linux_backlight_device_unregister(struct backlight_device *bd)
1948 {
1949 
1950 	backlight_destroy(bd->dev->backlight_dev);
1951 	free(bd->name, M_DEVBUF);
1952 	free(bd, M_DEVBUF);
1953 }
1954