1 /*- 2 * Copyright (c) 2010 Isilon Systems, Inc. 3 * Copyright (c) 2010 iX Systems, Inc. 4 * Copyright (c) 2010 Panasas, Inc. 5 * Copyright (c) 2013-2021 Mellanox Technologies, Ltd. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_global.h" 32 #include "opt_stack.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/sysctl.h> 39 #include <sys/proc.h> 40 #include <sys/sglist.h> 41 #include <sys/sleepqueue.h> 42 #include <sys/refcount.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/bus.h> 46 #include <sys/eventhandler.h> 47 #include <sys/fcntl.h> 48 #include <sys/file.h> 49 #include <sys/filio.h> 50 #include <sys/rwlock.h> 51 #include <sys/mman.h> 52 #include <sys/stack.h> 53 #include <sys/stdarg.h> 54 #include <sys/sysent.h> 55 #include <sys/time.h> 56 #include <sys/user.h> 57 58 #include <vm/vm.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_object.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_pager.h> 63 #include <vm/vm_radix.h> 64 65 #if defined(__i386__) || defined(__amd64__) 66 #include <machine/cputypes.h> 67 #include <machine/md_var.h> 68 #endif 69 70 #include <linux/kobject.h> 71 #include <linux/cpu.h> 72 #include <linux/device.h> 73 #include <linux/slab.h> 74 #include <linux/module.h> 75 #include <linux/moduleparam.h> 76 #include <linux/cdev.h> 77 #include <linux/file.h> 78 #include <linux/fs.h> 79 #include <linux/sysfs.h> 80 #include <linux/mm.h> 81 #include <linux/io.h> 82 #include <linux/vmalloc.h> 83 #include <linux/netdevice.h> 84 #include <linux/timer.h> 85 #include <linux/interrupt.h> 86 #include <linux/uaccess.h> 87 #include <linux/utsname.h> 88 #include <linux/list.h> 89 #include <linux/kthread.h> 90 #include <linux/kernel.h> 91 #include <linux/compat.h> 92 #include <linux/io-mapping.h> 93 #include <linux/poll.h> 94 #include <linux/smp.h> 95 #include <linux/wait_bit.h> 96 #include <linux/rcupdate.h> 97 #include <linux/interval_tree.h> 98 #include <linux/interval_tree_generic.h> 99 #include <linux/printk.h> 100 #include <linux/seq_file.h> 101 102 #if defined(__i386__) || defined(__amd64__) 103 #include <asm/smp.h> 104 #include <asm/processor.h> 105 #endif 106 107 #include <xen/xen.h> 108 #ifdef XENHVM 109 #undef xen_pv_domain 110 #undef xen_initial_domain 111 /* xen/xen-os.h redefines __must_check */ 112 #undef __must_check 113 #include <xen/xen-os.h> 114 #endif 115 116 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "LinuxKPI parameters"); 118 119 int linuxkpi_debug; 120 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN, 121 &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable."); 122 123 int linuxkpi_rcu_debug; 124 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, rcu_debug, CTLFLAG_RWTUN, 125 &linuxkpi_rcu_debug, 0, "Set to enable RCU warning. Clear to disable."); 126 127 int linuxkpi_warn_dump_stack = 0; 128 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN, 129 &linuxkpi_warn_dump_stack, 0, 130 "Set to enable stack traces from WARN_ON(). Clear to disable."); 131 132 static struct timeval lkpi_net_lastlog; 133 static int lkpi_net_curpps; 134 static int lkpi_net_maxpps = 99; 135 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN, 136 &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second."); 137 138 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat"); 139 140 #include <linux/rbtree.h> 141 /* Undo Linux compat changes. */ 142 #undef RB_ROOT 143 #undef file 144 #undef cdev 145 #define RB_ROOT(head) (head)->rbh_root 146 147 static void linux_destroy_dev(struct linux_cdev *); 148 static void linux_cdev_deref(struct linux_cdev *ldev); 149 static struct vm_area_struct *linux_cdev_handle_find(void *handle); 150 151 cpumask_t cpu_online_mask; 152 static cpumask_t **static_single_cpu_mask; 153 static cpumask_t *static_single_cpu_mask_lcs; 154 struct kobject linux_class_root; 155 struct device linux_root_device; 156 struct class linux_class_misc; 157 struct list_head pci_drivers; 158 struct list_head pci_devices; 159 spinlock_t pci_lock; 160 struct uts_namespace init_uts_ns; 161 162 unsigned long linux_timer_hz_mask; 163 164 wait_queue_head_t linux_bit_waitq; 165 wait_queue_head_t linux_var_waitq; 166 167 int 168 panic_cmp(struct rb_node *one, struct rb_node *two) 169 { 170 panic("no cmp"); 171 } 172 173 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp); 174 175 #define START(node) ((node)->start) 176 #define LAST(node) ((node)->last) 177 178 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START, 179 LAST,, lkpi_interval_tree) 180 181 static void 182 linux_device_release(struct device *dev) 183 { 184 pr_debug("linux_device_release: %s\n", dev_name(dev)); 185 kfree(dev); 186 } 187 188 static ssize_t 189 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf) 190 { 191 struct class_attribute *dattr; 192 ssize_t error; 193 194 dattr = container_of(attr, struct class_attribute, attr); 195 error = -EIO; 196 if (dattr->show) 197 error = dattr->show(container_of(kobj, struct class, kobj), 198 dattr, buf); 199 return (error); 200 } 201 202 static ssize_t 203 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf, 204 size_t count) 205 { 206 struct class_attribute *dattr; 207 ssize_t error; 208 209 dattr = container_of(attr, struct class_attribute, attr); 210 error = -EIO; 211 if (dattr->store) 212 error = dattr->store(container_of(kobj, struct class, kobj), 213 dattr, buf, count); 214 return (error); 215 } 216 217 static void 218 linux_class_release(struct kobject *kobj) 219 { 220 struct class *class; 221 222 class = container_of(kobj, struct class, kobj); 223 if (class->class_release) 224 class->class_release(class); 225 } 226 227 static const struct sysfs_ops linux_class_sysfs = { 228 .show = linux_class_show, 229 .store = linux_class_store, 230 }; 231 232 const struct kobj_type linux_class_ktype = { 233 .release = linux_class_release, 234 .sysfs_ops = &linux_class_sysfs 235 }; 236 237 static void 238 linux_dev_release(struct kobject *kobj) 239 { 240 struct device *dev; 241 242 dev = container_of(kobj, struct device, kobj); 243 /* This is the precedence defined by linux. */ 244 if (dev->release) 245 dev->release(dev); 246 else if (dev->class && dev->class->dev_release) 247 dev->class->dev_release(dev); 248 } 249 250 static ssize_t 251 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf) 252 { 253 struct device_attribute *dattr; 254 ssize_t error; 255 256 dattr = container_of(attr, struct device_attribute, attr); 257 error = -EIO; 258 if (dattr->show) 259 error = dattr->show(container_of(kobj, struct device, kobj), 260 dattr, buf); 261 return (error); 262 } 263 264 static ssize_t 265 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf, 266 size_t count) 267 { 268 struct device_attribute *dattr; 269 ssize_t error; 270 271 dattr = container_of(attr, struct device_attribute, attr); 272 error = -EIO; 273 if (dattr->store) 274 error = dattr->store(container_of(kobj, struct device, kobj), 275 dattr, buf, count); 276 return (error); 277 } 278 279 static const struct sysfs_ops linux_dev_sysfs = { 280 .show = linux_dev_show, 281 .store = linux_dev_store, 282 }; 283 284 const struct kobj_type linux_dev_ktype = { 285 .release = linux_dev_release, 286 .sysfs_ops = &linux_dev_sysfs 287 }; 288 289 struct device * 290 device_create(struct class *class, struct device *parent, dev_t devt, 291 void *drvdata, const char *fmt, ...) 292 { 293 struct device *dev; 294 va_list args; 295 296 dev = kzalloc(sizeof(*dev), M_WAITOK); 297 dev->parent = parent; 298 dev->class = class; 299 dev->devt = devt; 300 dev->driver_data = drvdata; 301 dev->release = linux_device_release; 302 va_start(args, fmt); 303 kobject_set_name_vargs(&dev->kobj, fmt, args); 304 va_end(args); 305 device_register(dev); 306 307 return (dev); 308 } 309 310 struct device * 311 device_create_groups_vargs(struct class *class, struct device *parent, 312 dev_t devt, void *drvdata, const struct attribute_group **groups, 313 const char *fmt, va_list args) 314 { 315 struct device *dev = NULL; 316 int retval = -ENODEV; 317 318 if (class == NULL || IS_ERR(class)) 319 goto error; 320 321 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 322 if (!dev) { 323 retval = -ENOMEM; 324 goto error; 325 } 326 327 dev->devt = devt; 328 dev->class = class; 329 dev->parent = parent; 330 dev->groups = groups; 331 dev->release = device_create_release; 332 /* device_initialize() needs the class and parent to be set */ 333 device_initialize(dev); 334 dev_set_drvdata(dev, drvdata); 335 336 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 337 if (retval) 338 goto error; 339 340 retval = device_add(dev); 341 if (retval) 342 goto error; 343 344 return dev; 345 346 error: 347 put_device(dev); 348 return ERR_PTR(retval); 349 } 350 351 struct class * 352 lkpi_class_create(const char *name) 353 { 354 struct class *class; 355 int error; 356 357 class = kzalloc(sizeof(*class), M_WAITOK); 358 class->name = name; 359 class->class_release = linux_class_kfree; 360 error = class_register(class); 361 if (error) { 362 kfree(class); 363 return (NULL); 364 } 365 366 return (class); 367 } 368 369 static void 370 linux_kq_lock(void *arg) 371 { 372 spinlock_t *s = arg; 373 374 spin_lock(s); 375 } 376 static void 377 linux_kq_unlock(void *arg) 378 { 379 spinlock_t *s = arg; 380 381 spin_unlock(s); 382 } 383 384 static void 385 linux_kq_assert_lock(void *arg, int what) 386 { 387 #ifdef INVARIANTS 388 spinlock_t *s = arg; 389 390 if (what == LA_LOCKED) 391 mtx_assert(s, MA_OWNED); 392 else 393 mtx_assert(s, MA_NOTOWNED); 394 #endif 395 } 396 397 static void 398 linux_file_kqfilter_poll(struct linux_file *, int); 399 400 struct linux_file * 401 linux_file_alloc(void) 402 { 403 struct linux_file *filp; 404 405 filp = kzalloc(sizeof(*filp), GFP_KERNEL); 406 407 /* set initial refcount */ 408 filp->f_count = 1; 409 410 /* setup fields