xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision da5137abdf463bb5fee85061958a14dd12bc043e)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_stack.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/proc.h>
41 #include <sys/sglist.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/refcount.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/bus.h>
47 #include <sys/eventhandler.h>
48 #include <sys/fcntl.h>
49 #include <sys/file.h>
50 #include <sys/filio.h>
51 #include <sys/rwlock.h>
52 #include <sys/mman.h>
53 #include <sys/stack.h>
54 #include <sys/sysent.h>
55 #include <sys/time.h>
56 #include <sys/user.h>
57 
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_pager.h>
63 
64 #include <machine/stdarg.h>
65 
66 #if defined(__i386__) || defined(__amd64__)
67 #include <machine/md_var.h>
68 #endif
69 
70 #include <linux/kobject.h>
71 #include <linux/cpu.h>
72 #include <linux/device.h>
73 #include <linux/slab.h>
74 #include <linux/module.h>
75 #include <linux/moduleparam.h>
76 #include <linux/cdev.h>
77 #include <linux/file.h>
78 #include <linux/sysfs.h>
79 #include <linux/mm.h>
80 #include <linux/io.h>
81 #include <linux/vmalloc.h>
82 #include <linux/netdevice.h>
83 #include <linux/timer.h>
84 #include <linux/interrupt.h>
85 #include <linux/uaccess.h>
86 #include <linux/list.h>
87 #include <linux/kthread.h>
88 #include <linux/kernel.h>
89 #include <linux/compat.h>
90 #include <linux/poll.h>
91 #include <linux/smp.h>
92 #include <linux/wait_bit.h>
93 #include <linux/rcupdate.h>
94 #include <linux/interval_tree.h>
95 #include <linux/interval_tree_generic.h>
96 
97 #if defined(__i386__) || defined(__amd64__)
98 #include <asm/smp.h>
99 #endif
100 
101 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102     "LinuxKPI parameters");
103 
104 int linuxkpi_debug;
105 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
106     &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
107 
108 int linuxkpi_warn_dump_stack = 0;
109 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
110     &linuxkpi_warn_dump_stack, 0,
111     "Set to enable stack traces from WARN_ON(). Clear to disable.");
112 
113 static struct timeval lkpi_net_lastlog;
114 static int lkpi_net_curpps;
115 static int lkpi_net_maxpps = 99;
116 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
117     &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
118 
119 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
120 
121 #include <linux/rbtree.h>
122 /* Undo Linux compat changes. */
123 #undef RB_ROOT
124 #undef file
125 #undef cdev
126 #define	RB_ROOT(head)	(head)->rbh_root
127 
128 static void linux_destroy_dev(struct linux_cdev *);
129 static void linux_cdev_deref(struct linux_cdev *ldev);
130 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
131 
132 cpumask_t cpu_online_mask;
133 struct kobject linux_class_root;
134 struct device linux_root_device;
135 struct class linux_class_misc;
136 struct list_head pci_drivers;
137 struct list_head pci_devices;
138 spinlock_t pci_lock;
139 
140 unsigned long linux_timer_hz_mask;
141 
142 wait_queue_head_t linux_bit_waitq;
143 wait_queue_head_t linux_var_waitq;
144 
145 int
146 panic_cmp(struct rb_node *one, struct rb_node *two)
147 {
148 	panic("no cmp");
149 }
150 
151 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
152 
153 #define	START(node)	((node)->start)
154 #define	LAST(node)	((node)->last)
155 
156 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
157     LAST,, lkpi_interval_tree)
158 
159 int
160 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
161 {
162 	va_list tmp_va;
163 	int len;
164 	char *old;
165 	char *name;
166 	char dummy;
167 
168 	old = kobj->name;
169 
170 	if (old && fmt == NULL)
171 		return (0);
172 
173 	/* compute length of string */
174 	va_copy(tmp_va, args);
175 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
176 	va_end(tmp_va);
177 
178 	/* account for zero termination */
179 	len++;
180 
181 	/* check for error */
182 	if (len < 1)
183 		return (-EINVAL);
184 
185 	/* allocate memory for string */
186 	name = kzalloc(len, GFP_KERNEL);
187 	if (name == NULL)
188 		return (-ENOMEM);
189 	vsnprintf(name, len, fmt, args);
190 	kobj->name = name;
191 
192 	/* free old string */
193 	kfree(old);
194 
195 	/* filter new string */
196 	for (; *name != '\0'; name++)
197 		if (*name == '/')
198 			*name = '!';
199 	return (0);
200 }
201 
202 int
203 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
204 {
205 	va_list args;
206 	int error;
207 
208 	va_start(args, fmt);
209 	error = kobject_set_name_vargs(kobj, fmt, args);
210 	va_end(args);
211 
212 	return (error);
213 }
214 
215 static int
216 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
217 {
218 	const struct kobj_type *t;
219 	int error;
220 
221 	kobj->parent = parent;
222 	error = sysfs_create_dir(kobj);
223 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
224 		struct attribute **attr;
225 		t = kobj->ktype;
226 
227 		for (attr = t->default_attrs; *attr != NULL; attr++) {
228 			error = sysfs_create_file(kobj, *attr);
229 			if (error)
230 				break;
231 		}
232 		if (error)
233 			sysfs_remove_dir(kobj);
234 	}
235 	return (error);
236 }
