1 /*- 2 * Copyright (c) 2015-2016 Mellanox Technologies, Ltd. 3 * All rights reserved. 4 * Copyright (c) 2020-2022 The FreeBSD Foundation 5 * 6 * Portions of this software were developed by Björn Zeeb 7 * under sponsorship from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/bus.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/sysctl.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/fcntl.h> 40 #include <sys/file.h> 41 #include <sys/filio.h> 42 #include <sys/pciio.h> 43 #include <sys/pctrie.h> 44 #include <sys/rman.h> 45 #include <sys/rwlock.h> 46 47 #include <vm/vm.h> 48 #include <vm/pmap.h> 49 50 #include <machine/bus.h> 51 #include <machine/resource.h> 52 #include <machine/stdarg.h> 53 54 #include <dev/pci/pcivar.h> 55 #include <dev/pci/pci_private.h> 56 #include <dev/pci/pci_iov.h> 57 #include <dev/backlight/backlight.h> 58 59 #include <linux/kernel.h> 60 #include <linux/kobject.h> 61 #include <linux/device.h> 62 #include <linux/slab.h> 63 #include <linux/module.h> 64 #include <linux/cdev.h> 65 #include <linux/file.h> 66 #include <linux/sysfs.h> 67 #include <linux/mm.h> 68 #include <linux/io.h> 69 #include <linux/vmalloc.h> 70 #include <linux/pci.h> 71 #include <linux/compat.h> 72 73 #include <linux/backlight.h> 74 75 #include "backlight_if.h" 76 #include "pcib_if.h" 77 78 /* Undef the linux function macro defined in linux/pci.h */ 79 #undef pci_get_class 80 81 extern int linuxkpi_debug; 82 83 SYSCTL_DECL(_compat_linuxkpi); 84 85 static counter_u64_t lkpi_pci_nseg1_fail; 86 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD, 87 &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment"); 88 89 static device_probe_t linux_pci_probe; 90 static device_attach_t linux_pci_attach; 91 static device_detach_t linux_pci_detach; 92 static device_suspend_t linux_pci_suspend; 93 static device_resume_t linux_pci_resume; 94 static device_shutdown_t linux_pci_shutdown; 95 static pci_iov_init_t linux_pci_iov_init; 96 static pci_iov_uninit_t linux_pci_iov_uninit; 97 static pci_iov_add_vf_t linux_pci_iov_add_vf; 98 static int linux_backlight_get_status(device_t dev, struct backlight_props *props); 99 static int linux_backlight_update_status(device_t dev, struct backlight_props *props); 100 static int linux_backlight_get_info(device_t dev, struct backlight_info *info); 101 static void lkpi_pcim_iomap_table_release(struct device *, void *); 102 103 static device_method_t pci_methods[] = { 104 DEVMETHOD(device_probe, linux_pci_probe), 105 DEVMETHOD(device_attach, linux_pci_attach), 106 DEVMETHOD(device_detach, linux_pci_detach), 107 DEVMETHOD(device_suspend, linux_pci_suspend), 108 DEVMETHOD(device_resume, linux_pci_resume), 109 DEVMETHOD(device_shutdown, linux_pci_shutdown), 110 DEVMETHOD(pci_iov_init, linux_pci_iov_init), 111 DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit), 112 DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf), 113 114 /* backlight interface */ 115 DEVMETHOD(backlight_update_status, linux_backlight_update_status), 116 DEVMETHOD(backlight_get_status, linux_backlight_get_status), 117 DEVMETHOD(backlight_get_info, linux_backlight_get_info), 118 DEVMETHOD_END 119 }; 120 121 const char *pci_power_names[] = { 122 "UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold" 123 }; 124 125 /* We need some meta-struct to keep track of these for devres. */ 126 struct pci_devres { 127 bool enable_io; 128 /* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */ 129 uint8_t region_mask; 130 struct resource *region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */ 131 }; 132 struct pcim_iomap_devres { 133 void *mmio_table[PCIR_MAX_BAR_0 + 1]; 134 struct resource *res_table[PCIR_MAX_BAR_0 + 1]; 135 }; 136 137 struct linux_dma_priv { 138 uint64_t dma_mask; 139 bus_dma_tag_t dmat; 140 uint64_t dma_coherent_mask; 141 bus_dma_tag_t dmat_coherent; 142 struct mtx lock; 143 struct pctrie ptree; 144 }; 145 #define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock) 146 #define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock) 147 148 static int 149 linux_pdev_dma_uninit(struct pci_dev *pdev) 150 { 151 struct linux_dma_priv *priv; 152 153 priv = pdev->dev.dma_priv; 154 if (priv->dmat) 155 bus_dma_tag_destroy(priv->dmat); 156 if (priv->dmat_coherent) 157 bus_dma_tag_destroy(priv->dmat_coherent); 158 mtx_destroy(&priv->lock); 159 pdev->dev.dma_priv = NULL; 160 free(priv, M_DEVBUF); 161 return (0); 162 } 163 164 static int 165 linux_pdev_dma_init(struct pci_dev *pdev) 166 { 167 struct linux_dma_priv *priv; 168 int error; 169 170 priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO); 171 172 mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF); 173 pctrie_init(&priv->ptree); 174 175 pdev->dev.dma_priv = priv; 176 177 /* Create a default DMA tags. */ 178 error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64)); 179 if (error != 0) 180 goto err; 181 /* Coherent is lower 32bit only by default in Linux. */ 182 error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32)); 183 if (error != 0) 184 goto err; 185 186 return (error); 187 188 err: 189 linux_pdev_dma_uninit(pdev); 190 return (error); 191 } 192 193 int 194 linux_dma_tag_init(struct device *dev, u64 dma_mask) 195 { 196 struct linux_dma_priv *priv; 197 int error; 198 199 priv = dev->dma_priv; 200 201 if (priv->dmat) { 202 if (priv->dma_mask == dma_mask) 203 return (0); 204 205 bus_dma_tag_destroy(priv->dmat); 206 } 207 208 priv->dma_mask = dma_mask; 209 210 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 211 1, 0, /* alignment, boundary */ 212 dma_mask, /* lowaddr */ 213 BUS_SPACE_MAXADDR, /* highaddr */ 214 NULL, NULL, /* filtfunc, filtfuncarg */ 215 BUS_SPACE_MAXSIZE, /* maxsize */ 216 1, /* nsegments */ 217 BUS_SPACE_MAXSIZE, /* maxsegsz */ 218 0, /* flags */ 219 NULL, NULL, /* lockfunc, lockfuncarg */ 220 &priv->dmat); 221 return (-error); 222 } 223 224 int 225 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask) 226 { 227 struct linux_dma_priv *priv; 228 int error; 229 230 priv = dev->dma_priv; 231 232 if (priv->dmat_coherent) { 233 if (priv->dma_coherent_mask == dma_mask) 234 return (0); 235 236 bus_dma_tag_destroy(priv->dmat_coherent); 237 } 238 239 priv->dma_coherent_mask = dma_mask; 240 241 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 242 1, 0, /* alignment, boundary */ 243 dma_mask, /* lowaddr */ 244 BUS_SPACE_MAXADDR, /* highaddr */ 245 NULL, NULL, /* filtfunc, filtfuncarg */ 246 BUS_SPACE_MAXSIZE, /* maxsize */ 247 1, /* nsegments */ 248 BUS_SPACE_MAXSIZE, /* maxsegsz */ 249 0, /* flags */ 250 NULL, NULL, /* lockfunc, lockfuncarg */ 251 &priv->dmat_coherent); 252 return (-error); 253 } 254 255 static struct pci_driver * 256 linux_pci_find(device_t dev, const struct pci_device_id **idp) 257 { 258 const struct pci_device_id *id; 259 struct pci_driver *pdrv; 260 uint16_t vendor; 261 uint16_t device; 262 uint16_t subvendor; 263 uint16_t subdevice; 264 265 vendor = pci_get_vendor(dev); 266 device = pci_get_device(dev); 267 subvendor = pci_get_subvendor(dev); 268 subdevice = pci_get_subdevice(dev); 269 270 spin_lock(&pci_lock); 271 list_for_each_entry(pdrv, &pci_drivers, node) { 272 for (id = pdrv->id_table; id->vendor != 0; id++) { 273 if (vendor == id->vendor && 274 (PCI_ANY_ID == id->device || device == id->device) && 275 (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) && 276 (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) { 277 *idp = id; 278 spin_unlock(&pci_lock); 279 return (pdrv); 280 } 281 } 282 } 283 spin_unlock(&pci_lock); 284 return (NULL); 285 } 286 287 struct pci_dev * 288 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev) 289 { 290 struct pci_dev *pdev; 291 292 KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__)); 293 294 spin_lock(&pci_lock); 295 list_for_each_entry(pdev, &pci_devices, links) { 296 if (pdev->vendor == vendor && pdev->device == device) 297 break; 298 } 299 spin_unlock(&pci_lock); 300 301 return (pdev); 302 } 303 304 static void 305 lkpi_pci_dev_release(struct device *dev) 306 { 307 308 lkpi_devres_release_free_list(dev); 309 spin_lock_destroy(&dev->devres_lock); 310 } 311 312 static void 313 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev) 314 { 315 316 pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev)); 317 pdev->vendor = pci_get_vendor(dev); 318 pdev->device = pci_get_device(dev); 319 pdev->subsystem_vendor = pci_get_subvendor(dev); 320 pdev->subsystem_device = pci_get_subdevice(dev); 321 pdev->class = pci_get_class(dev); 322 pdev->revision = pci_get_revid(dev); 323 pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d", 324 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), 325 pci_get_function(dev)); 326 pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO); 327 /* 328 * This should be the upstream bridge; pci_upstream_bridge() 329 * handles that case on demand as otherwise we'll shadow the 330 * entire PCI hierarchy. 331 */ 332 pdev->bus->self = pdev; 333 pdev->bus->number = pci_get_bus(dev); 334 pdev->bus->domain = pci_get_domain(dev); 335 pdev->dev.bsddev = dev; 336 pdev->dev.parent = &linux_root_device; 337 pdev->dev.release = lkpi_pci_dev_release; 338 INIT_LIST_HEAD(&pdev->dev.irqents); 339 340 if (pci_msi_count(dev) > 0) 341 pdev->msi_desc = malloc(pci_msi_count(dev) * 342 sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO); 343 344 kobject_init(&pdev->dev.kobj, &linux_dev_ktype); 345 kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev)); 346 kobject_add(&pdev->dev.kobj, &linux_root_device.kobj, 347 kobject_name(&pdev->dev.kobj)); 348 spin_lock_init(&pdev->dev.devres_lock); 349 INIT_LIST_HEAD(&pdev->dev.devres_head); 350 } 351 352 static void 353 lkpinew_pci_dev_release(struct device *dev) 354 { 355 struct pci_dev *pdev; 356 int i; 357 358 pdev = to_pci_dev(dev); 359 if (pdev->root != NULL) 360 pci_dev_put(pdev->root); 361 if (pdev->bus->self != pdev) 362 pci_dev_put(pdev->bus->self); 363 free(pdev->bus, M_DEVBUF); 364 if (pdev->msi_desc != NULL) { 365 for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--) 366 free(pdev->msi_desc[i], M_DEVBUF); 367 free(pdev->msi_desc, M_DEVBUF); 368 } 369 kfree(pdev->path_name); 370 free(pdev, M_DEVBUF); 371 } 372 373 struct pci_dev * 374 lkpinew_pci_dev(device_t dev) 375 { 376 struct pci_dev *pdev; 377 378 pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO); 379 lkpifill_pci_dev(dev, pdev); 380 pdev->dev.release = lkpinew_pci_dev_release; 381 382 return (pdev); 383 } 384 385 struct pci_dev * 386 lkpi_pci_get_class(unsigned int class, struct pci_dev *from) 387 { 388 device_t dev; 389 device_t devfrom = NULL; 390 struct pci_dev *pdev; 391 392 if (from != NULL) 393 devfrom = from->dev.bsddev; 394 395 dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom); 396 if (dev == NULL) 397 return (NULL); 398 399 pdev = lkpinew_pci_dev(dev); 400 return (pdev); 401 } 402 403 struct pci_dev * 404 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus, 405 unsigned int devfn) 406 { 407 device_t dev; 408 struct pci_dev *pdev; 409 410 dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); 411 if (dev == NULL) 412 return (NULL); 413 414 pdev = lkpinew_pci_dev(dev); 415 return (pdev); 416 } 417 418 static int 419 linux_pci_probe(device_t dev) 420 { 421 const struct pci_device_id *id; 422 struct pci_driver *pdrv; 423 424 if ((pdrv = linux_pci_find(dev, &id)) == NULL) 425 return (ENXIO); 426 if (device_get_driver(dev) != &pdrv->bsddriver) 427 return (ENXIO); 428 device_set_desc(dev, pdrv->name); 429 430 /* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */ 431 if (pdrv->bsd_probe_return == 0) 432 return (BUS_PROBE_DEFAULT); 433 else 434 return (pdrv->bsd_probe_return); 435 } 436 437 static int 438 linux_pci_attach(device_t dev) 439 { 440 const struct pci_device_id *id; 441 struct pci_driver *pdrv; 442 struct pci_dev *pdev; 443 444 pdrv = linux_pci_find(dev, &id); 445 pdev = device_get_softc(dev); 446 447 MPASS(pdrv != NULL); 448 MPASS(pdev != NULL); 449 450 return (linux_pci_attach_device(dev, pdrv, id, pdev)); 451 } 452 453 static struct resource_list_entry * 454 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl, 455 int type, int rid) 456 { 457 device_t dev; 458 struct resource *res; 459 460 KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY, 461 ("trying to reserve non-BAR type %d", type)); 462 463 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? 