xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision f0574f5cf69e168cc4ea71ebbe5fdec9ec9a3dfe)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2016 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/sleepqueue.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/bus.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/filio.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/stdarg.h>
53 
54 #if defined(__i386__) || defined(__amd64__)
55 #include <machine/md_var.h>
56 #endif
57 
58 #include <linux/kobject.h>
59 #include <linux/device.h>
60 #include <linux/slab.h>
61 #include <linux/module.h>
62 #include <linux/moduleparam.h>
63 #include <linux/cdev.h>
64 #include <linux/file.h>
65 #include <linux/sysfs.h>
66 #include <linux/mm.h>
67 #include <linux/io.h>
68 #include <linux/vmalloc.h>
69 #include <linux/netdevice.h>
70 #include <linux/timer.h>
71 #include <linux/interrupt.h>
72 #include <linux/uaccess.h>
73 #include <linux/kernel.h>
74 #include <linux/list.h>
75 #include <linux/compat.h>
76 
77 #include <vm/vm_pager.h>
78 
79 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
80 
81 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
82 
83 #include <linux/rbtree.h>
84 /* Undo Linux compat changes. */
85 #undef RB_ROOT
86 #undef file
87 #undef cdev
88 #define	RB_ROOT(head)	(head)->rbh_root
89 
90 struct kobject linux_class_root;
91 struct device linux_root_device;
92 struct class linux_class_misc;
93 struct list_head pci_drivers;
94 struct list_head pci_devices;
95 spinlock_t pci_lock;
96 
97 unsigned long linux_timer_hz_mask;
98 
99 int
100 panic_cmp(struct rb_node *one, struct rb_node *two)
101 {
102 	panic("no cmp");
103 }
104 
105 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
106 
107 int
108 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
109 {
110 	va_list tmp_va;
111 	int len;
112 	char *old;
113 	char *name;
114 	char dummy;
115 
116 	old = kobj->name;
117 
118 	if (old && fmt == NULL)
119 		return (0);
120 
121 	/* compute length of string */
122 	va_copy(tmp_va, args);
123 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
124 	va_end(tmp_va);
125 
126 	/* account for zero termination */
127 	len++;
128 
129 	/* check for error */
130 	if (len < 1)
131 		return (-EINVAL);
132 
133 	/* allocate memory for string */
134 	name = kzalloc(len, GFP_KERNEL);
135 	if (name == NULL)
136 		return (-ENOMEM);
137 	vsnprintf(name, len, fmt, args);
138 	kobj->name = name;
139 
140 	/* free old string */
141 	kfree(old);
142 
143 	/* filter new string */
144 	for (; *name != '\0'; name++)
145 		if (*name == '/')
146 			*name = '!';
147 	return (0);
148 }
149 
150 int
151 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
152 {
153 	va_list args;
154 	int error;
155 
156 	va_start(args, fmt);
157 	error = kobject_set_name_vargs(kobj, fmt, args);
158 	va_end(args);
159 
160 	return (error);
161 }
162 
163 static int
164 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
165 {
166 	const struct kobj_type *t;
167 	int error;
168 
169 	kobj->parent = parent;
170 	error = sysfs_create_dir(kobj);
171 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
172 		struct attribute **attr;
173 		t = kobj->ktype;
174 
175 		for (attr = t->default_attrs; *attr != NULL; attr++) {
176 			error = sysfs_create_file(kobj, *attr);
177 			if (error)
178 				break;
179 		}
180 		if (error)
181 			sysfs_remove_dir(kobj);
182 
183 	}
184 	return (error);
185 }
186 
187 int
188 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
189 {
190 	va_list args;
191 	int error;
192 
193 	va_start(args, fmt);
194 	error = kobject_set_name_vargs(kobj, fmt, args);
195 	va_end(args);
196 	if (error)
197 		return (error);
198 
199 	return kobject_add_complete(kobj, parent);
200 }
201 
202 void
203 linux_kobject_release(struct kref *kref)
204 {
205 	struct kobject *kobj;
206 	char *name;
207 
208 	kobj = container_of(kref, struct kobject, kref);
209 	sysfs_remove_dir(kobj);
210 	name = kobj->name;
211 	if (kobj->ktype && kobj->ktype->release)
212 		kobj->ktype->release(kobj);
213 	kfree(name);
214 }
215 
216 static void
217 linux_kobject_kfree(struct kobject *kobj)
218 {
219 	kfree(kobj);
220 }
221 
222 static void
223 linux_kobject_kfree_name(struct kobject *kobj)
224 {
225 	if (kobj) {
226 		kfree(kobj->name);
227 	}
228 }
229 
230 const struct kobj_type linux_kfree_type = {
231 	.release = linux_kobject_kfree
232 };
233 
234 static void
235 linux_device_release(struct device *dev)