237 
238 int
239 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
240 {
241 	va_list args;
242 	int error;
243 
244 	va_start(args, fmt);
245 	error = kobject_set_name_vargs(kobj, fmt, args);
246 	va_end(args);
247 	if (error)
248 		return (error);
249 
250 	return kobject_add_complete(kobj, parent);
251 }
252 
253 void
254 linux_kobject_release(struct kref *kref)
255 {
256 	struct kobject *kobj;
257 	char *name;
258 
259 	kobj = container_of(kref, struct kobject, kref);
260 	sysfs_remove_dir(kobj);
261 	name = kobj->name;
262 	if (kobj->ktype && kobj->ktype->release)
263 		kobj->ktype->release(kobj);
264 	kfree(name);
265 }
266 
267 static void
268 linux_kobject_kfree(struct kobject *kobj)
269 {
270 	kfree(kobj);
271 }
272 
273 static void
274 linux_kobject_kfree_name(struct kobject *kobj)
275 {
276 	if (kobj) {
277 		kfree(kobj->name);
278 	}
279 }
280 
281 const struct kobj_type linux_kfree_type = {
282 	.release = linux_kobject_kfree
283 };
284 
285 static ssize_t
286 lkpi_kobj_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
287 {
288 	struct kobj_attribute *ka =
289 	    container_of(attr, struct kobj_attribute, attr);
290 
291 	if (ka->show == NULL)
292 		return (-EIO);
293 
294 	return (ka->show(kobj, ka, buf));
295 }
296 
297 static ssize_t
298 lkpi_kobj_attr_store(struct kobject *kobj, struct attribute *attr,
299     const char *buf, size_t count)
300 {
301 	struct kobj_attribute *ka =
302 	    container_of(attr, struct kobj_attribute, attr);
303 
304 	if (ka->store == NULL)
305 		return (-EIO);
306 
307 	return (ka->store(kobj, ka, buf, count));
308 }
309 
310 const struct sysfs_ops kobj_sysfs_ops = {
311 	.show	= lkpi_kobj_attr_show,
312 	.store	= lkpi_kobj_attr_store,
313 };
314 
315 static void
316 linux_device_release(struct device *dev)
317 {
318 	pr_debug("linux_device_release: %s\n", dev_name(dev));
319 	kfree(dev);
320 }
321 
322 static ssize_t
323 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
324 {
325 	struct class_attribute *dattr;
326 	ssize_t error;
327 
328 	dattr = container_of(attr, struct class_attribute, attr);
329 	error = -EIO;
330 	if (dattr->show)
331 		error = dattr->show(container_of(kobj, struct class, kobj),
332 		    dattr, buf);
333 	return (error);
334 }
335 
336 static ssize_t
337 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
338     size_t count)
339 {
340 	struct class_attribute *dattr;
341 	ssize_t error;
342 
343 	dattr = container_of(attr, struct class_attribute, attr);
344 	error = -EIO;
345 	if (dattr->store)
346 		error = dattr->store(container_of(kobj, struct class, kobj),
347 		    dattr, buf, count);
348 	return (error);
349 }
350 
351 static void
352 linux_class_release(struct kobject *kobj)
353 {
354 	struct class *class;
355 
356 	class = container_of(kobj, struct class, kobj);
357 	if (class->class_release)
358 		class->class_release(class);
359 }
360 
361 static const struct sysfs_ops linux_class_sysfs = {
362 	.show  = linux_class_show,
363 	.store = linux_class_store,
364 };
365 
366 const struct kobj_type linux_class_ktype = {
367 	.release = linux_class_release,
368 	.sysfs_ops = &linux_class_sysfs
369 };
370 
371 static void
372 linux_dev_release(struct kobject *kobj)
373 {
374 	struct device *dev;
375 
376 	dev = container_of(kobj, struct device, kobj);
377 	/* This is the precedence defined by linux. */
378 	if (dev->release)
379 		dev->release(dev);
380 	else if (dev->class && dev->class->dev_release)
381 		dev->class->dev_release(dev);
382 }
383 
384 static ssize_t
385 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
386 {
387 	struct device_attribute *dattr;
388 	ssize_t error;
389 
390 	dattr = container_of(attr, struct device_attribute, attr);
391 	error = -EIO;
392 	if (dattr->show)
393 		error = dattr->show(container_of(kobj, struct device, kobj),
394 		    dattr, buf);
395 	return (error);
396 }
397 
398 static ssize_t
399 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
400     size_t count)
401 {
402 	struct device_attribute *dattr;
403 	ssize_t error;
404 
405 	dattr = container_of(attr, struct device_attribute, attr);
406 	error = -EIO;
407 	if (dattr->store)
408 		error = dattr->store(container_of(kobj, struct device, kobj),
409 		    dattr, buf, count);
410 	return (error);
411 }
412 
413 static const struct sysfs_ops linux_dev_sysfs = {
414 	.show  = linux_dev_show,
415 	.store = linux_dev_store,
416 };
417 
418 const struct kobj_type linux_dev_ktype = {
419 	.release = linux_dev_release,
420 	.sysfs_ops = &linux_dev_sysfs
421 };
422 
423 struct device *
424 device_create(struct class *class, struct device *parent, dev_t devt,
425     void *drvdata, const char *fmt, ...)
426 {
427 	struct device *dev;
428 	va_list args;
429 
430 	dev = kzalloc(sizeof(*dev), M_WAITOK);
431 	dev->parent = parent;
432 	dev->class = class;
433 	dev->devt = devt;
434 	dev->driver_data = drvdata;
435 	dev->release = linux_device_release;
436 	va_start(args, fmt);
437 	kobject_set_name_vargs(&dev->kobj, fmt, args);
438 	va_end(args);
439 	device_register(dev);
440 
441 	return (dev);
442 }
443 
444 int
445 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
446     struct kobject *parent, const char *fmt, ...)