464 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; 465 res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0, 466 1, 1, 0); 467 if (res == NULL) 468 return (NULL); 469 return (resource_list_find(rl, type, rid)); 470 } 471 472 static struct resource_list_entry * 473 linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar) 474 { 475 struct pci_devinfo *dinfo; 476 struct resource_list *rl; 477 struct resource_list_entry *rle; 478 479 dinfo = device_get_ivars(pdev->dev.bsddev); 480 rl = &dinfo->resources; 481 rle = resource_list_find(rl, type, rid); 482 /* Reserve resources for this BAR if needed. */ 483 if (rle == NULL && reserve_bar) 484 rle = linux_pci_reserve_bar(pdev, rl, type, rid); 485 return (rle); 486 } 487 488 int 489 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv, 490 const struct pci_device_id *id, struct pci_dev *pdev) 491 { 492 struct resource_list_entry *rle; 493 device_t parent; 494 uintptr_t rid; 495 int error; 496 bool isdrm; 497 498 linux_set_current(curthread); 499 500 parent = device_get_parent(dev); 501 isdrm = pdrv != NULL && pdrv->isdrm; 502 503 if (isdrm) { 504 struct pci_devinfo *dinfo; 505 506 dinfo = device_get_ivars(parent); 507 device_set_ivars(dev, dinfo); 508 } 509 510 lkpifill_pci_dev(dev, pdev); 511 if (isdrm) 512 PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid); 513 else 514 PCI_GET_ID(parent, dev, PCI_ID_RID, &rid); 515 pdev->devfn = rid; 516 pdev->pdrv = pdrv; 517 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false); 518 if (rle != NULL) 519 pdev->dev.irq = rle->start; 520 else 521 pdev->dev.irq = LINUX_IRQ_INVALID; 522 pdev->irq = pdev->dev.irq; 523 error = linux_pdev_dma_init(pdev); 524 if (error) 525 goto out_dma_init; 526 527 TAILQ_INIT(&pdev->mmio); 528 spin_lock_init(&pdev->pcie_cap_lock); 529 530 spin_lock(&pci_lock); 531 list_add(&pdev->links, &pci_devices); 532 spin_unlock(&pci_lock); 533 534 if (pdrv != NULL) { 535 error = pdrv->probe(pdev, id); 536 if (error) 537 goto out_probe; 538 } 539 return (0); 540 541 out_probe: 542 free(pdev->bus, M_DEVBUF); 543 spin_lock_destroy(&pdev->pcie_cap_lock); 544 linux_pdev_dma_uninit(pdev); 545 out_dma_init: 546 spin_lock(&pci_lock); 547 list_del(&pdev->links); 548 spin_unlock(&pci_lock); 549 put_device(&pdev->dev); 550 return (-error); 551 } 552 553 static int 554 linux_pci_detach(device_t dev) 555 { 556 struct pci_dev *pdev; 557 558 pdev = device_get_softc(dev); 559 560 MPASS(pdev != NULL); 561 562 device_set_desc(dev, NULL); 563 564 return (linux_pci_detach_device(pdev)); 565 } 566 567 int 568 linux_pci_detach_device(struct pci_dev *pdev) 569 { 570 571 linux_set_current(curthread); 572 573 if (pdev->pdrv != NULL) 574 pdev->pdrv->remove(pdev); 575 576 if (pdev->root != NULL) 577 pci_dev_put(pdev->root); 578 free(pdev->bus, M_DEVBUF); 579 linux_pdev_dma_uninit(pdev); 580 581 spin_lock(&pci_lock); 582 list_del(&pdev->links); 583 spin_unlock(&pci_lock); 584 spin_lock_destroy(&pdev->pcie_cap_lock); 585 put_device(&pdev->dev); 586 587 return (0); 588 } 589 590 static int 591 lkpi_pci_disable_dev(struct device *dev) 592 { 593 594 (void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY); 595 (void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT); 596 return (0); 597 } 598 599 static struct pci_devres * 600 lkpi_pci_devres_get_alloc(struct pci_dev *pdev) 601 { 602 struct pci_devres *dr; 603 604 dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL); 605 if (dr == NULL) { 606 dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr), 607 GFP_KERNEL | __GFP_ZERO); 608 if (dr != NULL) 609 lkpi_devres_add(&pdev->dev, dr); 610 } 611 612 return (dr); 613 } 614 615 static struct pci_devres * 616 lkpi_pci_devres_find(struct pci_dev *pdev) 617 { 618 if (!pdev->managed) 619 return (NULL); 620 621 return (lkpi_pci_devres_get_alloc(pdev)); 622 } 623 624 void 625 lkpi_pci_devres_release(struct device *dev, void *p) 626 { 627 struct pci_devres *dr; 628 struct pci_dev *pdev; 629 int bar; 630 631 pdev = to_pci_dev(dev); 632 dr = p; 633 634 if (pdev->msix_enabled) 635 lkpi_pci_disable_msix(pdev); 636 if (pdev->msi_enabled) 637 lkpi_pci_disable_msi(pdev); 638 639 if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0) 640 dr->enable_io = false; 641 642 if (dr->region_mask == 0) 643 return; 644 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { 645 646 if ((dr->region_mask & (1 << bar)) == 0) 647 continue; 648 pci_release_region(pdev, bar); 649 } 650 } 651 652 int 653 linuxkpi_pcim_enable_device(struct pci_dev *pdev) 654 { 655 struct pci_devres *dr; 656 int error; 657 658 /* Here we cannot run through the pdev->managed check. */ 659 dr = lkpi_pci_devres_get_alloc(pdev); 660 if (dr == NULL) 661 return (-ENOMEM); 662 663 /* If resources were enabled before do not do it again. */ 664 if (dr->enable_io) 665 return (0); 666 667 error = pci_enable_device(pdev); 668 if (error == 0) 669 dr->enable_io = true; 670 671 /* This device is not managed. */ 672 pdev->managed = true; 673 674 return (error); 675 } 676 677 static struct pcim_iomap_devres * 678 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev) 679 { 680 struct pcim_iomap_devres *dr; 681 682 dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release, 683 NULL, NULL); 684 if (dr == NULL) { 685 dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release, 686 sizeof(*dr), GFP_KERNEL | __GFP_ZERO); 687 if (dr != NULL) 688 lkpi_devres_add(&pdev->dev, dr); 689 } 690 691 if (dr == NULL) 692 device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__); 693 694 return (dr); 695 } 696 697 void __iomem ** 698 linuxkpi_pcim_iomap_table(struct pci_dev *pdev) 699 { 700 struct pcim_iomap_devres *dr; 701 702 dr = lkpi_pcim_iomap_devres_find(pdev); 703 if (dr == NULL) 704 return (NULL); 705 706 /* 707 * If the driver has manually set a flag to be able to request the 708 * resource to use bus_read/write_<n>, return the shadow table. 709 */ 710 if (pdev->want_iomap_res) 711 return ((void **)dr->res_table); 712 713 /* This is the Linux default. */ 714 return (dr->mmio_table); 715 } 716 717 static struct resource * 718 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused) 719 { 720 struct pci_mmio_region *mmio, *p; 721 int type; 722 723 type = pci_resource_type(pdev, bar); 724 if (type < 0) { 725 device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n", 726 __func__, bar, type); 727 return (NULL); 728 } 729 730 /* 731 * Check for duplicate mappings. 732 * This can happen if a driver calls pci_request_region() first. 