xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision fc5ef1ca4f293be626e3d021aed0be976a79fcab)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2017 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/sleepqueue.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/bus.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/filio.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_pager.h>
54 
55 #include <machine/stdarg.h>
56 
57 #if defined(__i386__) || defined(__amd64__)
58 #include <machine/md_var.h>
59 #endif
60 
61 #include <linux/kobject.h>
62 #include <linux/device.h>
63 #include <linux/slab.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/cdev.h>
67 #include <linux/file.h>
68 #include <linux/sysfs.h>
69 #include <linux/mm.h>
70 #include <linux/io.h>
71 #include <linux/vmalloc.h>
72 #include <linux/netdevice.h>
73 #include <linux/timer.h>
74 #include <linux/interrupt.h>
75 #include <linux/uaccess.h>
76 #include <linux/list.h>
77 #include <linux/kthread.h>
78 #include <linux/kernel.h>
79 #include <linux/compat.h>
80 #include <linux/poll.h>
81 #include <linux/smp.h>
82 
83 #if defined(__i386__) || defined(__amd64__)
84 #include <asm/smp.h>
85 #endif
86 
87 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
88 
89 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
90 
91 #include <linux/rbtree.h>
92 /* Undo Linux compat changes. */
93 #undef RB_ROOT
94 #undef file
95 #undef cdev
96 #define	RB_ROOT(head)	(head)->rbh_root
97 
98 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
99 
100 struct kobject linux_class_root;
101 struct device linux_root_device;
102 struct class linux_class_misc;
103 struct list_head pci_drivers;
104 struct list_head pci_devices;
105 spinlock_t pci_lock;
106 
107 unsigned long linux_timer_hz_mask;
108 
109 int
110 panic_cmp(struct rb_node *one, struct rb_node *two)
111 {
112 	panic("no cmp");
113 }
114 
115 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
116 
117 int
118 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
119 {
120 	va_list tmp_va;
121 	int len;
122 	char *old;
123 	char *name;
124 	char dummy;
125 
126 	old = kobj->name;
127 
128 	if (old && fmt == NULL)
129 		return (0);
130 
131 	/* compute length of string */
132 	va_copy(tmp_va, args);
133 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
134 	va_end(tmp_va);
135 
136 	/* account for zero termination */
137 	len++;
138 
139 	/* check for error */
140 	if (len < 1)
141 		return (-EINVAL);
142 
143 	/* allocate memory for string */
144 	name = kzalloc(len, GFP_KERNEL);
145 	if (name == NULL)
146 		return (-ENOMEM);
147 	vsnprintf(name, len, fmt, args);
148 	kobj->name = name;
149 
150 	/* free old string */
151 	kfree(old);
152 
153 	/* filter new string */
154 	for (; *name != '\0'; name++)
155 		if (*name == '/')
156 			*name = '!';
157 	return (0);
158 }
159 
160 int
161 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
162 {
163 	va_list args;
164 	int error;
165 
166 	va_start(args, fmt);
167 	error = kobject_set_name_vargs(kobj, fmt, args);
168 	va_end(args);
169 
170 	return (error);
171 }
172 
173 static int
174 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
175 {
176 	const struct kobj_type *t;
177 	int error;
178 
179 	kobj->parent = parent;
180 	error = sysfs_create_dir(kobj);
181 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
182 		struct attribute **attr;
183 		t = kobj->ktype;
184 
185 		for (attr = t->default_attrs; *attr != NULL; attr++) {
186 			error = sysfs_create_file(kobj, *attr);
187 			if (error)
188 				break;
189 		}
190 		if (error)
191 			sysfs_remove_dir(kobj);
192 
193 	}
194 	return (error);
195 }
196 
197 int
198 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
199 {
200 	va_list args;
201 	int error;
202 
203 	va_start(args, fmt);
204 	error = kobject_set_name_vargs(kobj, fmt, args);
205 	va_end(args);
206 	if (error)
207 		return (error);
208 
209 	return kobject_add_complete(kobj, parent);
210 }
211 
212 void
213 linux_kobject_release(struct kref *kref)
214 {
215 	struct kobject *kobj;
216 	char *name;
217 
218 	kobj = container_of(kref, struct kobject, kref);
219 	sysfs_remove_dir(kobj);
220 	name = kobj->name;
221 	if (kobj->ktype && kobj->ktype->release)
222 		kobj->ktype->release(kobj);
223 	kfree(name);
224 }
225 
226 static void
227 linux_kobject_kfree(struct kobject *kobj)
228 {
229 	kfree(kobj);
230 }
231 
232 static void
233 linux_kobject_kfree_name(struct kobject *kobj)
234 {
235 	if (kobj) {
236 		kfree(kobj->name);
237 	}
238 }
239 
240 const struct kobj_type linux_kfree_type = {
241 	.release = linux_kobject_kfree
242 };
243 
244 static void
245 linux_device_release(struct device *dev)
246 {
247 	pr_debug("linux_device_release: %s\n", dev_name(dev));
248 	kfree(dev);
249 }
250 
251 static ssize_t
252 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
253 {
254 	struct class_attribute *dattr;
255 	ssize_t error;
256 
257 	dattr = container_of(attr, struct class_attribute, attr);
258 	error = -EIO;
259 	if (dattr->show)
260 		error = dattr->show(container_of(kobj, struct class, kobj),
261 		    dattr, buf);
262 	return (error);
263 }
264 
265 static ssize_t
266 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
267     size_t count)
268 {
269 	struct class_attribute *dattr;
270 	ssize_t error;
271 
272 	dattr = container_of(attr, struct class_attribute, attr);
273 	error = -EIO;
274 	if (dattr->store)
275 		error = dattr->store(container_of(kobj, struct class, kobj),
276 		    dattr, buf, count);
277 	return (error);
278 }
279 
280 static void
281 linux_class_release(struct kobject *kobj)
282 {
283 	struct class *class;
284 
285 	class = container_of(kobj, struct class, kobj);
286 	if (class->class_release)
287 		class->class_release(class);
288 }
289 
290 static const struct sysfs_ops linux_class_sysfs = {
291 	.show  = linux_class_show,
292 	.store = linux_class_store,
293 };
294 
295 const struct kobj_type linux_class_ktype = {
296 	.release = linux_class_release,
297 	.sysfs_ops = &linux_class_sysfs
298 };
299 
300 static void
301 linux_dev_release(struct kobject *kobj)
302 {
303 	struct device *dev;
304 
305 	dev = container_of(kobj, struct device, kobj);
306 	/* This is the precedence defined by linux. */
307 	if (dev->release)
308 		dev->release(dev);
309 	else if (dev->class && dev->class->dev_release)
310 		dev->class->dev_release(dev);
311 }
312 
313 static ssize_t
314 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
315 {
316 	struct device_attribute *dattr;
317 	ssize_t error;
318 
319 	dattr = container_of(attr, struct device_attribute, attr);
320 	error = -EIO;
321 	if (dattr->show)
322 		error = dattr->show(container_of(kobj, struct device, kobj),
323 		    dattr, buf);
324 	return (error);
325 }
326 
327 static ssize_t
328 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
329     size_t count)
330 {
331 	struct device_attribute *dattr;
332 	ssize_t error;
333 
334 	dattr = container_of(attr, struct device_attribute, attr);
335 	error = -EIO;
336 	if (dattr->store)
337 		error = dattr->store(container_of(kobj, struct device, kobj),
338 		    dattr, buf, count);
339 	return (error);
340 }
341 
342 static const struct sysfs_ops linux_dev_sysfs = {
343 	.show  = linux_dev_show,
344 	.store = linux_dev_store,
345 };
346 
347 const struct kobj_type linux_dev_ktype = {
348 	.release = linux_dev_release,
349 	.sysfs_ops = &linux_dev_sysfs
350 };
351 
352 struct device *
353 device_create(struct class *class, struct device *parent, dev_t devt,
354     void *drvdata, const char *fmt, ...)