236 {
237 	pr_debug("linux_device_release: %s\n", dev_name(dev));
238 	kfree(dev);
239 }
240 
241 static ssize_t
242 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
243 {
244 	struct class_attribute *dattr;
245 	ssize_t error;
246 
247 	dattr = container_of(attr, struct class_attribute, attr);
248 	error = -EIO;
249 	if (dattr->show)
250 		error = dattr->show(container_of(kobj, struct class, kobj),
251 		    dattr, buf);
252 	return (error);
253 }
254 
255 static ssize_t
256 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
257     size_t count)
258 {
259 	struct class_attribute *dattr;
260 	ssize_t error;
261 
262 	dattr = container_of(attr, struct class_attribute, attr);
263 	error = -EIO;
264 	if (dattr->store)
265 		error = dattr->store(container_of(kobj, struct class, kobj),
266 		    dattr, buf, count);
267 	return (error);
268 }
269 
270 static void
271 linux_class_release(struct kobject *kobj)
272 {
273 	struct class *class;
274 
275 	class = container_of(kobj, struct class, kobj);
276 	if (class->class_release)
277 		class->class_release(class);
278 }
279 
280 static const struct sysfs_ops linux_class_sysfs = {
281 	.show  = linux_class_show,
282 	.store = linux_class_store,
283 };
284 
285 const struct kobj_type linux_class_ktype = {
286 	.release = linux_class_release,
287 	.sysfs_ops = &linux_class_sysfs
288 };
289 
290 static void
291 linux_dev_release(struct kobject *kobj)
292 {
293 	struct device *dev;
294 
295 	dev = container_of(kobj, struct device, kobj);
296 	/* This is the precedence defined by linux. */
297 	if (dev->release)
298 		dev->release(dev);
299 	else if (dev->class && dev->class->dev_release)
300 		dev->class->dev_release(dev);
301 }
302 
303 static ssize_t
304 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
305 {
306 	struct device_attribute *dattr;
307 	ssize_t error;
308 
309 	dattr = container_of(attr, struct device_attribute, attr);
310 	error = -EIO;
311 	if (dattr->show)
312 		error = dattr->show(container_of(kobj, struct device, kobj),
313 		    dattr, buf);
314 	return (error);
315 }
316 
317 static ssize_t
318 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
319     size_t count)
320 {
321 	struct device_attribute *dattr;
322 	ssize_t error;
323 
324 	dattr = container_of(attr, struct device_attribute, attr);
325 	error = -EIO;
326 	if (dattr->store)
327 		error = dattr->store(container_of(kobj, struct device, kobj),
328 		    dattr, buf, count);
329 	return (error);
330 }
331 
332 static const struct sysfs_ops linux_dev_sysfs = {
333 	.show  = linux_dev_show,
334 	.store = linux_dev_store,
335 };
336 
337 const struct kobj_type linux_dev_ktype = {
338 	.release = linux_dev_release,
339 	.sysfs_ops = &linux_dev_sysfs
340 };
341 
342 struct device *
343 device_create(struct class *class, struct device *parent, dev_t devt,
344     void *drvdata, const char *fmt, ...)
345 {
346 	struct device *dev;
347 	va_list args;
348 
349 	dev = kzalloc(sizeof(*dev), M_WAITOK);
350 	dev->parent = parent;
351 	dev->class = class;
352 	dev->devt = devt;
353 	dev->driver_data = drvdata;
354 	dev->release = linux_device_release;
355 	va_start(args, fmt);
356 	kobject_set_name_vargs(&dev->kobj, fmt, args);
357 	va_end(args);
358 	device_register(dev);
359 
360 	return (dev);
361 }
362 
363 int
364 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
365     struct kobject *parent, const char *fmt, ...)
366 {
367 	va_list args;
368 	int error;
369 
370 	kobject_init(kobj, ktype);
371 	kobj->ktype = ktype;
372 	kobj->parent = parent;
373 	kobj->name = NULL;
374 
375 	va_start(args, fmt);
376 	error = kobject_set_name_vargs(kobj, fmt, args);
377 	va_end(args);
378 	if (error)
379 		return (error);
380 	return kobject_add_complete(kobj, parent);
381 }
382 
383 static void
384 linux_file_dtor(void *cdp)
385 {
386 	struct linux_file *filp;
387 
388 	linux_set_current(curthread);
389 	filp = cdp;
390 	filp->f_op->release(filp->f_vnode, filp);
391 	vdrop(filp->f_vnode);
392 	kfree(filp);
393 }
394 
395 static int
396 linux_dev_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
397 {
398 	struct linux_cdev *ldev;
399 	struct linux_file *filp;
400 	struct file *file;
401 	int error;
402 
403 	file = td->td_fpop;
404 	ldev = dev->si_drv1;
405 	if (ldev == NULL)
406 		return (ENODEV);
407 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
408 	filp->f_dentry = &filp->f_dentry_store;
409 	filp->f_op = ldev->ops;
410 	filp->f_flags = file->f_flag;