733 */ 734 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { 735 if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) { 736 return (mmio->res); 737 } 738 } 739 740 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); 741 mmio->rid = PCIR_BAR(bar); 742 mmio->type = type; 743 mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type, 744 &mmio->rid, RF_ACTIVE|RF_SHAREABLE); 745 if (mmio->res == NULL) { 746 device_printf(pdev->dev.bsddev, "%s: failed to alloc " 747 "bar %d type %d rid %d\n", 748 __func__, bar, type, PCIR_BAR(bar)); 749 free(mmio, M_DEVBUF); 750 return (NULL); 751 } 752 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); 753 754 return (mmio->res); 755 } 756 757 void * 758 linuxkpi_pci_iomap(struct pci_dev *pdev, int mmio_bar, int mmio_size) 759 { 760 struct resource *res; 761 762 res = _lkpi_pci_iomap(pdev, mmio_bar, mmio_size); 763 if (res == NULL) 764 return (NULL); 765 /* This is a FreeBSD extension so we can use bus_*(). */ 766 if (pdev->want_iomap_res) 767 return (res); 768 return ((void *)rman_get_bushandle(res)); 769 } 770 771 void 772 linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res) 773 { 774 struct pci_mmio_region *mmio, *p; 775 776 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { 777 if (res != (void *)rman_get_bushandle(mmio->res)) 778 continue; 779 bus_release_resource(pdev->dev.bsddev, 780 mmio->type, mmio->rid, mmio->res); 781 TAILQ_REMOVE(&pdev->mmio, mmio, next); 782 free(mmio, M_DEVBUF); 783 return; 784 } 785 } 786 787 int 788 linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name) 789 { 790 struct pcim_iomap_devres *dr; 791 void *res; 792 uint32_t mappings; 793 int bar; 794 795 dr = lkpi_pcim_iomap_devres_find(pdev); 796 if (dr == NULL) 797 return (-ENOMEM); 798 799 /* Now iomap all the requested (by "mask") ones. */ 800 for (bar = mappings = 0; mappings != mask; bar++) { 801 if ((mask & (1 << bar)) == 0) 802 continue; 803 804 /* Request double is not allowed. */ 805 if (dr->mmio_table[bar] != NULL) { 806 device_printf(pdev->dev.bsddev, "%s: bar %d %p\n", 807 __func__, bar, dr->mmio_table[bar]); 808 goto err; 809 } 810 811 res = _lkpi_pci_iomap(pdev, bar, 0); 812 if (res == NULL) 813 goto err; 814 dr->mmio_table[bar] = (void *)rman_get_bushandle(res); 815 dr->res_table[bar] = res; 816 817 mappings |= (1 << bar); 818 } 819 820 return (0); 821 err: 822 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { 823 if ((mappings & (1 << bar)) != 0) { 824 res = dr->mmio_table[bar]; 825 if (res == NULL) 826 continue; 827 pci_iounmap(pdev, res); 828 } 829 } 830 831 return (-EINVAL); 832 } 833 834 static void 835 lkpi_pcim_iomap_table_release(struct device *dev, void *p) 836 { 837 struct pcim_iomap_devres *dr; 838 struct pci_dev *pdev; 839 int bar; 840 841 dr = p; 842 pdev = to_pci_dev(dev); 843 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { 844 845 if (dr->mmio_table[bar] == NULL) 846 continue; 847 848 pci_iounmap(pdev, dr->mmio_table[bar]); 849 } 850 } 851 852 static int 853 linux_pci_suspend(device_t dev) 854 { 855 const struct dev_pm_ops *pmops; 856 struct pm_message pm = { }; 857 struct pci_dev *pdev; 858 int error; 859 860 error = 0; 861 linux_set_current(curthread); 862 pdev = device_get_softc(dev); 863 pmops = pdev->pdrv->driver.pm; 864 865 if (pdev->pdrv->suspend != NULL) 866 error = -pdev->pdrv->suspend(pdev, pm); 867 else if (pmops != NULL && pmops->suspend != NULL) { 868 error = -pmops->suspend(&pdev->dev); 869 if (error == 0 && pmops->suspend_late != NULL) 870 error = -pmops->suspend_late(&pdev->dev); 871 if (error == 0 && pmops->suspend_noirq != NULL) 872 error = -pmops->suspend_noirq(&pdev->dev); 873 } 874 return (error); 875 } 876 877 static int 878 linux_pci_resume(device_t dev) 879 { 880 const struct dev_pm_ops *pmops; 881 struct pci_dev *pdev; 882 int error; 883 884 error = 0; 885 linux_set_current(curthread); 886 pdev = device_get_softc(dev); 887 pmops = pdev->pdrv->driver.pm; 888 889 if (pdev->pdrv->resume != NULL) 890 error = -pdev->pdrv->resume(pdev); 891 else if (pmops != NULL && pmops->resume != NULL) { 892 if (pmops->resume_early != NULL) 893 error = -pmops->resume_early(&pdev->dev); 894 if (error == 0 && pmops->resume != NULL) 895 error = -pmops->resume(&pdev->dev); 896 } 897 return (error); 898 } 899 900 static int 901 linux_pci_shutdown(device_t dev) 902 { 903 struct pci_dev *pdev; 904 905 linux_set_current(curthread); 906 pdev = device_get_softc(dev); 907 if (pdev->pdrv->shutdown != NULL) 908 pdev->pdrv->shutdown(pdev); 909 return (0); 910 } 911 912 static int 913 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config) 914 { 915 struct pci_dev *pdev; 916 int error; 917 918 linux_set_current(curthread); 919 pdev = device_get_softc(dev); 920 if (pdev->pdrv->bsd_iov_init != NULL) 921 error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config); 922 else 923 error = EINVAL; 924 return (error); 925 } 926 927 static void 928 linux_pci_iov_uninit(device_t dev) 929 { 930 struct pci_dev *pdev; 931 932 linux_set_current(curthread); 933 pdev = device_get_softc(dev); 934 if (pdev->pdrv->bsd_iov_uninit != NULL) 935 pdev->pdrv->bsd_iov_uninit(dev); 936 } 937 938 static int 939 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config) 940 { 941 struct pci_dev *pdev; 942 int error; 943 944 linux_set_current(curthread); 945 pdev = device_get_softc(dev); 946 if (pdev->pdrv->bsd_iov_add_vf != NULL) 947 error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config); 948 else 949 error = EINVAL; 950 return (error); 951 } 952 953 static int 954 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc) 955 { 956 int error; 957 958 linux_set_current(curthread); 959 spin_lock(&pci_lock); 960 list_add(&pdrv->node, &pci_drivers); 961 spin_unlock(&pci_lock); 962 if (pdrv->bsddriver.name == NULL) 963 pdrv->bsddriver.name = pdrv->name; 964 pdrv->bsddriver.methods = pci_methods; 965 pdrv->bsddriver.size = sizeof(struct pci_dev); 966 967 bus_topo_lock(); 968 error = devclass_add_driver(dc, &pdrv->bsddriver, 969 BUS_PASS_DEFAULT, &pdrv->bsdclass); 970 bus_topo_unlock(); 971 return (-error); 972 } 973 974 int 975 linux_pci_register_driver(struct pci_driver *pdrv) 976 { 977 devclass_t dc; 978 979 dc = devclass_find("pci"); 980 if (dc == NULL) 981 return (-ENXIO); 982 pdrv->isdrm = false; 983 return (_linux_pci_register_driver(pdrv, dc)); 984 } 985 986 static struct resource_list_entry * 987 lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve) 988 { 989 int type; 990 991 type = pci_resource_type(pdev, bar); 992 if (type < 0) 993 return (NULL); 994 bar = PCIR_BAR(bar); 995 return (linux_pci_get_rle(pdev, type, bar, reserve)); 996 } 997 998 struct device * 999 lkpi_pci_find_irq_dev(unsigned int irq) 1000 { 1001 struct pci_dev *pdev; 1002 struct device *found; 1003 1004 found = NULL; 1005 spin_lock(&pci_lock); 1006 list_for_each_entry(pdev, &pci_devices, links) { 1007 if (irq == pdev->dev.irq || 1008 (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) { 1009 found = &pdev->dev; 1010 break; 1011 } 1012 } 1013 spin_unlock(&pci_lock); 1014 return (found); 1015 } 1016 1017 unsigned long 1018 pci_resource_start(struct pci_dev *pdev, int bar) 1019 { 1020 struct resource_list_entry *rle; 1021 rman_res_t newstart; 1022 device_t dev; 1023 int error; 1024 1025 if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL) 1026 return (0); 1027 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? 