xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision eab56f7f65498f895951f305cce77a2a8af1eceb)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2018 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_stack.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/proc.h>
41 #include <sys/sglist.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/refcount.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/bus.h>
47 #include <sys/eventhandler.h>
48 #include <sys/fcntl.h>
49 #include <sys/file.h>
50 #include <sys/filio.h>
51 #include <sys/rwlock.h>
52 #include <sys/mman.h>
53 #include <sys/stack.h>
54 #include <sys/user.h>
55 
56 #include <vm/vm.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_pager.h>
61 
62 #include <machine/stdarg.h>
63 
64 #if defined(__i386__) || defined(__amd64__)
65 #include <machine/md_var.h>
66 #endif
67 
68 #include <linux/kobject.h>
69 #include <linux/device.h>
70 #include <linux/slab.h>
71 #include <linux/module.h>
72 #include <linux/moduleparam.h>
73 #include <linux/cdev.h>
74 #include <linux/file.h>
75 #include <linux/sysfs.h>
76 #include <linux/mm.h>
77 #include <linux/io.h>
78 #include <linux/vmalloc.h>
79 #include <linux/netdevice.h>
80 #include <linux/timer.h>
81 #include <linux/interrupt.h>
82 #include <linux/uaccess.h>
83 #include <linux/list.h>
84 #include <linux/kthread.h>
85 #include <linux/kernel.h>
86 #include <linux/compat.h>
87 #include <linux/poll.h>
88 #include <linux/smp.h>
89 
90 #if defined(__i386__) || defined(__amd64__)
91 #include <asm/smp.h>
92 #endif
93 
94 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
95     "LinuxKPI parameters");
96 
97 int linuxkpi_debug;
98 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
99     &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
100 
101 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
102 
103 #include <linux/rbtree.h>
104 /* Undo Linux compat changes. */
105 #undef RB_ROOT
106 #undef file
107 #undef cdev
108 #define	RB_ROOT(head)	(head)->rbh_root
109 
110 static void linux_cdev_deref(struct linux_cdev *ldev);
111 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
112 
113 struct kobject linux_class_root;
114 struct device linux_root_device;
115 struct class linux_class_misc;
116 struct list_head pci_drivers;
117 struct list_head pci_devices;
118 spinlock_t pci_lock;
119 
120 unsigned long linux_timer_hz_mask;
121 
122 int
123 panic_cmp(struct rb_node *one, struct rb_node *two)
124 {
125 	panic("no cmp");
126 }
127 
128 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
129 
130 int
131 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
132 {
133 	va_list tmp_va;
134 	int len;
135 	char *old;
136 	char *name;
137 	char dummy;
138 
139 	old = kobj->name;
140 
141 	if (old && fmt == NULL)
142 		return (0);
143 
144 	/* compute length of string */
145 	va_copy(tmp_va, args);
146 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
147 	va_end(tmp_va);
148 
149 	/* account for zero termination */
150 	len++;
151 
152 	/* check for error */
153 	if (len < 1)
154 		return (-EINVAL);
155 
156 	/* allocate memory for string */
157 	name = kzalloc(len, GFP_KERNEL);
158 	if (name == NULL)
159 		return (-ENOMEM);
160 	vsnprintf(name, len, fmt, args);
161 	kobj->name = name;
162 
163 	/* free old string */
164 	kfree(old);
165 
166 	/* filter new string */
167 	for (; *name != '\0'; name++)
168 		if (*name == '/')
169 			*name = '!';
170 	return (0);
171 }
172 
173 int
174 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
175 {
176 	va_list args;
177 	int error;
178 
179 	va_start(args, fmt);
180 	error = kobject_set_name_vargs(kobj, fmt, args);
181 	va_end(args);
182 
183 	return (error);
184 }
185 
186 static int
187 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
188 {
189 	const struct kobj_type *t;
190 	int error;
191 
192 	kobj->parent = parent;
193 	error = sysfs_create_dir(kobj);
194 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
195 		struct attribute **attr;
196 		t = kobj->ktype;
197 
198 		for (attr = t->default_attrs; *attr != NULL; attr++) {
199 			error = sysfs_create_file(kobj, *attr);
200 			if (error)
201 				break;
202 		}
203 		if (error)
204 			sysfs_remove_dir(kobj);
205 
206 	}
207 	return (error);
208 }
209 
210 int
211 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
212 {
213 	va_list args;
214 	int error;
215 
216 	va_start(args, fmt);
217 	error = kobject_set_name_vargs(kobj, fmt, args);
218 	va_end(args);
219 	if (error)
220 		return (error);
221 
222 	return kobject_add_complete(kobj, parent);
223 }
224 
225 void
226 linux_kobject_release(struct kref *kref)
227 {
228 	struct kobject *kobj;
229 	char *name;
230 
231 	kobj = container_of(kref, struct kobject, kref);
232 	sysfs_remove_dir(kobj);
233 	name = kobj->name;
234 	if (kobj->ktype && kobj->ktype->release)
235 		kobj->ktype->release(kobj);
236 	kfree(name);
237 }
238 
239 static void
240 linux_kobject_kfree(struct kobject *kobj)
241 {
242 	kfree(kobj);
243 }
244 
245 static void
246 linux_kobject_kfree_name(struct kobject *kobj)
247 {
248 	if (kobj) {
249 		kfree(kobj->name);
250 	}
251 }
252 
253 const struct kobj_type linux_kfree_type = {
254 	.release = linux_kobject_kfree
255 };
256 
257 static void
258 linux_device_release(struct device *dev)
259 {
260 	pr_debug("linux_device_release: %s\n", dev_name(dev));
261 	kfree(dev);
262 }
263 
264 static ssize_t
265 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
266 {
267 	struct class_attribute *dattr;
268 	ssize_t error;
269 
270 	dattr = container_of(attr, struct class_attribute, attr);
271 	error = -EIO;
272 	if (dattr->show)
273 		error = dattr->show(container_of(kobj, struct class, kobj),
274 		    dattr, buf);
275 	return (error);
276 }
277 
278 static ssize_t
279 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
280     size_t count)
281 {
282 	struct class_attribute *dattr;
283 	ssize_t error;
284 
285 	dattr = container_of(attr, struct class_attribute, attr);
286 	error = -EIO;
287 	if (dattr->store)
288 		error = dattr->store(container_of(kobj, struct class, kobj),
289 		    dattr, buf, count);
290 	return (error);
291 }
292 
293 static void
294 linux_class_release(struct kobject *kobj)
295 {
296 	struct class *class;
297 
298 	class = container_of(kobj, struct class, kobj);
299 	if (class->class_release)
300 		class->class_release(class);
301 }
302 
303 static const struct sysfs_ops linux_class_sysfs = {
304 	.show  = linux_class_show,
305 	.store = linux_class_store,
306 };
307 
308 const struct kobj_type linux_class_ktype = {
309 	.release = linux_class_release,
310 	.sysfs_ops = &linux_class_sysfs
311 };
312 
313 static void
314 linux_dev_release(struct kobject *kobj)
315 {
316 	struct device *dev;
317 
318 	dev = container_of(kobj, struct device, kobj);
319 	/* This is the precedence defined by linux. */
320 	if (dev->release)
321 		dev->release(dev);
322 	else if (dev->class && dev->class->dev_release)
323 		dev->class->dev_release(dev);
324 }
325 
326 static ssize_t
327 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
328 {
329 	struct device_attribute *dattr;
330 	ssize_t error;
331 
332 	dattr = container_of(attr, struct device_attribute, attr);
333 	error = -EIO;
334 	if (dattr->show)
335 		error = dattr->show(container_of(kobj, struct device, kobj),
336 		    dattr, buf);
337 	return (error);
338 }
339 
340 static ssize_t
341 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
342     size_t count)
343 {
344 	struct device_attribute *dattr;
345 	ssize_t error;
346 
347 	dattr = container_of(attr, struct device_attribute, attr);
348 	error = -EIO;
349 	if (dattr->store)
350 		error = dattr->store(container_of(kobj, struct device, kobj),
351 		    dattr, buf, count);
352 	return (error);
353 }
354 
355 static const struct sysfs_ops linux_dev_sysfs = {
356 	.show  = linux_dev_show,
357 	.store = linux_dev_store,
358 };
359 
360 const struct kobj_type linux_dev_ktype = {
361 	.release = linux_dev_release,
362 	.sysfs_ops = &linux_dev_sysfs
363 };
364 
365 struct device *
366 device_create(struct class *class, struct device *parent, dev_t devt,
367     void *drvdata, const char *fmt, ...)
368 {
369 	struct device *dev;
370 	va_list args;
371 
372 	dev = kzalloc(sizeof(*dev), M_WAITOK);
373 	dev->parent = parent;
374 	dev->class = class;
375 	dev->devt = devt;
376 	dev->driver_data = drvdata;
377 	dev->release = linux_device_release;
378 	va_start(args, fmt);
379 	kobject_set_name_vargs(&dev->kobj, fmt, args);
380 	va_end(args);
381 	device_register(dev);
382 
383 	return (dev);
384 }
385 
386 int
387 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
388     struct kobject *parent, const char *fmt, ...)