355 {
356 	struct device *dev;
357 	va_list args;
358 
359 	dev = kzalloc(sizeof(*dev), M_WAITOK);
360 	dev->parent = parent;
361 	dev->class = class;
362 	dev->devt = devt;
363 	dev->driver_data = drvdata;
364 	dev->release = linux_device_release;
365 	va_start(args, fmt);
366 	kobject_set_name_vargs(&dev->kobj, fmt, args);
367 	va_end(args);
368 	device_register(dev);
369 
370 	return (dev);
371 }
372 
373 int
374 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
375     struct kobject *parent, const char *fmt, ...)
376 {
377 	va_list args;
378 	int error;
379 
380 	kobject_init(kobj, ktype);
381 	kobj->ktype = ktype;
382 	kobj->parent = parent;
383 	kobj->name = NULL;
384 
385 	va_start(args, fmt);
386 	error = kobject_set_name_vargs(kobj, fmt, args);
387 	va_end(args);
388 	if (error)
389 		return (error);
390 	return kobject_add_complete(kobj, parent);
391 }
392 
393 static void
394 linux_file_dtor(void *cdp)
395 {
396 	struct linux_file *filp;
397 
398 	linux_set_current(curthread);
399 	filp = cdp;
400 	filp->f_op->release(filp->f_vnode, filp);
401 	vdrop(filp->f_vnode);
402 	kfree(filp);
403 }
404 
405 static void
406 linux_kq_lock(void *arg)
407 {
408 	spinlock_t *s = arg;
409 
410 	spin_lock(s);
411 }
412 static void
413 linux_kq_unlock(void *arg)
414 {
415 	spinlock_t *s = arg;
416 
417 	spin_unlock(s);
418 }
419 
420 static void
421 linux_kq_lock_owned(void *arg)
422 {
423 #ifdef INVARIANTS
424 	spinlock_t *s = arg;
425 
426 	mtx_assert(&s->m, MA_OWNED);
427 #endif
428 }
429 
430 static void
431 linux_kq_lock_unowned(void *arg)
432 {
433 #ifdef INVARIANTS
434 	spinlock_t *s = arg;
435 
436 	mtx_assert(&s->m, MA_NOTOWNED);
437 #endif
438 }
439 
440 static void
441 linux_dev_kqfilter_poll(struct linux_file *, int);
442 
443 struct linux_file *
444 linux_file_alloc(void)
445 {
446 	struct linux_file *filp;
447 
448 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
449 
450 	/* set initial refcount */
451 	filp->f_count = 1;
452 
453 	/* setup fields needed by kqueue support */
454 	spin_lock_init(&filp->f_kqlock);
455 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
456 	    linux_kq_lock, linux_kq_unlock,
457 	    linux_kq_lock_owned, linux_kq_lock_unowned);
458 
459 	return (filp);
460 }
461 
462 void
463 linux_file_free(struct linux_file *filp)
464 {
465 	if (filp->_file == NULL) {
466 		if (filp->f_shmem != NULL)
467 			vm_object_deallocate(filp->f_shmem);
468 		kfree(filp);
469 	} else {
470 		/*
471 		 * The close method of the character device or file
472 		 * will free the linux_file structure:
473 		 */
474 		_fdrop(filp->_file, curthread);
475 	}
476 }
477 
478 static int
479 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
480     vm_page_t *mres)
481 {
482 	struct vm_area_struct *vmap;
483 
484 	vmap = linux_cdev_handle_find(vm_obj->handle);
485 
486 	MPASS(vmap != NULL);
487 	MPASS(vmap->vm_private_data == vm_obj->handle);
488 
489 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
490 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
491 		vm_page_t page;
492 
493 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
494 			/*
495 			 * If the passed in result page is a fake
496 			 * page, update it with the new physical
497 			 * address.
498 			 */
499 			page = *mres;
500 			vm_page_updatefake(page, paddr, vm_obj->memattr);
501 		} else {
502 			/*
503 			 * Replace the passed in "mres" page with our
504 			 * own fake page and free up the all of the
505 			 * original pages.
506 			 */
507 			VM_OBJECT_WUNLOCK(vm_obj);
508 			page = vm_page_getfake(paddr, vm_obj->memattr);
509 			VM_OBJECT_WLOCK(vm_obj);
510 
511 			vm_page_replace_checked(page, vm_obj,
512 			    (*mres)->pindex, *mres);
513 
514 			vm_page_lock(*mres);
515 			vm_page_free(*mres);
516 			vm_page_unlock(*mres);
517 			*mres = page;
518 		}
519 		page->valid = VM_PAGE_BITS_ALL;
520 		return (VM_PAGER_OK);
521 	}
522 	return (VM_PAGER_FAIL);
523 }
524 
525 static int
526 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
527     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
528 {
529 	struct vm_area_struct *vmap;
530 	int err;
531 
532 	linux_set_current(curthread);
533 
534 	/* get VM area structure */
535 	vmap = linux_cdev_handle_find(vm_obj->handle);
536 	MPASS(vmap != NULL);
537 	MPASS(vmap->vm_private_data == vm_obj->handle);
538 
539 	VM_OBJECT_WUNLOCK(vm_obj);
540 
541 	down_write(&vmap->vm_mm->mmap_sem);
542 	if (unlikely(vmap->vm_ops == NULL)) {
543 		err = VM_FAULT_SIGBUS;
544 	} else {
545 		struct vm_fault vmf;
546 
547 		/* fill out VM fault structure */
548 		vmf.virtual_address = (void *)((uintptr_t)pidx << PAGE_SHIFT);
549 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
550 		vmf.pgoff = 0;
551 		vmf.page = NULL;
552 
553 		vmap->vm_pfn_count = 0;
554 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
555 		vmap->vm_obj = vm_obj;
556 
557 		err = vmap->vm_ops->fault(vmap, &vmf);
558 
559 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
560 			kern_yield(PRI_USER);
561 			err = vmap->vm_ops->fault(vmap, &vmf);
562 		}
563 	}
564 
565 	/* translate return code */
566 	switch (err) {
567 	case VM_FAULT_OOM:
568 		err = VM_PAGER_AGAIN;
569 		break;
570 	case VM_FAULT_SIGBUS:
571 		err = VM_PAGER_BAD;
572 		break;
573 	case VM_FAULT_NOPAGE:
574 		/*
575 		 * By contract the fault handler will return having
576 		 * busied all the pages itself. If pidx is already
577 		 * found in the object, it will simply xbusy the first
578 		 * page and return with vm_pfn_count set to 1.