447 {
448 	va_list args;
449 	int error;
450 
451 	kobject_init(kobj, ktype);
452 	kobj->ktype = ktype;
453 	kobj->parent = parent;
454 	kobj->name = NULL;
455 
456 	va_start(args, fmt);
457 	error = kobject_set_name_vargs(kobj, fmt, args);
458 	va_end(args);
459 	if (error)
460 		return (error);
461 	return kobject_add_complete(kobj, parent);
462 }
463 
464 static void
465 linux_kq_lock(void *arg)
466 {
467 	spinlock_t *s = arg;
468 
469 	spin_lock(s);
470 }
471 static void
472 linux_kq_unlock(void *arg)
473 {
474 	spinlock_t *s = arg;
475 
476 	spin_unlock(s);
477 }
478 
479 static void
480 linux_kq_assert_lock(void *arg, int what)
481 {
482 #ifdef INVARIANTS
483 	spinlock_t *s = arg;
484 
485 	if (what == LA_LOCKED)
486 		mtx_assert(&s->m, MA_OWNED);
487 	else
488 		mtx_assert(&s->m, MA_NOTOWNED);
489 #endif
490 }
491 
492 static void
493 linux_file_kqfilter_poll(struct linux_file *, int);
494 
495 struct linux_file *
496 linux_file_alloc(void)
497 {
498 	struct linux_file *filp;
499 
500 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
501 
502 	/* set initial refcount */
503 	filp->f_count = 1;
504 
505 	/* setup fields needed by kqueue support */
506 	spin_lock_init(&filp->f_kqlock);
507 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
508 	    linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
509 
510 	return (filp);
511 }
512 
513 void
514 linux_file_free(struct linux_file *filp)
515 {
516 	if (filp->_file == NULL) {
517 		if (filp->f_op != NULL && filp->f_op->release != NULL)
518 			filp->f_op->release(filp->f_vnode, filp);
519 		if (filp->f_shmem != NULL)
520 			vm_object_deallocate(filp->f_shmem);
521 		kfree_rcu(filp, rcu);
522 	} else {
523 		/*
524 		 * The close method of the character device or file
525 		 * will free the linux_file structure:
526 		 */
527 		_fdrop(filp->_file, curthread);
528 	}
529 }
530 
531 static int
532 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
533     vm_page_t *mres)
534 {
535 	struct vm_area_struct *vmap;
536 
537 	vmap = linux_cdev_handle_find(vm_obj->handle);
538 
539 	MPASS(vmap != NULL);
540 	MPASS(vmap->vm_private_data == vm_obj->handle);
541 
542 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
543 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
544 		vm_page_t page;
545 
546 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
547 			/*
548 			 * If the passed in result page is a fake
549 			 * page, update it with the new physical
550 			 * address.
551 			 */
552 			page = *mres;
553 			vm_page_updatefake(page, paddr, vm_obj->memattr);
554 		} else {
555 			/*
556 			 * Replace the passed in "mres" page with our
557 			 * own fake page and free up the all of the
558 			 * original pages.
559 			 */
560 			VM_OBJECT_WUNLOCK(vm_obj);
561 			page = vm_page_getfake(paddr, vm_obj->memattr);
562 			VM_OBJECT_WLOCK(vm_obj);
563 
564 			vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
565 			*mres = page;
566 		}
567 		vm_page_valid(page);
568 		return (VM_PAGER_OK);
569 	}
570 	return (VM_PAGER_FAIL);
571 }
572 
573 static int
574 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
575     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
576 {
577 	struct vm_area_struct *vmap;
578 	int err;
579 
580 	/* get VM area structure */
581 	vmap = linux_cdev_handle_find(vm_obj->handle);
582 	MPASS(vmap != NULL);
583 	MPASS(vmap->vm_private_data == vm_obj->handle);
584 
585 	VM_OBJECT_WUNLOCK(vm_obj);
586 
587 	linux_set_current(curthread);
588 
589 	down_write(&vmap->vm_mm->mmap_sem);
590 	if (unlikely(vmap->vm_ops == NULL)) {
591 		err = VM_FAULT_SIGBUS;
592 	} else {
593 		struct vm_fault vmf;
594 
595 		/* fill out VM fault structure */
596 		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
597 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
598 		vmf.pgoff = 0;
599 		vmf.page = NULL;
600 		vmf.vma = vmap;
601 
602 		vmap->vm_pfn_count = 0;
603 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
604 		vmap->vm_obj = vm_obj;
605 
606 		err = vmap->vm_ops->fault(&vmf);
607 
608 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
609 			kern_yield(PRI_USER);
610 			err = vmap->vm_ops->fault(&vmf);
611 		}
612 	}
613 
614 	/* translate return code */
615 	switch (err) {
616 	case VM_FAULT_OOM:
617 		err = VM_PAGER_AGAIN;
618 		break;
619 	case VM_FAULT_SIGBUS:
620 		err = VM_PAGER_BAD;
621 		break;
622 	case VM_FAULT_NOPAGE:
623 		/*
624 		 * By contract the fault handler will return having
625 		 * busied all the pages itself. If pidx is already
626 		 * found in the object, it will simply xbusy the first
627 		 * page and return with vm_pfn_count set to 1.