needed by kqueue support */ 411 spin_lock_init(&filp->f_kqlock); 412 knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock, 413 linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock); 414 415 return (filp); 416 } 417 418 void 419 linux_file_free(struct linux_file *filp) 420 { 421 if (filp->_file == NULL) { 422 if (filp->f_op != NULL && filp->f_op->release != NULL) 423 filp->f_op->release(filp->f_vnode, filp); 424 if (filp->f_shmem != NULL) 425 vm_object_deallocate(filp->f_shmem); 426 kfree_rcu(filp, rcu); 427 } else { 428 /* 429 * The close method of the character device or file 430 * will free the linux_file structure: 431 */ 432 _fdrop(filp->_file, curthread); 433 } 434 } 435 436 struct linux_cdev * 437 cdev_alloc(void) 438 { 439 struct linux_cdev *cdev; 440 441 cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK); 442 kobject_init(&cdev->kobj, &linux_cdev_ktype); 443 cdev->refs = 1; 444 return (cdev); 445 } 446 447 static int 448 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, 449 vm_page_t *mres) 450 { 451 struct vm_area_struct *vmap; 452 453 vmap = linux_cdev_handle_find(vm_obj->handle); 454 455 MPASS(vmap != NULL); 456 MPASS(vmap->vm_private_data == vm_obj->handle); 457 458 if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) { 459 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset; 460 vm_page_t page; 461 462 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 463 /* 464 * If the passed in result page is a fake 465 * page, update it with the new physical 466 * address. 467 */ 468 page = *mres; 469 vm_page_updatefake(page, paddr, vm_obj->memattr); 470 } else { 471 /* 472 * Replace the passed in "mres" page with our 473 * own fake page and free up the all of the 474 * original pages. 475 */ 476 VM_OBJECT_WUNLOCK(vm_obj); 477 page = vm_page_getfake(paddr, vm_obj->memattr); 478 VM_OBJECT_WLOCK(vm_obj); 479 480 vm_page_replace(page, vm_obj, (*mres)->pindex, *mres); 481 *mres = page; 482 } 483 vm_page_valid(page); 484 return (VM_PAGER_OK); 485 } 486 return (VM_PAGER_FAIL); 487 } 488 489 static int 490 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type, 491 vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last) 492 { 493 struct vm_area_struct *vmap; 494 int err; 495 496 /* get VM area structure */ 497 vmap = linux_cdev_handle_find(vm_obj->handle); 498 MPASS(vmap != NULL); 499 MPASS(vmap->vm_private_data == vm_obj->handle); 500 501 VM_OBJECT_WUNLOCK(vm_obj); 502 503 linux_set_current(curthread); 504 505 down_write(&vmap->vm_mm->mmap_sem); 506 if (unlikely(vmap->vm_ops == NULL)) { 507 err = VM_FAULT_SIGBUS; 508 } else { 509 struct vm_fault vmf; 510 511 /* fill out VM fault structure */ 512 vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx); 513 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 514 vmf.pgoff = 0; 515 vmf.page = NULL; 516 vmf.vma = vmap; 517 518 vmap->vm_pfn_count = 0; 519 vmap->vm_pfn_pcount = &vmap->vm_pfn_count; 520 vmap->vm_obj = vm_obj; 521 522 err = vmap->vm_ops->fault(&vmf); 523 524 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) { 525 kern_yield(PRI_USER); 526 err = vmap->vm_ops->fault(&vmf); 527 } 528 } 529 530 /* translate return code */ 531 switch (err) { 532 case VM_FAULT_OOM: 533 err = VM_PAGER_AGAIN; 534 break; 535 case VM_FAULT_SIGBUS: 536 err = VM_PAGER_BAD; 537 break; 538 case VM_FAULT_NOPAGE: 539 /* 540 * By contract the fault handler will return having 541 * busied all the pages itself. If pidx is already 542 * found in the object, it will simply xbusy the first 543 * page and return with vm_pfn_count set to 1. 544 */ 545 *first = vmap->vm_pfn_first; 546 *last = *first + vmap->vm_pfn_count - 1; 547 err = VM_PAGER_OK; 548 break; 549 default: 550 err = VM_PAGER_ERROR; 551 break; 552 } 553 up_write(&vmap->vm_mm->mmap_sem); 554 VM_OBJECT_WLOCK(vm_obj); 555 return (err); 556 } 557 558 static struct rwlock linux_vma_lock; 559 static TAILQ_HEAD(, vm_area_struct) linux_vma_head = 560 TAILQ_HEAD_INITIALIZER(linux_vma_head); 561 562 static void 563 linux_cdev_handle_free(struct vm_area_struct *vmap) 564 { 565 /* Drop reference on vm_file */ 566 if (vmap->vm_file != NULL) 567 fput(vmap->vm_file); 568 569 /* Drop reference on mm_struct */ 570 mmput(vmap->vm_mm); 571 572 kfree(vmap); 573 } 574 575 static void 576 linux_cdev_handle_remove(struct vm_area_struct *vmap) 577 { 578 rw_wlock(&linux_vma_lock); 579 TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry); 580 rw_wunlock(&linux_vma_lock); 581 } 582 583 static struct vm_area_struct * 584 linux_cdev_handle_find(void *handle) 585 { 586 struct vm_area_struct *vmap; 587 588 rw_rlock(&linux_vma_lock); 589 TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) { 590 if (vmap->vm_private_data == handle) 591 break; 592 } 593 rw_runlock(&linux_vma_lock); 594 return (vmap); 595 } 596 597 static int 598 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 599 vm_ooffset_t foff, struct ucred *cred, u_short *color) 600 { 601 602 MPASS(linux_cdev_handle_find(handle) != NULL); 603 *color = 0; 604 return (0); 605 } 606 607 static void 608 linux_cdev_pager_dtor(void *handle) 609 { 610 const struct vm_operations_struct *vm_ops; 611 struct vm_area_struct *vmap; 612 613 vmap = linux_cdev_handle_find(handle); 614 MPASS(vmap != NULL); 615 616 /* 617 * Remove handle before calling close operation to prevent 618 * other threads from reusing the handle pointer. 619 */ 620 linux_cdev_handle_remove(vmap); 621 622 down_write(&vmap->vm_mm->mmap_sem); 623 vm_ops = vmap->vm_ops; 624 if (likely(vm_ops != NULL)) 625 vm_ops->close(vmap); 626 up_write(&vmap->vm_mm->mmap_sem); 627 628 linux_cdev_handle_free(vmap); 629 } 630 631 static struct cdev_pager_ops linux_cdev_pager_ops[2] = { 632 { 633 /* OBJT_MGTDEVICE */ 634 .cdev_pg_populate = linux_cdev_pager_populate, 635 .cdev_pg_ctor = linux_cdev_pager_ctor, 636 .cdev_pg_dtor = linux_cdev_pager_dtor 637 }, 638 { 639 /* OBJT_DEVICE */ 640 .cdev_pg_fault = linux_cdev_pager_fault, 641 .cdev_pg_ctor = linux_cdev_pager_ctor, 642 .cdev_pg_dtor = linux_cdev_pager_dtor 643 }, 644 }; 645 646 int 647 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 648 unsigned long size) 649 { 650 struct pctrie_iter pages; 651 vm_object_t obj; 652 vm_page_t m; 653 654 obj = vma->vm_obj; 655 if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0) 656 return (-ENOTSUP); 657 VM_OBJECT_RLOCK(obj); 658 vm_page_iter_limit_init(&pages, obj, OFF_TO_IDX(address + size)); 659 VM_RADIX_FOREACH_FROM(m, &pages, OFF_TO_IDX(address)) 660 pmap_remove_all(m); 661 VM_OBJECT_RUNLOCK(obj); 662 return (0); 663 } 664 665 void 666 vma_set_file(struct vm_area_struct *vma, struct linux_file *file) 667 { 668 struct linux_file *tmp; 669 670 /* Changing an anonymous vma with this is illegal */ 671 get_file(file); 672 tmp = vma->vm_file; 673 vma->vm_file = file; 674 fput(tmp); 675 } 676 677 static struct file_operations dummy_ldev_ops = { 678 /* XXXKIB */ 679 }; 680 681 static struct linux_cdev dummy_ldev = { 682 .ops = &dummy_ldev_ops, 683 }; 684 685 #define LDEV_SI_DTR 0x0001 686 #define LDEV_SI_REF 0x0002 687 688 static void 689 linux_get_fop(struct linux_file *filp, const struct file_operations **fop, 690 struct linux_cdev **dev) 691 { 692 struct linux_cdev *ldev; 693 u_int siref; 694 695 ldev = filp->f_cdev; 696 *fop = filp->f_op; 697 if (ldev != NULL) { 698 if (ldev->kobj.ktype == &linux_cdev_static_ktype) { 699 refcount_acquire(&ldev->refs); 700 } else { 701 for (siref = ldev->siref;;) { 702 if ((siref & LDEV_SI_DTR) != 0) { 703 ldev = &dummy_ldev; 704 *fop = ldev->ops; 705 siref = ldev->siref; 706 MPASS((ldev->siref & LDEV_SI_DTR) == 0); 707 } else if (atomic_fcmpset_int(&ldev->siref, 708 &siref, siref + LDEV_SI_REF)) { 709 break; 710 } 711 } 712 } 713 } 714 *dev = ldev; 715 } 716 717 static void 718 linux_drop_fop(struct linux_cdev *ldev) 719 { 720 721 if (ldev == NULL) 722 return; 723 if (ldev->kobj.ktype == &linux_cdev_static_ktype) { 724 linux_cdev_deref(ldev); 725 } else { 726 MPASS(ldev->kobj.ktype == &linux_cdev_ktype); 727 MPASS((ldev->siref & ~LDEV_SI_DTR) != 0); 728 atomic_subtract_int(&ldev->siref, LDEV_SI_REF); 729 } 730 } 731 732 #define OPW(fp,td,code) ({ \ 733 struct file *__fpop; \ 734 __typeof(code) __retval; \ 735 \ 736 __fpop = (td)->td_fpop; \ 737 (td)->td_fpop = (fp); \ 738 __retval = (code); \ 739 (td)->td_fpop = __fpop; \ 740 __retval; \ 741 }) 742 743 static int 744 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td, 745 struct file *file) 746 { 747 struct linux_cdev *ldev; 748 struct linux_file *filp; 749 const struct file_operations *fop; 750 int error; 751 752 ldev = dev->si_drv1; 753 754 filp = linux_file_alloc(); 755 filp->f_dentry = &filp->f_dentry_store; 756 filp->f_op = ldev->ops; 757 filp->f_mode = file->f_flag; 758 filp->f_flags = file->f_flag; 759 filp->f_vnode = file->f_vnode; 760 filp->_file = file; 761 refcount_acquire(&ldev->refs); 762 filp->f_cdev = ldev; 763 764 linux_set_current(td); 765 linux_get_fop(filp, &fop, &ldev); 766 767 if (fop->open != NULL) { 768 error = -fop->open(file->f_vnode, filp); 769 if (error != 0) { 770 linux_drop_fop(ldev); 771 linux_cdev_deref(filp->f_cdev); 772 kfree(filp); 773 return (error); 774 } 775 } 776 777 /* hold on to the vnode - used for fstat() */ 778 vref(filp->f_vnode); 779 780 /* release the file from devfs */ 781 finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops); 782 linux_drop_fop(ldev); 783 return (ENXIO); 784 } 785 786 #define LINUX_IOCTL_MIN_PTR 0x10000UL 787 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX) 788 789 static inline int 790 linux_remap_address(void **uaddr, size_t len) 791 { 792 uintptr_t uaddr_val = (uintptr_t)(*uaddr); 793 794 if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR && 795 uaddr_val < LINUX_IOCTL_MAX_PTR)) { 796 struct task_struct *pts = current; 797 if (pts == NULL) { 798 *uaddr = NULL; 799 return (1); 800 } 801 802 /* compute data offset */ 803 uaddr_val -= LINUX_IOCTL_MIN_PTR; 804 805 /* check that length is within bounds */ 806 if ((len > IOCPARM_MAX) || 807 (uaddr_val + len) > pts->bsd_ioctl_len) { 808 *uaddr = NULL; 809 return (1); 810 } 811 812 /* re-add kernel buffer address */ 813 uaddr_val += (uintptr_t)pts->bsd_ioctl_data; 814 815 /* update address location */ 816 *uaddr = (void *)uaddr_val; 817 return (1); 818 } 819 return (0); 820 } 821 822 int 823 linux_copyin(const void *uaddr, void *kaddr, size_t len) 824 { 825 if (linux_remap_address(__DECONST(void **, &uaddr), len)) { 826 if (uaddr == NULL) 827 return (-EFAULT); 828 memcpy(kaddr, uaddr, len); 829 return (0); 830 } 831 return (-copyin(uaddr, kaddr, len)); 832 } 833 834 int 835 linux_copyout(const void *kaddr, void *uaddr, size_t len) 836 { 837 if (linux_remap_address(&uaddr, len)) { 838 if (uaddr == NULL) 839 return (-EFAULT); 840 memcpy(uaddr, kaddr, len); 841 return (0); 842 } 843 return (-copyout(kaddr, uaddr, len)); 844 } 845 846 size_t 847 linux_clear_user(void *_uaddr, size_t _len) 848 { 849 uint8_t *uaddr = _uaddr; 850 size_t len = _len; 851 852 /* make sure uaddr is aligned before going into the fast loop */ 853 while (((uintptr_t)uaddr & 7) != 0 && len > 7) { 854 if (subyte(uaddr, 0)) 855 return (_len); 856 uaddr++; 857 len--; 858 } 859 860 /* zero 8 bytes at a time */ 861 while (len > 7) { 862 #ifdef __LP64__ 863 if (suword64(uaddr, 0)) 864 return (_len); 865 #else 866 if (suword32(uaddr, 0)) 867 return (_len); 868 if (suword32(uaddr + 4, 0)) 869 return (_len); 870 #endif 871 uaddr += 8; 872 len -= 8; 873 } 874 875 /* zero fill end, if any */ 876 while (len > 0) { 877 if (subyte(uaddr, 0)) 878 return (_len); 879 uaddr++; 880 len--; 881 } 882 return (0); 883 } 884 885 int 886 linux_access_ok(const void *uaddr, size_t len) 887 { 888 uintptr_t saddr; 889 uintptr_t eaddr; 890 891 /* get start and end address */ 892 saddr = (uintptr_t)uaddr; 893 eaddr = (uintptr_t)uaddr + len; 894 895 /* verify addresses are valid for userspace */ 896 return ((saddr == eaddr) || 897 (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS)); 898 } 899 900 /* 901 * This function should return either EINTR or ERESTART depending on 902 * the signal type sent to this thread: 903 */ 904 static int 905 linux_get_error(struct task_struct *task, int error) 906 { 907 /* check for signal type interrupt code */ 908 if (error == EINTR || error == ERESTARTSYS || error == ERESTART) { 909 error = -linux_schedule_get_interrupt_value(task); 910 if (error == 0) 911 error = EINTR; 912 } 913 return (error); 914 } 915 916 static int 917 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp, 918 const struct file_operations *fop, u_long cmd, caddr_t data, 919 struct thread *td) 920 { 921 struct task_struct *task = current; 922 unsigned size; 923 int error; 924 925 size = IOCPARM_LEN(cmd); 926 /* refer to logic in sys_ioctl() */ 927 if (size > 0) { 928 /* 929 * Setup hint for linux_copyin() and linux_copyout(). 930 * 931 * Background: Linux code expects a user-space address 932 * while FreeBSD supplies a kernel-space address. 933 */ 934 task->bsd_ioctl_data = data; 935 task->bsd_ioctl_len = size; 936 data = (void *)LINUX_IOCTL_MIN_PTR; 937 } else { 938 /* fetch user-space pointer */ 939 data = *(void **)data; 940 } 941 #ifdef COMPAT_FREEBSD32 942 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 943 /* try the compat IOCTL handler first */ 944 if (fop->compat_ioctl != NULL) { 945 error = -OPW(fp, td, fop->compat_ioctl(filp, 946 cmd, (u_long)data)); 947 } else { 948 error = ENOTTY; 949 } 950 951 /* fallback to the regular IOCTL handler, if any */ 952 if (error == ENOTTY && fop->unlocked_ioctl != NULL) { 953 error = -OPW(fp, td, fop->unlocked_ioctl(filp, 954 cmd, (u_long)data)); 955 } 956 } else 957 #endif 958 { 959 if (fop->unlocked_ioctl != NULL) { 960 error = -OPW(fp, td, fop->unlocked_ioctl(filp, 961 cmd, (u_long)data)); 962 } else { 963 error = ENOTTY; 964 } 965 } 966 if (size > 0) { 967 task->bsd_ioctl_data = NULL; 968 task->bsd_ioctl_len = 0; 969 } 970 971 if (error == EWOULDBLOCK) { 972 /* update kqfilter status, if any */ 973 linux_file_kqfilter_poll(filp, 974 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 975 } else { 976 error = linux_get_error(task, error); 977 } 978 return (error); 979 } 980 981 #define LINUX_POLL_TABLE_NORMAL ((poll_table *)1) 982 983 /* 984 * This function atomically updates the poll wakeup state and returns 985 * the previous state at the time of update. 986 */ 987 static uint8_t 988 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate) 989 { 990 int c, old; 991 992 c = v->counter; 993 994 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c) 995 c = old; 996 997 return (c); 998 } 999 1000 static int 1001 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key) 1002 { 1003 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1004 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1005 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1006 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY, 1007 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */ 1008 }; 1009 struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq); 1010 1011 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1012 case LINUX_FWQ_STATE_QUEUED: 1013 linux_poll_wakeup(filp); 1014 return (1); 1015 default: 1016 return (0); 1017 } 1018 } 1019 1020 void 1021 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p) 1022 { 1023 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1024 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY, 1025 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1026 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */ 1027 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED, 1028 }; 1029 1030 /* check if we are called inside the select system call */ 1031 if (p == LINUX_POLL_TABLE_NORMAL) 1032 selrecord(curthread, &filp->f_selinfo); 1033 1034 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1035 case LINUX_FWQ_STATE_INIT: 1036 /* NOTE: file handles can only belong to one wait-queue */ 1037 filp->f_wait_queue.wqh = wqh; 1038 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback; 1039 add_wait_queue(wqh, &filp->f_wait_queue.wq); 1040 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED); 1041 break; 1042 default: 1043 break; 1044 } 1045 } 1046 1047 static void 1048 linux_poll_wait_dequeue(struct linux_file *filp) 1049 { 1050 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1051 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1052 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT, 1053 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT, 1054 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT, 1055 }; 1056 1057 seldrain(&filp->f_selinfo); 1058 1059 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1060 case LINUX_FWQ_STATE_NOT_READY: 1061 case LINUX_FWQ_STATE_QUEUED: 1062 case LINUX_FWQ_STATE_READY: 1063 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq); 1064 break; 1065 default: 1066 break; 1067 } 1068 } 1069 1070 void 1071 linux_poll_wakeup(struct linux_file *filp) 1072 { 1073 /* this function should be NULL-safe */ 1074 if (filp == NULL) 1075 return; 1076 1077 selwakeup(&filp->f_selinfo); 1078 1079 spin_lock(&filp->f_kqlock); 1080 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ | 1081 LINUX_KQ_FLAG_NEED_WRITE; 1082 1083 /* make sure the "knote" gets woken up */ 1084 KNOTE_LOCKED(&filp->f_selinfo.si_note, 1); 1085 spin_unlock(&filp->f_kqlock); 1086 } 1087 1088 static struct linux_file * 1089 __get_file_rcu(struct linux_file **f) 1090 { 1091 struct linux_file *file1, *file2; 1092 1093 file1 = READ_ONCE(*f); 1094 if (file1 == NULL) 1095 return (NULL); 1096 1097 if (!refcount_acquire_if_not_zero( 1098 file1->_file == NULL ? &file1->f_count : &file1->_file->f_count)) 1099 return (ERR_PTR(-EAGAIN)); 1100 1101 file2 = READ_ONCE(*f); 1102 if (file2 == file1) 1103 return (file2); 1104 1105 fput(file1); 1106 return (ERR_PTR(-EAGAIN)); 1107 } 1108 1109 struct linux_file * 1110 linux_get_file_rcu(struct linux_file **f) 1111 { 1112 struct linux_file *file1; 1113 1114 for (;;) { 1115 file1 = __get_file_rcu(f); 1116 if (file1 == NULL) 1117 return (NULL); 1118 1119 if (IS_ERR(file1)) 1120 continue; 1121 1122 return (file1); 1123 } 1124 } 1125 1126 struct linux_file * 1127 get_file_active(struct linux_file **f) 1128 { 1129 struct linux_file *file1; 1130 1131 rcu_read_lock(); 1132 file1 = __get_file_rcu(f); 1133 rcu_read_unlock(); 1134 if (IS_ERR(file1)) 1135 file1 = NULL; 1136 1137 return (file1); 1138 } 1139 1140 static void 1141 linux_file_kqfilter_detach(struct knote *kn) 1142 { 1143 struct linux_file *filp = kn->kn_hook; 1144 1145 spin_lock(&filp->f_kqlock); 1146 knlist_remove(&filp->f_selinfo.si_note, kn, 1); 1147 spin_unlock(&filp->f_kqlock); 1148 } 1149 1150 static int 1151 linux_file_kqfilter_read_event(struct knote *kn, long hint) 1152 { 1153 struct linux_file *filp = kn->kn_hook; 1154 1155 mtx_assert(&filp->f_kqlock, MA_OWNED); 1156 1157 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0); 1158 } 1159 1160 static int 1161 linux_file_kqfilter_write_event(struct knote *kn, long hint) 1162 { 1163 struct linux_file *filp = kn->kn_hook; 1164 1165 mtx_assert(&filp->f_kqlock, MA_OWNED); 1166 1167 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0); 1168 } 1169 1170 static const struct filterops linux_dev_kqfiltops_read = { 1171 .f_isfd = 1, 1172 .f_detach = linux_file_kqfilter_detach, 1173 .f_event = linux_file_kqfilter_read_event, 1174 .f_copy = knote_triv_copy, 1175 }; 1176 1177 static const struct filterops linux_dev_kqfiltops_write = { 1178 .f_isfd = 1, 1179 .f_detach = linux_file_kqfilter_detach, 1180 .f_event = linux_file_kqfilter_write_event, 