1028 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; 1029 error = bus_translate_resource(dev, rle->type, rle->start, &newstart); 1030 if (error != 0) { 1031 device_printf(pdev->dev.bsddev, 1032 "translate of %#jx failed: %d\n", 1033 (uintmax_t)rle->start, error); 1034 return (0); 1035 } 1036 return (newstart); 1037 } 1038 1039 unsigned long 1040 pci_resource_len(struct pci_dev *pdev, int bar) 1041 { 1042 struct resource_list_entry *rle; 1043 1044 if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL) 1045 return (0); 1046 return (rle->count); 1047 } 1048 1049 int 1050 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 1051 { 1052 struct resource *res; 1053 struct pci_devres *dr; 1054 struct pci_mmio_region *mmio; 1055 int rid; 1056 int type; 1057 1058 type = pci_resource_type(pdev, bar); 1059 if (type < 0) 1060 return (-ENODEV); 1061 rid = PCIR_BAR(bar); 1062 res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid, 1063 RF_ACTIVE|RF_SHAREABLE); 1064 if (res == NULL) { 1065 device_printf(pdev->dev.bsddev, "%s: failed to alloc " 1066 "bar %d type %d rid %d\n", 1067 __func__, bar, type, PCIR_BAR(bar)); 1068 return (-ENODEV); 1069 } 1070 1071 /* 1072 * It seems there is an implicit devres tracking on these if the device 1073 * is managed; otherwise the resources are not automatiaclly freed on 1074 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux 1075 * drivers. 1076 */ 1077 dr = lkpi_pci_devres_find(pdev); 1078 if (dr != NULL) { 1079 dr->region_mask |= (1 << bar); 1080 dr->region_table[bar] = res; 1081 } 1082 1083 /* Even if the device is not managed we need to track it for iomap. */ 1084 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); 1085 mmio->rid = PCIR_BAR(bar); 1086 mmio->type = type; 1087 mmio->res = res; 1088 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); 1089 1090 return (0); 1091 } 1092 1093 int 1094 linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name) 1095 { 1096 int error; 1097 int i; 1098 1099 for (i = 0; i <= PCIR_MAX_BAR_0; i++) { 1100 error = pci_request_region(pdev, i, res_name); 1101 if (error && error != -ENODEV) { 1102 pci_release_regions(pdev); 1103 return (error); 1104 } 1105 } 1106 return (0); 1107 } 1108 1109 void 1110 linuxkpi_pci_release_region(struct pci_dev *pdev, int bar) 1111 { 1112 struct resource_list_entry *rle; 1113 struct pci_devres *dr; 1114 struct pci_mmio_region *mmio, *p; 1115 1116 if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL) 1117 return; 1118 1119 /* 1120 * As we implicitly track the requests we also need to clear them on 1121 * release. Do clear before resource release. 1122 */ 1123 dr = lkpi_pci_devres_find(pdev); 1124 if (dr != NULL) { 1125 KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d" 1126 " region_table res %p != rel->res %p\n", __func__, pdev, 1127 bar, dr->region_table[bar], rle->res)); 1128 dr->region_table[bar] = NULL; 1129 dr->region_mask &= ~(1 << bar); 1130 } 1131 1132 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { 1133 if (rle->res != (void *)rman_get_bushandle(mmio->res)) 1134 continue; 1135 TAILQ_REMOVE(&pdev->mmio, mmio, next); 1136 free(mmio, M_DEVBUF); 1137 } 1138 1139 bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res); 1140 } 1141 1142 void 1143 linuxkpi_pci_release_regions(struct pci_dev *pdev) 1144 { 1145 int i; 1146 1147 for (i = 0; i <= PCIR_MAX_BAR_0; i++) 1148 pci_release_region(pdev, i); 1149 } 1150 1151 int 1152 linux_pci_register_drm_driver(struct pci_driver *pdrv) 1153 { 1154 devclass_t dc; 1155 1156 dc = devclass_create("vgapci"); 1157 if (dc == NULL) 1158 return (-ENXIO); 1159 pdrv->isdrm = true; 1160 pdrv->name = "drmn"; 1161 return (_linux_pci_register_driver(pdrv, dc)); 1162 } 1163 1164 void 1165 linux_pci_unregister_driver(struct pci_driver *pdrv) 1166 { 1167 devclass_t bus; 1168 1169 bus = devclass_find("pci"); 1170 1171 spin_lock(&pci_lock); 1172 list_del(&pdrv->node); 1173 spin_unlock(&pci_lock); 1174 bus_topo_lock(); 1175 if (bus != NULL) 1176 devclass_delete_driver(bus, &pdrv->bsddriver); 1177 bus_topo_unlock(); 1178 } 1179 1180 void 1181 linux_pci_unregister_drm_driver(struct pci_driver *pdrv) 1182 { 1183 devclass_t bus; 1184 1185 bus = devclass_find("vgapci"); 1186 1187 spin_lock(&pci_lock); 1188 list_del(&pdrv->node); 1189 spin_unlock(&pci_lock); 1190 bus_topo_lock(); 1191 if (bus != NULL) 1192 devclass_delete_driver(bus, &pdrv->bsddriver); 1193 bus_topo_unlock(); 1194 } 1195 1196 int 1197 linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries, 1198 int nreq) 1199 { 1200 struct resource_list_entry *rle; 1201 int error; 1202 int avail; 1203 int i; 1204 1205 avail = pci_msix_count(pdev->dev.bsddev); 1206 if (avail < nreq) { 1207 if (avail == 0) 1208 return -EINVAL; 1209 return avail; 1210 } 1211 avail = nreq; 1212 if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0) 1213 return error; 1214 /* 1215 * Handle case where "pci_alloc_msix()" may allocate less 1216 * interrupts than available and return with no error: 1217 */ 1218 if (avail < nreq) { 1219 pci_release_msi(pdev->dev.bsddev); 1220 return avail; 1221 } 1222 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false); 1223 pdev->dev.irq_start = rle->start; 1224 pdev->dev.irq_end = rle->start + avail; 1225 for (i = 0; i < nreq; i++) 1226 entries[i].vector = pdev->dev.irq_start + i; 1227 pdev->msix_enabled = true; 1228 return (0); 1229 } 1230 1231 int 1232 _lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec) 1233 { 1234 struct resource_list_entry *rle; 1235 int error; 1236 int nvec; 1237 1238 if (maxvec < minvec) 1239 return (-EINVAL); 1240 1241 nvec = pci_msi_count(pdev->dev.bsddev); 1242 if (nvec < 1 || nvec < minvec) 1243 return (-ENOSPC); 1244 1245 nvec = min(nvec, maxvec); 1246 if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0) 1247 return error; 1248 1249 /* Native PCI might only ever ask for 32 vectors. */ 1250 if (nvec < minvec) { 1251 pci_release_msi(pdev->dev.bsddev); 1252 return (-ENOSPC); 1253 } 1254 1255 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false); 1256 pdev->dev.irq_start = rle->start; 1257 pdev->dev.irq_end = rle->start + nvec; 1258 pdev->irq = rle->start; 1259 pdev->msi_enabled = true; 1260 return (0); 1261 } 1262 1263 int 1264 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv, 1265 unsigned int flags) 1266 { 1267 int error; 1268 1269 if (flags & PCI_IRQ_MSIX) { 1270 struct msix_entry *entries; 1271 int i; 1272 1273 entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL); 1274 if (entries == NULL) { 1275 error = -ENOMEM; 1276 goto out; 1277 } 1278 for (i = 0; i < maxv; ++i) 1279 entries[i].entry = i; 1280 error = pci_enable_msix(pdev, entries, maxv); 1281 out: 1282 kfree(entries); 1283 if (error == 0 && pdev->msix_enabled) 1284 return (pdev->dev.irq_end - pdev->dev.irq_start); 1285 } 1286 if (flags & PCI_IRQ_MSI) { 1287 if (pci_msi_count(pdev->dev.bsddev) < minv) 1288 return (-ENOSPC); 1289 error = _lkpi_pci_enable_msi_range(pdev, minv, maxv); 1290 if (error == 0 && pdev->msi_enabled) 1291 return (pdev->dev.irq_end - pdev->dev.irq_start); 1292 } 1293 if (flags & PCI_IRQ_LEGACY) { 1294 if (pdev->irq) 1295 return (1); 1296 } 1297 1298 return (-EINVAL); 1299 } 1300 1301 struct msi_desc * 1302 lkpi_pci_msi_desc_alloc(int irq) 1303 { 1304 struct device *dev; 1305 struct pci_dev *pdev; 1306 struct msi_desc *desc; 1307 struct pci_devinfo *dinfo; 1308 struct pcicfg_msi *msi; 1309 int vec; 1310 1311 dev = lkpi_pci_find_irq_dev(irq); 1312 if (dev == NULL) 1313 return (NULL); 1314 1315 pdev = to_pci_dev(dev); 1316 1317 if (pdev->msi_desc == NULL) 1318 return (NULL); 1319 1320 if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end) 1321 return (NULL); 1322 1323 vec = pdev->dev.irq_start - irq; 1324 1325 if (pdev->msi_desc[vec] != NULL) 1326 return (pdev->msi_desc[vec]); 1327 1328 dinfo = device_get_ivars(dev->bsddev); 1329 msi = &dinfo->cfg.msi; 1330 1331 desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO); 1332 1333 desc->pci.msi_attrib.is_64 = 1334 (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false; 1335 desc->msg.data = msi->msi_data; 1336 1337 pdev->msi_desc[vec] = desc; 1338 1339 return (desc); 1340 } 1341 1342 bool 1343 pci_device_is_present(struct pci_dev *pdev) 1344 { 1345 device_t dev; 1346 1347 dev = pdev->dev.bsddev; 1348 1349 return (bus_child_present(dev)); 1350 } 1351 1352 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t)); 1353 1354 struct linux_dma_obj { 1355 void *vaddr; 1356 uint64_t dma_addr; 1357 bus_dmamap_t dmamap; 1358 bus_dma_tag_t dmat; 1359 }; 1360 1361 static uma_zone_t linux_dma_trie_zone; 1362 static uma_zone_t linux_dma_obj_zone; 1363 1364 static void 1365 linux_dma_init(void *arg) 1366 { 1367 1368 linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie", 1369 pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL, 1370 UMA_ALIGN_PTR, 0); 1371 linux_dma_obj_zone = uma_zcreate("linux_dma_object", 1372 sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL, 1373 UMA_ALIGN_PTR, 0); 1374 lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK); 1375 } 1376 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL); 1377 1378 static void 1379 linux_dma_uninit(void *arg) 1380 { 1381 1382 counter_u64_free(lkpi_pci_nseg1_fail); 1383 uma_zdestroy(linux_dma_obj_zone); 1384 uma_zdestroy(linux_dma_trie_zone); 1385 } 1386 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL); 1387 1388 static void * 1389 linux_dma_trie_alloc(struct pctrie *ptree) 1390 { 1391 1392 return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT)); 1393 } 1394 1395 static void 1396 linux_dma_trie_free(struct pctrie *ptree, void *node) 1397 { 1398 1399 uma_zfree(linux_dma_trie_zone, node); 1400 } 1401 1402 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc, 1403 linux_dma_trie_free); 1404 1405 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1406 static dma_addr_t 1407 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len, 1408 bus_dma_tag_t dmat) 1409 { 1410 struct linux_dma_priv *priv; 1411 struct linux_dma_obj *obj; 1412 int error, nseg; 1413 bus_dma_segment_t seg; 1414 1415 priv = dev->dma_priv; 1416 1417 /* 1418 * If the resultant mapping will be entirely 1:1 with the 1419 * physical address, short-circuit the remainder of the 1420 * bus_dma API. This avoids tracking collisions in the pctrie 1421 * with the additional benefit of reducing overhead. 1422 */ 1423 if (bus_dma_id_mapped(dmat, phys, len)) 1424 return (phys); 1425 1426 obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT); 1427 if (obj == NULL) { 1428 return (0); 1429 } 1430 obj->dmat = dmat; 1431 1432 DMA_PRIV_LOCK(priv); 1433 if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) { 1434 DMA_PRIV_UNLOCK(priv); 1435 uma_zfree(linux_dma_obj_zone, obj); 1436 return (0); 1437 } 1438 1439 nseg = -1; 1440 if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len, 1441 BUS_DMA_NOWAIT, &seg, &nseg) != 0) { 1442 bus_dmamap_destroy(obj->dmat, obj->dmamap); 1443 DMA_PRIV_UNLOCK(priv); 1444 uma_zfree(linux_dma_obj_zone, obj); 1445 counter_u64_add(lkpi_pci_nseg1_fail, 1); 1446 if (linuxkpi_debug) 1447 dump_stack(); 1448 return (0); 1449 } 1450 1451 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); 1452 obj->dma_addr = seg.ds_addr; 1453 1454 error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj); 1455 if (error != 0) { 1456 bus_dmamap_unload(obj->dmat, obj->dmamap); 1457 bus_dmamap_destroy(obj->dmat, obj->dmamap); 1458 DMA_PRIV_UNLOCK(priv); 1459 uma_zfree(linux_dma_obj_zone, obj); 1460 return (0); 1461 } 1462 DMA_PRIV_UNLOCK(priv); 1463 return (obj->dma_addr); 1464 } 1465 #else 1466 static dma_addr_t 1467 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys, 1468 size_t len __unused, bus_dma_tag_t dmat __unused) 