1 /*- 2 * Copyright (c) 2010 Isilon Systems, Inc. 3 * Copyright (c) 2016 Matthew Macy (mmacy@mattmacy.io) 4 * Copyright (c) 2017 Mellanox Technologies, Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/malloc.h> 32 #include <sys/kernel.h> 33 #include <sys/sysctl.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/rwlock.h> 37 #include <sys/proc.h> 38 #include <sys/sched.h> 39 #include <sys/memrange.h> 40 41 #include <machine/bus.h> 42 43 #include <vm/vm.h> 44 #include <vm/pmap.h> 45 #include <vm/vm_param.h> 46 #include <vm/vm_kern.h> 47 #include <vm/vm_object.h> 48 #include <vm/vm_map.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_pageout.h> 51 #include <vm/vm_pager.h> 52 #include <vm/vm_radix.h> 53 #include <vm/vm_reserv.h> 54 #include <vm/vm_extern.h> 55 56 #include <vm/uma.h> 57 #include <vm/uma_int.h> 58 59 #include <linux/gfp.h> 60 #include <linux/mm.h> 61 #include <linux/preempt.h> 62 #include <linux/fs.h> 63 #include <linux/shmem_fs.h> 64 #include <linux/kernel.h> 65 #include <linux/idr.h> 66 #include <linux/io.h> 67 #include <linux/io-mapping.h> 68 69 #ifdef __i386__ 70 DEFINE_IDR(mtrr_idr); 71 static MALLOC_DEFINE(M_LKMTRR, "idr", "Linux MTRR compat"); 72 extern int pat_works; 73 #endif 74 75 void 76 si_meminfo(struct sysinfo *si) 77 { 78 si->totalram = physmem; 79 si->freeram = vm_free_count(); 80 si->totalhigh = 0; 81 si->freehigh = 0; 82 si->mem_unit = PAGE_SIZE; 83 } 84 85 void * 86 linux_page_address(const struct page *page) 87 { 88 89 if (page->object != kernel_object) { 90 return (PMAP_HAS_DMAP ? 91 ((void *)(uintptr_t)PHYS_TO_DMAP(page_to_phys(page))) : 92 NULL); 93 } 94 return ((void *)(uintptr_t)(VM_MIN_KERNEL_ADDRESS + 95 IDX_TO_OFF(page->pindex))); 96 } 97 98 struct page * 99 linux_alloc_pages(gfp_t flags, unsigned int order) 100 { 101 struct page *page; 102 103 if (PMAP_HAS_DMAP) { 104 unsigned long npages = 1UL << order; 105 int req = VM_ALLOC_WIRED; 106 107 if ((flags & M_ZERO) != 0) 108 req |= VM_ALLOC_ZERO; 109 110 if (order == 0 && (flags & GFP_DMA32) == 0) { 111 page = vm_page_alloc_noobj(req); 112 if (page == NULL) 113 return (NULL); 114 } else { 115 vm_paddr_t pmax = (flags & GFP_DMA32) ? 116 BUS_SPACE_MAXADDR_32BIT : BUS_SPACE_MAXADDR; 117 118 if ((flags & __GFP_NORETRY) != 0) 119 req |= VM_ALLOC_NORECLAIM; 120 121 retry: 122 page = vm_page_alloc_noobj_contig(req, npages, 0, pmax, 123 PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); 124 if (page == NULL) { 125 if ((flags & (M_WAITOK | __GFP_NORETRY)) == 126 M_WAITOK) { 127 int err = vm_page_reclaim_contig(req, 128 npages, 0, pmax, PAGE_SIZE, 0); 129 if (err == ENOMEM) 130 vm_wait(NULL); 131 else if (err != 0) 132 return (NULL); 133 flags &= ~M_WAITOK; 134 goto retry; 135 } 136 return (NULL); 137 } 138 } 139 } else { 140 vm_offset_t vaddr; 141 142 vaddr = linux_alloc_kmem(flags, order); 143 if (vaddr == 0) 144 return (NULL); 145 146 page = virt_to_page((void *)vaddr); 147 148 KASSERT(vaddr == (vm_offset_t)page_address(page), 149 ("Page address mismatch")); 150 } 151 152 return (page); 153 } 154 155 static void 156 _linux_free_kmem(vm_offset_t addr, unsigned int order) 157 { 158 size_t size = ((size_t)PAGE_SIZE) << order; 159 160 kmem_free((void *)addr, size); 161 } 162 163 void 164 linux_free_pages(struct page *page, unsigned int order) 165 { 166 if (PMAP_HAS_DMAP) { 167 unsigned long npages = 1UL << order; 168 unsigned long x; 169 170 for (x = 0; x != npages; x++) { 171 vm_page_t pgo = page + x; 172 173 /* 174 * The "free page" function is used in several 175 * contexts. 