411 	vhold(file->f_vnode);
412 	filp->f_vnode = file->f_vnode;
413 	linux_set_current(td);
414 	if (filp->f_op->open) {
415 		error = -filp->f_op->open(file->f_vnode, filp);
416 		if (error) {
417 			kfree(filp);
418 			goto done;
419 		}
420 	}
421 	error = devfs_set_cdevpriv(filp, linux_file_dtor);
422 	if (error) {
423 		filp->f_op->release(file->f_vnode, filp);
424 		kfree(filp);
425 	}
426 done:
427 	return (error);
428 }
429 
430 static int
431 linux_dev_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
432 {
433 	struct linux_cdev *ldev;
434 	struct linux_file *filp;
435 	struct file *file;
436 	int error;
437 
438 	file = td->td_fpop;
439 	ldev = dev->si_drv1;
440 	if (ldev == NULL)
441 		return (0);
442 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
443 		return (error);
444 	filp->f_flags = file->f_flag;
445         devfs_clear_cdevpriv();
446 
447 
448 	return (0);
449 }
450 
451 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
452 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
453 
454 static inline int
455 linux_remap_address(void **uaddr, size_t len)
456 {
457 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
458 
459 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
460 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
461 		struct task_struct *pts = current;
462 		if (pts == NULL) {
463 			*uaddr = NULL;
464 			return (1);
465 		}
466 
467 		/* compute data offset */
468 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
469 
470 		/* check that length is within bounds */
471 		if ((len > IOCPARM_MAX) ||
472 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
473 			*uaddr = NULL;
474 			return (1);
475 		}
476 
477 		/* re-add kernel buffer address */
478 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
479 
480 		/* update address location */
481 		*uaddr = (void *)uaddr_val;
482 		return (1);
483 	}
484 	return (0);
485 }
486 
487 int
488 linux_copyin(const void *uaddr, void *kaddr, size_t len)
489 {
490 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
491 		if (uaddr == NULL)
492 			return (-EFAULT);
493 		memcpy(kaddr, uaddr, len);
494 		return (0);
495 	}
496 	return (-copyin(uaddr, kaddr, len));
497 }
498 
499 int
500 linux_copyout(const void *kaddr, void *uaddr, size_t len)
501 {
502 	if (linux_remap_address(&uaddr, len)) {
503 		if (uaddr == NULL)
504 			return (-EFAULT);
505 		memcpy(uaddr, kaddr, len);
506 		return (0);
507 	}
508 	return (-copyout(kaddr, uaddr, len));
509 }
510 
511 size_t
512 linux_clear_user(void *_uaddr, size_t _len)
513 {
514 	uint8_t *uaddr = _uaddr;
515 	size_t len = _len;
516 
517 	/* make sure uaddr is aligned before going into the fast loop */
518 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
519 		if (subyte(uaddr, 0))
520 			return (_len);
521 		uaddr++;
522 		len--;
523 	}
524 
525 	/* zero 8 bytes at a time */
526 	while (len > 7) {
527 #ifdef __LP64__
528 		if (suword64(uaddr, 0))
529 			return (_len);
530 #else
531 		if (suword32(uaddr, 0))
532 			return (_len);
533 		if (suword32(uaddr + 4, 0))
534 			return (_len);
535 #endif
536 		uaddr += 8;
537 		len -= 8;
538 	}
539 
540 	/* zero fill end, if any */
541 	while (len > 0) {
542 		if (subyte(uaddr, 0))
543 			return (_len);
544 		uaddr++;
545 		len--;
546 	}
547 	return (0);
548 }
549 
550 int
551 linux_access_ok(int rw, const void *uaddr, size_t len)
552 {
553 	uintptr_t saddr;
554 	uintptr_t eaddr;
555 
556 	/* get start and end address */
557 	saddr = (uintptr_t)uaddr;
558 	eaddr = (uintptr_t)uaddr + len;
559 
560 	/* verify addresses are valid for userspace */
561 	return ((saddr == eaddr) ||
562 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
563 }
564 
565 static int
566 linux_dev_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
567     struct thread *td)
568 {
569 	struct linux_cdev *ldev;
570 	struct linux_file *filp;
571 	struct file *file;
572 	unsigned size;
573 	int error;
574 
575 	file = td->td_fpop;
576 	ldev = dev->si_drv1;
577 	if (ldev == NULL)
578 		return (0);
579 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
580 		return (error);
581 	filp->f_flags = file->f_flag;
582 
583 	linux_set_current(td);
584 	size = IOCPARM_LEN(cmd);
585 	/* refer to logic in sys_ioctl() */
586 	if (size > 0) {
587 		/*
588 		 * Setup hint for linux_copyin() and linux_copyout().
589 		 *
590 		 * Background: Linux code expects a user-space address
591 		 * while FreeBSD supplies a kernel-space address.