628 		 */
629 		*first = vmap->vm_pfn_first;
630 		*last = *first + vmap->vm_pfn_count - 1;
631 		err = VM_PAGER_OK;
632 		break;
633 	default:
634 		err = VM_PAGER_ERROR;
635 		break;
636 	}
637 	up_write(&vmap->vm_mm->mmap_sem);
638 	VM_OBJECT_WLOCK(vm_obj);
639 	return (err);
640 }
641 
642 static struct rwlock linux_vma_lock;
643 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
644     TAILQ_HEAD_INITIALIZER(linux_vma_head);
645 
646 static void
647 linux_cdev_handle_free(struct vm_area_struct *vmap)
648 {
649 	/* Drop reference on vm_file */
650 	if (vmap->vm_file != NULL)
651 		fput(vmap->vm_file);
652 
653 	/* Drop reference on mm_struct */
654 	mmput(vmap->vm_mm);
655 
656 	kfree(vmap);
657 }
658 
659 static void
660 linux_cdev_handle_remove(struct vm_area_struct *vmap)
661 {
662 	rw_wlock(&linux_vma_lock);
663 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
664 	rw_wunlock(&linux_vma_lock);
665 }
666 
667 static struct vm_area_struct *
668 linux_cdev_handle_find(void *handle)
669 {
670 	struct vm_area_struct *vmap;
671 
672 	rw_rlock(&linux_vma_lock);
673 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
674 		if (vmap->vm_private_data == handle)
675 			break;
676 	}
677 	rw_runlock(&linux_vma_lock);
678 	return (vmap);
679 }
680 
681 static int
682 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
683 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
684 {
685 
686 	MPASS(linux_cdev_handle_find(handle) != NULL);
687 	*color = 0;
688 	return (0);
689 }
690 
691 static void
692 linux_cdev_pager_dtor(void *handle)
693 {
694 	const struct vm_operations_struct *vm_ops;
695 	struct vm_area_struct *vmap;
696 
697 	vmap = linux_cdev_handle_find(handle);
698 	MPASS(vmap != NULL);
699 
700 	/*
701 	 * Remove handle before calling close operation to prevent
702 	 * other threads from reusing the handle pointer.
703 	 */
704 	linux_cdev_handle_remove(vmap);
705 
706 	down_write(&vmap->vm_mm->mmap_sem);
707 	vm_ops = vmap->vm_ops;
708 	if (likely(vm_ops != NULL))
709 		vm_ops->close(vmap);
710 	up_write(&vmap->vm_mm->mmap_sem);
711 
712 	linux_cdev_handle_free(vmap);
713 }
714 
715 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
716   {
717 	/* OBJT_MGTDEVICE */
718 	.cdev_pg_populate	= linux_cdev_pager_populate,
719 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
720 	.cdev_pg_dtor	= linux_cdev_pager_dtor
721   },
722   {
723 	/* OBJT_DEVICE */
724 	.cdev_pg_fault	= linux_cdev_pager_fault,
725 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
726 	.cdev_pg_dtor	= linux_cdev_pager_dtor
727   },
728 };
729 
730 int
731 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
732     unsigned long size)
733 {
734 	vm_object_t obj;
735 	vm_page_t m;
736 
737 	obj = vma->vm_obj;
738 	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
739 		return (-ENOTSUP);
740 	VM_OBJECT_RLOCK(obj);
741 	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
742 	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
743 	    m = TAILQ_NEXT(m, listq))
744 		pmap_remove_all(m);
745 	VM_OBJECT_RUNLOCK(obj);
746 	return (0);
747 }
748 
749 static struct file_operations dummy_ldev_ops = {
750 	/* XXXKIB */
751 };
752 
753 static struct linux_cdev dummy_ldev = {
754 	.ops = &dummy_ldev_ops,
755 };
756 
757 #define	LDEV_SI_DTR	0x0001
758 #define	LDEV_SI_REF	0x0002
759 
760 static void
761 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
762     struct linux_cdev **dev)
763 {
764 	struct linux_cdev *ldev;
765 	u_int siref;
766 
767 	ldev = filp->f_cdev;
768 	*fop = filp->f_op;
769 	if (ldev != NULL) {
770 		if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
771 			refcount_acquire(&ldev->refs);
772 		} else {
773 			for (siref = ldev->siref;;) {
774 				if ((siref & LDEV_SI_DTR) != 0) {
775 					ldev = &dummy_ldev;
776 					*fop = ldev->ops;
777 					siref = ldev->siref;
778 					MPASS((ldev->siref & LDEV_SI_DTR) == 0);
779 				} else if (atomic_fcmpset_int(&ldev->siref,
780 				    &siref, siref + LDEV_SI_REF)) {
781 					break;
782 				}
783 			}
784 		}
785 	}
786 	*dev = ldev;
787 }
788 
789 static void
790 linux_drop_fop(struct linux_cdev *ldev)
791 {
792 
793 	if (ldev == NULL)
794 		return;
795 	if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
796 		linux_cdev_deref(ldev);
797 	} else {
798 		MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
799 		MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
800 		atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
801 	}
802 }
803 
804 #define	OPW(fp,td,code) ({			\
805 	struct file *__fpop;			\
806 	__typeof(code) __retval;		\
807 						\
808 	__fpop = (td)->td_fpop;			\
809 	(td)->td_fpop = (fp);			\
810 	__retval = (code);			\
811 	(td)->td_fpop = __fpop;			\
812 	__retval;				\
813 })
814 
815 static int
816 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