389 {
390 	va_list args;
391 	int error;
392 
393 	kobject_init(kobj, ktype);
394 	kobj->ktype = ktype;
395 	kobj->parent = parent;
396 	kobj->name = NULL;
397 
398 	va_start(args, fmt);
399 	error = kobject_set_name_vargs(kobj, fmt, args);
400 	va_end(args);
401 	if (error)
402 		return (error);
403 	return kobject_add_complete(kobj, parent);
404 }
405 
406 static void
407 linux_kq_lock(void *arg)
408 {
409 	spinlock_t *s = arg;
410 
411 	spin_lock(s);
412 }
413 static void
414 linux_kq_unlock(void *arg)
415 {
416 	spinlock_t *s = arg;
417 
418 	spin_unlock(s);
419 }
420 
421 static void
422 linux_kq_lock_owned(void *arg)
423 {
424 #ifdef INVARIANTS
425 	spinlock_t *s = arg;
426 
427 	mtx_assert(&s->m, MA_OWNED);
428 #endif
429 }
430 
431 static void
432 linux_kq_lock_unowned(void *arg)
433 {
434 #ifdef INVARIANTS
435 	spinlock_t *s = arg;
436 
437 	mtx_assert(&s->m, MA_NOTOWNED);
438 #endif
439 }
440 
441 static void
442 linux_file_kqfilter_poll(struct linux_file *, int);
443 
444 struct linux_file *
445 linux_file_alloc(void)
446 {
447 	struct linux_file *filp;
448 
449 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
450 
451 	/* set initial refcount */
452 	filp->f_count = 1;
453 
454 	/* setup fields needed by kqueue support */
455 	spin_lock_init(&filp->f_kqlock);
456 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
457 	    linux_kq_lock, linux_kq_unlock,
458 	    linux_kq_lock_owned, linux_kq_lock_unowned);
459 
460 	return (filp);
461 }
462 
463 void
464 linux_file_free(struct linux_file *filp)
465 {
466 	if (filp->_file == NULL) {
467 		if (filp->f_shmem != NULL)
468 			vm_object_deallocate(filp->f_shmem);
469 		kfree(filp);
470 	} else {
471 		/*
472 		 * The close method of the character device or file
473 		 * will free the linux_file structure:
474 		 */
475 		_fdrop(filp->_file, curthread);
476 	}
477 }
478 
479 static int
480 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
481     vm_page_t *mres)
482 {
483 	struct vm_area_struct *vmap;
484 
485 	vmap = linux_cdev_handle_find(vm_obj->handle);
486 
487 	MPASS(vmap != NULL);
488 	MPASS(vmap->vm_private_data == vm_obj->handle);
489 
490 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
491 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
492 		vm_page_t page;
493 
494 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
495 			/*
496 			 * If the passed in result page is a fake
497 			 * page, update it with the new physical
498 			 * address.
499 			 */
500 			page = *mres;
501 			vm_page_updatefake(page, paddr, vm_obj->memattr);
502 		} else {
503 			/*
504 			 * Replace the passed in "mres" page with our
505 			 * own fake page and free up the all of the
506 			 * original pages.
507 			 */
508 			VM_OBJECT_WUNLOCK(vm_obj);
509 			page = vm_page_getfake(paddr, vm_obj->memattr);
510 			VM_OBJECT_WLOCK(vm_obj);
511 
512 			vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
513 			*mres = page;
514 		}
515 		vm_page_valid(page);
516 		return (VM_PAGER_OK);
517 	}
518 	return (VM_PAGER_FAIL);
519 }
520 
521 static int
522 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
523     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
524 {
525 	struct vm_area_struct *vmap;
526 	int err;
527 
528 	/* get VM area structure */
529 	vmap = linux_cdev_handle_find(vm_obj->handle);
530 	MPASS(vmap != NULL);
531 	MPASS(vmap->vm_private_data == vm_obj->handle);
532 
533 	VM_OBJECT_WUNLOCK(vm_obj);
534 
535 	linux_set_current(curthread);
536 
537 	down_write(&vmap->vm_mm->mmap_sem);
538 	if (unlikely(vmap->vm_ops == NULL)) {
539 		err = VM_FAULT_SIGBUS;
540 	} else {
541 		struct vm_fault vmf;
542 
543 		/* fill out VM fault structure */
544 		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
545 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
546 		vmf.pgoff = 0;
547 		vmf.page = NULL;
548 		vmf.vma = vmap;
549 
550 		vmap->vm_pfn_count = 0;
551 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
552 		vmap->vm_obj = vm_obj;
553 
554 		err = vmap->vm_ops->fault(vmap, &vmf);
555 
556 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
557 			kern_yield(PRI_USER);
558 			err = vmap->vm_ops->fault(vmap, &vmf);
559 		}
560 	}
561 
562 	/* translate return code */
563 	switch (err) {
564 	case VM_FAULT_OOM:
565 		err = VM_PAGER_AGAIN;
566 		break;
567 	case VM_FAULT_SIGBUS:
568 		err = VM_PAGER_BAD;
569 		break;
570 	case VM_FAULT_NOPAGE:
571 		/*
572 		 * By contract the fault handler will return having
573 		 * busied all the pages itself. If pidx is already
574 		 * found in the object, it will simply xbusy the first
575 		 * page and return with vm_pfn_count set to 1.
576 		 */
577 		*first = vmap->vm_pfn_first;
578 		*last = *first + vmap->vm_pfn_count - 1;
579 		err = VM_PAGER_OK;
580 		break;
581 	default:
582 		err = VM_PAGER_ERROR;
583 		break;
584 	}
585 	up_write(&vmap->vm_mm->mmap_sem);
586 	VM_OBJECT_WLOCK(vm_obj);
587 	return (err);
588 }
589 
590 static struct rwlock linux_vma_lock;
591 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
592     TAILQ_HEAD_INITIALIZER(linux_vma_head);
593 
594 static void
595 linux_cdev_handle_free(struct vm_area_struct *vmap)
596 {
597 	/* Drop reference on vm_file */
598 	if (vmap->vm_file != NULL)
599 		fput(vmap->vm_file);
600 
601 	/* Drop reference on mm_struct */
602 	mmput(vmap->vm_mm);
603 
604 	kfree(vmap);
605 }
606 
607 static void
608 linux_cdev_handle_remove(struct vm_area_struct *vmap)
609 {
610 	rw_wlock(&linux_vma_lock);
611 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
612 	rw_wunlock(&linux_vma_lock);
613 }
614 
615 static struct vm_area_struct *
616 linux_cdev_handle_find(void *handle)
617 {
618 	struct vm_area_struct *vmap;
619 
620 	rw_rlock(&linux_vma_lock);
621 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
622 		if (vmap->vm_private_data == handle)
623 			break;
624 	}
625 	rw_runlock(&linux_vma_lock);
626 	return (vmap);
627 }
628 
629 static int
630 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
631 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
632 {
633 
634 	MPASS(linux_cdev_handle_find(handle) != NULL);
635 	*color = 0;
636 	return (0);
637 }
638 
639 static void
640 linux_cdev_pager_dtor(void *handle)
641 {
642 	const struct vm_operations_struct *vm_ops;
643 	struct vm_area_struct *vmap;
644 
645 	vmap = linux_cdev_handle_find(handle);
646 	MPASS(vmap != NULL);
647 
648 	/*
649 	 * Remove handle before calling close operation to prevent
650 	 * other threads from reusing the handle pointer.