176 * 177 * Some pages are allocated by `linux_alloc_pages()` 178 * above, but not all of them are. For instance in the 179 * DRM drivers, some pages come from 180 * `shmem_read_mapping_page_gfp()`. 181 * 182 * That's why we need to check if the page is managed 183 * or not here. 184 */ 185 if ((pgo->oflags & VPO_UNMANAGED) == 0) { 186 vm_page_unwire(pgo, PQ_ACTIVE); 187 } else { 188 if (vm_page_unwire_noq(pgo)) 189 vm_page_free(pgo); 190 } 191 } 192 } else { 193 vm_offset_t vaddr; 194 195 vaddr = (vm_offset_t)page_address(page); 196 197 _linux_free_kmem(vaddr, order); 198 } 199 } 200 201 void 202 linux_release_pages(release_pages_arg arg, int nr) 203 { 204 int i; 205 206 CTASSERT(offsetof(struct folio, page) == 0); 207 208 for (i = 0; i < nr; i++) 209 __free_page(arg.pages[i]); 210 } 211 212 vm_offset_t 213 linux_alloc_kmem(gfp_t flags, unsigned int order) 214 { 215 size_t size = ((size_t)PAGE_SIZE) << order; 216 void *addr; 217 218 addr = kmem_alloc_contig(size, flags & GFP_NATIVE_MASK, 0, 219 ((flags & GFP_DMA32) == 0) ? -1UL : BUS_SPACE_MAXADDR_32BIT, 220 PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); 221 222 return ((vm_offset_t)addr); 223 } 224 225 void 226 linux_free_kmem(vm_offset_t addr, unsigned int order) 227 { 228 KASSERT((addr & ~PAGE_MASK) == 0, 229 ("%s: addr %p is not page aligned", __func__, (void *)addr)); 230 231 if (addr >= VM_MIN_KERNEL_ADDRESS && addr < VM_MAX_KERNEL_ADDRESS) { 232 _linux_free_kmem(addr, order); 233 } else { 234 vm_page_t page; 235 236 page = PHYS_TO_VM_PAGE(DMAP_TO_PHYS(addr)); 237 linux_free_pages(page, order); 238 } 239 } 240 241 static int 242 linux_get_user_pages_internal(vm_map_t map, unsigned long start, int nr_pages, 243 int write, struct page **pages) 244 { 245 vm_prot_t prot; 246 size_t len; 247 int count; 248 249 prot = write ? (VM_PROT_READ | VM_PROT_WRITE) : VM_PROT_READ; 250 len = ptoa((vm_offset_t)nr_pages); 251 count = vm_fault_quick_hold_pages(map, start, len, prot, pages, nr_pages); 252 return (count == -1 ? -EFAULT : nr_pages); 253 } 254 255 int 256 __get_user_pages_fast(unsigned long start, int nr_pages, int write, 257 struct page **pages) 258 { 259 vm_map_t map; 260 vm_page_t *mp; 261 vm_offset_t va; 262 vm_offset_t end; 263 vm_prot_t prot; 264 int count; 265 266 if (nr_pages == 0 || in_interrupt()) 267 return (0); 268 269 MPASS(pages != NULL); 270 map = &curthread->td_proc->p_vmspace->vm_map; 271 end = start + ptoa((vm_offset_t)nr_pages); 272 if (!vm_map_range_valid(map, start, end)) 273 return (-EINVAL); 274 prot = write ? (VM_PROT_READ | VM_PROT_WRITE) : VM_PROT_READ; 275 for (count = 0, mp = pages, va = start; va < end; 276 mp++, va += PAGE_SIZE, count++) { 277 *mp = pmap_extract_and_hold(map->pmap, va, prot); 278 if (*mp == NULL) 279 break; 280 281 if ((prot & VM_PROT_WRITE) != 0 && 282 (*mp)->dirty != VM_PAGE_BITS_ALL) { 283 /* 284 * Explicitly dirty the physical page. Otherwise, the 285 * caller's changes may go unnoticed because they are 286 * performed through an unmanaged mapping or by a DMA 287 * operation. 