579 		 */
580 		*first = vmap->vm_pfn_first;
581 		*last = *first + vmap->vm_pfn_count - 1;
582 		err = VM_PAGER_OK;
583 		break;
584 	default:
585 		err = VM_PAGER_ERROR;
586 		break;
587 	}
588 	up_write(&vmap->vm_mm->mmap_sem);
589 	VM_OBJECT_WLOCK(vm_obj);
590 	return (err);
591 }
592 
593 static struct rwlock linux_vma_lock;
594 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
595     TAILQ_HEAD_INITIALIZER(linux_vma_head);
596 
597 static void
598 linux_cdev_handle_free(struct vm_area_struct *vmap)
599 {
600 	/* Drop reference on vm_file */
601 	if (vmap->vm_file != NULL)
602 		fput(vmap->vm_file);
603 
604 	/* Drop reference on mm_struct */
605 	mmput(vmap->vm_mm);
606 
607 	kfree(vmap);
608 }
609 
610 static struct vm_area_struct *
611 linux_cdev_handle_insert(void *handle, struct vm_area_struct *vmap)
612 {
613 	struct vm_area_struct *ptr;
614 
615 	rw_wlock(&linux_vma_lock);
616 	TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
617 		if (ptr->vm_private_data == handle) {
618 			rw_wunlock(&linux_vma_lock);
619 			linux_cdev_handle_free(vmap);
620 			return (NULL);
621 		}
622 	}
623 	TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
624 	rw_wunlock(&linux_vma_lock);
625 	return (vmap);
626 }
627 
628 static void
629 linux_cdev_handle_remove(struct vm_area_struct *vmap)
630 {
631 	rw_wlock(&linux_vma_lock);
632 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
633 	rw_wunlock(&linux_vma_lock);
634 }
635 
636 static struct vm_area_struct *
637 linux_cdev_handle_find(void *handle)
638 {
639 	struct vm_area_struct *vmap;
640 
641 	rw_rlock(&linux_vma_lock);
642 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
643 		if (vmap->vm_private_data == handle)
644 			break;
645 	}
646 	rw_runlock(&linux_vma_lock);
647 	return (vmap);
648 }
649 
650 static int
651 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
652 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
653 {
654 
655 	MPASS(linux_cdev_handle_find(handle) != NULL);
656 	*color = 0;
657 	return (0);
658 }
659 
660 static void
661 linux_cdev_pager_dtor(void *handle)
662 {
663 	const struct vm_operations_struct *vm_ops;
664 	struct vm_area_struct *vmap;
665 
666 	vmap = linux_cdev_handle_find(handle);
667 	MPASS(vmap != NULL);
668 
669 	/*
670 	 * Remove handle before calling close operation to prevent
671 	 * other threads from reusing the handle pointer.
672 	 */
673 	linux_cdev_handle_remove(vmap);
674 
675 	down_write(&vmap->vm_mm->mmap_sem);
676 	vm_ops = vmap->vm_ops;
677 	if (likely(vm_ops != NULL))
678 		vm_ops->close(vmap);
679 	up_write(&vmap->vm_mm->mmap_sem);
680 
681 	linux_cdev_handle_free(vmap);
682 }
683 
684 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
685   {
686 	/* OBJT_MGTDEVICE */
687 	.cdev_pg_populate	= linux_cdev_pager_populate,
688 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
689 	.cdev_pg_dtor	= linux_cdev_pager_dtor
690   },
691   {
692 	/* OBJT_DEVICE */
693 	.cdev_pg_fault	= linux_cdev_pager_fault,
694 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
695 	.cdev_pg_dtor	= linux_cdev_pager_dtor
696   },
697 };
698 
699 static int
700 linux_dev_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
701 {
702 	struct linux_cdev *ldev;
703 	struct linux_file *filp;
704 	struct file *file;
705 	int error;
706 
707 	file = td->td_fpop;
708 	ldev = dev->si_drv1;
709 	if (ldev == NULL)
710 		return (ENODEV);
711 
712 	filp = linux_file_alloc();
713 	filp->f_dentry = &filp->f_dentry_store;
714 	filp->f_op = ldev->ops;
715 	filp->f_flags = file->f_flag;
716 	vhold(file->f_vnode);
717 	filp->f_vnode = file->f_vnode;
718 	filp->_file = file;
719 
720 	linux_set_current(td);
721 
722 	if (filp->f_op->open) {
723 		error = -filp->f_op->open(file->f_vnode, filp);
724 		if (error) {
725 			vdrop(filp->f_vnode);
726 			kfree(filp);
727 			goto done;
728 		}
729 	}
730 	error = devfs_set_cdevpriv(filp, linux_file_dtor);
731 	if (error) {
732 		filp->f_op->release(file->f_vnode, filp);
733 		vdrop(filp->f_vnode);
734 		kfree(filp);
735 	}
736 done:
737 	return (error);
738 }
739 
740 static int
741 linux_dev_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
742 {
743 	struct linux_file *filp;
744 	struct file *file;
745 	int error;
746 
747 	file = td->td_fpop;
748 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
749 		return (error);
750 	filp->f_flags = file->f_flag;
751 	devfs_clear_cdevpriv();
752 
753 	return (0);
754 }
755 
756 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
757 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
758 
759 static inline int
760 linux_remap_address(void **uaddr, size_t len)
761 {
762 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
763 
764 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
765 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
766 		struct task_struct *pts = current;
767 		if (pts == NULL) {
768 			*uaddr = NULL;
769 			return (1);
770 		}
771 
772 		/* compute data offset */
773 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
774 
775 		/* check that length is within bounds */
776 		if ((len > IOCPARM_MAX) ||
777 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
778 			*uaddr = NULL;
779 			return (1);
780 		}
781 
782 		/* re-add kernel buffer address */
783 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
784 
785 		/* update address location */
786 		*uaddr = (void *)uaddr_val;
787 		return (1);
788 	}
789 	return (0);
790 }
791 
792 int
793 linux_copyin(const void *uaddr, void *kaddr, size_t len)
794 {
795 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
796 		if (uaddr == NULL)
797 			return (-EFAULT);
798 		memcpy(kaddr, uaddr, len);
799 		return (0);
800 	}
801 	return (-copyin(uaddr, kaddr, len));
802 }
803 
804 int
805 linux_copyout(const void *kaddr, void *uaddr, size_t len)
806 {
807 	if (linux_remap_address(&uaddr, len)) {
808 		if (uaddr == NULL)
809 			return (-EFAULT);
810 		memcpy(uaddr, kaddr, len);
811 		return (0);
812 	}
813 	return (-copyout(kaddr, uaddr, len));
814 }
815 
816 size_t
817 linux_clear_user(void *_uaddr, size_t _len)
818 {
819 	uint8_t *uaddr = _uaddr;
820 	size_t len = _len;
821 
822 	/* make sure uaddr is aligned before going into the fast loop */
823 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
824 		if (subyte(uaddr, 0))
825 			return (_len);
826 		uaddr++;
827 		len--;
828 	}
829 
830 	/* zero 8 bytes at a time */
831 	while (len > 7) {
832 #ifdef __LP64__
833 		if (suword64(uaddr, 0))
834 			return (_len);
835 #else
836 		if (suword32(uaddr, 0))
837 			return (_len);
838 		if (suword32(uaddr + 4, 0))
839 			return (_len);
840 #endif
841 		uaddr += 8;
842 		len -= 8;
843 	}
844 
845 	/* zero fill end, if any */
846 	while (len > 0) {
847 		if (subyte(uaddr, 0))
848 			return (_len);
849 		uaddr++;
850 		len--;
851 	}
852 	return (0);
853 }
854 
855 int
856 linux_access_ok(int rw, const void *uaddr, size_t len)
857 {
858 	uintptr_t saddr;
859 	uintptr_t eaddr;
860 
861 	/* get start and end address */
862 	saddr = (uintptr_t)uaddr;
863 	eaddr = (uintptr_t)uaddr + len;
864 
865 	/* verify addresses are valid for userspace */
866 	return ((saddr == eaddr) ||
867 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
868 }
869 
870 static int
871 linux_dev_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
872     struct thread *td)
873 {
874 	struct linux_file *filp;
875 	struct file *file;
876 	unsigned size;
877 	int error;
878 
879 	file = td->td_fpop;
880 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
881 		return (error);
882 	filp->f_flags = file->f_flag;
883 
884 	/* the LinuxKPI supports blocking and non-blocking I/O */
885 	if (cmd == FIONBIO || cmd == FIOASYNC)
886 		return (0);
887 
888 	linux_set_current(td);
889 	size = IOCPARM_LEN(cmd);
890 	/* refer to logic in sys_ioctl() */
891 	if (size > 0) {
892 		/*
893 		 * Setup hint for linux_copyin() and linux_copyout().