592 		 */
593 		current->bsd_ioctl_data = data;
594 		current->bsd_ioctl_len = size;
595 		data = (void *)LINUX_IOCTL_MIN_PTR;
596 	} else {
597 		/* fetch user-space pointer */
598 		data = *(void **)data;
599 	}
600 	if (filp->f_op->unlocked_ioctl)
601 		error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data);
602 	else
603 		error = ENOTTY;
604 	if (size > 0) {
605 		current->bsd_ioctl_data = NULL;
606 		current->bsd_ioctl_len = 0;
607 	}
608 
609 	return (error);
610 }
611 
612 static int
613 linux_dev_read(struct cdev *dev, struct uio *uio, int ioflag)
614 {
615 	struct linux_cdev *ldev;
616 	struct linux_file *filp;
617 	struct thread *td;
618 	struct file *file;
619 	ssize_t bytes;
620 	int error;
621 
622 	td = curthread;
623 	file = td->td_fpop;
624 	ldev = dev->si_drv1;
625 	if (ldev == NULL)
626 		return (0);
627 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
628 		return (error);
629 	filp->f_flags = file->f_flag;
630 	/* XXX no support for I/O vectors currently */
631 	if (uio->uio_iovcnt != 1)
632 		return (EOPNOTSUPP);
633 	linux_set_current(td);
634 	if (filp->f_op->read) {
635 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
636 		    uio->uio_iov->iov_len, &uio->uio_offset);
637 		if (bytes >= 0) {
638 			uio->uio_iov->iov_base =
639 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
640 			uio->uio_iov->iov_len -= bytes;
641 			uio->uio_resid -= bytes;
642 		} else
643 			error = -bytes;
644 	} else
645 		error = ENXIO;
646 
647 	return (error);
648 }
649 
650 static int
651 linux_dev_write(struct cdev *dev, struct uio *uio, int ioflag)
652 {
653 	struct linux_cdev *ldev;
654 	struct linux_file *filp;
655 	struct thread *td;
656 	struct file *file;
657 	ssize_t bytes;
658 	int error;
659 
660 	td = curthread;
661 	file = td->td_fpop;
662 	ldev = dev->si_drv1;
663 	if (ldev == NULL)
664 		return (0);
665 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
666 		return (error);
667 	filp->f_flags = file->f_flag;
668 	/* XXX no support for I/O vectors currently */
669 	if (uio->uio_iovcnt != 1)
670 		return (EOPNOTSUPP);
671 	linux_set_current(td);
672 	if (filp->f_op->write) {
673 		bytes = filp->f_op->write(filp, uio->uio_iov->iov_base,
674 		    uio->uio_iov->iov_len, &uio->uio_offset);
675 		if (bytes >= 0) {
676 			uio->uio_iov->iov_base =
677 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
678 			uio->uio_iov->iov_len -= bytes;
679 			uio->uio_resid -= bytes;
680 		} else
681 			error = -bytes;
682 	} else
683 		error = ENXIO;
684 
685 	return (error);
686 }
687 
688 static int
689 linux_dev_poll(struct cdev *dev, int events, struct thread *td)
690 {
691 	struct linux_cdev *ldev;
692 	struct linux_file *filp;
693 	struct file *file;
694 	int revents;
695 	int error;
696 
697 	file = td->td_fpop;
698 	ldev = dev->si_drv1;
699 	if (ldev == NULL)
700 		return (0);
701 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
702 		return (error);
703 	filp->f_flags = file->f_flag;
704 	linux_set_current(td);
705 	if (filp->f_op->poll)
706 		revents = filp->f_op->poll(filp, NULL) & events;
707 	else
708 		revents = 0;
709 
710 	return (revents);
711 }
712 
713 static int
714 linux_dev_mmap_single(struct cdev *dev, vm_ooffset_t *offset,
715     vm_size_t size, struct vm_object **object, int nprot)
716 {
717 	struct linux_cdev *ldev;
718 	struct linux_file *filp;
719 	struct thread *td;
720 	struct file *file;
721 	struct vm_area_struct vma;
722 	int error;
723 
724 	td = curthread;
725 	file = td->td_fpop;
726 	ldev = dev->si_drv1;
727 	if (ldev == NULL)
728 		return (ENODEV);
729 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
730 		return (error);
731 	filp->f_flags = file->f_flag;
732 	linux_set_current(td);
733 	vma.vm_start = 0;
734 	vma.vm_end = size;
735 	vma.vm_pgoff = *offset / PAGE_SIZE;
736 	vma.vm_pfn = 0;
737 	vma.vm_page_prot = VM_MEMATTR_DEFAULT;
738 	if (filp->f_op->mmap) {
739 		error = -filp->f_op->mmap(filp, &vma);
740 		if (error == 0) {
741 			struct sglist *sg;
742 
743 			sg = sglist_alloc(1, M_WAITOK);
744 			sglist_append_phys(sg,
745 			    (vm_paddr_t)vma.vm_pfn << PAGE_SHIFT, vma.vm_len);
746 			*object = vm_pager_allocate(OBJT_SG, sg, vma.vm_len,
747 			    nprot, 0, td->td_ucred);
748 		        if (*object == NULL) {
749 				sglist_free(sg);
750 				error = EINVAL;
751 				goto done;
752 			}
753 			*offset = 0;
754 			if (vma.vm_page_prot != VM_MEMATTR_DEFAULT) {
755 				VM_OBJECT_WLOCK(*object);
756 				vm_object_set_memattr(*object,
757 				    vma.vm_page_prot);
758 				VM_OBJECT_WUNLOCK(*object);
759 			}
760 		}
761 	} else
762 		error = ENODEV;
763 done:
764 	return (error);
765 }
766 
767 struct cdevsw linuxcdevsw = {
768 	.d_version = D_VERSION,
769 	.d_flags = D_TRACKCLOSE,
770 	.d_open = linux_dev_open,
771 	.d_close = linux_dev_close,
772 	.d_read = linux_dev_read,
773 	.d_write = linux_dev_write,
774 	.d_ioctl = linux_dev_ioctl,
775 	.d_mmap_single = linux_dev_mmap_single,
776 	.d_poll = linux_dev_poll,
777 };
778 
779 static int
780 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
781     int flags, struct thread *td)
782 {
783 	struct linux_file *filp;
784 	ssize_t bytes;
785 	int error;
786 
787 	error = 0;
788 	filp = (struct linux_file *)file->f_data;
789 	filp->f_flags = file->f_flag;
790 	/* XXX no support for I/O vectors currently */
791 	if (uio->uio_iovcnt != 1)
792 		return (EOPNOTSUPP);
793 	linux_set_current(td);
794 	if (filp->f_op->read) {
795 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
796 		    uio->uio_iov->iov_len, &uio->uio_offset);
797 		if (bytes >= 0) {
798 			uio->uio_iov->iov_base =