817     struct file *file)
818 {
819 	struct linux_cdev *ldev;
820 	struct linux_file *filp;
821 	const struct file_operations *fop;
822 	int error;
823 
824 	ldev = dev->si_drv1;
825 
826 	filp = linux_file_alloc();
827 	filp->f_dentry = &filp->f_dentry_store;
828 	filp->f_op = ldev->ops;
829 	filp->f_mode = file->f_flag;
830 	filp->f_flags = file->f_flag;
831 	filp->f_vnode = file->f_vnode;
832 	filp->_file = file;
833 	refcount_acquire(&ldev->refs);
834 	filp->f_cdev = ldev;
835 
836 	linux_set_current(td);
837 	linux_get_fop(filp, &fop, &ldev);
838 
839 	if (fop->open != NULL) {
840 		error = -fop->open(file->f_vnode, filp);
841 		if (error != 0) {
842 			linux_drop_fop(ldev);
843 			linux_cdev_deref(filp->f_cdev);
844 			kfree(filp);
845 			return (error);
846 		}
847 	}
848 
849 	/* hold on to the vnode - used for fstat() */
850 	vhold(filp->f_vnode);
851 
852 	/* release the file from devfs */
853 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
854 	linux_drop_fop(ldev);
855 	return (ENXIO);
856 }
857 
858 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
859 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
860 
861 static inline int
862 linux_remap_address(void **uaddr, size_t len)
863 {
864 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
865 
866 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
867 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
868 		struct task_struct *pts = current;
869 		if (pts == NULL) {
870 			*uaddr = NULL;
871 			return (1);
872 		}
873 
874 		/* compute data offset */
875 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
876 
877 		/* check that length is within bounds */
878 		if ((len > IOCPARM_MAX) ||
879 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
880 			*uaddr = NULL;
881 			return (1);
882 		}
883 
884 		/* re-add kernel buffer address */
885 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
886 
887 		/* update address location */
888 		*uaddr = (void *)uaddr_val;
889 		return (1);
890 	}
891 	return (0);
892 }
893 
894 int
895 linux_copyin(const void *uaddr, void *kaddr, size_t len)
896 {
897 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
898 		if (uaddr == NULL)
899 			return (-EFAULT);
900 		memcpy(kaddr, uaddr, len);
901 		return (0);
902 	}
903 	return (-copyin(uaddr, kaddr, len));
904 }
905 
906 int
907 linux_copyout(const void *kaddr, void *uaddr, size_t len)
908 {
909 	if (linux_remap_address(&uaddr, len)) {
910 		if (uaddr == NULL)
911 			return (-EFAULT);
912 		memcpy(uaddr, kaddr, len);
913 		return (0);
914 	}
915 	return (-copyout(kaddr, uaddr, len));
916 }
917 
918 size_t
919 linux_clear_user(void *_uaddr, size_t _len)
920 {
921 	uint8_t *uaddr = _uaddr;
922 	size_t len = _len;
923 
924 	/* make sure uaddr is aligned before going into the fast loop */
925 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
926 		if (subyte(uaddr, 0))
927 			return (_len);
928 		uaddr++;
929 		len--;
930 	}
931 
932 	/* zero 8 bytes at a time */
933 	while (len > 7) {
934 #ifdef __LP64__
935 		if (suword64(uaddr, 0))
936 			return (_len);
937 #else
938 		if (suword32(uaddr, 0))
939 			return (_len);
940 		if (suword32(uaddr + 4, 0))
941 			return (_len);
942 #endif
943 		uaddr += 8;
944 		len -= 8;
945 	}
946 
947 	/* zero fill end, if any */
948 	while (len > 0) {
949 		if (subyte(uaddr, 0))
950 			return (_len);
951 		uaddr++;
952 		len--;
953 	}
954 	return (0);
955 }
956 
957 int
958 linux_access_ok(const void *uaddr, size_t len)
959 {
960 	uintptr_t saddr;
961 	uintptr_t eaddr;
962 
963 	/* get start and end address */
964 	saddr = (uintptr_t)uaddr;
965 	eaddr = (uintptr_t)uaddr + len;
966 
967 	/* verify addresses are valid for userspace */
968 	return ((saddr == eaddr) ||
969 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
970 }
971 
972 /*
973  * This function should return either EINTR or ERESTART depending on
974  * the signal type sent to this thread:
975  */
976 static int
977 linux_get_error(struct task_struct *task, int error)
978 {
979 	/* check for signal type interrupt code */
980 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
981 		error = -linux_schedule_get_interrupt_value(task);
982 		if (error == 0)
983 			error = EINTR;
984 	}
985 	return (error);
986 }
987 
988 static int
989 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
990     const struct file_operations *fop, u_long cmd, caddr_t data,
991     struct thread *td)
992 {
993 	struct task_struct *task = current;
994 	unsigned size;
995 	int error;
996 
997 	size = IOCPARM_LEN(cmd);
998 	/* refer to logic in sys_ioctl() */
999 	if (size > 0) {
1000 		/*
1001 		 * Setup hint for linux_copyin() and linux_copyout().
1002 		 *
1003 		 * Background: Linux code expects a user-space address
1004 		 * while FreeBSD supplies a kernel-space address.