894 		 *
895 		 * Background: Linux code expects a user-space address
896 		 * while FreeBSD supplies a kernel-space address.
897 		 */
898 		current->bsd_ioctl_data = data;
899 		current->bsd_ioctl_len = size;
900 		data = (void *)LINUX_IOCTL_MIN_PTR;
901 	} else {
902 		/* fetch user-space pointer */
903 		data = *(void **)data;
904 	}
905 #if defined(__amd64__)
906 	if (td->td_proc->p_elf_machine == EM_386) {
907 		/* try the compat IOCTL handler first */
908 		if (filp->f_op->compat_ioctl != NULL)
909 			error = -filp->f_op->compat_ioctl(filp, cmd, (u_long)data);
910 		else
911 			error = ENOTTY;
912 
913 		/* fallback to the regular IOCTL handler, if any */
914 		if (error == ENOTTY && filp->f_op->unlocked_ioctl != NULL)
915 			error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data);
916 	} else
917 #endif
918 	if (filp->f_op->unlocked_ioctl != NULL)
919 		error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data);
920 	else
921 		error = ENOTTY;
922 	if (size > 0) {
923 		current->bsd_ioctl_data = NULL;
924 		current->bsd_ioctl_len = 0;
925 	}
926 
927 	if (error == EWOULDBLOCK) {
928 		/* update kqfilter status, if any */
929 		linux_dev_kqfilter_poll(filp,
930 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
931 	} else if (error == ERESTARTSYS)
932 		error = ERESTART;
933 	return (error);
934 }
935 
936 static int
937 linux_dev_read(struct cdev *dev, struct uio *uio, int ioflag)
938 {
939 	struct linux_file *filp;
940 	struct thread *td;
941 	struct file *file;
942 	ssize_t bytes;
943 	int error;
944 
945 	td = curthread;
946 	file = td->td_fpop;
947 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
948 		return (error);
949 	filp->f_flags = file->f_flag;
950 	/* XXX no support for I/O vectors currently */
951 	if (uio->uio_iovcnt != 1)
952 		return (EOPNOTSUPP);
953 	linux_set_current(td);
954 	if (filp->f_op->read) {
955 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
956 		    uio->uio_iov->iov_len, &uio->uio_offset);
957 		if (bytes >= 0) {
958 			uio->uio_iov->iov_base =
959 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
960 			uio->uio_iov->iov_len -= bytes;
961 			uio->uio_resid -= bytes;
962 		} else {
963 			error = -bytes;
964 			if (error == ERESTARTSYS)
965 				error = ERESTART;
966 		}
967 	} else
968 		error = ENXIO;
969 
970 	/* update kqfilter status, if any */
971 	linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
972 
973 	return (error);
974 }
975 
976 static int
977 linux_dev_write(struct cdev *dev, struct uio *uio, int ioflag)
978 {
979 	struct linux_file *filp;
980 	struct thread *td;
981 	struct file *file;
982 	ssize_t bytes;
983 	int error;
984 
985 	td = curthread;
986 	file = td->td_fpop;
987 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
988 		return (error);
989 	filp->f_flags = file->f_flag;
990 	/* XXX no support for I/O vectors currently */
991 	if (uio->uio_iovcnt != 1)
992 		return (EOPNOTSUPP);
993 	linux_set_current(td);
994 	if (filp->f_op->write) {
995 		bytes = filp->f_op->write(filp, uio->uio_iov->iov_base,
996 		    uio->uio_iov->iov_len, &uio->uio_offset);
997 		if (bytes >= 0) {
998 			uio->uio_iov->iov_base =
999 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1000 			uio->uio_iov->iov_len -= bytes;
1001 			uio->uio_resid -= bytes;
1002 		} else {
1003 			error = -bytes;
1004 			if (error == ERESTARTSYS)
1005 				error = ERESTART;
1006 		}
1007 	} else
1008 		error = ENXIO;
1009 
1010 	/* update kqfilter status, if any */
1011 	linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1012 
1013 	return (error);
1014 }
1015 
1016 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
1017 
1018 static int
1019 linux_dev_poll(struct cdev *dev, int events, struct thread *td)
1020 {
1021 	struct linux_file *filp;
1022 	struct file *file;
1023 	int revents;
1024 
1025 	if (devfs_get_cdevpriv((void **)&filp) != 0)
1026 		goto error;
1027 
1028 	file = td->td_fpop;
1029 	filp->f_flags = file->f_flag;
1030 	linux_set_current(td);
1031 	if (filp->f_op->poll != NULL)
1032 		revents = filp->f_op->poll(filp, LINUX_POLL_TABLE_NORMAL) & events;
1033 	else
1034 		revents = 0;
1035 
1036 	return (revents);
1037 error:
1038 	return (events & (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
1039 }
1040 
1041 /*
1042  * This function atomically updates the poll wakeup state and returns
1043  * the previous state at the time of update.
1044  */
1045 static uint8_t
1046 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1047 {
1048 	int c, old;
1049 
1050 	c = v->counter;
1051 
1052 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1053 		c = old;
1054 
1055 	return (c);
1056 }
1057 
1058 
1059 static int
1060 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1061 {
1062 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1063 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1064 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1065 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1066 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1067 	};
1068 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1069 
1070 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1071 	case LINUX_FWQ_STATE_QUEUED:
1072 		linux_poll_wakeup(filp);
1073 		return (1);
1074 	default:
1075 		return (0);
1076 	}
1077 }
1078 
1079 void
1080 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1081 {
1082 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1083 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1084 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1085 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1086 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1087 	};
1088 
1089 	/* check if we are called inside the select system call */
1090 	if (p == LINUX_POLL_TABLE_NORMAL)
1091 		selrecord(curthread, &filp->f_selinfo);
1092 
1093 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1094 	case LINUX_FWQ_STATE_INIT:
1095 		/* NOTE: file handles can only belong to one wait-queue */
1096 		filp->f_wait_queue.wqh = wqh;
1097 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1098 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1099 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1100 		break;
1101 	default:
1102 		break;
1103 	}
1104 }
1105 
1106 static void
1107 linux_poll_wait_dequeue(struct linux_file *filp)
1108 {
1109 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1110 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1111 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1112 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1113 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1114 	};
1115 
1116 	seldrain(&filp->f_selinfo);
1117 
1118 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1119 	case LINUX_FWQ_STATE_NOT_READY:
1120 	case LINUX_FWQ_STATE_QUEUED:
1121 	case LINUX_FWQ_STATE_READY:
1122 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1123 		break;
1124 	default:
1125 		break;
1126 	}
1127 }
1128 
1129 void
1130 linux_poll_wakeup(struct linux_file *filp)
1131 {
1132 	/* this function should be NULL-safe */
1133 	if (filp == NULL)