651 	 */
652 	linux_cdev_handle_remove(vmap);
653 
654 	down_write(&vmap->vm_mm->mmap_sem);
655 	vm_ops = vmap->vm_ops;
656 	if (likely(vm_ops != NULL))
657 		vm_ops->close(vmap);
658 	up_write(&vmap->vm_mm->mmap_sem);
659 
660 	linux_cdev_handle_free(vmap);
661 }
662 
663 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
664   {
665 	/* OBJT_MGTDEVICE */
666 	.cdev_pg_populate	= linux_cdev_pager_populate,
667 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
668 	.cdev_pg_dtor	= linux_cdev_pager_dtor
669   },
670   {
671 	/* OBJT_DEVICE */
672 	.cdev_pg_fault	= linux_cdev_pager_fault,
673 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
674 	.cdev_pg_dtor	= linux_cdev_pager_dtor
675   },
676 };
677 
678 int
679 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
680     unsigned long size)
681 {
682 	vm_object_t obj;
683 	vm_page_t m;
684 
685 	obj = vma->vm_obj;
686 	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
687 		return (-ENOTSUP);
688 	VM_OBJECT_RLOCK(obj);
689 	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
690 	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
691 	    m = TAILQ_NEXT(m, listq))
692 		pmap_remove_all(m);
693 	VM_OBJECT_RUNLOCK(obj);
694 	return (0);
695 }
696 
697 static struct file_operations dummy_ldev_ops = {
698 	/* XXXKIB */
699 };
700 
701 static struct linux_cdev dummy_ldev = {
702 	.ops = &dummy_ldev_ops,
703 };
704 
705 #define	LDEV_SI_DTR	0x0001
706 #define	LDEV_SI_REF	0x0002
707 
708 static void
709 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
710     struct linux_cdev **dev)
711 {
712 	struct linux_cdev *ldev;
713 	u_int siref;
714 
715 	ldev = filp->f_cdev;
716 	*fop = filp->f_op;
717 	if (ldev != NULL) {
718 		for (siref = ldev->siref;;) {
719 			if ((siref & LDEV_SI_DTR) != 0) {
720 				ldev = &dummy_ldev;
721 				siref = ldev->siref;
722 				*fop = ldev->ops;
723 				MPASS((ldev->siref & LDEV_SI_DTR) == 0);
724 			} else if (atomic_fcmpset_int(&ldev->siref, &siref,
725 			    siref + LDEV_SI_REF)) {
726 				break;
727 			}
728 		}
729 	}
730 	*dev = ldev;
731 }
732 
733 static void
734 linux_drop_fop(struct linux_cdev *ldev)
735 {
736 
737 	if (ldev == NULL)
738 		return;
739 	MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
740 	atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
741 }
742 
743 #define	OPW(fp,td,code) ({			\
744 	struct file *__fpop;			\
745 	__typeof(code) __retval;		\
746 						\
747 	__fpop = (td)->td_fpop;			\
748 	(td)->td_fpop = (fp);			\
749 	__retval = (code);			\
750 	(td)->td_fpop = __fpop;			\
751 	__retval;				\
752 })
753 
754 static int
755 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
756     struct file *file)
757 {
758 	struct linux_cdev *ldev;
759 	struct linux_file *filp;
760 	const struct file_operations *fop;
761 	int error;
762 
763 	ldev = dev->si_drv1;
764 
765 	filp = linux_file_alloc();
766 	filp->f_dentry = &filp->f_dentry_store;
767 	filp->f_op = ldev->ops;
768 	filp->f_mode = file->f_flag;
769 	filp->f_flags = file->f_flag;
770 	filp->f_vnode = file->f_vnode;
771 	filp->_file = file;
772 	refcount_acquire(&ldev->refs);
773 	filp->f_cdev = ldev;
774 
775 	linux_set_current(td);
776 	linux_get_fop(filp, &fop, &ldev);
777 
778 	if (fop->open != NULL) {
779 		error = -fop->open(file->f_vnode, filp);
780 		if (error != 0) {
781 			linux_drop_fop(ldev);
782 			linux_cdev_deref(filp->f_cdev);
783 			kfree(filp);
784 			return (error);
785 		}
786 	}
787 
788 	/* hold on to the vnode - used for fstat() */
789 	vhold(filp->f_vnode);
790 
791 	/* release the file from devfs */
792 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
793 	linux_drop_fop(ldev);
794 	return (ENXIO);
795 }
796 
797 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
798 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
799 
800 static inline int
801 linux_remap_address(void **uaddr, size_t len)
802 {
803 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
804 
805 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
806 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
807 		struct task_struct *pts = current;
808 		if (pts == NULL) {
809 			*uaddr = NULL;
810 			return (1);
811 		}
812 
813 		/* compute data offset */
814 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
815 
816 		/* check that length is within bounds */
817 		if ((len > IOCPARM_MAX) ||
818 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
819 			*uaddr = NULL;
820 			return (1);
821 		}
822 
823 		/* re-add kernel buffer address */
824 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
825 
826 		/* update address location */
827 		*uaddr = (void *)uaddr_val;
828 		return (1);
829 	}
830 	return (0);
831 }
832 
833 int
834 linux_copyin(const void *uaddr, void *kaddr, size_t len)
835 {
836 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
837 		if (uaddr == NULL)
838 			return (-EFAULT);
839 		memcpy(kaddr, uaddr, len);
840 		return (0);
841 	}
842 	return (-copyin(uaddr, kaddr, len));
843 }
844 
845 int
846 linux_copyout(const void *kaddr, void *uaddr, size_t len)
847 {
848 	if (linux_remap_address(&uaddr, len)) {
849 		if (uaddr == NULL)
850 			return (-EFAULT);
851 		memcpy(uaddr, kaddr, len);
852 		return (0);
853 	}
854 	return (-copyout(kaddr, uaddr, len));
855 }
856 
857 size_t
858 linux_clear_user(void *_uaddr, size_t _len)
859 {
860 	uint8_t *uaddr = _uaddr;
861 	size_t len = _len;
862 
863 	/* make sure uaddr is aligned before going into the fast loop */
864 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
865 		if (subyte(uaddr, 0))
866 			return (_len);
867 		uaddr++;
868 		len--;
869 	}
870 
871 	/* zero 8 bytes at a time */
872 	while (len > 7) {
873 #ifdef __LP64__
874 		if (suword64(uaddr, 0))
875 			return (_len);
876 #else
877 		if (suword32(uaddr, 0))
878 			return (_len);
879 		if (suword32(uaddr + 4, 0))
880 			return (_len);
881 #endif
882 		uaddr += 8;
883 		len -= 8;
884 	}
885 
886 	/* zero fill end, if any */
887 	while (len > 0) {
888 		if (subyte(uaddr, 0))
889 			return (_len);
890 		uaddr++;
891 		len--;
892 	}
893 	return (0);
894 }
895 
896 int
897 linux_access_ok(const void *uaddr, size_t len)
898 {
899 	uintptr_t saddr;
900 	uintptr_t eaddr;
901 
902 	/* get start and end address */
903 	saddr = (uintptr_t)uaddr;
904 	eaddr = (uintptr_t)uaddr + len;
905 
906 	/* verify addresses are valid for userspace */
907 	return ((saddr == eaddr) ||
908 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
909 }
910 
911 /*
912  * This function should return either EINTR or ERESTART depending on
913  * the signal type sent to this thread:
914  */
915 static int
916 linux_get_error(struct task_struct *task, int error)
917 {
918 	/* check for signal type interrupt code */
919 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
920 		error = -linux_schedule_get_interrupt_value(task);
921 		if (error == 0)
922 			error = EINTR;
923 	}
924 	return (error);
925 }
926 
927 static int
928 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
929     const struct file_operations *fop, u_long cmd, caddr_t data,
930     struct thread *td)
931 {
932 	struct task_struct *task = current;
933 	unsigned size;
934 	int error;
935 
936 	size = IOCPARM_LEN(cmd);
937 	/* refer to logic in sys_ioctl() */
938 	if (size > 0) {
939 		/*
940 		 * Setup hint for linux_copyin() and linux_copyout().
941 		 *
942 		 * Background: Linux code expects a user-space address
943 		 * while FreeBSD supplies a kernel-space address.
944 		 */
945 		task->bsd_ioctl_data = data;
946 		task->bsd_ioctl_len = size;
947 		data = (void *)LINUX_IOCTL_MIN_PTR;
948 	} else {
949 		/* fetch user-space pointer */
950 		data = *(void **)data;
951 	}
952 #if defined(__amd64__)
953 	if (td->td_proc->p_elf_machine == EM_386) {
954 		/* try the compat IOCTL handler first */
955 		if (fop->compat_ioctl != NULL) {
956 			error = -OPW(fp, td, fop->compat_ioctl(filp,
957 			    cmd, (u_long)data));
958 		} else {
959 			error = ENOTTY;
960 		}
961 
962 		/* fallback to the regular IOCTL handler, if any */
963 		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
964 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
965 			    cmd, (u_long)data));
966 		}
967 	} else
968 #endif
969 	{
970 		if (fop->unlocked_ioctl != NULL) {
971 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
972 			    cmd, (u_long)data));
973 		} else {
974 			error = ENOTTY;
975 		}
976 	}
977 	if (size > 0) {
978 		task->bsd_ioctl_data = NULL;
979 		task->bsd_ioctl_len = 0;
980 	}
981 
982 	if (error == EWOULDBLOCK) {
983 		/* update kqfilter status, if any */
984 		linux_file_kqfilter_poll(filp,
985 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
986 	} else {
987 		error = linux_get_error(task, error);
988 	}
989 	return (error);
990 }
991 
992 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
993 
994 /*
995  * This function atomically updates the poll wakeup state and returns
996  * the previous state at the time of update.