799 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
800 			uio->uio_iov->iov_len -= bytes;
801 			uio->uio_resid -= bytes;
802 		} else
803 			error = -bytes;
804 	} else
805 		error = ENXIO;
806 
807 	return (error);
808 }
809 
810 static int
811 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
812     struct thread *td)
813 {
814 	struct linux_file *filp;
815 	int revents;
816 
817 	filp = (struct linux_file *)file->f_data;
818 	filp->f_flags = file->f_flag;
819 	linux_set_current(td);
820 	if (filp->f_op->poll)
821 		revents = filp->f_op->poll(filp, NULL) & events;
822 	else
823 		revents = 0;
824 
825 	return (revents);
826 }
827 
828 static int
829 linux_file_close(struct file *file, struct thread *td)
830 {
831 	struct linux_file *filp;
832 	int error;
833 
834 	filp = (struct linux_file *)file->f_data;
835 	filp->f_flags = file->f_flag;
836 	linux_set_current(td);
837 	error = -filp->f_op->release(NULL, filp);
838 	funsetown(&filp->f_sigio);
839 	kfree(filp);
840 
841 	return (error);
842 }
843 
844 static int
845 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
846     struct thread *td)
847 {
848 	struct linux_file *filp;
849 	int error;
850 
851 	filp = (struct linux_file *)fp->f_data;
852 	filp->f_flags = fp->f_flag;
853 	error = 0;
854 
855 	linux_set_current(td);
856 	switch (cmd) {
857 	case FIONBIO:
858 		break;
859 	case FIOASYNC:
860 		if (filp->f_op->fasync == NULL)
861 			break;
862 		error = filp->f_op->fasync(0, filp, fp->f_flag & FASYNC);
863 		break;
864 	case FIOSETOWN:
865 		error = fsetown(*(int *)data, &filp->f_sigio);
866 		if (error == 0)
867 			error = filp->f_op->fasync(0, filp,
868 			    fp->f_flag & FASYNC);
869 		break;
870 	case FIOGETOWN:
871 		*(int *)data = fgetown(&filp->f_sigio);
872 		break;
873 	default:
874 		error = ENOTTY;
875 		break;
876 	}
877 	return (error);
878 }
879 
880 static int
881 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
882     struct thread *td)
883 {
884 
885 	return (EOPNOTSUPP);
886 }
887 
888 static int
889 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
890     struct filedesc *fdp)
891 {
892 
893 	return (0);
894 }
895 
896 struct fileops linuxfileops = {
897 	.fo_read = linux_file_read,
898 	.fo_write = invfo_rdwr,
899 	.fo_truncate = invfo_truncate,
900 	.fo_kqfilter = invfo_kqfilter,
901 	.fo_stat = linux_file_stat,
902 	.fo_fill_kinfo = linux_file_fill_kinfo,
903 	.fo_poll = linux_file_poll,
904 	.fo_close = linux_file_close,
905 	.fo_ioctl = linux_file_ioctl,
906 	.fo_chmod = invfo_chmod,
907 	.fo_chown = invfo_chown,
908 	.fo_sendfile = invfo_sendfile,
909 };
910 
911 /*
912  * Hash of vmmap addresses.  This is infrequently accessed and does not
913  * need to be particularly large.  This is done because we must store the
914  * caller's idea of the map size to properly unmap.
915  */
916 struct vmmap {
917 	LIST_ENTRY(vmmap)	vm_next;
918 	void 			*vm_addr;
919 	unsigned long		vm_size;
920 };
921 
922 struct vmmaphd {
923 	struct vmmap *lh_first;
924 };
925 #define	VMMAP_HASH_SIZE	64
926 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
927 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
928 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
929 static struct mtx vmmaplock;
930 
931 static void
932 vmmap_add(void *addr, unsigned long size)
933 {
934 	struct vmmap *vmmap;
935 
936 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
937 	mtx_lock(&vmmaplock);
938 	vmmap->vm_size = size;
939 	vmmap->vm_addr = addr;
940 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
941 	mtx_unlock(&vmmaplock);
942 }
943 
944 static struct vmmap *
945 vmmap_remove(void *addr)
946 {
947 	struct vmmap *vmmap;
948 
949 	mtx_lock(&vmmaplock);
950 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
951 		if (vmmap->vm_addr == addr)
952 			break;
953 	if (vmmap)
954 		LIST_REMOVE(vmmap, vm_next);
955 	mtx_unlock(&vmmaplock);
956 
957 	return (vmmap);
958 }
959 
960 #if defined(__i386__) || defined(__amd64__)
961 void *
962 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
963 {
964 	void *addr;
965 
966 	addr = pmap_mapdev_attr(phys_addr, size, attr);
967 	if (addr == NULL)
968 		return (NULL);
969 	vmmap_add(addr, size);
970 
971 	return (addr);
972 }
973 #endif
974 
975 void
976 iounmap(void *addr)
977 {
978 	struct vmmap *vmmap;
979 
980 	vmmap = vmmap_remove(addr);
981 	if (vmmap == NULL)
982 		return;
983 #if defined(__i386__) || defined(__amd64__)
984 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
985 #endif
986 	kfree(vmmap);
987 }
988 
989 
990 void *
991 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
992 {
993 	vm_offset_t off;
994 	size_t size;
995 
996 	size = count * PAGE_SIZE;
997 	off = kva_alloc(size);
998 	if (off == 0)
999 		return (NULL);
1000 	vmmap_add((void *)off, size);
1001 	pmap_qenter(off, pages, count);
1002 
1003 	return ((void *)off);
1004 }
1005 
1006 void
1007 vunmap(void *addr)
1008 {
1009 	struct vmmap *vmmap;
1010 
1011 	vmmap = vmmap_remove(addr);
1012 	if (vmmap == NULL)
1013 		return;
1014 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1015 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1016 	kfree(vmmap);
1017 }
1018 
1019 char *
1020 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1021 {
1022 	unsigned int len;
1023 	char *p;
1024 	va_list aq;
1025 
1026 	va_copy(aq, ap);
1027 	len = vsnprintf(NULL, 0, fmt, aq);
1028 	va_end(aq);
1029 
1030 	p = kmalloc(len + 1, gfp);
1031 	if (p != NULL)
1032 		vsnprintf(p, len + 1, fmt, ap);
1033 
1034 	return (p);
1035 }
1036 
1037 char *
1038 kasprintf(gfp_t gfp, const char *fmt, ...)