1134 		return;
1135 
1136 	selwakeup(&filp->f_selinfo);
1137 
1138 	spin_lock(&filp->f_kqlock);
1139 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1140 	    LINUX_KQ_FLAG_NEED_WRITE;
1141 
1142 	/* make sure the "knote" gets woken up */
1143 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1144 	spin_unlock(&filp->f_kqlock);
1145 }
1146 
1147 static void
1148 linux_dev_kqfilter_detach(struct knote *kn)
1149 {
1150 	struct linux_file *filp = kn->kn_hook;
1151 
1152 	spin_lock(&filp->f_kqlock);
1153 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1154 	spin_unlock(&filp->f_kqlock);
1155 }
1156 
1157 static int
1158 linux_dev_kqfilter_read_event(struct knote *kn, long hint)
1159 {
1160 	struct linux_file *filp = kn->kn_hook;
1161 
1162 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1163 
1164 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1165 }
1166 
1167 static int
1168 linux_dev_kqfilter_write_event(struct knote *kn, long hint)
1169 {
1170 	struct linux_file *filp = kn->kn_hook;
1171 
1172 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1173 
1174 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1175 }
1176 
1177 static struct filterops linux_dev_kqfiltops_read = {
1178 	.f_isfd = 1,
1179 	.f_detach = linux_dev_kqfilter_detach,
1180 	.f_event = linux_dev_kqfilter_read_event,
1181 };
1182 
1183 static struct filterops linux_dev_kqfiltops_write = {
1184 	.f_isfd = 1,
1185 	.f_detach = linux_dev_kqfilter_detach,
1186 	.f_event = linux_dev_kqfilter_write_event,
1187 };
1188 
1189 static void
1190 linux_dev_kqfilter_poll(struct linux_file *filp, int kqflags)
1191 {
1192 	int temp;
1193 
1194 	if (filp->f_kqflags & kqflags) {
1195 		/* get the latest polling state */
1196 		temp = filp->f_op->poll(filp, NULL);
1197 
1198 		spin_lock(&filp->f_kqlock);
1199 		/* clear kqflags */
1200 		filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1201 		    LINUX_KQ_FLAG_NEED_WRITE);
1202 		/* update kqflags */
1203 		if (temp & (POLLIN | POLLOUT)) {
1204 			if (temp & POLLIN)
1205 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1206 			if (temp & POLLOUT)
1207 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1208 
1209 			/* make sure the "knote" gets woken up */
1210 			KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1211 		}
1212 		spin_unlock(&filp->f_kqlock);
1213 	}
1214 }
1215 
1216 static int
1217 linux_dev_kqfilter(struct cdev *dev, struct knote *kn)
1218 {
1219 	struct linux_file *filp;
1220 	struct file *file;
1221 	struct thread *td;
1222 	int error;
1223 
1224 	td = curthread;
1225 	file = td->td_fpop;
1226 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
1227 		return (error);
1228 	filp->f_flags = file->f_flag;
1229 	if (filp->f_op->poll == NULL)
1230 		return (EINVAL);
1231 
1232 	spin_lock(&filp->f_kqlock);
1233 	switch (kn->kn_filter) {
1234 	case EVFILT_READ:
1235 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1236 		kn->kn_fop = &linux_dev_kqfiltops_read;
1237 		kn->kn_hook = filp;
1238 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1239 		break;
1240 	case EVFILT_WRITE:
1241 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1242 		kn->kn_fop = &linux_dev_kqfiltops_write;
1243 		kn->kn_hook = filp;
1244 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1245 		break;
1246 	default:
1247 		error = EINVAL;
1248 		break;
1249 	}
1250 	spin_unlock(&filp->f_kqlock);
1251 
1252 	if (error == 0) {
1253 		linux_set_current(td);
1254 
1255 		/* update kqfilter status, if any */
1256 		linux_dev_kqfilter_poll(filp,
1257 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1258 	}
1259 	return (error);
1260 }
1261 
1262 static int
1263 linux_dev_mmap_single(struct cdev *dev, vm_ooffset_t *offset,
1264     vm_size_t size, struct vm_object **object, int nprot)
1265 {
1266 	struct vm_area_struct *vmap;
1267 	struct mm_struct *mm;
1268 	struct linux_file *filp;
1269 	struct thread *td;
1270 	struct file *file;
1271 	vm_memattr_t attr;
1272 	int error;
1273 
1274 	td = curthread;
1275 	file = td->td_fpop;
1276 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
1277 		return (error);
1278 	filp->f_flags = file->f_flag;
1279 
1280 	if (filp->f_op->mmap == NULL)
1281 		return (ENODEV);
1282 
1283 	linux_set_current(td);
1284 
1285 	/*
1286 	 * The same VM object might be shared by multiple processes
1287 	 * and the mm_struct is usually freed when a process exits.
1288 	 *
1289 	 * The atomic reference below makes sure the mm_struct is
1290 	 * available as long as the vmap is in the linux_vma_head.
1291 	 */
1292 	mm = current->mm;
1293 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1294 		return (EINVAL);
1295 
1296 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1297 	vmap->vm_start = 0;
1298 	vmap->vm_end = size;
1299 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1300 	vmap->vm_pfn = 0;
1301 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1302 	vmap->vm_ops = NULL;
1303 	vmap->vm_file = get_file(filp);
1304 	vmap->vm_mm = mm;
1305 
1306 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1307 		error = EINTR;
1308 	} else {
1309 		error = -filp->f_op->mmap(filp, vmap);
1310 		up_write(&vmap->vm_mm->mmap_sem);
1311 	}
1312 
1313 	if (error != 0) {
1314 		linux_cdev_handle_free(vmap);
1315 		return (error);
1316 	}
1317 
1318 	attr = pgprot2cachemode(vmap->vm_page_prot);
1319 
1320 	if (vmap->vm_ops != NULL) {
1321 		void *vm_private_data;
1322 
1323 		if (vmap->vm_ops->open == NULL ||
1324 		    vmap->vm_ops->close == NULL ||
1325 		    vmap->vm_private_data == NULL) {
1326 			linux_cdev_handle_free(vmap);
1327 			return (EINVAL);
1328 		}
1329 
1330 		vm_private_data = vmap->vm_private_data;
1331 
1332 		vmap = linux_cdev_handle_insert(vm_private_data, vmap);
1333 
1334 		if (vmap->vm_ops->fault == NULL) {
1335 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1336 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1337 			    curthread->td_ucred);
1338 		} else {
1339 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1340 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1341 			    curthread->td_ucred);
1342 		}
1343 
1344 		if (*object == NULL) {
1345 			linux_cdev_handle_remove(vmap);
1346 			linux_cdev_handle_free(vmap);
1347 			return (EINVAL);
1348 		}
1349 	} else {
1350 		struct sglist *sg;
1351 
1352 		sg = sglist_alloc(1, M_WAITOK);
1353 		sglist_append_phys(sg,
1354 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1355 
1356 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1357 		    nprot, 0, curthread->td_ucred);
1358 
1359 		linux_cdev_handle_free(vmap);
1360 
1361 		if (*object == NULL) {
1362 			sglist_free(sg);
1363 			return (EINVAL);
1364 		}
1365 	}
1366 
1367 	if (attr != VM_MEMATTR_DEFAULT) {
1368 		VM_OBJECT_WLOCK(*object);
1369 		vm_object_set_memattr(*object, attr);
1370 		VM_OBJECT_WUNLOCK(*object);
1371 	}
1372 	*offset = 0;
1373 	return (0);
1374 }
1375 
1376 struct cdevsw linuxcdevsw = {
1377 	.d_version = D_VERSION,
1378 	.d_flags = D_TRACKCLOSE,
1379 	.d_open = linux_dev_open,
1380 	.d_close = linux_dev_close,
1381 	.d_read = linux_dev_read,