997  */
998 static uint8_t
999 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1000 {
1001 	int c, old;
1002 
1003 	c = v->counter;
1004 
1005 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1006 		c = old;
1007 
1008 	return (c);
1009 }
1010 
1011 
1012 static int
1013 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1014 {
1015 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1016 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1017 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1018 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1019 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1020 	};
1021 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1022 
1023 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1024 	case LINUX_FWQ_STATE_QUEUED:
1025 		linux_poll_wakeup(filp);
1026 		return (1);
1027 	default:
1028 		return (0);
1029 	}
1030 }
1031 
1032 void
1033 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1034 {
1035 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1036 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1037 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1038 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1039 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1040 	};
1041 
1042 	/* check if we are called inside the select system call */
1043 	if (p == LINUX_POLL_TABLE_NORMAL)
1044 		selrecord(curthread, &filp->f_selinfo);
1045 
1046 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1047 	case LINUX_FWQ_STATE_INIT:
1048 		/* NOTE: file handles can only belong to one wait-queue */
1049 		filp->f_wait_queue.wqh = wqh;
1050 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1051 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1052 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1053 		break;
1054 	default:
1055 		break;
1056 	}
1057 }
1058 
1059 static void
1060 linux_poll_wait_dequeue(struct linux_file *filp)
1061 {
1062 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1063 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1064 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1065 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1066 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1067 	};
1068 
1069 	seldrain(&filp->f_selinfo);
1070 
1071 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1072 	case LINUX_FWQ_STATE_NOT_READY:
1073 	case LINUX_FWQ_STATE_QUEUED:
1074 	case LINUX_FWQ_STATE_READY:
1075 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1076 		break;
1077 	default:
1078 		break;
1079 	}
1080 }
1081 
1082 void
1083 linux_poll_wakeup(struct linux_file *filp)
1084 {
1085 	/* this function should be NULL-safe */
1086 	if (filp == NULL)
1087 		return;
1088 
1089 	selwakeup(&filp->f_selinfo);
1090 
1091 	spin_lock(&filp->f_kqlock);
1092 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1093 	    LINUX_KQ_FLAG_NEED_WRITE;
1094 
1095 	/* make sure the "knote" gets woken up */
1096 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1097 	spin_unlock(&filp->f_kqlock);
1098 }
1099 
1100 static void
1101 linux_file_kqfilter_detach(struct knote *kn)
1102 {
1103 	struct linux_file *filp = kn->kn_hook;
1104 
1105 	spin_lock(&filp->f_kqlock);
1106 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1107 	spin_unlock(&filp->f_kqlock);
1108 }
1109 
1110 static int
1111 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1112 {
1113 	struct linux_file *filp = kn->kn_hook;
1114 
1115 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1116 
1117 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1118 }
1119 
1120 static int
1121 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1122 {
1123 	struct linux_file *filp = kn->kn_hook;
1124 
1125 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1126 
1127 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1128 }
1129 
1130 static struct filterops linux_dev_kqfiltops_read = {
1131 	.f_isfd = 1,
1132 	.f_detach = linux_file_kqfilter_detach,
1133 	.f_event = linux_file_kqfilter_read_event,
1134 };
1135 
1136 static struct filterops linux_dev_kqfiltops_write = {
1137 	.f_isfd = 1,
1138 	.f_detach = linux_file_kqfilter_detach,
1139 	.f_event = linux_file_kqfilter_write_event,
1140 };
1141 
1142 static void
1143 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1144 {
1145 	struct thread *td;
1146 	const struct file_operations *fop;
1147 	struct linux_cdev *ldev;
1148 	int temp;
1149 
1150 	if ((filp->f_kqflags & kqflags) == 0)
1151 		return;
1152 
1153 	td = curthread;
1154 
1155 	linux_get_fop(filp, &fop, &ldev);
1156 	/* get the latest polling state */
1157 	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1158 	linux_drop_fop(ldev);
1159 
1160 	spin_lock(&filp->f_kqlock);
1161 	/* clear kqflags */
1162 	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1163 	    LINUX_KQ_FLAG_NEED_WRITE);
1164 	/* update kqflags */
1165 	if ((temp & (POLLIN | POLLOUT)) != 0) {
1166 		if ((temp & POLLIN) != 0)
1167 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1168 		if ((temp & POLLOUT) != 0)
1169 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1170 
1171 		/* make sure the "knote" gets woken up */
1172 		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1173 	}
1174 	spin_unlock(&filp->f_kqlock);
1175 }
1176 
1177 static int
1178 linux_file_kqfilter(struct file *file, struct knote *kn)
1179 {
1180 	struct linux_file *filp;
1181 	struct thread *td;
1182 	int error;
1183 
1184 	td = curthread;
1185 	filp = (struct linux_file *)file->f_data;
1186 	filp->f_flags = file->f_flag;
1187 	if (filp->f_op->poll == NULL)
1188 		return (EINVAL);
1189 
1190 	spin_lock(&filp->f_kqlock);
1191 	switch (kn->kn_filter) {
1192 	case EVFILT_READ:
1193 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1194 		kn->kn_fop = &linux_dev_kqfiltops_read;
1195 		kn->kn_hook = filp;
1196 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1197 		error = 0;
1198 		break;
1199 	case EVFILT_WRITE:
1200 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1201 		kn->kn_fop = &linux_dev_kqfiltops_write;
1202 		kn->kn_hook = filp;
1203 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1204 		error = 0;
1205 		break;
1206 	default:
1207 		error = EINVAL;
1208 		break;
1209 	}
1210 	spin_unlock(&filp->f_kqlock);
1211 
1212 	if (error == 0) {
1213 		linux_set_current(td);
1214 
1215 		/* update kqfilter status, if any */
1216 		linux_file_kqfilter_poll(filp,
1217 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1218 	}
1219 	return (error);
1220 }
1221 
1222 static int
1223 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1224     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1225     int nprot, struct thread *td)
1226 {
1227 	struct task_struct *task;
1228 	struct vm_area_struct *vmap;
1229 	struct mm_struct *mm;
1230 	struct linux_file *filp;
1231 	vm_memattr_t attr;
1232 	int error;
1233 
1234 	filp = (struct linux_file *)fp->f_data;
1235 	filp->f_flags = fp->f_flag;
1236 
1237 	if (fop->mmap == NULL)
1238 		return (EOPNOTSUPP);
1239 
1240 	linux_set_current(td);
1241 
1242 	/*
1243 	 * The same VM object might be shared by multiple processes
1244 	 * and the mm_struct is usually freed when a process exits.
1245 	 *
1246 	 * The atomic reference below makes sure the mm_struct is
1247 	 * available as long as the vmap is in the linux_vma_head.