288 * 289 * The object lock is not held here. 290 * See vm_page_clear_dirty_mask(). 291 */ 292 vm_page_dirty(*mp); 293 } 294 } 295 return (count); 296 } 297 298 long 299 get_user_pages_remote(struct task_struct *task, struct mm_struct *mm, 300 unsigned long start, unsigned long nr_pages, unsigned int gup_flags, 301 struct page **pages, struct vm_area_struct **vmas) 302 { 303 vm_map_t map; 304 305 map = &task->task_thread->td_proc->p_vmspace->vm_map; 306 return (linux_get_user_pages_internal(map, start, nr_pages, 307 !!(gup_flags & FOLL_WRITE), pages)); 308 } 309 310 long 311 lkpi_get_user_pages(unsigned long start, unsigned long nr_pages, 312 unsigned int gup_flags, struct page **pages) 313 { 314 vm_map_t map; 315 316 map = &curthread->td_proc->p_vmspace->vm_map; 317 return (linux_get_user_pages_internal(map, start, nr_pages, 318 !!(gup_flags & FOLL_WRITE), pages)); 319 } 320 321 /* 322 * Hash of vmmap addresses. This is infrequently accessed and does not 323 * need to be particularly large. This is done because we must store the 324 * caller's idea of the map size to properly unmap. 325 */ 326 struct vmmap { 327 LIST_ENTRY(vmmap) vm_next; 328 void *vm_addr; 329 unsigned long vm_size; 330 }; 331 332 struct vmmaphd { 333 struct vmmap *lh_first; 334 }; 335 #define VMMAP_HASH_SIZE 64 336 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1) 337 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK 338 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE]; 339 static struct mtx vmmaplock; 340 341 int 342 is_vmalloc_addr(const void *addr) 343 { 344 struct vmmap *vmmap; 345 346 mtx_lock(&vmmaplock); 347 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next) 348 if (addr == vmmap->vm_addr) 349 break; 350 mtx_unlock(&vmmaplock); 351 if (vmmap != NULL) 352 return (1); 353 354 return (vtoslab((vm_offset_t)addr & ~UMA_SLAB_MASK) != NULL); 355 } 356 357 static void 358 vmmap_add(void *addr, unsigned long size) 359 { 360 struct vmmap *vmmap; 361 362 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL); 363 mtx_lock(&vmmaplock); 364 vmmap->vm_size = size; 365 vmmap->vm_addr = addr; 366 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next); 367 mtx_unlock(&vmmaplock); 368 } 369 370 static struct vmmap * 371 vmmap_remove(void *addr) 372 { 373 struct vmmap *vmmap; 374 375 mtx_lock(&vmmaplock); 376 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next) 377 if (vmmap->vm_addr == addr) 378 break; 379 if (vmmap) 380 LIST_REMOVE(vmmap, vm_next); 381 mtx_unlock(&vmmaplock); 382 383 return (vmmap); 384 } 385 386 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv) 387 void * 388 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr) 389 { 390 void *addr; 391 392 addr = pmap_mapdev_attr(phys_addr, size, attr); 393 if (addr == NULL) 394 return (NULL); 395 vmmap_add(addr, size); 396 397 return (addr); 398 } 399 #endif 400 401 void 402 iounmap(void *addr) 403 { 404 struct vmmap *vmmap; 405 406 vmmap = vmmap_remove(addr); 407 if (vmmap == NULL) 408 return; 409 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv) 410 pmap_unmapdev(addr, vmmap->vm_size); 411 #endif 412 kfree(vmmap); 413 } 414 415 void * 416 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot) 417 { 418 vm_offset_t off; 419 size_t size; 420 421 size = count * PAGE_SIZE; 422 off = kva_alloc(size); 423 if (off == 0) 424 return (NULL); 425 vmmap_add((void *)off, size); 426 pmap_qenter(off, pages, count); 427 428 return ((void *)off); 429 } 430 431 #define VMAP_MAX_CHUNK_SIZE (65536U / sizeof(struct vm_page)) /* KMEM_ZMAX */ 432 433 void * 434 linuxkpi_vmap_pfn(unsigned long *pfns, unsigned int count, int prot) 435 { 436 vm_page_t m, *ma, fma; 437 vm_offset_t off, coff; 438 vm_paddr_t pa; 439 vm_memattr_t attr; 440 size_t size; 441 unsigned int i, c, chunk; 442 443 size = ptoa(count); 444 off = kva_alloc(size); 445 if (off == 0) 446 return (NULL); 447 vmmap_add((void *)off, size); 448 449 chunk = MIN(count, VMAP_MAX_CHUNK_SIZE); 450 attr = pgprot2cachemode(prot); 451 ma = malloc(chunk * sizeof(vm_page_t), M_TEMP, M_WAITOK | M_ZERO); 452 fma = NULL; 453 c = 0; 454 coff = off; 455 for (i = 0; i < count; i++) { 456 pa = IDX_TO_OFF(pfns[i]); 457 m = PHYS_TO_VM_PAGE(pa); 458 if (m == NULL) { 459 if (fma == NULL) 460 fma = malloc(chunk * sizeof(struct vm_page), 461 M_TEMP, M_WAITOK | M_ZERO); 462 m = fma + c; 463 vm_page_initfake(m, pa, attr); 464 } else { 465 pmap_page_set_memattr(m, attr); 466 } 467 ma[c] = m; 468 c++; 469 if (c == chunk || i == count - 1) { 470 pmap_qenter(coff, ma, c); 471 if (i == count - 1) 472 break; 473 coff += ptoa(c); 474 c = 0; 475 memset(ma, 0, chunk * sizeof(vm_page_t)); 476 if (fma != NULL) 477 memset(fma, 0, chunk * sizeof(struct vm_page)); 478 } 479 } 480 free(fma, M_TEMP); 481 free(ma, M_TEMP); 482 483 return ((void *)off); 484 } 485 486 void 487 vunmap(void *addr) 488 { 489 struct vmmap *vmmap; 490 491 vmmap = vmmap_remove(addr); 492 if (vmmap == NULL) 493 return; 494 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE); 495 kva_free((vm_offset_t)addr, vmmap->vm_size); 496 kfree(vmmap); 497 } 498 499 vm_fault_t 500 lkpi_vmf_insert_pfn_prot_locked(struct vm_area_struct *vma, unsigned long addr, 501 unsigned long pfn, pgprot_t prot) 502 { 503 struct pctrie_iter pages; 504 vm_object_t vm_obj = vma->vm_obj; 505 vm_object_t tmp_obj; 506 vm_page_t page; 507 vm_pindex_t pindex; 508 509 VM_OBJECT_ASSERT_WLOCKED(vm_obj); 510 vm_page_iter_init(&pages, vm_obj); 511 pindex = OFF_TO_IDX(addr - vma->vm_start); 512 if (vma->vm_pfn_count == 0) 513 vma->vm_pfn_first = pindex; 514 MPASS(pindex <= OFF_TO_IDX(vma->vm_end)); 515 516 retry: 517 page = vm_page_grab_iter(vm_obj, pindex, VM_ALLOC_NOCREAT, &pages); 518 if (page == NULL) { 519 page = PHYS_TO_VM_PAGE(IDX_TO_OFF(pfn)); 520 if (page == NULL) 521 return (VM_FAULT_SIGBUS); 522 if (!vm_page_busy_acquire(page, VM_ALLOC_WAITFAIL)) { 523 pctrie_iter_reset(&pages); 524 goto retry; 525 } 526 if (page->object != NULL) { 527 tmp_obj = page->object; 528 vm_page_xunbusy(page); 529 VM_OBJECT_WUNLOCK(vm_obj); 530 