1382 	.d_write = linux_dev_write,
1383 	.d_ioctl = linux_dev_ioctl,
1384 	.d_mmap_single = linux_dev_mmap_single,
1385 	.d_poll = linux_dev_poll,
1386 	.d_kqfilter = linux_dev_kqfilter,
1387 	.d_name = "lkpidev",
1388 };
1389 
1390 static int
1391 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1392     int flags, struct thread *td)
1393 {
1394 	struct linux_file *filp;
1395 	ssize_t bytes;
1396 	int error;
1397 
1398 	error = 0;
1399 	filp = (struct linux_file *)file->f_data;
1400 	filp->f_flags = file->f_flag;
1401 	/* XXX no support for I/O vectors currently */
1402 	if (uio->uio_iovcnt != 1)
1403 		return (EOPNOTSUPP);
1404 	linux_set_current(td);
1405 	if (filp->f_op->read) {
1406 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
1407 		    uio->uio_iov->iov_len, &uio->uio_offset);
1408 		if (bytes >= 0) {
1409 			uio->uio_iov->iov_base =
1410 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1411 			uio->uio_iov->iov_len -= bytes;
1412 			uio->uio_resid -= bytes;
1413 		} else
1414 			error = -bytes;
1415 	} else
1416 		error = ENXIO;
1417 
1418 	return (error);
1419 }
1420 
1421 static int
1422 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1423     struct thread *td)
1424 {
1425 	struct linux_file *filp;
1426 	int revents;
1427 
1428 	filp = (struct linux_file *)file->f_data;
1429 	filp->f_flags = file->f_flag;
1430 	linux_set_current(td);
1431 	if (filp->f_op->poll != NULL)
1432 		revents = filp->f_op->poll(filp, LINUX_POLL_TABLE_NORMAL) & events;
1433 	else
1434 		revents = 0;
1435 
1436 	return (revents);
1437 }
1438 
1439 static int
1440 linux_file_close(struct file *file, struct thread *td)
1441 {
1442 	struct linux_file *filp;
1443 	int error;
1444 
1445 	filp = (struct linux_file *)file->f_data;
1446 	filp->f_flags = file->f_flag;
1447 	linux_set_current(td);
1448 	linux_poll_wait_dequeue(filp);
1449 	error = -filp->f_op->release(NULL, filp);
1450 	funsetown(&filp->f_sigio);
1451 	kfree(filp);
1452 
1453 	return (error);
1454 }
1455 
1456 static int
1457 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1458     struct thread *td)
1459 {
1460 	struct linux_file *filp;
1461 	int error;
1462 
1463 	filp = (struct linux_file *)fp->f_data;
1464 	filp->f_flags = fp->f_flag;
1465 	error = 0;
1466 
1467 	linux_set_current(td);
1468 	switch (cmd) {
1469 	case FIONBIO:
1470 		break;
1471 	case FIOASYNC:
1472 		if (filp->f_op->fasync == NULL)
1473 			break;
1474 		error = filp->f_op->fasync(0, filp, fp->f_flag & FASYNC);
1475 		break;
1476 	case FIOSETOWN:
1477 		error = fsetown(*(int *)data, &filp->f_sigio);
1478 		if (error == 0)
1479 			error = filp->f_op->fasync(0, filp,
1480 			    fp->f_flag & FASYNC);
1481 		break;
1482 	case FIOGETOWN:
1483 		*(int *)data = fgetown(&filp->f_sigio);
1484 		break;
1485 	default:
1486 		error = ENOTTY;
1487 		break;
1488 	}
1489 	return (error);
1490 }
1491 
1492 static int
1493 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1494     struct thread *td)
1495 {
1496 
1497 	return (EOPNOTSUPP);
1498 }
1499 
1500 static int
1501 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1502     struct filedesc *fdp)
1503 {
1504 
1505 	return (0);
1506 }
1507 
1508 unsigned int
1509 linux_iminor(struct inode *inode)
1510 {
1511 	struct linux_cdev *ldev;
1512 
1513 	if (inode == NULL || inode->v_rdev == NULL ||
1514 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1515 		return (-1U);
1516 	ldev = inode->v_rdev->si_drv1;
1517 	if (ldev == NULL)
1518 		return (-1U);
1519 
1520 	return (minor(ldev->dev));
1521 }
1522 
1523 struct fileops linuxfileops = {
1524 	.fo_read = linux_file_read,
1525 	.fo_write = invfo_rdwr,
1526 	.fo_truncate = invfo_truncate,
1527 	.fo_kqfilter = invfo_kqfilter,
1528 	.fo_stat = linux_file_stat,
1529 	.fo_fill_kinfo = linux_file_fill_kinfo,
1530 	.fo_poll = linux_file_poll,
1531 	.fo_close = linux_file_close,
1532 	.fo_ioctl = linux_file_ioctl,
1533 	.fo_chmod = invfo_chmod,
1534 	.fo_chown = invfo_chown,
1535 	.fo_sendfile = invfo_sendfile,
1536 };
1537 
1538 /*
1539  * Hash of vmmap addresses.  This is infrequently accessed and does not
1540  * need to be particularly large.  This is done because we must store the
1541  * caller's idea of the map size to properly unmap.
1542  */
1543 struct vmmap {
1544 	LIST_ENTRY(vmmap)	vm_next;
1545 	void 			*vm_addr;
1546 	unsigned long		vm_size;
1547 };
1548 
1549 struct vmmaphd {
1550 	struct vmmap *lh_first;
1551 };
1552 #define	VMMAP_HASH_SIZE	64
1553 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1554 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1555 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1556 static struct mtx vmmaplock;
1557 
1558 static void
1559 vmmap_add(void *addr, unsigned long size)
1560 {
1561 	struct vmmap *vmmap;
1562 
1563 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1564 	mtx_lock(&vmmaplock);
1565 	vmmap->vm_size = size;
1566 	vmmap->vm_addr = addr;
1567 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1568 	mtx_unlock(&vmmaplock);
1569 }
1570 
1571 static struct vmmap *
1572 vmmap_remove(void *addr)
1573 {
1574 	struct vmmap *vmmap;
1575 
1576 	mtx_lock(&vmmaplock);
1577 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1578 		if (vmmap->vm_addr == addr)
1579 			break;
1580 	if (vmmap)
1581 		LIST_REMOVE(vmmap, vm_next);
1582 	mtx_unlock(&vmmaplock);
1583 
1584 	return (vmmap);
1585 }
1586 
1587 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1588 void *
1589 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1590 {
1591 	void *addr;
1592 
1593 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1594 	if (addr == NULL)
1595 		return (NULL);
1596 	vmmap_add(addr, size);
1597 
1598 	return (addr);
1599 }
1600 #endif
1601 
1602 void
1603 iounmap(void *addr)
1604 {
1605 	struct vmmap *vmmap;
1606 
1607 	vmmap = vmmap_remove(addr);
1608 	if (vmmap == NULL)
1609 		return;
1610 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1611 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1612 #endif
1613 	kfree(vmmap);
1614 }
1615 
1616 
1617 void *
1618 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1619 {
1620 	vm_offset_t off;
1621 	size_t size;
1622 
1623 	size = count * PAGE_SIZE;
1624 	off = kva_alloc(size);
1625 	if (off == 0)
1626 		return (NULL);
1627 	vmmap_add((void *)off, size);
1628 	pmap_qenter(off, pages, count);
1629 
1630 	return ((void *)off);
1631 }
1632 
1633 void
1634 vunmap(void *addr)
1635 {
1636 	struct vmmap *vmmap;
1637 
1638 	vmmap = vmmap_remove(addr);
1639 	if (vmmap == NULL)
1640 		return;
1641 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1642 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1643 	kfree(vmmap);
1644 }
1645 
1646 char *
1647 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1648 {
1649 	unsigned int len;
1650 	char *p;
1651 	va_list aq;
1652 
1653 	va_copy(aq, ap);
1654 	len = vsnprintf(NULL, 0, fmt, aq);
1655 	va_end(aq);
1656 
1657 	p = kmalloc(len + 1, gfp);
1658 	if (p != NULL)
1659 		vsnprintf(p, len + 1, fmt, ap);
1660 
1661 	return (p);
1662 }
1663 
1664 char *
1665 kasprintf(gfp_t gfp, const char *fmt, ...)