1248 	 */
1249 	task = current;
1250 	mm = task->mm;
1251 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1252 		return (EINVAL);
1253 
1254 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1255 	vmap->vm_start = 0;
1256 	vmap->vm_end = size;
1257 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1258 	vmap->vm_pfn = 0;
1259 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1260 	vmap->vm_ops = NULL;
1261 	vmap->vm_file = get_file(filp);
1262 	vmap->vm_mm = mm;
1263 
1264 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1265 		error = linux_get_error(task, EINTR);
1266 	} else {
1267 		error = -OPW(fp, td, fop->mmap(filp, vmap));
1268 		error = linux_get_error(task, error);
1269 		up_write(&vmap->vm_mm->mmap_sem);
1270 	}
1271 
1272 	if (error != 0) {
1273 		linux_cdev_handle_free(vmap);
1274 		return (error);
1275 	}
1276 
1277 	attr = pgprot2cachemode(vmap->vm_page_prot);
1278 
1279 	if (vmap->vm_ops != NULL) {
1280 		struct vm_area_struct *ptr;
1281 		void *vm_private_data;
1282 		bool vm_no_fault;
1283 
1284 		if (vmap->vm_ops->open == NULL ||
1285 		    vmap->vm_ops->close == NULL ||
1286 		    vmap->vm_private_data == NULL) {
1287 			/* free allocated VM area struct */
1288 			linux_cdev_handle_free(vmap);
1289 			return (EINVAL);
1290 		}
1291 
1292 		vm_private_data = vmap->vm_private_data;
1293 
1294 		rw_wlock(&linux_vma_lock);
1295 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1296 			if (ptr->vm_private_data == vm_private_data)
1297 				break;
1298 		}
1299 		/* check if there is an existing VM area struct */
1300 		if (ptr != NULL) {
1301 			/* check if the VM area structure is invalid */
1302 			if (ptr->vm_ops == NULL ||
1303 			    ptr->vm_ops->open == NULL ||
1304 			    ptr->vm_ops->close == NULL) {
1305 				error = ESTALE;
1306 				vm_no_fault = 1;
1307 			} else {
1308 				error = EEXIST;
1309 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1310 			}
1311 		} else {
1312 			/* insert VM area structure into list */
1313 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1314 			error = 0;
1315 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1316 		}
1317 		rw_wunlock(&linux_vma_lock);
1318 
1319 		if (error != 0) {
1320 			/* free allocated VM area struct */
1321 			linux_cdev_handle_free(vmap);
1322 			/* check for stale VM area struct */
1323 			if (error != EEXIST)
1324 				return (error);
1325 		}
1326 
1327 		/* check if there is no fault handler */
1328 		if (vm_no_fault) {
1329 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1330 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1331 			    td->td_ucred);
1332 		} else {
1333 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1334 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1335 			    td->td_ucred);
1336 		}
1337 
1338 		/* check if allocating the VM object failed */
1339 		if (*object == NULL) {
1340 			if (error == 0) {
1341 				/* remove VM area struct from list */
1342 				linux_cdev_handle_remove(vmap);
1343 				/* free allocated VM area struct */
1344 				linux_cdev_handle_free(vmap);
1345 			}
1346 			return (EINVAL);
1347 		}
1348 	} else {
1349 		struct sglist *sg;
1350 
1351 		sg = sglist_alloc(1, M_WAITOK);
1352 		sglist_append_phys(sg,
1353 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1354 
1355 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1356 		    nprot, 0, td->td_ucred);
1357 
1358 		linux_cdev_handle_free(vmap);
1359 
1360 		if (*object == NULL) {
1361 			sglist_free(sg);
1362 			return (EINVAL);
1363 		}
1364 	}
1365 
1366 	if (attr != VM_MEMATTR_DEFAULT) {
1367 		VM_OBJECT_WLOCK(*object);
1368 		vm_object_set_memattr(*object, attr);
1369 		VM_OBJECT_WUNLOCK(*object);
1370 	}
1371 	*offset = 0;
1372 	return (0);
1373 }
1374 
1375 struct cdevsw linuxcdevsw = {
1376 	.d_version = D_VERSION,
1377 	.d_fdopen = linux_dev_fdopen,
1378 	.d_name = "lkpidev",
1379 };
1380 
1381 static int
1382 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1383     int flags, struct thread *td)
1384 {
1385 	struct linux_file *filp;
1386 	const struct file_operations *fop;
1387 	struct linux_cdev *ldev;
1388 	ssize_t bytes;
1389 	int error;
1390 
1391 	error = 0;
1392 	filp = (struct linux_file *)file->f_data;
1393 	filp->f_flags = file->f_flag;
1394 	/* XXX no support for I/O vectors currently */
1395 	if (uio->uio_iovcnt != 1)
1396 		return (EOPNOTSUPP);
1397 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1398 		return (EINVAL);
1399 	linux_set_current(td);
1400 	linux_get_fop(filp, &fop, &ldev);
1401 	if (fop->read != NULL) {
1402 		bytes = OPW(file, td, fop->read(filp,
1403 		    uio->uio_iov->iov_base,
1404 		    uio->uio_iov->iov_len, &uio->uio_offset));
1405 		if (bytes >= 0) {
1406 			uio->uio_iov->iov_base =
1407 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1408 			uio->uio_iov->iov_len -= bytes;
1409 			uio->uio_resid -= bytes;
1410 		} else {
1411 			error = linux_get_error(current, -bytes);
1412 		}
1413 	} else
1414 		error = ENXIO;
1415 
1416 	/* update kqfilter status, if any */
1417 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1418 	linux_drop_fop(ldev);
1419 
1420 	return (error);
1421 }
1422 
1423 static int
1424 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1425     int flags, struct thread *td)
1426 {
1427 	struct linux_file *filp;
1428 	const struct file_operations *fop;
1429 	struct linux_cdev *ldev;
1430 	ssize_t bytes;
1431 	int error;
1432 
1433 	filp = (struct linux_file *)file->f_data;
1434 	filp->f_flags = file->f_flag;
1435 	/* XXX no support for I/O vectors currently */
1436 	if (uio->uio_iovcnt != 1)
1437 		return (EOPNOTSUPP);
1438 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1439 		return (EINVAL);
1440 	linux_set_current(td);
1441 	linux_get_fop(filp, &fop, &ldev);
1442 	if (fop->write != NULL) {
1443 		bytes = OPW(file, td, fop->write(filp,
1444 		    uio->uio_iov->iov_base,
1445 		    uio->uio_iov->iov_len, &uio->uio_offset));
1446 		if (bytes >= 0) {
1447 			uio->uio_iov->iov_base =
1448 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1449 			uio->uio_iov->iov_len -= bytes;
1450 			uio->uio_resid -= bytes;
1451 			error = 0;
1452 		} else {
1453 			error = linux_get_error(current, -bytes);
1454 		}
1455 	} else
1456 		error = ENXIO;
1457 
1458 	/* update kqfilter status, if any */
1459 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1460 
1461 	linux_drop_fop(ldev);
1462 
1463 	return (error);
1464 }
1465 
1466 static int
1467 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1468     struct thread *td)
1469 {
1470 	struct linux_file *filp;
1471 	const struct file_operations *fop;
1472 	struct linux_cdev *ldev;
1473 	int revents;
1474 
1475 	filp = (struct linux_file *)file->f_data;
1476 	filp->f_flags = file->f_flag;
1477 	linux_set_current(td);
1478 	linux_get_fop(filp, &fop, &ldev);
1479 	if (fop->poll != NULL) {
1480 		revents = OPW(file, td, fop->poll(filp,
1481 		    LINUX_POLL_TABLE_NORMAL)) & events;
1482 	} else {
1483 		revents = 0;
1484 	}
1485 	linux_drop_fop(ldev);
1486 	return (revents);
1487 }
1488 
1489 static int
1490 linux_file_close(struct file *file, struct thread *td)
1491 {
1492 	struct linux_file *filp;
1493 	int (*release)(struct inode *, struct linux_file *);
1494 	const struct file_operations *fop;
1495 	struct linux_cdev *ldev;
1496 	int error;
1497 
1498 	filp = (struct linux_file *)file->f_data;
1499 
1500 	KASSERT(file_count(filp) == 0,
1501 	    ("File refcount(%d) is not zero", file_count(filp)));
1502 
1503 	if (td == NULL)
1504 		td = curthread;
1505 
1506 	error = 0;
1507 	filp->f_flags = file->f_flag;
1508 	linux_set_current(td);
1509 	linux_poll_wait_dequeue(filp);
1510 	linux_get_fop(filp, &fop, &ldev);
1511 	/*
1512 	 * Always use the real release function, if any, to avoid
1513 	 * leaking device resources:
1514 	 */
1515 	release = filp->f_op->release;
1516 	if (release != NULL)
1517 		error = -OPW(file, td, release(filp->f_vnode, filp));
1518 	funsetown(&filp->f_sigio);
1519 	if (filp->f_vnode != NULL)
1520 		vdrop(filp->f_vnode);
1521 	linux_drop_fop(ldev);
1522 	if (filp->f_cdev != NULL)
1523 		linux_cdev_deref(filp->f_cdev);
1524 	kfree(filp);
1525 
1526 	return (error);
1527 }
1528 
1529 static int
1530 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1531     struct thread *td)
1532 {
1533 	struct linux_file *filp;
1534 	const struct file_operations *fop;
1535 	struct linux_cdev *ldev;
1536 	struct fiodgname_arg *fgn;
1537 	const char *p;
1538 	int error, i;
1539 
1540 	error = 0;
1541 	filp = (struct linux_file *)fp->f_data;
1542 	filp->f_flags = fp->f_flag;
1543 	linux_get_fop(filp, &fop, &ldev);
1544 
1545 	linux_set_current(td);
1546 	switch (cmd) {
1547 	case FIONBIO:
1548 		break;
1549 	case FIOASYNC:
1550 		if (fop->fasync == NULL)
1551 			break;
1552 		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1553 		break;
1554 	case FIOSETOWN:
1555 		error = fsetown(*(int *)data, &filp->f_sigio);
1556 		if (error == 0) {
1557 			if (fop->fasync == NULL)
1558 				break;
1559 			error = -OPW(fp, td, fop->fasync(0, filp,
1560 			    fp->f_flag & FASYNC));
1561 		}
1562 		break;
1563 	case FIOGETOWN:
1564 		*(int *)data = fgetown(&filp->f_sigio);
1565 		break;
1566 	case FIODGNAME:
1567 #ifdef	COMPAT_FREEBSD32
1568 	case FIODGNAME_32:
1569 #endif
1570 		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1571 			error = ENXIO;
1572 			break;
1573 		}
1574 		fgn = data;
1575 		p = devtoname(filp->f_cdev->cdev);
1576 		i = strlen(p) + 1;
1577 		if (i > fgn->len) {
1578 			error = EINVAL;
1579 			break;
1580 		}
1581 		error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1582 		break;
1583 	default:
1584 		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1585 		break;
1586 	}
1587 	linux_drop_fop(ldev);
1588 	return (error);
1589 }
1590 
1591 static int
1592 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1593     vm_prot_t *maxprotp, int *flagsp, struct file *fp,
1594     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1595 {
1596 	/*
1597 	 * Character devices do not provide private mappings
1598 	 * of any kind:
1599 	 */
1600 	if ((*maxprotp & VM_PROT_WRITE) == 0 &&
1601 	    (prot & VM_PROT_WRITE) != 0)
1602 		return (EACCES);
1603 	if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0)
1604 		return (EINVAL);
1605 
1606 	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1607 	    (int)prot, td));
1608 }
1609 
1610 static int
1611 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1612     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1613     struct thread *td)
1614 {
1615 	struct linux_file *filp;
1616 	const struct file_operations *fop;
1617 	struct linux_cdev *ldev;
1618 	struct mount *mp;
1619 	struct vnode *vp;
1620 	vm_object_t object;
1621 	vm_prot_t maxprot;
1622 	int error;
1623 
1624 	filp = (struct linux_file *)fp->f_data;
1625 
1626 	vp = filp->f_vnode;
1627 	if (vp == NULL)
1628 		return (EOPNOTSUPP);
1629 
1630 	/*
1631 	 * Ensure that file and memory protections are
1632 	 * compatible.