1039 {
1040 	va_list ap;
1041 	char *p;
1042 
1043 	va_start(ap, fmt);
1044 	p = kvasprintf(gfp, fmt, ap);
1045 	va_end(ap);
1046 
1047 	return (p);
1048 }
1049 
1050 static void
1051 linux_timer_callback_wrapper(void *context)
1052 {
1053 	struct timer_list *timer;
1054 
1055 	linux_set_current(curthread);
1056 
1057 	timer = context;
1058 	timer->function(timer->data);
1059 }
1060 
1061 void
1062 mod_timer(struct timer_list *timer, unsigned long expires)
1063 {
1064 
1065 	timer->expires = expires;
1066 	callout_reset(&timer->timer_callout,
1067 	    linux_timer_jiffies_until(expires),
1068 	    &linux_timer_callback_wrapper, timer);
1069 }
1070 
1071 void
1072 add_timer(struct timer_list *timer)
1073 {
1074 
1075 	callout_reset(&timer->timer_callout,
1076 	    linux_timer_jiffies_until(timer->expires),
1077 	    &linux_timer_callback_wrapper, timer);
1078 }
1079 
1080 void
1081 add_timer_on(struct timer_list *timer, int cpu)
1082 {
1083 
1084 	callout_reset_on(&timer->timer_callout,
1085 	    linux_timer_jiffies_until(timer->expires),
1086 	    &linux_timer_callback_wrapper, timer, cpu);
1087 }
1088 
1089 static void
1090 linux_timer_init(void *arg)
1091 {
1092 
1093 	/*
1094 	 * Compute an internal HZ value which can divide 2**32 to
1095 	 * avoid timer rounding problems when the tick value wraps
1096 	 * around 2**32:
1097 	 */
1098 	linux_timer_hz_mask = 1;
1099 	while (linux_timer_hz_mask < (unsigned long)hz)
1100 		linux_timer_hz_mask *= 2;
1101 	linux_timer_hz_mask--;
1102 }
1103 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1104 
1105 void
1106 linux_complete_common(struct completion *c, int all)
1107 {
1108 	int wakeup_swapper;
1109 
1110 	sleepq_lock(c);
1111 	c->done++;
1112 	if (all)
1113 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1114 	else
1115 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1116 	sleepq_release(c);
1117 	if (wakeup_swapper)
1118 		kick_proc0();
1119 }
1120 
1121 /*
1122  * Indefinite wait for done != 0 with or without signals.
1123  */
1124 long
1125 linux_wait_for_common(struct completion *c, int flags)
1126 {
1127 	if (SCHEDULER_STOPPED())
1128 		return (0);
1129 
1130 	if (flags != 0)
1131 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1132 	else
1133 		flags = SLEEPQ_SLEEP;
1134 	for (;;) {
1135 		sleepq_lock(c);
1136 		if (c->done)
1137 			break;
1138 		sleepq_add(c, NULL, "completion", flags, 0);
1139 		if (flags & SLEEPQ_INTERRUPTIBLE) {
1140 			if (sleepq_wait_sig(c, 0) != 0)
1141 				return (-ERESTARTSYS);
1142 		} else
1143 			sleepq_wait(c, 0);
1144 	}
1145 	c->done--;
1146 	sleepq_release(c);
1147 
1148 	return (0);
1149 }
1150 
1151 /*
1152  * Time limited wait for done != 0 with or without signals.