1666 {
1667 	va_list ap;
1668 	char *p;
1669 
1670 	va_start(ap, fmt);
1671 	p = kvasprintf(gfp, fmt, ap);
1672 	va_end(ap);
1673 
1674 	return (p);
1675 }
1676 
1677 static void
1678 linux_timer_callback_wrapper(void *context)
1679 {
1680 	struct timer_list *timer;
1681 
1682 	linux_set_current(curthread);
1683 
1684 	timer = context;
1685 	timer->function(timer->data);
1686 }
1687 
1688 void
1689 mod_timer(struct timer_list *timer, int expires)
1690 {
1691 
1692 	timer->expires = expires;
1693 	callout_reset(&timer->timer_callout,
1694 	    linux_timer_jiffies_until(expires),
1695 	    &linux_timer_callback_wrapper, timer);
1696 }
1697 
1698 void
1699 add_timer(struct timer_list *timer)
1700 {
1701 
1702 	callout_reset(&timer->timer_callout,
1703 	    linux_timer_jiffies_until(timer->expires),
1704 	    &linux_timer_callback_wrapper, timer);
1705 }
1706 
1707 void
1708 add_timer_on(struct timer_list *timer, int cpu)
1709 {
1710 
1711 	callout_reset_on(&timer->timer_callout,
1712 	    linux_timer_jiffies_until(timer->expires),
1713 	    &linux_timer_callback_wrapper, timer, cpu);
1714 }
1715 
1716 static void
1717 linux_timer_init(void *arg)
1718 {
1719 
1720 	/*
1721 	 * Compute an internal HZ value which can divide 2**32 to
1722 	 * avoid timer rounding problems when the tick value wraps
1723 	 * around 2**32:
1724 	 */
1725 	linux_timer_hz_mask = 1;
1726 	while (linux_timer_hz_mask < (unsigned long)hz)
1727 		linux_timer_hz_mask *= 2;
1728 	linux_timer_hz_mask--;
1729 }
1730 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1731 
1732 void
1733 linux_complete_common(struct completion *c, int all)
1734 {
1735 	int wakeup_swapper;
1736 
1737 	sleepq_lock(c);
1738 	c->done++;
1739 	if (all)
1740 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1741 	else
1742 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1743 	sleepq_release(c);
1744 	if (wakeup_swapper)
1745 		kick_proc0();
1746 }
1747 
1748 /*
1749  * Indefinite wait for done != 0 with or without signals.
1750  */
1751 int
1752 linux_wait_for_common(struct completion *c, int flags)
1753 {
1754 	int error;
1755 
1756 	if (SCHEDULER_STOPPED())
1757 		return (0);
1758 
1759 	DROP_GIANT();
1760 
1761 	if (flags != 0)
1762 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1763 	else
1764 		flags = SLEEPQ_SLEEP;
1765 	error = 0;
1766 	for (;;) {
1767 		sleepq_lock(c);
1768 		if (c->done)
1769 			break;
1770 		sleepq_add(c, NULL, "completion", flags, 0);
1771 		if (flags & SLEEPQ_INTERRUPTIBLE) {
1772 			if (sleepq_wait_sig(c, 0) != 0) {
1773 				error = -ERESTARTSYS;
1774 				goto intr;
1775 			}
1776 		} else
1777 			sleepq_wait(c, 0);
1778 	}
1779 	c->done--;
1780 	sleepq_release(c);
1781 
1782 intr:
1783 	PICKUP_GIANT();
1784 
1785 	return (error);
1786 }
1787 
1788 /*
1789  * Time limited wait for done != 0 with or without signals.
1790  */
1791 int
1792 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
1793 {
1794 	int end = jiffies + timeout;
1795 	int error;
1796 	int ret;
1797 
1798 	if (SCHEDULER_STOPPED())
1799 		return (0);
1800 
1801 	DROP_GIANT();
1802 
1803 	if (flags != 0)
1804 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1805 	else
1806 		flags = SLEEPQ_SLEEP;
1807 
1808 	error = 0;
1809 	ret = 0;
1810 	for (;;) {
1811 		sleepq_lock(c);
1812 		if (c->done)
1813 			break;
1814 		sleepq_add(c, NULL, "completion", flags, 0);
1815 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
1816 		if (flags & SLEEPQ_INTERRUPTIBLE)
1817 			ret = sleepq_timedwait_sig(c, 0);
1818 		else
1819 			ret = sleepq_timedwait(c, 0);
1820 		if (ret != 0) {
1821 			/* check for timeout or signal */
1822 			if (ret == EWOULDBLOCK)
1823 				error = 0;
1824 			else
1825 				error = -ERESTARTSYS;
1826 			goto intr;
1827 		}
1828 	}
1829 	c->done--;
1830 	sleepq_release(c);
1831 
1832 intr:
1833 	PICKUP_GIANT();
1834 
1835 	/* return how many jiffies are left */
1836 	return (ret != 0 ? error : linux_timer_jiffies_until(end));
1837 }
1838 
1839 int
1840 linux_try_wait_for_completion(struct completion *c)
1841 {
1842 	int isdone;
1843 
1844 	isdone = 1;
1845 	sleepq_lock(c);
1846 	if (c->done)
1847 		c->done--;
1848 	else
1849 		isdone = 0;
1850 	sleepq_release(c);
1851 	return (isdone);
1852 }
1853 
1854 int
1855 linux_completion_done(struct completion *c)
1856 {
1857 	int isdone;
1858 
1859 	isdone = 1;
1860 	sleepq_lock(c);
1861 	if (c->done == 0)
1862 		isdone = 0;
1863 	sleepq_release(c);
1864 	return (isdone);
1865 }
1866 
1867 static void
1868 linux_cdev_release(struct kobject *kobj)
1869 {
1870 	struct linux_cdev *cdev;
1871 	struct kobject *parent;
1872 
1873 	cdev = container_of(kobj, struct linux_cdev, kobj);
1874 	parent = kobj->parent;
1875 	if (cdev->cdev)
1876 		destroy_dev(cdev->cdev);
1877 	kfree(cdev);
1878 	kobject_put(parent);
1879 }
1880 
1881 static void
1882 linux_cdev_static_release(struct kobject *kobj)
1883 {
1884 	struct linux_cdev *cdev;
1885 	struct kobject *parent;
1886 
1887 	cdev = container_of(kobj, struct linux_cdev, kobj);
1888 	parent = kobj->parent;
1889 	if (cdev->cdev)
1890 		destroy_dev(cdev->cdev);
1891 	kobject_put(parent);
1892 }
1893 
1894 const struct kobj_type linux_cdev_ktype = {
1895 	.release = linux_cdev_release,
1896 };
1897 
1898 const struct kobj_type linux_cdev_static_ktype = {
1899 	.release = linux_cdev_static_release,
1900 };
1901 
1902 static void
1903 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
1904 {
1905 	struct notifier_block *nb;
1906 
1907 	nb = arg;
1908 	if (linkstate == LINK_STATE_UP)
1909 		nb->notifier_call(nb, NETDEV_UP, ifp);
1910 	else
1911 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
1912 }
1913 
1914 static void
1915 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
1916 {
1917 	struct notifier_block *nb;
1918 
1919 	nb = arg;
1920 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
1921 }
1922 
1923 static void
1924 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
1925 {
1926 	struct notifier_block *nb;
1927 
1928 	nb = arg;
1929 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
1930 }
1931 
1932 static void
1933 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
1934 {
1935 	struct notifier_block *nb;
1936 
1937 	nb = arg;
1938 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
1939 }
1940 
1941 static void
1942 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
1943 {
1944 	struct notifier_block *nb;
1945 
1946 	nb = arg;
1947 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
1948 }
1949 
1950 int
1951 register_netdevice_notifier(struct notifier_block *nb)
1952 {
1953 
1954 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
1955 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
1956 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
1957 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
1958 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
1959 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
1960 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
1961 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