1633 	 */
1634 	mp = vp->v_mount;
1635 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1636 		maxprot = VM_PROT_NONE;
1637 		if ((prot & VM_PROT_EXECUTE) != 0)
1638 			return (EACCES);
1639 	} else
1640 		maxprot = VM_PROT_EXECUTE;
1641 	if ((fp->f_flag & FREAD) != 0)
1642 		maxprot |= VM_PROT_READ;
1643 	else if ((prot & VM_PROT_READ) != 0)
1644 		return (EACCES);
1645 
1646 	/*
1647 	 * If we are sharing potential changes via MAP_SHARED and we
1648 	 * are trying to get write permission although we opened it
1649 	 * without asking for it, bail out.
1650 	 *
1651 	 * Note that most character devices always share mappings.
1652 	 *
1653 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1654 	 * requests rather than doing it here.
1655 	 */
1656 	if ((flags & MAP_SHARED) != 0) {
1657 		if ((fp->f_flag & FWRITE) != 0)
1658 			maxprot |= VM_PROT_WRITE;
1659 		else if ((prot & VM_PROT_WRITE) != 0)
1660 			return (EACCES);
1661 	}
1662 	maxprot &= cap_maxprot;
1663 
1664 	linux_get_fop(filp, &fop, &ldev);
1665 	error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp,
1666 	    &foff, fop, &object);
1667 	if (error != 0)
1668 		goto out;
1669 
1670 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1671 	    foff, FALSE, td);
1672 	if (error != 0)
1673 		vm_object_deallocate(object);
1674 out:
1675 	linux_drop_fop(ldev);
1676 	return (error);
1677 }
1678 
1679 static int
1680 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1681     struct thread *td)
1682 {
1683 	struct linux_file *filp;
1684 	struct vnode *vp;
1685 	int error;
1686 
1687 	filp = (struct linux_file *)fp->f_data;
1688 	if (filp->f_vnode == NULL)
1689 		return (EOPNOTSUPP);
1690 
1691 	vp = filp->f_vnode;
1692 
1693 	vn_lock(vp, LK_SHARED | LK_RETRY);
1694 	error = vn_stat(vp, sb, td->td_ucred, NOCRED, td);
1695 	VOP_UNLOCK(vp);
1696 
1697 	return (error);
1698 }
1699 
1700 static int
1701 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1702     struct filedesc *fdp)
1703 {
1704 	struct linux_file *filp;
1705 	struct vnode *vp;
1706 	int error;
1707 
1708 	filp = fp->f_data;
1709 	vp = filp->f_vnode;
1710 	if (vp == NULL) {
1711 		error = 0;
1712 		kif->kf_type = KF_TYPE_DEV;
1713 	} else {
1714 		vref(vp);
1715 		FILEDESC_SUNLOCK(fdp);
1716 		error = vn_fill_kinfo_vnode(vp, kif);
1717 		vrele(vp);
1718 		kif->kf_type = KF_TYPE_VNODE;
1719 		FILEDESC_SLOCK(fdp);
1720 	}
1721 	return (error);
1722 }
1723 
1724 unsigned int
1725 linux_iminor(struct inode *inode)
1726 {
1727 	struct linux_cdev *ldev;
1728 
1729 	if (inode == NULL || inode->v_rdev == NULL ||
1730 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1731 		return (-1U);
1732 	ldev = inode->v_rdev->si_drv1;
1733 	if (ldev == NULL)
1734 		return (-1U);
1735 
1736 	return (minor(ldev->dev));
1737 }
1738 
1739 struct fileops linuxfileops = {
1740 	.fo_read = linux_file_read,
1741 	.fo_write = linux_file_write,
1742 	.fo_truncate = invfo_truncate,
1743 	.fo_kqfilter = linux_file_kqfilter,
1744 	.fo_stat = linux_file_stat,
1745 	.fo_fill_kinfo = linux_file_fill_kinfo,
1746 	.fo_poll = linux_file_poll,
1747 	.fo_close = linux_file_close,
1748 	.fo_ioctl = linux_file_ioctl,
1749 	.fo_mmap = linux_file_mmap,
1750 	.fo_chmod = invfo_chmod,
1751 	.fo_chown = invfo_chown,
1752 	.fo_sendfile = invfo_sendfile,
1753 	.fo_flags = DFLAG_PASSABLE,
1754 };
1755 
1756 /*
1757  * Hash of vmmap addresses.  This is infrequently accessed and does not
1758  * need to be particularly large.  This is done because we must store the
1759  * caller's idea of the map size to properly unmap.
1760  */
1761 struct vmmap {
1762 	LIST_ENTRY(vmmap)	vm_next;
1763 	void 			*vm_addr;
1764 	unsigned long		vm_size;
1765 };
1766 
1767 struct vmmaphd {
1768 	struct vmmap *lh_first;
1769 };
1770 #define	VMMAP_HASH_SIZE	64
1771 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1772 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1773 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1774 static struct mtx vmmaplock;
1775 
1776 static void
1777 vmmap_add(void *addr, unsigned long size)
1778 {
1779 	struct vmmap *vmmap;
1780 
1781 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1782 	mtx_lock(&vmmaplock);
1783 	vmmap->vm_size = size;
1784 	vmmap->vm_addr = addr;
1785 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1786 	mtx_unlock(&vmmaplock);
1787 }
1788 
1789 static struct vmmap *
1790 vmmap_remove(void *addr)
1791 {
1792 	struct vmmap *vmmap;
1793 
1794 	mtx_lock(&vmmaplock);
1795 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1796 		if (vmmap->vm_addr == addr)
1797 			break;
1798 	if (vmmap)
1799 		LIST_REMOVE(vmmap, vm_next);
1800 	mtx_unlock(&vmmaplock);
1801 
1802 	return (vmmap);
1803 }
1804 
1805 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__)
1806 void *
1807 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1808 {
1809 	void *addr;
1810 
1811 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1812 	if (addr == NULL)
1813 		return (NULL);
1814 	vmmap_add(addr, size);
1815 
1816 	return (addr);
1817 }
1818 #endif
1819 
1820 void
1821 iounmap(void *addr)
1822 {
1823 	struct vmmap *vmmap;
1824 
1825 	vmmap = vmmap_remove(addr);
1826 	if (vmmap == NULL)
1827 		return;
1828 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__)
1829 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1830 #endif
1831 	kfree(vmmap);
1832 }
1833 
1834 
1835 void *
1836 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1837 {
1838 	vm_offset_t off;
1839 	size_t size;
1840 
1841 	size = count * PAGE_SIZE;
1842 	off = kva_alloc(size);
1843 	if (off == 0)
1844 		return (NULL);
1845 	vmmap_add((void *)off, size);
1846 	pmap_qenter(off, pages, count);
1847 
1848 	return ((void *)off);
1849 }
1850 
1851 void
1852 vunmap(void *addr)
1853 {
1854 	struct vmmap *vmmap;
1855 
1856 	vmmap = vmmap_remove(addr);
1857 	if (vmmap == NULL)
1858 		return;
1859 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1860 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1861 	kfree(vmmap);
1862 }
1863 
1864 char *
1865 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1866 {
1867 	unsigned int len;
1868 	char *p;
1869 	va_list aq;
1870 
1871 	va_copy(aq, ap);
1872 	len = vsnprintf(NULL, 0, fmt, aq);
1873 	va_end(aq);
1874 
1875 	p = kmalloc(len + 1, gfp);
1876 	if (p != NULL)
1877 		vsnprintf(p, len + 1, fmt, ap);
1878 
1879 	return (p);
1880 }
1881 
1882 char *
1883 kasprintf(gfp_t gfp, const char *fmt, ...)