1181 .f_copy = knote_triv_copy, 1182 }; 1183 1184 static void 1185 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags) 1186 { 1187 struct thread *td; 1188 const struct file_operations *fop; 1189 struct linux_cdev *ldev; 1190 int temp; 1191 1192 if ((filp->f_kqflags & kqflags) == 0) 1193 return; 1194 1195 td = curthread; 1196 1197 linux_get_fop(filp, &fop, &ldev); 1198 /* get the latest polling state */ 1199 temp = OPW(filp->_file, td, fop->poll(filp, NULL)); 1200 linux_drop_fop(ldev); 1201 1202 spin_lock(&filp->f_kqlock); 1203 /* clear kqflags */ 1204 filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ | 1205 LINUX_KQ_FLAG_NEED_WRITE); 1206 /* update kqflags */ 1207 if ((temp & (POLLIN | POLLOUT)) != 0) { 1208 if ((temp & POLLIN) != 0) 1209 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ; 1210 if ((temp & POLLOUT) != 0) 1211 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE; 1212 1213 /* make sure the "knote" gets woken up */ 1214 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0); 1215 } 1216 spin_unlock(&filp->f_kqlock); 1217 } 1218 1219 static int 1220 linux_file_kqfilter(struct file *file, struct knote *kn) 1221 { 1222 struct linux_file *filp; 1223 struct thread *td; 1224 int error; 1225 1226 td = curthread; 1227 filp = (struct linux_file *)file->f_data; 1228 filp->f_flags = file->f_flag; 1229 if (filp->f_op->poll == NULL) 1230 return (EINVAL); 1231 1232 spin_lock(&filp->f_kqlock); 1233 switch (kn->kn_filter) { 1234 case EVFILT_READ: 1235 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ; 1236 kn->kn_fop = &linux_dev_kqfiltops_read; 1237 kn->kn_hook = filp; 1238 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1239 error = 0; 1240 break; 1241 case EVFILT_WRITE: 1242 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE; 1243 kn->kn_fop = &linux_dev_kqfiltops_write; 1244 kn->kn_hook = filp; 1245 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1246 error = 0; 1247 break; 1248 default: 1249 error = EINVAL; 1250 break; 1251 } 1252 spin_unlock(&filp->f_kqlock); 1253 1254 if (error == 0) { 1255 linux_set_current(td); 1256 1257 /* update kqfilter status, if any */ 1258 linux_file_kqfilter_poll(filp, 1259 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 1260 } 1261 return (error); 1262 } 1263 1264 static int 1265 linux_file_mmap_single(struct file *fp, const struct file_operations *fop, 1266 vm_ooffset_t *offset, vm_size_t size, struct vm_object **object, 1267 int nprot, bool is_shared, struct thread *td) 1268 { 1269 struct task_struct *task; 1270 struct vm_area_struct *vmap; 1271 struct mm_struct *mm; 1272 struct linux_file *filp; 1273 vm_memattr_t attr; 1274 int error; 1275 1276 filp = (struct linux_file *)fp->f_data; 1277 filp->f_flags = fp->f_flag; 1278 1279 if (fop->mmap == NULL) 1280 return (EOPNOTSUPP); 1281 1282 linux_set_current(td); 1283 1284 /* 1285 * The same VM object might be shared by multiple processes 1286 * and the mm_struct is usually freed when a process exits. 1287 * 1288 * The atomic reference below makes sure the mm_struct is 1289 * available as long as the vmap is in the linux_vma_head. 1290 */ 1291 task = current; 1292 mm = task->mm; 1293 if (atomic_inc_not_zero(&mm->mm_users) == 0) 1294 return (EINVAL); 1295 1296 vmap = kzalloc(sizeof(*vmap), GFP_KERNEL); 1297 vmap->vm_start = 0; 1298 vmap->vm_end = size; 1299 vmap->vm_pgoff = *offset / PAGE_SIZE; 1300 vmap->vm_pfn = 0; 1301 vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL); 1302 if (is_shared) 1303 vmap->vm_flags |= VM_SHARED; 1304 vmap->vm_ops = NULL; 1305 vmap->vm_file = get_file(filp); 1306 vmap->vm_mm = mm; 1307 1308 if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) { 1309 error = linux_get_error(task, EINTR); 1310 } else { 1311 error = -OPW(fp, td, fop->mmap(filp, vmap)); 1312 error = linux_get_error(task, error); 1313 up_write(&vmap->vm_mm->mmap_sem); 1314 } 1315 1316 if (error != 0) { 1317 linux_cdev_handle_free(vmap); 1318 return (error); 1319 } 1320 1321 attr = pgprot2cachemode(vmap->vm_page_prot); 1322 1323 if (vmap->vm_ops != NULL) { 1324 struct vm_area_struct *ptr; 1325 void *vm_private_data; 1326 bool vm_no_fault; 1327 1328 if (vmap->vm_ops->open == NULL || 1329 vmap->vm_ops->close == NULL || 1330 vmap->vm_private_data == NULL) { 1331 /* free allocated VM area struct */ 1332 linux_cdev_handle_free(vmap); 1333 return (EINVAL); 1334 } 1335 1336 vm_private_data = vmap->vm_private_data; 1337 1338 rw_wlock(&linux_vma_lock); 1339 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) { 1340 if (ptr->vm_private_data == vm_private_data) 1341 break; 1342 } 1343 /* check if there is an existing VM area struct */ 1344 if (ptr != NULL) { 1345 /* check if the VM area structure is invalid */ 1346 if (ptr->vm_ops == NULL || 1347 ptr->vm_ops->open == NULL || 1348 ptr->vm_ops->close == NULL) { 1349 error = ESTALE; 1350 vm_no_fault = 1; 1351 } else { 1352 error = EEXIST; 1353 vm_no_fault = (ptr->vm_ops->fault == NULL); 1354 } 1355 } else { 1356 /* insert VM area structure into list */ 1357 TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry); 1358 error = 0; 1359 vm_no_fault = (vmap->vm_ops->fault == NULL); 1360 } 1361 rw_wunlock(&linux_vma_lock); 1362 1363 if (error != 0) { 1364 /* free allocated VM area struct */ 1365 linux_cdev_handle_free(vmap); 1366 /* check for stale VM area struct */ 1367 if (error != EEXIST) 1368 return (error); 1369 } 1370 1371 /* check if there is no fault handler */ 1372 if (vm_no_fault) { 1373 *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE, 1374 &linux_cdev_pager_ops[1], size, nprot, *offset, 1375 td->td_ucred); 1376 } else { 1377 *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE, 1378 &linux_cdev_pager_ops[0], size, nprot, *offset, 1379 td->td_ucred); 1380 } 1381 1382 /* check if allocating the VM object failed */ 1383 if (*object == NULL) { 1384 if (error == 0) { 1385 /* remove VM area struct from list */ 1386 linux_cdev_handle_remove(vmap); 1387 /* free allocated VM area struct */ 1388 linux_cdev_handle_free(vmap); 1389 } 1390 return (EINVAL); 1391 } 1392 } else { 1393 struct sglist *sg; 1394 1395 sg = sglist_alloc(1, M_WAITOK); 1396 sglist_append_phys(sg, 1397 (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len); 1398 1399 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len, 1400 nprot, 0, td->td_ucred); 1401 1402 linux_cdev_handle_free(vmap); 1403 1404 if (*object == NULL) { 1405 sglist_free(sg); 1406 return (EINVAL); 1407 } 1408 } 1409 1410 if (attr != VM_MEMATTR_DEFAULT) { 1411 VM_OBJECT_WLOCK(*object); 1412 vm_object_set_memattr(*object, attr); 1413 VM_OBJECT_WUNLOCK(*object); 1414 } 1415 *offset = 0; 1416 return (0); 1417 } 1418 1419 struct cdevsw linuxcdevsw = { 1420 .d_version = D_VERSION, 1421 .d_fdopen = linux_dev_fdopen, 1422 .d_name = "lkpidev", 1423 }; 1424 1425 static int 1426 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred, 1427 int flags, struct thread *td) 1428 { 1429 struct linux_file *filp; 1430 const struct file_operations *fop; 1431 struct linux_cdev *ldev; 1432 ssize_t bytes; 1433 int error; 1434 1435 error = 0; 1436 filp = (struct linux_file *)file->f_data; 1437 filp->f_flags = file->f_flag; 1438 /* XXX no support for I/O vectors currently */ 1439 if (uio->uio_iovcnt != 1) 1440 return (EOPNOTSUPP); 1441 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1442 return (EINVAL); 1443 linux_set_current(td); 1444 linux_get_fop(filp, &fop, &ldev); 1445 if (fop->read != NULL) { 1446 bytes = OPW(file, td, fop->read(filp, 1447 uio->uio_iov->iov_base, 1448 uio->uio_iov->iov_len, &uio->uio_offset)); 1449 if (bytes >= 0) { 1450 uio->uio_iov->iov_base = 1451 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1452 uio->uio_iov->iov_len -= bytes; 1453 uio->uio_resid -= bytes; 1454 } else { 1455 error = linux_get_error(current, -bytes); 1456 } 1457 } else 1458 error = ENXIO; 1459 1460 /* update kqfilter status, if any */ 1461 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ); 1462 linux_drop_fop(ldev); 1463 1464 return (error); 1465 } 1466 1467 static int 1468 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred, 1469 int flags, struct thread *td) 1470 { 1471 struct linux_file *filp; 1472 const struct file_operations *fop; 1473 struct linux_cdev *ldev; 1474 ssize_t bytes; 1475 int error; 1476 1477 filp = (struct linux_file *)file->f_data; 1478 filp->f_flags = file->f_flag; 1479 /* XXX no support for I/O vectors currently */ 1480 if (uio->uio_iovcnt != 1) 1481 return (EOPNOTSUPP); 1482 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1483 return (EINVAL); 1484 linux_set_current(td); 1485 linux_get_fop(filp, &fop, &ldev); 1486 if (fop->write != NULL) { 1487 bytes = OPW(file, td, fop->write(filp, 1488 uio->uio_iov->iov_base, 1489 uio->uio_iov->iov_len, &uio->uio_offset)); 1490 if (bytes >= 0) { 1491 uio->uio_iov->iov_base = 1492 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1493 uio->uio_iov->iov_len -= bytes; 1494 uio->uio_resid -= bytes; 1495 error = 0; 1496 } else { 1497 error = linux_get_error(current, -bytes); 1498 } 1499 } else 1500 error = ENXIO; 1501 1502 /* update kqfilter status, if any */ 1503 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE); 1504 1505 linux_drop_fop(ldev); 1506 1507 return (error); 1508 } 1509 1510 static int 1511 linux_file_poll(struct file *file, int events, struct ucred *active_cred, 1512 struct thread *td) 1513 { 1514 struct linux_file *filp; 1515 const struct file_operations *fop; 1516 struct linux_cdev *ldev; 1517 int revents; 1518 1519 filp = (struct linux_file *)file->f_data; 1520 filp->f_flags = file->f_flag; 1521 linux_set_current(td); 1522 linux_get_fop(filp, &fop, &ldev); 1523 if (fop->poll != NULL) { 1524 revents = OPW(file, td, fop->poll(filp, 1525 LINUX_POLL_TABLE_NORMAL)) & events; 1526 } else { 1527 revents = 0; 1528 } 1529 linux_drop_fop(ldev); 