1005 		 */
1006 		task->bsd_ioctl_data = data;
1007 		task->bsd_ioctl_len = size;
1008 		data = (void *)LINUX_IOCTL_MIN_PTR;
1009 	} else {
1010 		/* fetch user-space pointer */
1011 		data = *(void **)data;
1012 	}
1013 #ifdef COMPAT_FREEBSD32
1014 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1015 		/* try the compat IOCTL handler first */
1016 		if (fop->compat_ioctl != NULL) {
1017 			error = -OPW(fp, td, fop->compat_ioctl(filp,
1018 			    cmd, (u_long)data));
1019 		} else {
1020 			error = ENOTTY;
1021 		}
1022 
1023 		/* fallback to the regular IOCTL handler, if any */
1024 		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
1025 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
1026 			    cmd, (u_long)data));
1027 		}
1028 	} else
1029 #endif
1030 	{
1031 		if (fop->unlocked_ioctl != NULL) {
1032 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
1033 			    cmd, (u_long)data));
1034 		} else {
1035 			error = ENOTTY;
1036 		}
1037 	}
1038 	if (size > 0) {
1039 		task->bsd_ioctl_data = NULL;
1040 		task->bsd_ioctl_len = 0;
1041 	}
1042 
1043 	if (error == EWOULDBLOCK) {
1044 		/* update kqfilter status, if any */
1045 		linux_file_kqfilter_poll(filp,
1046 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1047 	} else {
1048 		error = linux_get_error(task, error);
1049 	}
1050 	return (error);
1051 }
1052 
1053 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
1054 
1055 /*
1056  * This function atomically updates the poll wakeup state and returns
1057  * the previous state at the time of update.
1058  */
1059 static uint8_t
1060 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1061 {
1062 	int c, old;
1063 
1064 	c = v->counter;
1065 
1066 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1067 		c = old;
1068 
1069 	return (c);
1070 }
1071 
1072 static int
1073 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1074 {
1075 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1076 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1077 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1078 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1079 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1080 	};
1081 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1082 
1083 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1084 	case LINUX_FWQ_STATE_QUEUED:
1085 		linux_poll_wakeup(filp);
1086 		return (1);
1087 	default:
1088 		return (0);
1089 	}
1090 }
1091 
1092 void
1093 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1094 {
1095 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1096 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1097 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1098 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1099 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1100 	};
1101 
1102 	/* check if we are called inside the select system call */
1103 	if (p == LINUX_POLL_TABLE_NORMAL)
1104 		selrecord(curthread, &filp->f_selinfo);
1105 
1106 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1107 	case LINUX_FWQ_STATE_INIT:
1108 		/* NOTE: file handles can only belong to one wait-queue */
1109 		filp->f_wait_queue.wqh = wqh;
1110 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1111 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1112 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1113 		break;
1114 	default:
1115 		break;
1116 	}
1117 }
1118 
1119 static void
1120 linux_poll_wait_dequeue(struct linux_file *filp)
1121 {
1122 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1123 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1124 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1125 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1126 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1127 	};
1128 
1129 	seldrain(&filp->f_selinfo);
1130 
1131 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1132 	case LINUX_FWQ_STATE_NOT_READY:
1133 	case LINUX_FWQ_STATE_QUEUED:
1134 	case LINUX_FWQ_STATE_READY:
1135 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1136 		break;
1137 	default:
1138 		break;
1139 	}
1140 }
1141 
1142 void
1143 linux_poll_wakeup(struct linux_file *filp)
1144 {
1145 	/* this function should be NULL-safe */
1146 	if (filp == NULL)
1147 		return;
1148 
1149 	selwakeup(&filp->f_selinfo);
1150 
1151 	spin_lock(&filp->f_kqlock);
1152 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1153 	    LINUX_KQ_FLAG_NEED_WRITE;
1154 
1155 	/* make sure the "knote" gets woken up */
1156 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1157 	spin_unlock(&filp->f_kqlock);
1158 }
1159 
1160 static void
1161 linux_file_kqfilter_detach(struct knote *kn)
1162 {
1163 	struct linux_file *filp = kn->kn_hook;
1164 
1165 	spin_lock(&filp->f_kqlock);
1166 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1167 	spin_unlock(&filp->f_kqlock);
1168 }
1169 
1170 static int
1171 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1172 {
1173 	struct linux_file *filp = kn->kn_hook;
1174 
1175 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1176 
1177 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1178 }
1179 
1180 static int
1181 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1182 {
1183 	struct linux_file *filp = kn->kn_hook;
1184 
1185 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1186 
1187 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1188 }
1189 