1884 {
1885 	va_list ap;
1886 	char *p;
1887 
1888 	va_start(ap, fmt);
1889 	p = kvasprintf(gfp, fmt, ap);
1890 	va_end(ap);
1891 
1892 	return (p);
1893 }
1894 
1895 static void
1896 linux_timer_callback_wrapper(void *context)
1897 {
1898 	struct timer_list *timer;
1899 
1900 	linux_set_current(curthread);
1901 
1902 	timer = context;
1903 	timer->function(timer->data);
1904 }
1905 
1906 int
1907 mod_timer(struct timer_list *timer, int expires)
1908 {
1909 	int ret;
1910 
1911 	timer->expires = expires;
1912 	ret = callout_reset(&timer->callout,
1913 	    linux_timer_jiffies_until(expires),
1914 	    &linux_timer_callback_wrapper, timer);
1915 
1916 	MPASS(ret == 0 || ret == 1);
1917 
1918 	return (ret == 1);
1919 }
1920 
1921 void
1922 add_timer(struct timer_list *timer)
1923 {
1924 
1925 	callout_reset(&timer->callout,
1926 	    linux_timer_jiffies_until(timer->expires),
1927 	    &linux_timer_callback_wrapper, timer);
1928 }
1929 
1930 void
1931 add_timer_on(struct timer_list *timer, int cpu)
1932 {
1933 
1934 	callout_reset_on(&timer->callout,
1935 	    linux_timer_jiffies_until(timer->expires),
1936 	    &linux_timer_callback_wrapper, timer, cpu);
1937 }
1938 
1939 int
1940 del_timer(struct timer_list *timer)
1941 {
1942 
1943 	if (callout_stop(&(timer)->callout) == -1)
1944 		return (0);
1945 	return (1);
1946 }
1947 
1948 int
1949 del_timer_sync(struct timer_list *timer)
1950 {
1951 
1952 	if (callout_drain(&(timer)->callout) == -1)
1953 		return (0);
1954 	return (1);
1955 }
1956 
1957 /* greatest common divisor, Euclid equation */
1958 static uint64_t
1959 lkpi_gcd_64(uint64_t a, uint64_t b)
1960 {
1961 	uint64_t an;
1962 	uint64_t bn;
1963 
1964 	while (b != 0) {
1965 		an = b;
1966 		bn = a % b;
1967 		a = an;
1968 		b = bn;
1969 	}
1970 	return (a);
1971 }
1972 
1973 uint64_t lkpi_nsec2hz_rem;
1974 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
1975 uint64_t lkpi_nsec2hz_max;
1976 
1977 uint64_t lkpi_usec2hz_rem;
1978 uint64_t lkpi_usec2hz_div = 1000000ULL;
1979 uint64_t lkpi_usec2hz_max;
1980 
1981 uint64_t lkpi_msec2hz_rem;
1982 uint64_t lkpi_msec2hz_div = 1000ULL;
1983 uint64_t lkpi_msec2hz_max;
1984 
1985 static void
1986 linux_timer_init(void *arg)
1987 {
1988 	uint64_t gcd;
1989 
1990 	/*
1991 	 * Compute an internal HZ value which can divide 2**32 to
1992 	 * avoid timer rounding problems when the tick value wraps
1993 	 * around 2**32:
1994 	 */
1995 	linux_timer_hz_mask = 1;
1996 	while (linux_timer_hz_mask < (unsigned long)hz)
1997 		linux_timer_hz_mask *= 2;
1998 	linux_timer_hz_mask--;
1999 
2000 	/* compute some internal constants */
2001 
2002 	lkpi_nsec2hz_rem = hz;
2003 	lkpi_usec2hz_rem = hz;
2004 	lkpi_msec2hz_rem = hz;
2005 
2006 	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2007 	lkpi_nsec2hz_rem /= gcd;
2008 	lkpi_nsec2hz_div /= gcd;
2009 	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2010 
2011 	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2012 	lkpi_usec2hz_rem /= gcd;
2013 	lkpi_usec2hz_div /= gcd;
2014 	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2015 
2016 	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2017 	lkpi_msec2hz_rem /= gcd;
2018 	lkpi_msec2hz_div /= gcd;
2019 	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2020 }
2021 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2022 
2023 void
2024 linux_complete_common(struct completion *c, int all)
2025 {
2026 	int wakeup_swapper;
2027 
2028 	sleepq_lock(c);
2029 	if (all) {
2030 		c->done = UINT_MAX;
2031 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2032 	} else {
2033 		if (c->done != UINT_MAX)
2034 			c->done++;
2035 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2036 	}
2037 	sleepq_release(c);
2038 	if (wakeup_swapper)
2039 		kick_proc0();
2040 }
2041 
2042 /*
2043  * Indefinite wait for done != 0 with or without signals.
2044  */
2045 int
2046 linux_wait_for_common(struct completion *c, int flags)
2047 {
2048 	struct task_struct *task;
2049 	int error;
2050 
2051 	if (SCHEDULER_STOPPED())
2052 		return (0);
2053 
2054 	task = current;
2055 
2056 	if (flags != 0)
2057 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2058 	else
2059 		flags = SLEEPQ_SLEEP;
2060 	error = 0;
2061 	for (;;) {
2062 		sleepq_lock(c);
2063 		if (c->done)
2064 			break;
2065 		sleepq_add(c, NULL, "completion", flags, 0);
2066 		if (flags & SLEEPQ_INTERRUPTIBLE) {
2067 			DROP_GIANT();
2068 			error = -sleepq_wait_sig(c, 0);
2069 			PICKUP_GIANT();
2070 			if (error != 0) {
2071 				linux_schedule_save_interrupt_value(task, error);
2072 				error = -ERESTARTSYS;
2073 				goto intr;
2074 			}
2075 		} else {
2076 			DROP_GIANT();
2077 			sleepq_wait(c, 0);
2078 			PICKUP_GIANT();
2079 		}
2080 	}
2081 	if (c->done != UINT_MAX)
2082 		c->done--;
2083 	sleepq_release(c);
2084 
2085 intr:
2086 	return (error);
2087 }
2088 
2089 /*
2090  * Time limited wait for done != 0 with or without signals.
2091  */
2092 int
2093 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2094 {
2095 	struct task_struct *task;
2096 	int end = jiffies + timeout;
2097 	int error;
2098 
2099 	if (SCHEDULER_STOPPED())
2100 		return (0);
2101 
2102 	task = current;
2103 
2104 	if (flags != 0)
2105 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2106 	else
2107 		flags = SLEEPQ_SLEEP;
2108 
2109 	for (;;) {
2110 		sleepq_lock(c);
2111 		if (c->done)
2112 			break;
2113 		sleepq_add(c, NULL, "completion", flags, 0);
2114 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2115 
2116 		DROP_GIANT();
2117 		if (flags & SLEEPQ_INTERRUPTIBLE)
2118 			error = -sleepq_timedwait_sig(c, 0);
2119 		else
2120 			error = -sleepq_timedwait(c, 0);
2121 		PICKUP_GIANT();
2122 
2123 		if (error != 0) {
2124 			/* check for timeout */
2125 			if (error == -EWOULDBLOCK) {
2126 				error = 0;	/* timeout */
2127 			} else {
2128 				/* signal happened */
2129 				linux_schedule_save_interrupt_value(task, error);
2130 				error = -ERESTARTSYS;
2131 			}
2132 			goto done;
2133 		}
2134 	}
2135 	if (c->done != UINT_MAX)
2136 		c->done--;
2137 	sleepq_release(c);
2138 
2139 	/* return how many jiffies are left */
2140 	error = linux_timer_jiffies_until(end);
2141 done:
2142 	return (error);
2143 }
2144 
2145 int
2146 linux_try_wait_for_completion(struct completion *c)
2147 {
2148 	int isdone;
2149 
2150 	sleepq_lock(c);
2151 	isdone = (c->done != 0);
2152 	if (c->done != 0 && c->done != UINT_MAX)
2153 		c->done--;
2154 	sleepq_release(c);
2155 	return (isdone);
2156 }
2157 
2158 int
2159 linux_completion_done(struct completion *c)
2160 {
2161 	int isdone;
2162 
2163 	sleepq_lock(c);
2164 	isdone = (c->done != 0);
2165 	sleepq_release(c);
2166 	return (isdone);
2167 }
2168 
2169 static void
2170 linux_cdev_deref(struct linux_cdev *ldev)
2171 {
2172 
2173 	if (refcount_release(&ldev->refs))
2174 		kfree(ldev);
2175 }
2176 
2177 static void
2178 linux_cdev_release(struct kobject *kobj)
2179 {
2180 	struct linux_cdev *cdev;
2181 	struct kobject *parent;
2182 
2183 	cdev = container_of(kobj, struct linux_cdev, kobj);
2184 	parent = kobj->parent;
2185 	linux_destroy_dev(cdev);
2186 	linux_cdev_deref(cdev);
2187 	kobject_put(parent);
2188 }
2189 
2190 static void
2191 linux_cdev_static_release(struct kobject *kobj)
2192 {
2193 	struct linux_cdev *cdev;
2194 	struct kobject *parent;
2195 
2196 	cdev = container_of(kobj, struct linux_cdev, kobj);
2197 	parent = kobj->parent;
2198 	linux_destroy_dev(cdev);
2199 	kobject_put(parent);
2200 }
2201 
2202 void
2203 linux_destroy_dev(struct linux_cdev *ldev)
2204 {
2205 
2206 	if (ldev->cdev == NULL)
2207 		return;
2208 
2209 	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2210 	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2211 	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2212 		pause("ldevdtr", hz / 4);
2213 
2214 	destroy_dev(ldev->cdev);
2215 	ldev->cdev = NULL;
2216 }
2217 
2218 const struct kobj_type linux_cdev_ktype = {
2219 	.release = linux_cdev_release,
2220 };
2221 
2222 const struct kobj_type linux_cdev_static_ktype = {
2223 	.release = linux_cdev_static_release,
2224 };
2225 
2226 static void
2227 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2228 {
2229 	struct notifier_block *nb;
2230 
2231 	nb = arg;
2232 	if (linkstate == LINK_STATE_UP)
2233 		nb->notifier_call(nb, NETDEV_UP, ifp);
2234 	else
2235 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
2236 }
2237 
2238 static void
2239 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2240 {