1962 
1963 	return (0);
1964 }
1965 
1966 int
1967 register_inetaddr_notifier(struct notifier_block *nb)
1968 {
1969 
1970         nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
1971             ifaddr_event, linux_handle_ifaddr_event, nb, 0);
1972         return (0);
1973 }
1974 
1975 int
1976 unregister_netdevice_notifier(struct notifier_block *nb)
1977 {
1978 
1979         EVENTHANDLER_DEREGISTER(ifnet_link_event,
1980 	    nb->tags[NETDEV_UP]);
1981         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
1982 	    nb->tags[NETDEV_REGISTER]);
1983         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
1984 	    nb->tags[NETDEV_UNREGISTER]);
1985         EVENTHANDLER_DEREGISTER(iflladdr_event,
1986 	    nb->tags[NETDEV_CHANGEADDR]);
1987 
1988 	return (0);
1989 }
1990 
1991 int
1992 unregister_inetaddr_notifier(struct notifier_block *nb)
1993 {
1994 
1995         EVENTHANDLER_DEREGISTER(ifaddr_event,
1996             nb->tags[NETDEV_CHANGEIFADDR]);
1997 
1998         return (0);
1999 }
2000 
2001 struct list_sort_thunk {
2002 	int (*cmp)(void *, struct list_head *, struct list_head *);
2003 	void *priv;
2004 };
2005 
2006 static inline int
2007 linux_le_cmp(void *priv, const void *d1, const void *d2)
2008 {
2009 	struct list_head *le1, *le2;
2010 	struct list_sort_thunk *thunk;
2011 
2012 	thunk = priv;
2013 	le1 = *(__DECONST(struct list_head **, d1));
2014 	le2 = *(__DECONST(struct list_head **, d2));
2015 	return ((thunk->cmp)(thunk->priv, le1, le2));
2016 }
2017 
2018 void
2019 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2020     struct list_head *a, struct list_head *b))
2021 {
2022 	struct list_sort_thunk thunk;
2023 	struct list_head **ar, *le;
2024 	size_t count, i;
2025 
2026 	count = 0;
2027 	list_for_each(le, head)
2028 		count++;
2029 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2030 	i = 0;
2031 	list_for_each(le, head)
2032 		ar[i++] = le;
2033 	thunk.cmp = cmp;
2034 	thunk.priv = priv;
2035 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2036 	INIT_LIST_HEAD(head);
2037 	for (i = 0; i < count; i++)
2038 		list_add_tail(ar[i], head);
2039 	free(ar, M_KMALLOC);
2040 }
2041 
2042 void
2043 linux_irq_handler(void *ent)
2044 {
2045 	struct irq_ent *irqe;
2046 
2047 	linux_set_current(curthread);
2048 
2049 	irqe = ent;
2050 	irqe->handler(irqe->irq, irqe->arg);
2051 }
2052 
2053 #if defined(__i386__) || defined(__amd64__)
2054 int
2055 linux_wbinvd_on_all_cpus(void)
2056 {
2057 
2058 	pmap_invalidate_cache();
2059 	return (0);
2060 }
2061 #endif
2062 
2063 int
2064 linux_on_each_cpu(void callback(void *), void *data)
2065 {
2066 
2067 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2068 	    smp_no_rendezvous_barrier, data);
2069 	return (0);
2070 }
2071 
2072 int
2073 linux_in_atomic(void)
2074 {
2075 
2076 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2077 }
2078 
2079 struct linux_cdev *
2080 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2081 {
2082 	dev_t dev = MKDEV(major, minor);
2083 	struct cdev *cdev;
2084 
2085 	dev_lock();
2086 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2087 		struct linux_cdev *ldev = cdev->si_drv1;
2088 		if (ldev->dev == dev &&
2089 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2090 			break;
2091 		}
2092 	}
2093 	dev_unlock();
2094 
2095 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2096 }
2097 
2098 int
2099 __register_chrdev(unsigned int major, unsigned int baseminor,
2100     unsigned int count, const char *name,
2101     const struct file_operations *fops)
2102 {
2103 	struct linux_cdev *cdev;
2104 	int ret = 0;
2105 	int i;
2106 
2107 	for (i = baseminor; i < baseminor + count; i++) {
2108 		cdev = cdev_alloc();
2109 		cdev_init(cdev, fops);
2110 		kobject_set_name(&cdev->kobj, name);
2111 
2112 		ret = cdev_add(cdev, makedev(major, i), 1);
2113 		if (ret != 0)
2114 			break;
2115 	}
2116 	return (ret);
2117 }
2118 
2119 int
2120 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2121     unsigned int count, const char *name,
2122     const struct file_operations *fops, uid_t uid,
2123     gid_t gid, int mode)
2124 {
2125 	struct linux_cdev *cdev;
2126 	int ret = 0;
2127 	int i;
2128 
2129 	for (i = baseminor; i < baseminor + count; i++) {
2130 		cdev = cdev_alloc();
2131 		cdev_init(cdev, fops);
2132 		kobject_set_name(&cdev->kobj, name);
2133 
2134 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2135 		if (ret != 0)
2136 			break;
2137 	}
2138 	return (ret);
2139 }
2140 
2141 void
2142 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2143     unsigned int count, const char *name)
2144 {
2145 	struct linux_cdev *cdevp;
2146 	int i;
2147 
2148 	for (i = baseminor; i < baseminor + count; i++) {
2149 		cdevp = linux_find_cdev(name, major, i);
2150 		if (cdevp != NULL)
2151 			cdev_del(cdevp);
2152 	}
2153 }
2154 
2155 #if defined(__i386__) || defined(__amd64__)
2156 bool linux_cpu_has_clflush;
2157 #endif
2158 
2159 static void
2160 linux_compat_init(void *arg)
2161 {
2162 	struct sysctl_oid *rootoid;
2163 	int i;
2164 
2165 #if defined(__i386__) || defined(__amd64__)
2166 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2167 #endif
2168 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2169 
2170 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2171 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2172 	kobject_init(&linux_class_root, &linux_class_ktype);
2173 	kobject_set_name(&linux_class_root, "class");
2174 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2175 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2176 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2177 	kobject_set_name(&linux_root_device.kobj, "device");
2178 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2179 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2180 	    "device");
2181 	linux_root_device.bsddev = root_bus;
2182 	linux_class_misc.name = "misc";
2183 	class_register(&linux_class_misc);
2184 	INIT_LIST_HEAD(&pci_drivers);
2185 	INIT_LIST_HEAD(&pci_devices);
2186 	spin_lock_init(&pci_lock);
2187 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2188 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2189 		LIST_INIT(&vmmaphead[i]);
2190 }
2191 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2192 
2193 static void
2194 linux_compat_uninit(void *arg)
2195 {
2196 	linux_kobject_kfree_name(&linux_class_root);
2197 	linux_kobject_kfree_name(&linux_root_device.kobj);
2198 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2199 
2200 	mtx_destroy(&vmmaplock);
2201 	spin_lock_destroy(&pci_lock);
2202 	rw_destroy(&linux_vma_lock);
2203 }
2204 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2205 
2206 /*
2207  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2208  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2209  * used. Assert these types have the same size, else some parts of the
2210  * LinuxKPI may not work like expected:
2211  */
2212 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2213