1530 return (revents); 1531 } 1532 1533 static int 1534 linux_file_close(struct file *file, struct thread *td) 1535 { 1536 struct linux_file *filp; 1537 int (*release)(struct inode *, struct linux_file *); 1538 const struct file_operations *fop; 1539 struct linux_cdev *ldev; 1540 int error; 1541 1542 filp = (struct linux_file *)file->f_data; 1543 1544 KASSERT(file_count(filp) == 0, 1545 ("File refcount(%d) is not zero", file_count(filp))); 1546 1547 if (td == NULL) 1548 td = curthread; 1549 1550 error = 0; 1551 filp->f_flags = file->f_flag; 1552 linux_set_current(td); 1553 linux_poll_wait_dequeue(filp); 1554 linux_get_fop(filp, &fop, &ldev); 1555 /* 1556 * Always use the real release function, if any, to avoid 1557 * leaking device resources: 1558 */ 1559 release = filp->f_op->release; 1560 if (release != NULL) 1561 error = -OPW(file, td, release(filp->f_vnode, filp)); 1562 funsetown(&filp->f_sigio); 1563 if (filp->f_vnode != NULL) 1564 vrele(filp->f_vnode); 1565 linux_drop_fop(ldev); 1566 ldev = filp->f_cdev; 1567 if (ldev != NULL) 1568 linux_cdev_deref(ldev); 1569 linux_synchronize_rcu(RCU_TYPE_REGULAR); 1570 kfree(filp); 1571 1572 return (error); 1573 } 1574 1575 static int 1576 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred, 1577 struct thread *td) 1578 { 1579 struct linux_file *filp; 1580 const struct file_operations *fop; 1581 struct linux_cdev *ldev; 1582 struct fiodgname_arg *fgn; 1583 const char *p; 1584 int error, i; 1585 1586 error = 0; 1587 filp = (struct linux_file *)fp->f_data; 1588 filp->f_flags = fp->f_flag; 1589 linux_get_fop(filp, &fop, &ldev); 1590 1591 linux_set_current(td); 1592 switch (cmd) { 1593 case FIONBIO: 1594 break; 1595 case FIOASYNC: 1596 if (fop->fasync == NULL) 1597 break; 1598 error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC)); 1599 break; 1600 case FIOSETOWN: 1601 error = fsetown(*(int *)data, &filp->f_sigio); 1602 if (error == 0) { 1603 if (fop->fasync == NULL) 1604 break; 1605 error = -OPW(fp, td, fop->fasync(0, filp, 1606 fp->f_flag & FASYNC)); 1607 } 1608 break; 1609 case FIOGETOWN: 1610 *(int *)data = fgetown(&filp->f_sigio); 1611 break; 1612 case FIODGNAME: 1613 #ifdef COMPAT_FREEBSD32 1614 case FIODGNAME_32: 1615 #endif 1616 if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) { 1617 error = ENXIO; 1618 break; 1619 } 1620 fgn = data; 1621 p = devtoname(filp->f_cdev->cdev); 1622 i = strlen(p) + 1; 1623 if (i > fgn->len) { 1624 error = EINVAL; 1625 break; 1626 } 1627 error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i); 1628 break; 1629 default: 1630 error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td); 1631 break; 1632 } 1633 linux_drop_fop(ldev); 1634 return (error); 1635 } 1636 1637 static int 1638 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot, 1639 vm_prot_t maxprot, int flags, struct file *fp, 1640 vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp) 1641 { 1642 /* 1643 * Character devices do not provide private mappings 1644 * of any kind: 1645 */ 1646 if ((maxprot & VM_PROT_WRITE) == 0 && 1647 (prot & VM_PROT_WRITE) != 0) 1648 return (EACCES); 1649 if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0) 1650 return (EINVAL); 1651 1652 return (linux_file_mmap_single(fp, fop, foff, objsize, objp, 1653 (int)prot, (flags & MAP_SHARED) ? true : false, td)); 1654 } 1655 1656 static int 1657 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 1658 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 1659 struct thread *td) 1660 { 1661 struct linux_file *filp; 1662 const struct file_operations *fop; 1663 struct linux_cdev *ldev; 1664 struct mount *mp; 1665 struct vnode *vp; 1666 vm_object_t object; 1667 vm_prot_t maxprot; 1668 int error; 1669 1670 filp = (struct linux_file *)fp->f_data; 1671 1672 vp = filp->f_vnode; 1673 if (vp == NULL) 1674 return (EOPNOTSUPP); 1675 1676 /* 1677 * Ensure that file and memory protections are 1678 * compatible. 1679 */ 1680 mp = vp->v_mount; 1681 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) { 1682 maxprot = VM_PROT_NONE; 1683 if ((prot & VM_PROT_EXECUTE) != 0) 1684 return (EACCES); 1685 } else 1686 maxprot = VM_PROT_EXECUTE; 1687 if ((fp->f_flag & FREAD) != 0) 1688 maxprot |= VM_PROT_READ; 1689 else if ((prot & VM_PROT_READ) != 0) 1690 return (EACCES); 1691 1692 /* 1693 * If we are sharing potential changes via MAP_SHARED and we 1694 * are trying to get write permission although we opened it 1695 * without asking for it, bail out. 1696 * 1697 * Note that most character devices always share mappings. 1698 * 1699 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE 1700 * requests rather than doing it here. 1701 */ 1702 if ((flags & MAP_SHARED) != 0) { 1703 if ((fp->f_flag & FWRITE) != 0) 1704 maxprot |= VM_PROT_WRITE; 1705 else if ((prot & VM_PROT_WRITE) != 0) 1706 return (EACCES); 1707 } 1708 maxprot &= cap_maxprot; 1709 1710 linux_get_fop(filp, &fop, &ldev); 1711 error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp, 1712 &foff, fop, &object); 1713 if (error != 0) 1714 goto out; 1715 1716 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 1717 foff, FALSE, td); 1718 if (error != 0) 1719 vm_object_deallocate(object); 1720 out: 1721 linux_drop_fop(ldev); 1722 return (error); 1723 } 1724 1725 static int 1726 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred) 1727 { 1728 struct linux_file *filp; 1729 struct vnode *vp; 1730 int error; 1731 1732 filp = (struct linux_file *)fp->f_data; 1733 if (filp->f_vnode == NULL) 1734 return (EOPNOTSUPP); 1735 1736 vp = filp->f_vnode; 1737 1738 vn_lock(vp, LK_SHARED | LK_RETRY); 1739 error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED); 1740 VOP_UNLOCK(vp); 1741 1742 return (error); 1743 } 1744 1745 static int 1746 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif, 1747 struct filedesc *fdp) 1748 { 1749 struct linux_file *filp; 1750 struct vnode *vp; 1751 int error; 1752 1753 filp = fp->f_data; 1754 vp = filp->f_vnode; 1755 if (vp == NULL) { 1756 error = 0; 1757 kif->kf_type = KF_TYPE_DEV; 1758 } else { 1759 vref(vp); 1760 FILEDESC_SUNLOCK(fdp); 1761 error = vn_fill_kinfo_vnode(vp, kif); 1762 vrele(vp); 1763 kif->kf_type = KF_TYPE_VNODE; 1764 FILEDESC_SLOCK(fdp); 1765 } 1766 return (error); 1767 } 1768 1769 unsigned int 1770 linux_iminor(struct inode *inode) 1771 { 1772 struct linux_cdev *ldev; 1773 1774 if (inode == NULL || inode->v_rdev == NULL || 1775 inode->v_rdev->si_devsw != &linuxcdevsw) 1776 return (-1U); 1777 ldev = inode->v_rdev->si_drv1; 1778 if (ldev == NULL) 1779 return (-1U); 1780 1781 return (minor(ldev->dev)); 1782 } 1783 1784 static int 1785 linux_file_kcmp(struct file *fp1, struct file *fp2, struct thread *td) 1786 { 1787 struct linux_file *filp1, *filp2; 1788 1789 if (fp2->f_type != DTYPE_DEV) 1790 return (3); 1791 1792 filp1 = fp1->f_data; 1793 filp2 = fp2->f_data; 1794 return (kcmp_cmp((uintptr_t)filp1->f_cdev, (uintptr_t)filp2->f_cdev)); 1795 } 1796 1797 const struct fileops linuxfileops = { 1798 .fo_read = linux_file_read, 1799 .fo_write = linux_file_write, 1800 .fo_truncate = invfo_truncate, 1801 .fo_kqfilter = linux_file_kqfilter, 1802 .fo_stat = linux_file_stat, 1803 .fo_fill_kinfo = linux_file_fill_kinfo, 1804 .fo_poll = linux_file_poll, 1805 .fo_close = linux_file_close, 1806 .fo_ioctl = linux_file_ioctl, 1807 .fo_mmap = linux_file_mmap, 1808 .fo_chmod = invfo_chmod, 1809 .fo_chown = invfo_chown, 1810 .fo_sendfile = invfo_sendfile, 1811 .fo_cmp = linux_file_kcmp, 1812 .fo_flags = DFLAG_PASSABLE, 1813 }; 1814 1815 /* 1816 * Hash of vmmap addresses. This is infrequently accessed and does not 1817 * need to be particularly large. This is done because we must store the 1818 * caller's idea of the map size to properly unmap. 1819 */ 1820 struct vmmap { 1821 LIST_ENTRY(vmmap) vm_next; 1822 void *vm_addr; 1823 unsigned long vm_size; 1824 }; 1825 1826 struct vmmaphd { 1827 struct vmmap *lh_first; 1828 }; 1829 #define VMMAP_HASH_SIZE 64 1830 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1) 1831 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK 1832 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE]; 1833 static struct mtx vmmaplock; 1834 1835 static void 1836 vmmap_add(void *addr, unsigned long size) 1837 { 1838 struct vmmap *vmmap; 1839 1840 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL); 1841 mtx_lock(&vmmaplock); 1842 vmmap->vm_size = size; 1843 vmmap->vm_addr = addr; 1844 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next); 1845 mtx_unlock(&vmmaplock); 1846 } 1847 1848 static struct vmmap * 1849 vmmap_remove(void *addr) 1850 { 1851 struct vmmap *vmmap; 1852 1853 mtx_lock(&vmmaplock); 1854 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next) 1855 if (vmmap->vm_addr == addr) 1856 break; 1857 if (vmmap) 1858 LIST_REMOVE(vmmap, vm_next); 1859 mtx_unlock(&vmmaplock); 1860 1861 return (vmmap); 1862 } 1863 1864 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv) 1865 void * 1866 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr) 1867 { 1868 void *addr; 1869 1870 addr = pmap_mapdev_attr(phys_addr, size, attr); 1871 if (addr == NULL) 1872 return (NULL); 1873 vmmap_add(addr, size); 1874 1875 return (addr); 1876 } 1877 #endif 1878 1879 void 1880 iounmap(void *addr) 1881 { 1882 struct vmmap *vmmap; 1883 1884 vmmap = vmmap_remove(addr); 1885 if (vmmap == NULL) 1886 return; 1887 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv) 1888 pmap_unmapdev(addr, vmmap->vm_size); 1889 #endif 1890 kfree(vmmap); 1891 } 1892 1893 void * 1894 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot) 1895 { 1896 vm_offset_t off; 1897 size_t size; 1898 1899 size = count * PAGE_SIZE; 1900 off = kva_alloc(size); 1901 if (off == 0) 1902 return (NULL); 1903 vmmap_add((void *)off, size); 1904 pmap_qenter(off, pages, count); 1905 1906 return ((void *)off); 1907 } 1908 1909 void 1910 vunmap(void *addr) 1911 { 1912 struct vmmap *vmmap; 1913 1914 vmmap = vmmap_remove(addr); 1915 if (vmmap == NULL) 1916 return; 1917 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE); 1918 kva_free((vm_offset_t)addr, vmmap->vm_size); 1919 kfree(vmmap); 1920 } 1921 1922 static char * 1923 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap) 1924 { 1925 unsigned int len; 1926 char *p; 1927 va_list aq; 1928 1929 va_copy(aq, ap); 1930 len = vsnprintf(NULL, 0, fmt, aq); 1931 va_end(aq); 1932 1933 if (dev != NULL) 1934 p = devm_kmalloc(dev, len + 1, gfp); 1935 else 1936 p = kmalloc(len + 1, gfp); 1937 if (p != NULL) 1938 vsnprintf(p, len + 1, fmt, ap); 1939 1940 return (p); 1941 } 1942 1943 char * 1944 kvasprintf(gfp_t gfp, const char *fmt, va_list ap) 1945 { 1946 1947 return (devm_kvasprintf(NULL, gfp, fmt, ap)); 1948 } 1949 1950 char * 1951 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) 1952 { 1953 va_list ap; 1954 char *p; 1955 1956 va_start(ap, fmt); 1957 p = devm_kvasprintf(dev, gfp, fmt, ap); 1958 va_end(ap); 1959 1960 return (p); 1961 } 1962 1963 char * 1964 kasprintf(gfp_t gfp, const char *fmt, ...) 