2241 	struct notifier_block *nb;
2242 
2243 	nb = arg;
2244 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
2245 }
2246 
2247 static void
2248 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2249 {
2250 	struct notifier_block *nb;
2251 
2252 	nb = arg;
2253 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
2254 }
2255 
2256 static void
2257 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2258 {
2259 	struct notifier_block *nb;
2260 
2261 	nb = arg;
2262 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
2263 }
2264 
2265 static void
2266 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2267 {
2268 	struct notifier_block *nb;
2269 
2270 	nb = arg;
2271 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
2272 }
2273 
2274 int
2275 register_netdevice_notifier(struct notifier_block *nb)
2276 {
2277 
2278 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2279 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2280 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2281 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2282 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2283 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2284 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2285 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2286 
2287 	return (0);
2288 }
2289 
2290 int
2291 register_inetaddr_notifier(struct notifier_block *nb)
2292 {
2293 
2294 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2295 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2296 	return (0);
2297 }
2298 
2299 int
2300 unregister_netdevice_notifier(struct notifier_block *nb)
2301 {
2302 
2303 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2304 	    nb->tags[NETDEV_UP]);
2305 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2306 	    nb->tags[NETDEV_REGISTER]);
2307 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2308 	    nb->tags[NETDEV_UNREGISTER]);
2309 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2310 	    nb->tags[NETDEV_CHANGEADDR]);
2311 
2312 	return (0);
2313 }
2314 
2315 int
2316 unregister_inetaddr_notifier(struct notifier_block *nb)
2317 {
2318 
2319 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2320 	    nb->tags[NETDEV_CHANGEIFADDR]);
2321 
2322 	return (0);
2323 }
2324 
2325 struct list_sort_thunk {
2326 	int (*cmp)(void *, struct list_head *, struct list_head *);
2327 	void *priv;
2328 };
2329 
2330 static inline int
2331 linux_le_cmp(void *priv, const void *d1, const void *d2)
2332 {
2333 	struct list_head *le1, *le2;
2334 	struct list_sort_thunk *thunk;
2335 
2336 	thunk = priv;
2337 	le1 = *(__DECONST(struct list_head **, d1));
2338 	le2 = *(__DECONST(struct list_head **, d2));
2339 	return ((thunk->cmp)(thunk->priv, le1, le2));
2340 }
2341 
2342 void
2343 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2344     struct list_head *a, struct list_head *b))
2345 {
2346 	struct list_sort_thunk thunk;
2347 	struct list_head **ar, *le;
2348 	size_t count, i;
2349 
2350 	count = 0;
2351 	list_for_each(le, head)
2352 		count++;
2353 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2354 	i = 0;
2355 	list_for_each(le, head)
2356 		ar[i++] = le;
2357 	thunk.cmp = cmp;
2358 	thunk.priv = priv;
2359 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2360 	INIT_LIST_HEAD(head);
2361 	for (i = 0; i < count; i++)
2362 		list_add_tail(ar[i], head);
2363 	free(ar, M_KMALLOC);
2364 }
2365 
2366 void
2367 linux_irq_handler(void *ent)
2368 {
2369 	struct irq_ent *irqe;
2370 
2371 	linux_set_current(curthread);
2372 
2373 	irqe = ent;
2374 	irqe->handler(irqe->irq, irqe->arg);
2375 }
2376 
2377 #if defined(__i386__) || defined(__amd64__)
2378 int
2379 linux_wbinvd_on_all_cpus(void)
2380 {
2381 
2382 	pmap_invalidate_cache();
2383 	return (0);
2384 }
2385 #endif
2386 
2387 int
2388 linux_on_each_cpu(void callback(void *), void *data)
2389 {
2390 
2391 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2392 	    smp_no_rendezvous_barrier, data);
2393 	return (0);
2394 }
2395 
2396 int
2397 linux_in_atomic(void)
2398 {
2399 
2400 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2401 }
2402 
2403 struct linux_cdev *
2404 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2405 {
2406 	dev_t dev = MKDEV(major, minor);
2407 	struct cdev *cdev;
2408 
2409 	dev_lock();
2410 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2411 		struct linux_cdev *ldev = cdev->si_drv1;
2412 		if (ldev->dev == dev &&
2413 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2414 			break;
2415 		}
2416 	}
2417 	dev_unlock();
2418 
2419 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2420 }
2421 
2422 int
2423 __register_chrdev(unsigned int major, unsigned int baseminor,
2424     unsigned int count, const char *name,
2425     const struct file_operations *fops)
2426 {
2427 	struct linux_cdev *cdev;
2428 	int ret = 0;
2429 	int i;
2430 
2431 	for (i = baseminor; i < baseminor + count; i++) {
2432 		cdev = cdev_alloc();
2433 		cdev->ops = fops;
2434 		kobject_set_name(&cdev->kobj, name);
2435 
2436 		ret = cdev_add(cdev, makedev(major, i), 1);
2437 		if (ret != 0)
2438 			break;
2439 	}
2440 	return (ret);
2441 }
2442 
2443 int
2444 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2445     unsigned int count, const char *name,
2446     const struct file_operations *fops, uid_t uid,
2447     gid_t gid, int mode)
2448 {
2449 	struct linux_cdev *cdev;
2450 	int ret = 0;
2451 	int i;
2452 
2453 	for (i = baseminor; i < baseminor + count; i++) {
2454 		cdev = cdev_alloc();
2455 		cdev->ops = fops;
2456 		kobject_set_name(&cdev->kobj, name);
2457 
2458 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2459 		if (ret != 0)
2460 			break;
2461 	}
2462 	return (ret);
2463 }
2464 
2465 void
2466 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2467     unsigned int count, const char *name)
2468 {
2469 	struct linux_cdev *cdevp;
2470 	int i;
2471 
2472 	for (i = baseminor; i < baseminor + count; i++) {
2473 		cdevp = linux_find_cdev(name, major, i);
2474 		if (cdevp != NULL)
2475 			cdev_del(cdevp);
2476 	}
2477 }
2478 
2479 void
2480 linux_dump_stack(void)
2481 {
2482 #ifdef STACK
2483 	struct stack st;
2484 
2485 	stack_zero(&st);
2486 	stack_save(&st);
2487 	stack_print(&st);
2488 #endif
2489 }
2490 
2491 #if defined(__i386__) || defined(__amd64__)
2492 bool linux_cpu_has_clflush;
2493 #endif
2494 
2495 static void
2496 linux_compat_init(void *arg)
2497 {
2498 	struct sysctl_oid *rootoid;
2499 	int i;
2500 
2501 #if defined(__i386__) || defined(__amd64__)
2502 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2503 #endif
2504 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2505 
2506 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2507 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2508 	kobject_init(&linux_class_root, &linux_class_ktype);
2509 	kobject_set_name(&linux_class_root, "class");
2510 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2511 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2512 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2513 	kobject_set_name(&linux_root_device.kobj, "device");
2514 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2515 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2516 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2517 	linux_root_device.bsddev = root_bus;
2518 	linux_class_misc.name = "misc";
2519 	class_register(&linux_class_misc);
2520 	INIT_LIST_HEAD(&pci_drivers);
2521 	INIT_LIST_HEAD(&pci_devices);
2522 	spin_lock_init(&pci_lock);
2523 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2524 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2525 		LIST_INIT(&vmmaphead[i]);
2526 }
2527 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2528 
2529 static void
2530 linux_compat_uninit(void *arg)
2531 {
2532 	linux_kobject_kfree_name(&linux_class_root);
2533 	linux_kobject_kfree_name(&linux_root_device.kobj);
2534 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2535 
2536 	mtx_destroy(&vmmaplock);
2537 	spin_lock_destroy(&pci_lock);
2538 	rw_destroy(&linux_vma_lock);
2539 }
2540 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2541 
2542 /*
2543  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2544  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2545  * used. Assert these types have the same size, else some parts of the
2546  * LinuxKPI may not work like expected:
2547  */
2548 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2549