1190 static struct filterops linux_dev_kqfiltops_read = {
1191 	.f_isfd = 1,
1192 	.f_detach = linux_file_kqfilter_detach,
1193 	.f_event = linux_file_kqfilter_read_event,
1194 };
1195 
1196 static struct filterops linux_dev_kqfiltops_write = {
1197 	.f_isfd = 1,
1198 	.f_detach = linux_file_kqfilter_detach,
1199 	.f_event = linux_file_kqfilter_write_event,
1200 };
1201 
1202 static void
1203 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1204 {
1205 	struct thread *td;
1206 	const struct file_operations *fop;
1207 	struct linux_cdev *ldev;
1208 	int temp;
1209 
1210 	if ((filp->f_kqflags & kqflags) == 0)
1211 		return;
1212 
1213 	td = curthread;
1214 
1215 	linux_get_fop(filp, &fop, &ldev);
1216 	/* get the latest polling state */
1217 	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1218 	linux_drop_fop(ldev);
1219 
1220 	spin_lock(&filp->f_kqlock);
1221 	/* clear kqflags */
1222 	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1223 	    LINUX_KQ_FLAG_NEED_WRITE);
1224 	/* update kqflags */
1225 	if ((temp & (POLLIN | POLLOUT)) != 0) {
1226 		if ((temp & POLLIN) != 0)
1227 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1228 		if ((temp & POLLOUT) != 0)
1229 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1230 
1231 		/* make sure the "knote" gets woken up */
1232 		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1233 	}
1234 	spin_unlock(&filp->f_kqlock);
1235 }
1236 
1237 static int
1238 linux_file_kqfilter(struct file *file, struct knote *kn)
1239 {
1240 	struct linux_file *filp;
1241 	struct thread *td;
1242 	int error;
1243 
1244 	td = curthread;
1245 	filp = (struct linux_file *)file->f_data;
1246 	filp->f_flags = file->f_flag;
1247 	if (filp->f_op->poll == NULL)
1248 		return (EINVAL);
1249 
1250 	spin_lock(&filp->f_kqlock);
1251 	switch (kn->kn_filter) {
1252 	case EVFILT_READ:
1253 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1254 		kn->kn_fop = &linux_dev_kqfiltops_read;
1255 		kn->kn_hook = filp;
1256 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1257 		error = 0;
1258 		break;
1259 	case EVFILT_WRITE:
1260 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1261 		kn->kn_fop = &linux_dev_kqfiltops_write;
1262 		kn->kn_hook = filp;
1263 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1264 		error = 0;
1265 		break;
1266 	default:
1267 		error = EINVAL;
1268 		break;
1269 	}
1270 	spin_unlock(&filp->f_kqlock);
1271 
1272 	if (error == 0) {
1273 		linux_set_current(td);
1274 
1275 		/* update kqfilter status, if any */
1276 		linux_file_kqfilter_poll(filp,
1277 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1278 	}
1279 	return (error);
1280 }
1281 
1282 static int
1283 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1284     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1285     int nprot, bool is_shared, struct thread *td)
1286 {
1287 	struct task_struct *task;
1288 	struct vm_area_struct *vmap;
1289 	struct mm_struct *mm;
1290 	struct linux_file *filp;
1291 	vm_memattr_t attr;
1292 	int error;
1293 
1294 	filp = (struct linux_file *)fp->f_data;
1295 	filp->f_flags = fp->f_flag;
1296 
1297 	if (fop->mmap == NULL)
1298 		return (EOPNOTSUPP);
1299 
1300 	linux_set_current(td);
1301 
1302 	/*
1303 	 * The same VM object might be shared by multiple processes
1304 	 * and the mm_struct is usually freed when a process exits.
1305 	 *
1306 	 * The atomic reference below makes sure the mm_struct is
1307 	 * available as long as the vmap is in the linux_vma_head.
1308 	 */
1309 	task = current;
1310 	mm = task->mm;
1311 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1312 		return (EINVAL);
1313 
1314 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1315 	vmap->vm_start = 0;
1316 	vmap->vm_end = size;
1317 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1318 	vmap->vm_pfn = 0;
1319 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1320 	if (is_shared)
1321 		vmap->vm_flags |= VM_SHARED;
1322 	vmap->vm_ops = NULL;
1323 	vmap->vm_file = get_file(filp);
1324 	vmap->vm_mm = mm;
1325 
1326 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1327 		error = linux_get_error(task, EINTR);
1328 	} else {
1329 		error = -OPW(fp, td, fop->mmap(filp, vmap));
1330 		error = linux_get_error(task, error);
1331 		up_write(&vmap->vm_mm->mmap_sem);
1332 	}
1333 
1334 	if (error != 0) {
1335 		linux_cdev_handle_free(vmap);
1336 		return (error);
1337 	}
1338 
1339 	attr = pgprot2cachemode(vmap->vm_page_prot);
1340 
1341 	if (vmap->vm_ops != NULL) {
1342 		struct vm_area_struct *ptr;
1343 		void *vm_private_data;
1344 		bool vm_no_fault;
1345 
1346 		if (vmap->vm_ops->open == NULL ||
1347 		    vmap->vm_ops->close == NULL ||
1348 		    vmap->vm_private_data == NULL) {
1349 			/* free allocated VM area struct */
1350 			linux_cdev_handle_free(vmap);
1351 			return (EINVAL);
1352 		}
1353 
1354 		vm_private_data = vmap->vm_private_data;
1355 
1356 		rw_wlock(&linux_vma_lock);
1357 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1358 			if (ptr->vm_private_data == vm_private_data)
1359 				break;
1360 		}
1361 		/* check if there is an existing VM area struct */
1362 		if (ptr != NULL) {
1363 			/* check if the VM area structure is invalid */
1364 			if (ptr->vm_ops == NULL ||
1365 			    ptr->vm_ops->open == NULL ||
1366 			    ptr->vm_ops->close == NULL) {
1367 				error = ESTALE;
1368 				vm_no_fault = 1;
1369 			} else {
1370 				error = EEXIST;