1965 { 1966 va_list ap; 1967 char *p; 1968 1969 va_start(ap, fmt); 1970 p = kvasprintf(gfp, fmt, ap); 1971 va_end(ap); 1972 1973 return (p); 1974 } 1975 1976 int 1977 __lkpi_hexdump_printf(void *arg1 __unused, const char *fmt, ...) 1978 { 1979 va_list ap; 1980 int result; 1981 1982 va_start(ap, fmt); 1983 result = vprintf(fmt, ap); 1984 va_end(ap); 1985 return (result); 1986 } 1987 1988 int 1989 __lkpi_hexdump_sbuf_printf(void *arg1, const char *fmt, ...) 1990 { 1991 va_list ap; 1992 int result; 1993 1994 va_start(ap, fmt); 1995 result = sbuf_vprintf(arg1, fmt, ap); 1996 va_end(ap); 1997 return (result); 1998 } 1999 2000 void 2001 lkpi_hex_dump(int(*_fpf)(void *, const char *, ...), void *arg1, 2002 const char *level, const char *prefix_str, 2003 const int prefix_type, const int rowsize, const int groupsize, 2004 const void *buf, size_t len, const bool ascii) 2005 { 2006 typedef const struct { long long value; } __packed *print_64p_t; 2007 typedef const struct { uint32_t value; } __packed *print_32p_t; 2008 typedef const struct { uint16_t value; } __packed *print_16p_t; 2009 const void *buf_old = buf; 2010 int row; 2011 2012 while (len > 0) { 2013 if (level != NULL) 2014 _fpf(arg1, "%s", level); 2015 if (prefix_str != NULL) 2016 _fpf(arg1, "%s ", prefix_str); 2017 2018 switch (prefix_type) { 2019 case DUMP_PREFIX_ADDRESS: 2020 _fpf(arg1, "[%p] ", buf); 2021 break; 2022 case DUMP_PREFIX_OFFSET: 2023 _fpf(arg1, "[%#tx] ", ((const char *)buf - 2024 (const char *)buf_old)); 2025 break; 2026 default: 2027 break; 2028 } 2029 for (row = 0; row != rowsize; row++) { 2030 if (groupsize == 8 && len > 7) { 2031 _fpf(arg1, "%016llx ", ((print_64p_t)buf)->value); 2032 buf = (const uint8_t *)buf + 8; 2033 len -= 8; 2034 } else if (groupsize == 4 && len > 3) { 2035 _fpf(arg1, "%08x ", ((print_32p_t)buf)->value); 2036 buf = (const uint8_t *)buf + 4; 2037 len -= 4; 2038 } else if (groupsize == 2 && len > 1) { 2039 _fpf(arg1, "%04x ", ((print_16p_t)buf)->value); 2040 buf = (const uint8_t *)buf + 2; 2041 len -= 2; 2042 } else if (len > 0) { 2043 _fpf(arg1, "%02x ", *(const uint8_t *)buf); 2044 buf = (const uint8_t *)buf + 1; 2045 len--; 2046 } else { 2047 break; 2048 } 2049 } 2050 _fpf(arg1, "\n"); 2051 } 2052 } 2053 2054 static void 2055 linux_timer_callback_wrapper(void *context) 2056 { 2057 struct timer_list *timer; 2058 2059 timer = context; 2060 2061 /* the timer is about to be shutdown permanently */ 2062 if (timer->function == NULL) 2063 return; 2064 2065 if (linux_set_current_flags(curthread, M_NOWAIT)) { 2066 /* try again later */ 2067 callout_reset(&timer->callout, 1, 2068 &linux_timer_callback_wrapper, timer); 2069 return; 2070 } 2071 2072 timer->function(timer->data); 2073 } 2074 2075 static int 2076 linux_timer_jiffies_until(unsigned long expires) 2077 { 2078 unsigned long delta = expires - jiffies; 2079 2080 /* 2081 * Guard against already expired values and make sure that the value can 2082 * be used as a tick count, rather than a jiffies count. 2083 */ 2084 if ((long)delta < 1) 2085 delta = 1; 2086 else if (delta > INT_MAX) 2087 delta = INT_MAX; 2088 return ((int)delta); 2089 } 2090 2091 int 2092 mod_timer(struct timer_list *timer, unsigned long expires) 2093 { 2094 int ret; 2095 2096 timer->expires = expires; 2097 ret = callout_reset(&timer->callout, 2098 linux_timer_jiffies_until(expires), 2099 &linux_timer_callback_wrapper, timer); 2100 2101 MPASS(ret == 0 || ret == 1); 2102 2103 return (ret == 1); 2104 } 2105 2106 void 2107 add_timer(struct timer_list *timer) 2108 { 2109 2110 callout_reset(&timer->callout, 2111 linux_timer_jiffies_until(timer->expires), 2112 &linux_timer_callback_wrapper, timer); 2113 } 2114 2115 void 2116 add_timer_on(struct timer_list *timer, int cpu) 2117 { 2118 2119 callout_reset_on(&timer->callout, 2120 linux_timer_jiffies_until(timer->expires), 2121 &linux_timer_callback_wrapper, timer, cpu); 2122 } 2123 2124 int 2125 timer_delete(struct timer_list *timer) 2126 { 2127 2128 if (callout_stop(&(timer)->callout) == -1) 2129 return (0); 2130 return (1); 2131 } 2132 2133 int 2134 timer_delete_sync(struct timer_list *timer) 2135 { 2136 2137 if (callout_drain(&(timer)->callout) == -1) 2138 return (0); 2139 return (1); 2140 } 2141 2142 int 2143 timer_shutdown_sync(struct timer_list *timer) 2144 { 2145 2146 timer->function = NULL; 2147 return (del_timer_sync(timer)); 2148 } 2149 2150 /* greatest common divisor, Euclid equation */ 2151 static uint64_t 2152 lkpi_gcd_64(uint64_t a, uint64_t b) 2153 { 2154 uint64_t an; 2155 uint64_t bn; 2156 2157 while (b != 0) { 2158 an = b; 2159 bn = a % b; 2160 a = an; 2161 b = bn; 2162 } 2163 return (a); 2164 } 2165 2166 uint64_t lkpi_nsec2hz_rem; 2167 uint64_t lkpi_nsec2hz_div = 1000000000ULL; 2168 uint64_t lkpi_nsec2hz_max; 2169 2170 uint64_t lkpi_usec2hz_rem; 2171 uint64_t lkpi_usec2hz_div = 1000000ULL; 2172 uint64_t lkpi_usec2hz_max; 2173 2174 uint64_t lkpi_msec2hz_rem; 2175 uint64_t lkpi_msec2hz_div = 1000ULL; 2176 uint64_t lkpi_msec2hz_max; 2177 2178 static void 2179 linux_timer_init(void *arg) 2180 { 2181 uint64_t gcd; 2182 2183 /* 2184 * Compute an internal HZ value which can divide 2**32 to 2185 * avoid timer rounding problems when the tick value wraps 2186 * around 2**32: 2187 */ 2188 linux_timer_hz_mask = 1; 2189 while (linux_timer_hz_mask < (unsigned long)hz) 2190 linux_timer_hz_mask *= 2; 2191 linux_timer_hz_mask--; 2192 2193 /* compute some internal constants */ 2194 2195 lkpi_nsec2hz_rem = hz; 2196 lkpi_usec2hz_rem = hz; 2197 lkpi_msec2hz_rem = hz; 2198 2199 gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div); 2200 lkpi_nsec2hz_rem /= gcd; 2201 lkpi_nsec2hz_div /= gcd; 2202 lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem; 2203 2204 gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div); 2205 lkpi_usec2hz_rem /= gcd; 2206 lkpi_usec2hz_div /= gcd; 2207 lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem; 2208 2209 gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div); 2210 lkpi_msec2hz_rem /= gcd; 2211 lkpi_msec2hz_div /= gcd; 2212 lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem; 2213 } 2214 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL); 2215 2216 void 2217 linux_complete_common(struct completion *c, int all) 2218 { 2219 sleepq_lock(c); 2220 if (all) { 2221 c->done = UINT_MAX; 2222 sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0); 2223 } else { 2224 if (c->done != UINT_MAX) 2225 c->done++; 2226 sleepq_signal(c, SLEEPQ_SLEEP, 0, 0); 2227 } 2228 sleepq_release(c); 2229 } 2230 2231 /* 2232 * Indefinite wait for done != 0 with or without signals. 2233 */ 2234 int 2235 linux_wait_for_common(struct completion *c, int flags) 2236 { 2237 struct task_struct *task; 2238 int error; 2239 2240 if (SCHEDULER_STOPPED()) 2241 return (0); 2242 2243 task = current; 2244 2245 if (flags != 0) 2246 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 2247 else 2248 flags = SLEEPQ_SLEEP; 2249 error = 0; 2250 for (;;) { 2251 sleepq_lock(c); 2252 if (c->done) 2253 break; 2254 sleepq_add(c, NULL, "completion", flags, 0); 2255 if (flags & SLEEPQ_INTERRUPTIBLE) { 2256 DROP_GIANT(); 2257 error = -sleepq_wait_sig(c, 0); 2258 PICKUP_GIANT(); 2259 if (error != 0) { 2260 linux_schedule_save_interrupt_value(task, error); 2261 error = -ERESTARTSYS; 2262 goto intr; 2263 } 2264 } else { 2265 DROP_GIANT(); 2266 sleepq_wait(c, 0); 2267 PICKUP_GIANT(); 2268 } 2269 } 2270 if (c->done != UINT_MAX) 2271 c->done--; 2272 sleepq_release(c); 2273 2274 intr: 2275 return (error); 2276 } 2277 2278 /* 2279 * Time limited wait for done != 0 with or without signals. 