1153  */
1154 long
1155 linux_wait_for_timeout_common(struct completion *c, long timeout, int flags)
1156 {
1157 	long end = jiffies + timeout;
1158 
1159 	if (SCHEDULER_STOPPED())
1160 		return (0);
1161 
1162 	if (flags != 0)
1163 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1164 	else
1165 		flags = SLEEPQ_SLEEP;
1166 	for (;;) {
1167 		int ret;
1168 
1169 		sleepq_lock(c);
1170 		if (c->done)
1171 			break;
1172 		sleepq_add(c, NULL, "completion", flags, 0);
1173 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
1174 		if (flags & SLEEPQ_INTERRUPTIBLE)
1175 			ret = sleepq_timedwait_sig(c, 0);
1176 		else
1177 			ret = sleepq_timedwait(c, 0);
1178 		if (ret != 0) {
1179 			/* check for timeout or signal */
1180 			if (ret == EWOULDBLOCK)
1181 				return (0);
1182 			else
1183 				return (-ERESTARTSYS);
1184 		}
1185 	}
1186 	c->done--;
1187 	sleepq_release(c);
1188 
1189 	/* return how many jiffies are left */
1190 	return (linux_timer_jiffies_until(end));
1191 }
1192 
1193 int
1194 linux_try_wait_for_completion(struct completion *c)
1195 {
1196 	int isdone;
1197 
1198 	isdone = 1;
1199 	sleepq_lock(c);
1200 	if (c->done)
1201 		c->done--;
1202 	else
1203 		isdone = 0;
1204 	sleepq_release(c);
1205 	return (isdone);
1206 }
1207 
1208 int
1209 linux_completion_done(struct completion *c)
1210 {
1211 	int isdone;
1212 
1213 	isdone = 1;
1214 	sleepq_lock(c);
1215 	if (c->done == 0)
1216 		isdone = 0;
1217 	sleepq_release(c);
1218 	return (isdone);
1219 }
1220 
1221 static void
1222 linux_cdev_release(struct kobject *kobj)
1223 {
1224 	struct linux_cdev *cdev;
1225 	struct kobject *parent;
1226 
1227 	cdev = container_of(kobj, struct linux_cdev, kobj);
1228 	parent = kobj->parent;
1229 	if (cdev->cdev)
1230 		destroy_dev(cdev->cdev);
1231 	kfree(cdev);
1232 	kobject_put(parent);
1233 }
1234 
1235 static void
1236 linux_cdev_static_release(struct kobject *kobj)
1237 {
1238 	struct linux_cdev *cdev;
1239 	struct kobject *parent;
1240 
1241 	cdev = container_of(kobj, struct linux_cdev, kobj);
1242 	parent = kobj->parent;
1243 	if (cdev->cdev)
1244 		destroy_dev(cdev->cdev);
1245 	kobject_put(parent);
1246 }
1247 
1248 const struct kobj_type linux_cdev_ktype = {
1249 	.release = linux_cdev_release,
1250 };
1251 
1252 const struct kobj_type linux_cdev_static_ktype = {
1253 	.release = linux_cdev_static_release,
1254 };
1255 
1256 static void
1257 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
1258 {
1259 	struct notifier_block *nb;
1260 
1261 	nb = arg;
1262 	if (linkstate == LINK_STATE_UP)
1263 		nb->notifier_call(nb, NETDEV_UP, ifp);
1264 	else
1265 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
1266 }
1267 
1268 static void
1269 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
1270 {
1271 	struct notifier_block *nb;
1272 
1273 	nb = arg;
1274 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
1275 }
1276 
1277 static void
1278 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
1279 {
1280 	struct notifier_block *nb;
1281 
1282 	nb = arg;
1283 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
1284 }
1285 
1286 static void
1287 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
1288 {
1289 	struct notifier_block *nb;
1290 
1291 	nb = arg;
1292 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
1293 }
1294 
1295 static void
1296 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
1297 {
1298 	struct notifier_block *nb;
1299 
1300 	nb = arg;
1301 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
1302 }
1303 
1304 int
1305 register_netdevice_notifier(struct notifier_block *nb)
1306 {
1307 
1308 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
1309 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
1310 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
1311 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
1312 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
1313 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
1314 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
1315 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
1316 
1317 	return (0);
1318 }
1319 
1320 int
1321 register_inetaddr_notifier(struct notifier_block *nb)
1322 {
1323 
1324         nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
1325             ifaddr_event, linux_handle_ifaddr_event, nb, 0);
1326         return (0);
1327 }
1328 
1329 int
1330 unregister_netdevice_notifier(struct notifier_block *nb)
1331 {
1332 
1333         EVENTHANDLER_DEREGISTER(ifnet_link_event,
1334 	    nb->tags[NETDEV_UP]);
1335         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
1336 	    nb->tags[NETDEV_REGISTER]);
1337         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
1338 	    nb->tags[NETDEV_UNREGISTER]);
1339         EVENTHANDLER_DEREGISTER(iflladdr_event,
1340 	    nb->tags[NETDEV_CHANGEADDR]);
1341 
1342 	return (0);
1343 }
1344 
1345 int
1346 unregister_inetaddr_notifier(struct notifier_block *nb)
1347 {
1348 
1349         EVENTHANDLER_DEREGISTER(ifaddr_event,
1350             nb->tags[NETDEV_CHANGEIFADDR]);
1351 
1352         return (0);
1353 }
1354 
1355 struct list_sort_thunk {
1356 	int (*cmp)(void *, struct list_head *, struct list_head *);
1357 	void *priv;
1358 };