VM_OBJECT_WLOCK(tmp_obj); 531 if (page->object == tmp_obj && 532 vm_page_busy_acquire(page, VM_ALLOC_WAITFAIL)) { 533 KASSERT(page->object == tmp_obj, 534 ("page has changed identity")); 535 KASSERT((page->oflags & VPO_UNMANAGED) == 0, 536 ("page does not belong to shmem")); 537 vm_pager_page_unswapped(page); 538 if (pmap_page_is_mapped(page)) { 539 vm_page_xunbusy(page); 540 VM_OBJECT_WUNLOCK(tmp_obj); 541 printf("%s: page rename failed: page " 542 "is mapped\n", __func__); 543 VM_OBJECT_WLOCK(vm_obj); 544 return (VM_FAULT_NOPAGE); 545 } 546 vm_page_remove(page); 547 } 548 VM_OBJECT_WUNLOCK(tmp_obj); 549 pctrie_iter_reset(&pages); 550 VM_OBJECT_WLOCK(vm_obj); 551 goto retry; 552 } 553 if (vm_page_iter_insert(page, vm_obj, pindex, &pages) != 0) { 554 vm_page_xunbusy(page); 555 return (VM_FAULT_OOM); 556 } 557 vm_page_valid(page); 558 } 559 pmap_page_set_memattr(page, pgprot2cachemode(prot)); 560 vma->vm_pfn_count++; 561 562 return (VM_FAULT_NOPAGE); 563 } 564 565 int 566 lkpi_remap_pfn_range(struct vm_area_struct *vma, unsigned long start_addr, 567 unsigned long start_pfn, unsigned long size, pgprot_t prot) 568 { 569 vm_object_t vm_obj; 570 unsigned long addr, pfn; 571 int err = 0; 572 573 vm_obj = vma->vm_obj; 574 575 VM_OBJECT_WLOCK(vm_obj); 576 for (addr = start_addr, pfn = start_pfn; 577 addr < start_addr + size; 578 addr += PAGE_SIZE) { 579 vm_fault_t ret; 580 retry: 581 ret = lkpi_vmf_insert_pfn_prot_locked(vma, addr, pfn, prot); 582 583 if ((ret & VM_FAULT_OOM) != 0) { 584 VM_OBJECT_WUNLOCK(vm_obj); 585 vm_wait(NULL); 586 VM_OBJECT_WLOCK(vm_obj); 587 goto retry; 588 } 589 590 if ((ret & VM_FAULT_ERROR) != 0) { 591 err = -EFAULT; 592 break; 593 } 594 595 pfn++; 596 } 597 VM_OBJECT_WUNLOCK(vm_obj); 598 599 if (unlikely(err)) { 600 zap_vma_ptes(vma, start_addr, 601 (pfn - start_pfn) << PAGE_SHIFT); 602 return (err); 603 } 604 605 return (0); 606 } 607 608 int 609 lkpi_io_mapping_map_user(struct io_mapping *iomap, 610 struct vm_area_struct *vma, unsigned long addr, 611 unsigned long pfn, unsigned long size) 612 { 613 pgprot_t prot; 614 int ret; 615 616 prot = cachemode2protval(iomap->attr); 617 ret = lkpi_remap_pfn_range(vma, addr, pfn, size, prot); 618 619 return (ret); 620 } 621 622 /* 623 * Although FreeBSD version of unmap_mapping_range has semantics and types of 624 * parameters compatible with Linux version, the values passed in are different 625 * @obj should match to vm_private_data field of vm_area_struct returned by 626 * mmap file operation handler, see linux_file_mmap_single() sources 627 * @holelen should match to size of area to be munmapped. 628 */ 629 void 630 lkpi_unmap_mapping_range(void *obj, loff_t const holebegin __unused, 631 loff_t const holelen __unused, int even_cows __unused) 632 { 633 vm_object_t devobj; 634 635 devobj = cdev_pager_lookup(obj); 636 if (devobj != NULL) { 637 cdev_mgtdev_pager_free_pages(devobj); 638 vm_object_deallocate(devobj); 639 } 640 } 641 642 int 643 lkpi_arch_phys_wc_add(unsigned long base, unsigned long size) 644 { 645 #ifdef __i386__ 646 struct mem_range_desc *mrdesc; 647 int error, id, act; 648 649 /* If PAT is available, do nothing */ 650 if (pat_works) 