2280 */ 2281 unsigned long 2282 linux_wait_for_timeout_common(struct completion *c, unsigned long timeout, 2283 int flags) 2284 { 2285 struct task_struct *task; 2286 unsigned long end = jiffies + timeout, error; 2287 2288 if (SCHEDULER_STOPPED()) 2289 return (0); 2290 2291 task = current; 2292 2293 if (flags != 0) 2294 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 2295 else 2296 flags = SLEEPQ_SLEEP; 2297 2298 for (;;) { 2299 sleepq_lock(c); 2300 if (c->done) 2301 break; 2302 sleepq_add(c, NULL, "completion", flags, 0); 2303 sleepq_set_timeout(c, linux_timer_jiffies_until(end)); 2304 2305 DROP_GIANT(); 2306 if (flags & SLEEPQ_INTERRUPTIBLE) 2307 error = -sleepq_timedwait_sig(c, 0); 2308 else 2309 error = -sleepq_timedwait(c, 0); 2310 PICKUP_GIANT(); 2311 2312 if (error != 0) { 2313 /* check for timeout */ 2314 if (error == -EWOULDBLOCK) { 2315 error = 0; /* timeout */ 2316 } else { 2317 /* signal happened */ 2318 linux_schedule_save_interrupt_value(task, error); 2319 error = -ERESTARTSYS; 2320 } 2321 goto done; 2322 } 2323 } 2324 if (c->done != UINT_MAX) 2325 c->done--; 2326 sleepq_release(c); 2327 2328 /* return how many jiffies are left */ 2329 error = linux_timer_jiffies_until(end); 2330 done: 2331 return (error); 2332 } 2333 2334 int 2335 linux_try_wait_for_completion(struct completion *c) 2336 { 2337 int isdone; 2338 2339 sleepq_lock(c); 2340 isdone = (c->done != 0); 2341 if (c->done != 0 && c->done != UINT_MAX) 2342 c->done--; 2343 sleepq_release(c); 2344 return (isdone); 2345 } 2346 2347 int 2348 linux_completion_done(struct completion *c) 2349 { 2350 int isdone; 2351 2352 sleepq_lock(c); 2353 isdone = (c->done != 0); 2354 sleepq_release(c); 2355 return (isdone); 2356 } 2357 2358 static void 2359 linux_cdev_deref(struct linux_cdev *ldev) 2360 { 2361 if (refcount_release(&ldev->refs) && 2362 ldev->kobj.ktype == &linux_cdev_ktype) 2363 kfree(ldev); 2364 } 2365 2366 static void 2367 linux_cdev_release(struct kobject *kobj) 2368 { 2369 struct linux_cdev *cdev; 2370 struct kobject *parent; 2371 2372 cdev = container_of(kobj, struct linux_cdev, kobj); 2373 parent = kobj->parent; 2374 linux_destroy_dev(cdev); 2375 linux_cdev_deref(cdev); 2376 kobject_put(parent); 2377 } 2378 2379 static void 2380 linux_cdev_static_release(struct kobject *kobj) 2381 { 2382 struct cdev *cdev; 2383 struct linux_cdev *ldev; 2384 2385 ldev = container_of(kobj, struct linux_cdev, kobj); 2386 cdev = ldev->cdev; 2387 if (cdev != NULL) { 2388 destroy_dev(cdev); 2389 ldev->cdev = NULL; 2390 } 2391 kobject_put(kobj->parent); 2392 } 2393 2394 int 2395 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev) 2396 { 2397 int ret; 2398 2399 if (dev->devt != 0) { 2400 /* Set parent kernel object. */ 2401 ldev->kobj.parent = &dev->kobj; 2402 2403 /* 2404 * Unlike Linux we require the kobject of the 2405 * character device structure to have a valid name 2406 * before calling this function: 2407 */ 2408 if (ldev->kobj.name == NULL) 2409 return (-EINVAL); 2410 2411 ret = cdev_add(ldev, dev->devt, 1); 2412 if (ret) 2413 return (ret); 2414 } 2415 ret = device_add(dev); 2416 if (ret != 0 && dev->devt != 0) 2417 cdev_del(ldev); 2418 return (ret); 2419 } 2420 2421 void 2422 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev) 2423 { 2424 device_del(dev); 2425 2426 if (dev->devt != 0) 2427 cdev_del(ldev); 2428 } 2429 2430 static void 2431 linux_destroy_dev(struct linux_cdev *ldev) 2432 { 2433 2434 if (ldev->cdev == NULL) 2435 return; 2436 2437 MPASS((ldev->siref & LDEV_SI_DTR) == 0); 2438 MPASS(ldev->kobj.ktype == &linux_cdev_ktype); 2439 2440 atomic_set_int(&ldev->siref, LDEV_SI_DTR); 2441 while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0) 2442 pause("ldevdtr", hz / 4); 2443 2444 destroy_dev(ldev->cdev); 2445 ldev->cdev = NULL; 2446 } 2447 2448 const struct kobj_type linux_cdev_ktype = { 2449 .release = linux_cdev_release, 2450 }; 2451 2452 const struct kobj_type linux_cdev_static_ktype = { 2453 .release = linux_cdev_static_release, 2454 }; 2455 2456 static void 2457 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate) 2458 { 2459 struct notifier_block *nb; 2460 struct netdev_notifier_info ni; 2461 2462 nb = arg; 2463 ni.ifp = ifp; 2464 ni.dev = (struct net_device *)ifp; 2465 if (linkstate == LINK_STATE_UP) 2466 nb->notifier_call(nb, NETDEV_UP, &ni); 2467 else 2468 nb->notifier_call(nb, NETDEV_DOWN, &ni); 2469 } 2470 2471 static void 2472 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp) 2473 { 2474 struct notifier_block *nb; 2475 struct netdev_notifier_info ni; 2476 2477 nb = arg; 2478 ni.ifp = ifp; 2479 ni.dev = (struct net_device *)ifp; 2480 nb->notifier_call(nb, NETDEV_REGISTER, &ni); 2481 } 2482 2483 static void 2484 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp) 2485 { 2486 struct notifier_block *nb; 2487 struct netdev_notifier_info ni; 2488 2489 nb = arg; 2490 ni.ifp = ifp; 2491 ni.dev = (struct net_device *)ifp; 2492 nb->notifier_call(nb, NETDEV_UNREGISTER, &ni); 2493 } 2494 2495 static void 2496 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp) 2497 { 2498 struct notifier_block *nb; 2499 struct netdev_notifier_info ni; 2500 2501 nb = arg; 2502 ni.ifp = ifp; 2503 ni.dev = (struct net_device *)ifp; 2504 nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni); 2505 } 2506 2507 static void 2508 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp) 2509 { 2510 struct notifier_block *nb; 2511 struct netdev_notifier_info ni; 2512 2513 nb = arg; 2514 ni.ifp = ifp; 2515 ni.dev = (struct net_device *)ifp; 2516 nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni); 2517 } 2518 2519 int 2520 register_netdevice_notifier(struct notifier_block *nb) 2521 { 2522 2523 nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER( 2524 ifnet_link_event, linux_handle_ifnet_link_event, nb, 0); 2525 nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER( 2526 ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0); 2527 nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER( 2528 ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0); 2529 nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER( 2530 iflladdr_event, linux_handle_iflladdr_event, nb, 0); 2531 2532 return (0); 2533 } 2534 2535 int 2536 register_inetaddr_notifier(struct notifier_block *nb) 2537 { 2538 2539 nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER( 2540 ifaddr_event, linux_handle_ifaddr_event, nb, 0); 2541 return (0); 2542 } 2543 2544 int 2545 unregister_netdevice_notifier(struct notifier_block *nb) 2546 { 2547 2548 EVENTHANDLER_DEREGISTER(ifnet_link_event, 2549 nb->tags[NETDEV_UP]); 2550 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 2551 nb->tags[NETDEV_REGISTER]); 2552 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 2553 nb->tags[NETDEV_UNREGISTER]); 2554 EVENTHANDLER_DEREGISTER(iflladdr_event, 2555 nb->tags[NETDEV_CHANGEADDR]); 2556 2557 return (0); 2558 } 2559 2560 int 2561 unregister_inetaddr_notifier(struct notifier_block *nb) 2562 { 2563 2564 EVENTHANDLER_DEREGISTER(ifaddr_event, 2565 nb->tags[NETDEV_CHANGEIFADDR]); 2566 2567 return (0); 2568 } 2569 2570 struct list_sort_thunk { 2571 int (*cmp)(void *, struct list_head *, struct list_head *); 2572 void *priv; 2573 }; 2574 2575 static inline int 2576 linux_le_cmp(const void *d1, const void *d2, void *priv) 2577 { 2578 struct list_head *le1, *le2; 2579 struct list_sort_thunk *thunk; 2580 2581 thunk = priv; 2582 le1 = *(__DECONST(struct list_head **, d1)); 2583 le2 = *(__DECONST(struct list_head **, d2)); 2584 return ((thunk->cmp)(thunk->priv, le1, le2)); 2585 } 2586 2587 void 2588 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv, 2589 struct list_head *a, struct list_head *b)) 2590 { 2591 struct list_sort_thunk thunk; 2592 struct list_head **ar, *le; 2593 size_t count, i; 2594 2595 count = 0; 2596 list_for_each(le, head) 2597 count++; 2598 ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK); 2599 i = 0; 2600 list_for_each(le, head) 2601 ar[i++] = le; 2602 thunk.cmp = cmp; 2603 thunk.priv = priv; 2604 qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk); 2605 INIT_LIST_HEAD(head); 2606 for (i = 0; i < count; i++) 2607 list_add_tail(ar[i], head); 2608 free(ar, M_KMALLOC); 2609 } 2610 2611 #if defined(__i386__) || defined(__amd64__) 2612 int 2613 linux_wbinvd_on_all_cpus(void) 2614 { 2615 2616 pmap_invalidate_cache(); 2617 return (0); 2618 } 2619 #endif 2620 2621 int 2622 linux_on_each_cpu(void callback(void *), void *data) 2623 { 2624 2625 smp_rendezvous(smp_no_rendezvous_barrier, callback, 2626 smp_no_rendezvous_barrier, data); 2627 return (0); 2628 } 2629 2630 int 2631 linux_in_atomic(void) 2632 { 2633 2634 return ((curthread->td_pflags & TDP_NOFAULTING) != 0); 2635 } 2636 2637 struct linux_cdev * 2638 linux_find_cdev(const char *name, unsigned major, unsigned minor) 2639 { 2640 dev_t dev = MKDEV(major, minor); 2641 struct cdev *cdev; 2642 2643 dev_lock(); 2644 LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) { 2645 struct linux_cdev *ldev = cdev->si_drv1; 2646 if (ldev->dev == dev && 2647 strcmp(kobject_name(&ldev->kobj), name) == 0) { 2648 break; 2649 } 2650 } 2651 dev_unlock(); 2652 2653 return (cdev != NULL ? cdev->si_drv1 : NULL); 2654 } 2655 2656 int 2657 __register_chrdev(unsigned int major, unsigned int baseminor, 2658 unsigned int count, const char *name, 2659 const struct file_operations *fops) 2660 { 2661 struct linux_cdev *cdev; 2662 int ret = 0; 2663 int i; 2664 2665 for (i = baseminor; i < baseminor + count; i++) { 2666 cdev = cdev_alloc(); 2667 cdev->ops = fops; 2668 kobject_set_name(&cdev->kobj, name); 2669 2670 ret = cdev_add(cdev, makedev(major, i), 1); 2671 if (ret != 0) 2672 break; 2673 } 2674 return (ret); 2675 } 2676 2677 int 2678 __register_chrdev_p(unsigned int major, unsigned int baseminor, 2679 unsigned int count, const char *name, 2680 const struct file_operations *fops, uid_t uid, 2681 gid_t gid, int mode) 2682 { 2683 struct linux_cdev *cdev; 2684 int ret = 0; 2685 int i; 2686 2687 for (i = baseminor; i < baseminor + count; i++) { 2688 cdev = cdev_alloc(); 2689 cdev->ops = fops; 2690 kobject_set_name(&cdev->kobj, name); 2691 2692 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode); 2693 if (ret != 0) 2694 break; 2695 } 2696 return (ret); 2697 } 2698 2699 void 2700 __unregister_chrdev(unsigned int major, unsigned int baseminor, 2701 unsigned int count, const char *name) 2702 { 2703 struct linux_cdev *cdevp; 2704 int i; 2705 2706 for (i = baseminor; i < baseminor + count; i++) { 2707 cdevp = linux_find_cdev(name, major, i); 2708 if (cdevp != NULL) 2709 cdev_del(cdevp); 2710 } 2711 } 2712 2713 void 2714 linux_dump_stack(void) 2715 { 2716 #ifdef STACK 2717 struct stack st; 2718 2719 stack_save(&st); 2720 stack_print(&st); 2721 #endif 2722 } 2723 2724 int 2725 linuxkpi_net_ratelimit(void) 2726 { 2727 2728 return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps, 2729 lkpi_net_maxpps)); 2730 } 2731 2732 struct io_mapping * 2733 io_mapping_create_wc(resource_size_t base, unsigned long size) 2734 { 2735 struct io_mapping *mapping; 2736 2737 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2738 if (mapping == NULL) 2739 return (NULL); 2740 return (io_mapping_init_wc(mapping, base, size)); 2741 } 2742 2743 /* We likely want a linuxkpi_device.c at some point. */ 2744 bool 2745 device_can_wakeup(struct device *dev) 2746 { 2747 2748 if (dev == NULL) 2749 return (false); 2750 /* 2751 * XXX-BZ iwlwifi queries it as part of enabling WoWLAN. 