1359 
1360 static inline int
1361 linux_le_cmp(void *priv, const void *d1, const void *d2)
1362 {
1363 	struct list_head *le1, *le2;
1364 	struct list_sort_thunk *thunk;
1365 
1366 	thunk = priv;
1367 	le1 = *(__DECONST(struct list_head **, d1));
1368 	le2 = *(__DECONST(struct list_head **, d2));
1369 	return ((thunk->cmp)(thunk->priv, le1, le2));
1370 }
1371 
1372 void
1373 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
1374     struct list_head *a, struct list_head *b))
1375 {
1376 	struct list_sort_thunk thunk;
1377 	struct list_head **ar, *le;
1378 	size_t count, i;
1379 
1380 	count = 0;
1381 	list_for_each(le, head)
1382 		count++;
1383 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
1384 	i = 0;
1385 	list_for_each(le, head)
1386 		ar[i++] = le;
1387 	thunk.cmp = cmp;
1388 	thunk.priv = priv;
1389 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
1390 	INIT_LIST_HEAD(head);
1391 	for (i = 0; i < count; i++)
1392 		list_add_tail(ar[i], head);
1393 	free(ar, M_KMALLOC);
1394 }
1395 
1396 void
1397 linux_irq_handler(void *ent)
1398 {
1399 	struct irq_ent *irqe;
1400 
1401 	linux_set_current(curthread);
1402 
1403 	irqe = ent;
1404 	irqe->handler(irqe->irq, irqe->arg);
1405 }
1406 
1407 struct linux_cdev *
1408 linux_find_cdev(const char *name, unsigned major, unsigned minor)
1409 {
1410 	int unit = MKDEV(major, minor);
1411 	struct cdev *cdev;
1412 
1413 	dev_lock();
1414 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
1415 		struct linux_cdev *ldev = cdev->si_drv1;
1416 		if (dev2unit(cdev) == unit &&
1417 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
1418 			break;
1419 		}
1420 	}
1421 	dev_unlock();
1422 
1423 	return (cdev != NULL ? cdev->si_drv1 : NULL);
1424 }
1425 
1426 int
1427 __register_chrdev(unsigned int major, unsigned int baseminor,
1428     unsigned int count, const char *name,
1429     const struct file_operations *fops)
1430 {
1431 	struct linux_cdev *cdev;
1432 	int ret = 0;
1433 	int i;
1434 
1435 	for (i = baseminor; i < baseminor + count; i++) {
1436 		cdev = cdev_alloc();
1437 		cdev_init(cdev, fops);
1438 		kobject_set_name(&cdev->kobj, name);
1439 
1440 		ret = cdev_add(cdev, makedev(major, i), 1);
1441 		if (ret != 0)
1442 			break;
1443 	}
1444 	return (ret);
1445 }
1446 
1447 int
1448 __register_chrdev_p(unsigned int major, unsigned int baseminor,
1449     unsigned int count, const char *name,
1450     const struct file_operations *fops, uid_t uid,
1451     gid_t gid, int mode)
1452 {
1453 	struct linux_cdev *cdev;
1454 	int ret = 0;
1455 	int i;
1456 
1457 	for (i = baseminor; i < baseminor + count; i++) {
1458 		cdev = cdev_alloc();
1459 		cdev_init(cdev, fops);
1460 		kobject_set_name(&cdev->kobj, name);
1461 
1462 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
1463 		if (ret != 0)
1464 			break;
1465 	}
1466 	return (ret);
1467 }
1468 
1469 void
1470 __unregister_chrdev(unsigned int major, unsigned int baseminor,
1471     unsigned int count, const char *name)
1472 {
1473 	struct linux_cdev *cdevp;
1474 	int i;
1475 
1476 	for (i = baseminor; i < baseminor + count; i++) {
1477 		cdevp = linux_find_cdev(name, major, i);
1478 		if (cdevp != NULL)
1479 			cdev_del(cdevp);
1480 	}
1481 }
1482 
1483 #if defined(__i386__) || defined(__amd64__)
1484 bool linux_cpu_has_clflush;
1485 #endif
1486 
1487 static void
1488 linux_compat_init(void *arg)
1489 {
1490 	struct sysctl_oid *rootoid;
1491 	int i;
1492 
1493 #if defined(__i386__) || defined(__amd64__)
1494 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
1495 #endif
1496 
1497 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
1498 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
1499 	kobject_init(&linux_class_root, &linux_class_ktype);
1500 	kobject_set_name(&linux_class_root, "class");
1501 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
1502 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
1503 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
1504 	kobject_set_name(&linux_root_device.kobj, "device");
1505 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
1506 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
1507 	    "device");
1508 	linux_root_device.bsddev = root_bus;
1509 	linux_class_misc.name = "misc";
1510 	class_register(&linux_class_misc);
1511 	INIT_LIST_HEAD(&pci_drivers);
1512 	INIT_LIST_HEAD(&pci_devices);
1513 	spin_lock_init(&pci_lock);
1514 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
1515 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
1516 		LIST_INIT(&vmmaphead[i]);
1517 }
1518 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
1519 
1520 static void
1521 linux_compat_uninit(void *arg)
1522 {
1523 	linux_kobject_kfree_name(&linux_class_root);
1524 	linux_kobject_kfree_name(&linux_root_device.kobj);
1525 	linux_kobject_kfree_name(&linux_class_misc.kobj);
1526 }
1527 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
1528 
1529 /*
1530  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
1531  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
1532  * used. Assert these types have the same size, else some parts of the
1533  * LinuxKPI may not work like expected:
1534  */
1535 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
1536