1469 { 1470 return (phys); 1471 } 1472 #endif 1473 1474 dma_addr_t 1475 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len) 1476 { 1477 struct linux_dma_priv *priv; 1478 1479 priv = dev->dma_priv; 1480 return (linux_dma_map_phys_common(dev, phys, len, priv->dmat)); 1481 } 1482 1483 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1484 void 1485 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) 1486 { 1487 struct linux_dma_priv *priv; 1488 struct linux_dma_obj *obj; 1489 1490 priv = dev->dma_priv; 1491 1492 if (pctrie_is_empty(&priv->ptree)) 1493 return; 1494 1495 DMA_PRIV_LOCK(priv); 1496 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); 1497 if (obj == NULL) { 1498 DMA_PRIV_UNLOCK(priv); 1499 return; 1500 } 1501 LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr); 1502 bus_dmamap_unload(obj->dmat, obj->dmamap); 1503 bus_dmamap_destroy(obj->dmat, obj->dmamap); 1504 DMA_PRIV_UNLOCK(priv); 1505 1506 uma_zfree(linux_dma_obj_zone, obj); 1507 } 1508 #else 1509 void 1510 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) 1511 { 1512 } 1513 #endif 1514 1515 void * 1516 linux_dma_alloc_coherent(struct device *dev, size_t size, 1517 dma_addr_t *dma_handle, gfp_t flag) 1518 { 1519 struct linux_dma_priv *priv; 1520 vm_paddr_t high; 1521 size_t align; 1522 void *mem; 1523 1524 if (dev == NULL || dev->dma_priv == NULL) { 1525 *dma_handle = 0; 1526 return (NULL); 1527 } 1528 priv = dev->dma_priv; 1529 if (priv->dma_coherent_mask) 1530 high = priv->dma_coherent_mask; 1531 else 1532 /* Coherent is lower 32bit only by default in Linux. */ 1533 high = BUS_SPACE_MAXADDR_32BIT; 1534 align = PAGE_SIZE << get_order(size); 1535 /* Always zero the allocation. */ 1536 flag |= M_ZERO; 1537 mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high, 1538 align, 0, VM_MEMATTR_DEFAULT); 1539 if (mem != NULL) { 1540 *dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size, 1541 priv->dmat_coherent); 1542 if (*dma_handle == 0) { 1543 kmem_free(mem, size); 1544 mem = NULL; 1545 } 1546 } else { 1547 *dma_handle = 0; 1548 } 1549 return (mem); 1550 } 1551 1552 struct lkpi_devres_dmam_coherent { 1553 size_t size; 1554 dma_addr_t *handle; 1555 void *mem; 1556 }; 1557 1558 static void 1559 lkpi_dmam_free_coherent(struct device *dev, void *p) 1560 { 1561 struct lkpi_devres_dmam_coherent *dr; 1562 1563 dr = p; 1564 dma_free_coherent(dev, dr->size, dr->mem, *dr->handle); 1565 } 1566 1567 void * 1568 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, 1569 gfp_t flag) 1570 { 1571 struct lkpi_devres_dmam_coherent *dr; 1572 1573 dr = lkpi_devres_alloc(lkpi_dmam_free_coherent, 1574 sizeof(*dr), GFP_KERNEL | __GFP_ZERO); 1575 1576 if (dr == NULL) 1577 return (NULL); 1578 1579 dr->size = size; 1580 dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag); 1581 dr->handle = dma_handle; 1582 if (dr->mem == NULL) { 1583 lkpi_devres_free(dr); 1584 return (NULL); 1585 } 1586 1587 lkpi_devres_add(dev, dr); 1588 return (dr->mem); 1589 } 1590 1591 void 1592 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size, 1593 bus_dmasync_op_t op) 1594 { 1595 struct linux_dma_priv *priv; 1596 struct linux_dma_obj *obj; 1597 1598 priv = dev->dma_priv; 1599 1600 if (pctrie_is_empty(&priv->ptree)) 1601 return; 1602 1603 DMA_PRIV_LOCK(priv); 1604 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); 1605 if (obj == NULL) { 1606 DMA_PRIV_UNLOCK(priv); 1607 return; 1608 } 1609 1610 bus_dmamap_sync(obj->dmat, obj->dmamap, op); 1611 DMA_PRIV_UNLOCK(priv); 1612 } 1613 1614 int 1615 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents, 1616 enum dma_data_direction direction, unsigned long attrs __unused) 1617 { 1618 struct linux_dma_priv *priv; 1619 struct scatterlist *sg; 1620 int i, nseg; 1621 bus_dma_segment_t seg; 1622 1623 priv = dev->dma_priv; 1624 1625 DMA_PRIV_LOCK(priv); 1626 1627 /* create common DMA map in the first S/G entry */ 1628 if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) { 1629 DMA_PRIV_UNLOCK(priv); 1630 return (0); 1631 } 1632 1633 /* load all S/G list entries */ 1634 for_each_sg(sgl, sg, nents, i) { 1635 nseg = -1; 1636 if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map, 1637 sg_phys(sg), sg->length, BUS_DMA_NOWAIT, 1638 &seg, &nseg) != 0) { 1639 bus_dmamap_unload(priv->dmat, sgl->dma_map); 1640 bus_dmamap_destroy(priv->dmat, sgl->dma_map); 1641 DMA_PRIV_UNLOCK(priv); 1642 return (0); 1643 } 1644 KASSERT(nseg == 0, 1645 ("More than one segment (nseg=%d)", nseg + 1)); 1646 1647 sg_dma_address(sg) = seg.ds_addr; 1648 } 1649 1650 switch (direction) { 1651 case DMA_BIDIRECTIONAL: 1652 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); 1653 break; 1654 case DMA_TO_DEVICE: 1655 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); 1656 break; 1657 case DMA_FROM_DEVICE: 1658 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); 1659 break; 1660 default: 1661 break; 1662 } 1663 1664 DMA_PRIV_UNLOCK(priv); 1665 1666 return (nents); 1667 } 1668 1669 void 1670 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, 1671 int nents __unused, enum dma_data_direction direction, 1672 unsigned long attrs __unused) 1673 { 1674 struct linux_dma_priv *priv; 1675 1676 priv = dev->dma_priv; 1677 1678 DMA_PRIV_LOCK(priv); 1679 1680 switch (direction) { 1681 case DMA_BIDIRECTIONAL: 1682 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); 1683 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); 1684 break; 1685 case DMA_TO_DEVICE: 1686 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE); 1687 break; 1688 case DMA_FROM_DEVICE: 1689 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); 1690 break; 1691 default: 1692 break; 1693 } 1694 1695 bus_dmamap_unload(priv->dmat, sgl->dma_map); 1696 bus_dmamap_destroy(priv->dmat, sgl->dma_map); 1697 DMA_PRIV_UNLOCK(priv); 1698 } 1699 1700 struct dma_pool { 1701 struct device *pool_device; 1702 uma_zone_t pool_zone; 1703 struct mtx pool_lock; 1704 bus_dma_tag_t pool_dmat; 1705 size_t pool_entry_size; 1706 struct pctrie pool_ptree; 1707 }; 1708 1709 #define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock) 1710 #define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock) 1711 1712 static inline int 1713 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags) 1714 { 1715 struct linux_dma_obj *obj = mem; 1716 struct dma_pool *pool = arg; 1717 int