2752 * Normally this would be based on a bool in dev->power.XXX. 2753 * Check such as PCI PCIM_PCAP_*PME. We have no way to enable this yet. 2754 * We may get away by directly calling into bsddev for as long as 2755 * we can assume PCI only avoiding changing struct device breaking KBI. 2756 */ 2757 pr_debug("%s:%d: not enabled; see comment.\n", __func__, __LINE__); 2758 return (false); 2759 } 2760 2761 static void 2762 devm_device_group_remove(struct device *dev, void *p) 2763 { 2764 const struct attribute_group **dr = p; 2765 const struct attribute_group *group = *dr; 2766 2767 sysfs_remove_group(&dev->kobj, group); 2768 } 2769 2770 int 2771 lkpi_devm_device_add_group(struct device *dev, 2772 const struct attribute_group *group) 2773 { 2774 const struct attribute_group **dr; 2775 int ret; 2776 2777 dr = devres_alloc(devm_device_group_remove, sizeof(*dr), GFP_KERNEL); 2778 if (dr == NULL) 2779 return (-ENOMEM); 2780 2781 ret = sysfs_create_group(&dev->kobj, group); 2782 if (ret == 0) { 2783 *dr = group; 2784 devres_add(dev, dr); 2785 } else 2786 devres_free(dr); 2787 2788 return (ret); 2789 } 2790 2791 #if defined(__i386__) || defined(__amd64__) 2792 bool linux_cpu_has_clflush; 2793 struct cpuinfo_x86 boot_cpu_data; 2794 struct cpuinfo_x86 *__cpu_data; 2795 #endif 2796 2797 cpumask_t * 2798 lkpi_get_static_single_cpu_mask(int cpuid) 2799 { 2800 2801 KASSERT((cpuid >= 0 && cpuid <= mp_maxid), ("%s: invalid cpuid %d\n", 2802 __func__, cpuid)); 2803 KASSERT(!CPU_ABSENT(cpuid), ("%s: cpu with cpuid %d is absent\n", 2804 __func__, cpuid)); 2805 2806 return (static_single_cpu_mask[cpuid]); 2807 } 2808 2809 bool 2810 lkpi_xen_initial_domain(void) 2811 { 2812 #ifdef XENHVM 2813 return (xen_initial_domain()); 2814 #else 2815 return (false); 2816 #endif 2817 } 2818 2819 bool 2820 lkpi_xen_pv_domain(void) 2821 { 2822 #ifdef XENHVM 2823 return (xen_pv_domain()); 2824 #else 2825 return (false); 2826 #endif 2827 } 2828 2829 static void 2830 linux_compat_init(void *arg) 2831 { 2832 struct sysctl_oid *rootoid; 2833 int i; 2834 2835 #if defined(__i386__) || defined(__amd64__) 2836 static const uint32_t x86_vendors[X86_VENDOR_NUM] = { 2837 [X86_VENDOR_INTEL] = CPU_VENDOR_INTEL, 2838 [X86_VENDOR_CYRIX] = CPU_VENDOR_CYRIX, 2839 [X86_VENDOR_AMD] = CPU_VENDOR_AMD, 2840 [X86_VENDOR_UMC] = CPU_VENDOR_UMC, 2841 [X86_VENDOR_CENTAUR] = CPU_VENDOR_CENTAUR, 2842 [X86_VENDOR_TRANSMETA] = CPU_VENDOR_TRANSMETA, 2843 [X86_VENDOR_NSC] = CPU_VENDOR_NSC, 2844 [X86_VENDOR_HYGON] = CPU_VENDOR_HYGON, 2845 }; 2846 uint8_t x86_vendor = X86_VENDOR_UNKNOWN; 2847 2848 for (i = 0; i < X86_VENDOR_NUM; i++) { 2849 if (cpu_vendor_id != 0 && cpu_vendor_id == x86_vendors[i]) { 2850 x86_vendor = i; 2851 break; 2852 } 2853 } 2854 linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH); 2855 boot_cpu_data.x86_clflush_size = cpu_clflush_line_size; 2856 boot_cpu_data.x86_max_cores = mp_ncpus; 2857 boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id); 2858 boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id); 2859 boot_cpu_data.x86_vendor = x86_vendor; 2860 2861 __cpu_data = kmalloc_array(mp_maxid + 1, 2862 sizeof(*__cpu_data), M_WAITOK | M_ZERO); 2863 CPU_FOREACH(i) { 2864 __cpu_data[i].x86_clflush_size = cpu_clflush_line_size; 2865 __cpu_data[i].x86_max_cores = mp_ncpus; 2866 __cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id); 2867 __cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id); 2868 __cpu_data[i].x86_vendor = x86_vendor; 2869 } 2870 #endif 2871 rw_init(&linux_vma_lock, "lkpi-vma-lock"); 2872 2873 rootoid = SYSCTL_ADD_ROOT_NODE(NULL, 2874 OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys"); 2875 kobject_init(&linux_class_root, &linux_class_ktype); 2876 kobject_set_name(&linux_class_root, "class"); 2877 linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid), 2878 OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class"); 2879 kobject_init(&linux_root_device.kobj, &linux_dev_ktype); 2880 kobject_set_name(&linux_root_device.kobj, "device"); 2881 linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL, 2882 SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", 2883 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device"); 2884 linux_root_device.bsddev = root_bus; 2885 linux_class_misc.name = "misc"; 2886 class_register(&linux_class_misc); 2887 INIT_LIST_HEAD(&pci_drivers); 2888 INIT_LIST_HEAD(&pci_devices); 2889 spin_lock_init(&pci_lock); 2890 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF); 2891 for (i = 0; i < VMMAP_HASH_SIZE; i++) 2892 LIST_INIT(&vmmaphead[i]); 2893 init_waitqueue_head(&linux_bit_waitq); 2894 init_waitqueue_head(&linux_var_waitq); 2895 2896 CPU_COPY(&all_cpus, &cpu_online_mask); 2897 /* 2898 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system. 2899 * CPUs are indexed from 0..(mp_maxid). The entry for cpuid 0 will only 2900 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on. 2901 * This is used by cpumask_of() (and possibly others in the future) for, 2902 * e.g., drivers to pass hints to irq_set_affinity_hint(). 2903 */ 2904 static_single_cpu_mask = kmalloc_array(mp_maxid + 1, 2905 sizeof(static_single_cpu_mask), M_WAITOK | M_ZERO); 2906 2907 /* 2908 * When the number of CPUs reach a threshold, we start to save memory 2909 * given the sets are static by overlapping those having their single 2910 * bit set at same position in a bitset word. Asymptotically, this 2911 * regular scheme is in O(n²) whereas the overlapping one is in O(n) 2912 * only with n being the maximum number of CPUs, so the gain will become 2913 * huge quite quickly. The threshold for 64-bit architectures is 128 2914 * CPUs. 2915 */ 2916 if (mp_ncpus < (2 * _BITSET_BITS)) { 2917 cpumask_t *sscm_ptr; 2918 2919 /* 2920 * This represents 'mp_ncpus * __bitset_words(CPU_SETSIZE) * 2921 * (_BITSET_BITS / 8)' bytes (for comparison with the 2922 * overlapping scheme). 2923 */ 2924 static_single_cpu_mask_lcs = kmalloc_array(mp_ncpus, 2925 sizeof(*static_single_cpu_mask_lcs), 2926 M_WAITOK | M_ZERO); 2927 2928 sscm_ptr = static_single_cpu_mask_lcs; 2929 CPU_FOREACH(i) { 2930 static_single_cpu_mask[i] = sscm_ptr++; 2931 CPU_SET(i, static_single_cpu_mask[i]); 2932 } 2933 } else { 2934 /* Pointer to a bitset word. */ 2935 __typeof(((cpuset_t *)NULL)->__bits[0]) *bwp; 2936 2937 /* 2938 * Allocate memory for (static) spans of 'cpumask_t' ('cpuset_t' 2939 * really) with a single bit set that can be reused for all 2940 * single CPU masks by making them start at different offsets. 2941 * We need '__bitset_words(CPU_SETSIZE) - 1' bitset words before 2942 * the word having its single bit set, and the same amount 2943 * after. 2944 */ 2945 static_single_cpu_mask_lcs = mallocarray(_BITSET_BITS, 2946 (2 * __bitset_words(CPU_SETSIZE) - 1) * (_BITSET_BITS / 8), 2947 M_KMALLOC, M_WAITOK | M_ZERO); 2948 2949 /* 2950 * We rely below on cpuset_t and the bitset generic 2951 * implementation assigning words in the '__bits' array in the 2952 * same order of bits (i.e., little-endian ordering, not to be 2953 * confused with machine endianness, which concerns bits in 2954 * words and other integers). This is an imperfect test, but it 2955 * will detect a change to big-endian ordering. 2956 */ 2957 _Static_assert( 2958 __bitset_word(_BITSET_BITS + 1, _BITSET_BITS) == 1, 2959 "Assumes a bitset implementation that is little-endian " 2960 "on its words"); 2961 2962 /* Initialize the single bit of each static span. */ 2963 bwp = (__typeof(bwp))static_single_cpu_mask_lcs + 2964 (__bitset_words(CPU_SETSIZE) - 1); 2965 for (i = 0; i < _BITSET_BITS; i++) { 2966 CPU_SET(i, (cpuset_t *)bwp); 2967 bwp += (2 * __bitset_words(CPU_SETSIZE) - 1); 2968 } 2969 2970 /* 2971 * Finally set all CPU masks to the proper word in their 2972 * relevant span. 2973 */ 2974 CPU_FOREACH(i) { 2975 bwp = (__typeof(bwp))static_single_cpu_mask_lcs; 2976 /* Find the non-zero word of the relevant span. */ 2977 bwp += (2 * __bitset_words(CPU_SETSIZE) - 1) * 2978 (i % _BITSET_BITS) + 2979 __bitset_words(CPU_SETSIZE) - 1; 2980 /* Shift to find the CPU mask start. */ 2981 bwp -= (i / _BITSET_BITS); 2982 static_single_cpu_mask[i] = (cpuset_t *)bwp; 2983 } 2984 } 2985 2986 strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release)); 2987 } 2988 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL); 2989 2990 static void 2991 linux_compat_uninit(void *arg) 2992 { 2993 linux_kobject_kfree_name(&linux_class_root); 2994 linux_kobject_kfree_name(&linux_root_device.kobj); 2995 linux_kobject_kfree_name(&linux_class_misc.kobj); 2996 2997 free(static_single_cpu_mask_lcs, M_KMALLOC); 2998 free(static_single_cpu_mask, M_KMALLOC); 2999 #if defined(__i386__) || defined(__amd64__) 3000 free(__cpu_data, M_KMALLOC); 3001 #endif 3002 3003 mtx_destroy(&vmmaplock); 3004 spin_lock_destroy(&pci_lock); 3005 rw_destroy(&linux_vma_lock); 3006 } 3007 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL); 3008 3009 /* 3010 * NOTE: Linux frequently uses "unsigned long" for pointer to integer 3011 * conversion and vice versa, where in FreeBSD "uintptr_t" would be 3012 * used. Assert these types have the same size, else some parts of the 3013 * LinuxKPI may not work like expected: 3014 */ 3015 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t)); 3016