651 return (0); 652 653 mrdesc = malloc(sizeof(*mrdesc), M_LKMTRR, M_WAITOK); 654 mrdesc->mr_base = base; 655 mrdesc->mr_len = size; 656 mrdesc->mr_flags = MDF_WRITECOMBINE; 657 strlcpy(mrdesc->mr_owner, "drm", sizeof(mrdesc->mr_owner)); 658 act = MEMRANGE_SET_UPDATE; 659 error = mem_range_attr_set(mrdesc, &act); 660 if (error == 0) { 661 error = idr_get_new(&mtrr_idr, mrdesc, &id); 662 MPASS(idr_find(&mtrr_idr, id) == mrdesc); 663 if (error != 0) { 664 act = MEMRANGE_SET_REMOVE; 665 mem_range_attr_set(mrdesc, &act); 666 } 667 } 668 if (error != 0) { 669 free(mrdesc, M_LKMTRR); 670 pr_warn( 671 "Failed to add WC MTRR for [%p-%p]: %d; " 672 "performance may suffer\n", 673 (void *)base, (void *)(base + size - 1), error); 674 } else 675 pr_warn("Successfully added WC MTRR for [%p-%p]\n", 676 (void *)base, (void *)(base + size - 1)); 677 678 return (error != 0 ? -error : id + __MTRR_ID_BASE); 679 #else 680 return (0); 681 #endif 682 } 683 684 void 685 lkpi_arch_phys_wc_del(int reg) 686 { 687 #ifdef __i386__ 688 struct mem_range_desc *mrdesc; 689 int act; 690 691 /* Check if arch_phys_wc_add() failed. */ 692 if (reg < __MTRR_ID_BASE) 693 return; 694 695 mrdesc = idr_find(&mtrr_idr, reg - __MTRR_ID_BASE); 696 MPASS(mrdesc != NULL); 697 idr_remove(&mtrr_idr, reg - __MTRR_ID_BASE); 698 act = MEMRANGE_SET_REMOVE; 699 mem_range_attr_set(mrdesc, &act); 700 free(mrdesc, M_LKMTRR); 701 #endif 702 } 703 704 /* 705 * This is a highly simplified version of the Linux page_frag_cache. 706 * We only support up-to 1 single page as fragment size and we will 707 * always return a full page. This may be wasteful on small objects 708 * but the only known consumer (mt76) is either asking for a half-page 709 * or a full page. If this was to become a problem we can implement 710 * a more elaborate version. 711 */ 712 void * 713 linuxkpi_page_frag_alloc(struct page_frag_cache *pfc, 714 size_t fragsz, gfp_t gfp) 715 { 716 vm_page_t pages; 717 718 if (fragsz == 0) 719 return (NULL); 720 721 KASSERT(fragsz <= PAGE_SIZE, ("%s: fragsz %zu > PAGE_SIZE not yet " 722 "supported", __func__, fragsz)); 723 724 pages = alloc_pages(gfp, flsl(howmany(fragsz, PAGE_SIZE) - 1)); 725 if (pages == NULL) 726 return (NULL); 727 pfc->va = linux_page_address(pages); 728 729 /* Passed in as "count" to __page_frag_cache_drain(). Unused by us. */ 730 pfc->pagecnt_bias = 0; 731 732 return (pfc->va); 733 } 734 735 void 736 linuxkpi_page_frag_free(void *addr) 737 { 738 vm_page_t page; 739 740 page = virt_to_page(addr); 741 linux_free_pages(page, 0); 742 } 743 744 void 745 linuxkpi__page_frag_cache_drain(struct page *page, size_t count __unused) 746 { 747 748 linux_free_pages(page, 0); 749 } 750 751 static void 752 lkpi_page_init(void *arg) 753 { 754 int i; 755 756 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF); 757 for (i = 0; i < VMMAP_HASH_SIZE; i++) 758 LIST_INIT(&vmmaphead[i]); 759 } 760 SYSINIT(lkpi_page, SI_SUB_DRIVERS, SI_ORDER_SECOND, lkpi_page_init, NULL); 761 762 static void 763 lkpi_page_uninit(void *arg) 764 { 765 mtx_destroy(&vmmaplock); 766 } 767 SYSUNINIT(lkpi_page, SI_SUB_DRIVERS, SI_ORDER_SECOND, lkpi_page_uninit, NULL); 768