error, nseg; 1718 bus_dma_segment_t seg; 1719 1720 nseg = -1; 1721 DMA_POOL_LOCK(pool); 1722 error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap, 1723 vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT, 1724 &seg, &nseg); 1725 DMA_POOL_UNLOCK(pool); 1726 if (error != 0) { 1727 return (error); 1728 } 1729 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); 1730 obj->dma_addr = seg.ds_addr; 1731 1732 return (0); 1733 } 1734 1735 static void 1736 dma_pool_obj_dtor(void *mem, int size, void *arg) 1737 { 1738 struct linux_dma_obj *obj = mem; 1739 struct dma_pool *pool = arg; 1740 1741 DMA_POOL_LOCK(pool); 1742 bus_dmamap_unload(pool->pool_dmat, obj->dmamap); 1743 DMA_POOL_UNLOCK(pool); 1744 } 1745 1746 static int 1747 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused, 1748 int flags) 1749 { 1750 struct dma_pool *pool = arg; 1751 struct linux_dma_obj *obj; 1752 int error, i; 1753 1754 for (i = 0; i < count; i++) { 1755 obj = uma_zalloc(linux_dma_obj_zone, flags); 1756 if (obj == NULL) 1757 break; 1758 1759 error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr, 1760 BUS_DMA_NOWAIT, &obj->dmamap); 1761 if (error!= 0) { 1762 uma_zfree(linux_dma_obj_zone, obj); 1763 break; 1764 } 1765 1766 store[i] = obj; 1767 } 1768 1769 return (i); 1770 } 1771 1772 static void 1773 dma_pool_obj_release(void *arg, void **store, int count) 1774 { 1775 struct dma_pool *pool = arg; 1776 struct linux_dma_obj *obj; 1777 int i; 1778 1779 for (i = 0; i < count; i++) { 1780 obj = store[i]; 1781 bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap); 1782 uma_zfree(linux_dma_obj_zone, obj); 1783 } 1784 } 1785 1786 struct dma_pool * 1787 linux_dma_pool_create(char *name, struct device *dev, size_t size, 1788 size_t align, size_t boundary) 1789 { 1790 struct linux_dma_priv *priv; 1791 struct dma_pool *pool; 1792 1793 priv = dev->dma_priv; 1794 1795 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 1796 pool->pool_device = dev; 1797 pool->pool_entry_size = size; 1798 1799 if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 1800 align, boundary, /* alignment, boundary */ 1801 priv->dma_mask, /* lowaddr */ 1802 BUS_SPACE_MAXADDR, /* highaddr */ 1803 NULL, NULL, /* filtfunc, filtfuncarg */ 1804 size, /* maxsize */ 1805 1, /* nsegments */ 1806 size, /* maxsegsz */ 1807 0, /* flags */ 1808 NULL, NULL, /* lockfunc, lockfuncarg */ 1809 &pool->pool_dmat)) { 1810 kfree(pool); 1811 return (NULL); 1812 } 1813 1814 pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor, 1815 dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import, 1816 dma_pool_obj_release, pool, 0); 1817 1818 mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF); 1819 pctrie_init(&pool->pool_ptree); 1820 1821 return (pool); 1822 } 1823 1824 void 1825 linux_dma_pool_destroy(struct dma_pool *pool) 1826 { 1827 1828 uma_zdestroy(pool->pool_zone); 1829 bus_dma_tag_destroy(pool->pool_dmat); 1830 mtx_destroy(&pool->pool_lock); 1831 kfree(pool); 1832 } 1833 1834 void 1835 lkpi_dmam_pool_destroy(struct device *dev, void *p) 1836 { 1837 struct dma_pool *pool; 1838 1839 pool = *(struct dma_pool **)p; 1840 LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree); 1841 linux_dma_pool_destroy(pool); 1842 } 1843 1844 void * 1845 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 1846 dma_addr_t *handle) 1847 { 1848 struct linux_dma_obj *obj; 1849 1850 obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK); 1851 if (obj == NULL) 1852 return (NULL); 1853 1854 DMA_POOL_LOCK(pool); 1855 if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) { 1856 DMA_POOL_UNLOCK(pool); 1857 uma_zfree_arg(pool->pool_zone, obj, pool); 1858 return (NULL); 1859 } 1860 DMA_POOL_UNLOCK(pool); 1861 1862 *handle = obj->dma_addr; 1863 return (obj->vaddr); 1864 } 1865 1866 void 1867 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr) 1868 { 1869 struct linux_dma_obj *obj; 1870 1871 DMA_POOL_LOCK(pool); 1872 obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr); 1873 if (obj == NULL) { 1874 DMA_POOL_UNLOCK(pool); 1875 return; 1876 } 1877 LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr); 1878 DMA_POOL_UNLOCK(pool); 1879 1880 uma_zfree_arg(pool->pool_zone, obj, pool); 1881 } 1882 1883 static int 1884 linux_backlight_get_status(device_t dev, struct backlight_props *props) 1885 { 1886 struct pci_dev *pdev; 1887 1888 linux_set_current(curthread); 1889 pdev = device_get_softc(dev); 1890 1891 props->brightness = pdev->dev.bd->props.brightness; 1892 props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness; 1893 props->nlevels = 0; 1894 1895 return (0); 1896 } 1897 1898 static int 1899 linux_backlight_get_info(device_t dev, struct backlight_info *info) 1900 { 1901 struct pci_dev *pdev; 1902 1903 linux_set_current(curthread); 1904 pdev = device_get_softc(dev); 1905 1906 info->type = BACKLIGHT_TYPE_PANEL; 1907 strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH); 1908 return (0); 1909 } 1910 1911 static int 1912 linux_backlight_update_status(device_t dev, struct backlight_props *props) 1913 { 1914 struct pci_dev *pdev; 1915 1916 linux_set_current(curthread); 1917 pdev = device_get_softc(dev); 1918 1919 pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness * 1920 props->brightness / 100; 1921 pdev->dev.bd->props.power = props->brightness == 0 ? 1922 4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */; 1923 return (pdev->dev.bd->ops->update_status(pdev->dev.bd)); 1924 } 1925 1926 struct backlight_device * 1927 linux_backlight_device_register(const char *name, struct device *dev, 1928 void *data, const struct backlight_ops *ops, struct backlight_properties *props) 1929 { 1930 1931 dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO); 1932 dev->bd->ops = ops; 1933 dev->bd->props.type = props->type; 1934 dev->bd->props.max_brightness = props->max_brightness; 1935 dev->bd->props.brightness = props->brightness; 1936 dev->bd->props.power = props->power; 1937 dev->bd->data = data; 1938 dev->bd->dev = dev; 1939 dev->bd->name = strdup(name, M_DEVBUF); 1940 1941 dev->backlight_dev = backlight_register(name, dev->bsddev); 1942 1943 return (dev->bd); 1944 } 1945 1946 void 1947 linux_backlight_device_unregister(struct backlight_device *bd) 1948 { 1949 1950 backlight_destroy(bd->dev->backlight_dev); 1951 free(bd->name, M_DEVBUF); 1952 free(bd, M_DEVBUF); 1953 } 1954