1371 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1372 			}
1373 		} else {
1374 			/* insert VM area structure into list */
1375 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1376 			error = 0;
1377 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1378 		}
1379 		rw_wunlock(&linux_vma_lock);
1380 
1381 		if (error != 0) {
1382 			/* free allocated VM area struct */
1383 			linux_cdev_handle_free(vmap);
1384 			/* check for stale VM area struct */
1385 			if (error != EEXIST)
1386 				return (error);
1387 		}
1388 
1389 		/* check if there is no fault handler */
1390 		if (vm_no_fault) {
1391 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1392 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1393 			    td->td_ucred);
1394 		} else {
1395 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1396 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1397 			    td->td_ucred);
1398 		}
1399 
1400 		/* check if allocating the VM object failed */
1401 		if (*object == NULL) {
1402 			if (error == 0) {
1403 				/* remove VM area struct from list */
1404 				linux_cdev_handle_remove(vmap);
1405 				/* free allocated VM area struct */
1406 				linux_cdev_handle_free(vmap);
1407 			}
1408 			return (EINVAL);
1409 		}
1410 	} else {
1411 		struct sglist *sg;
1412 
1413 		sg = sglist_alloc(1, M_WAITOK);
1414 		sglist_append_phys(sg,
1415 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1416 
1417 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1418 		    nprot, 0, td->td_ucred);
1419 
1420 		linux_cdev_handle_free(vmap);
1421 
1422 		if (*object == NULL) {
1423 			sglist_free(sg);
1424 			return (EINVAL);
1425 		}
1426 	}
1427 
1428 	if (attr != VM_MEMATTR_DEFAULT) {
1429 		VM_OBJECT_WLOCK(*object);
1430 		vm_object_set_memattr(*object, attr);
1431 		VM_OBJECT_WUNLOCK(*object);
1432 	}
1433 	*offset = 0;
1434 	return (0);
1435 }
1436 
1437 struct cdevsw linuxcdevsw = {
1438 	.d_version = D_VERSION,
1439 	.d_fdopen = linux_dev_fdopen,
1440 	.d_name = "lkpidev",
1441 };
1442 
1443 static int
1444 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1445     int flags, struct thread *td)
1446 {
1447 	struct linux_file *filp;
1448 	const struct file_operations *fop;
1449 	struct linux_cdev *ldev;
1450 	ssize_t bytes;
1451 	int error;
1452 
1453 	error = 0;
1454 	filp = (struct linux_file *)file->f_data;
1455 	filp->f_flags = file->f_flag;
1456 	/* XXX no support for I/O vectors currently */
1457 	if (uio->uio_iovcnt != 1)
1458 		return (EOPNOTSUPP);
1459 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1460 		return (EINVAL);
1461 	linux_set_current(td);
1462 	linux_get_fop(filp, &fop, &ldev);
1463 	if (fop->read != NULL) {
1464 		bytes = OPW(file, td, fop->read(filp,
1465 		    uio->uio_iov->iov_base,
1466 		    uio->uio_iov->iov_len, &uio->uio_offset));
1467 		if (bytes >= 0) {
1468 			uio->uio_iov->iov_base =
1469 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1470 			uio->uio_iov->iov_len -= bytes;
1471 			uio->uio_resid -= bytes;
1472 		} else {
1473 			error = linux_get_error(current, -bytes);
1474 		}
1475 	} else
1476 		error = ENXIO;
1477 
1478 	/* update kqfilter status, if any */
1479 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1480 	linux_drop_fop(ldev);
1481 
1482 	return (error);
1483 }
1484 
1485 static int
1486 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1487     int flags, struct thread *td)
1488 {
1489 	struct linux_file *filp;
1490 	const struct file_operations *fop;
1491 	struct linux_cdev *ldev;
1492 	ssize_t bytes;
1493 	int error;
1494 
1495 	filp = (struct linux_file *)file->f_data;
1496 	filp->f_flags = file->f_flag;
1497 	/* XXX no support for I/O vectors currently */
1498 	if (uio->uio_iovcnt != 1)
1499 		return (EOPNOTSUPP);
1500 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1501 		return (EINVAL);
1502 	linux_set_current(td);
1503 	linux_get_fop(filp, &fop, &ldev);
1504 	if (fop->write != NULL) {
1505 		bytes = OPW(file, td, fop->write(filp,
1506 		    uio->uio_iov->iov_base,
1507 		    uio->uio_iov->iov_len, &uio->uio_offset));
1508 		if (bytes >= 0) {
1509 			uio->uio_iov->iov_base =
1510 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1511 			uio->uio_iov->iov_len -= bytes;
1512 			uio->uio_resid -= bytes;
1513 			error = 0;
1514 		} else {
1515 			error = linux_get_error(current, -bytes);
1516 		}
1517 	} else
1518 		error = ENXIO;
1519 
1520 	/* update kqfilter status, if any */
1521 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1522 
1523 	linux_drop_fop(ldev);
1524 
1525 	return (error);
1526 }
1527 
1528 static int
1529 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1530     struct thread *td)
1531 {
1532 	struct linux_file *filp;
1533 	const struct file_operations *fop;
1534 	struct linux_cdev *ldev;
1535 	int revents;
1536 
1537 	filp = (struct linux_file *)file->f_data;
1538 	filp->f_flags = file->f_flag;
1539 	linux_set_current(td);
1540 	linux_get_fop(filp, &fop, &ldev);
1541 	if (fop->poll != NULL) {
1542 		revents = OPW(file, td, fop->poll(filp,
1543 		    LINUX_POLL_TABLE_NORMAL)) & events;
1544 	} else {
1545 		revents = 0;
1546 	}
1547 	linux_drop_fop(ldev);
1548 	return (revents);
1549 }
1550 
1551 static int
1552 linux_file_close(struct file *file, struct thread *td)
1553 {
1554 	struct linux_file *filp;
1555 	int (*release)(struct inode *, struct linux_file *);
1556 	const struct file_operations *fop;
1557 	struct linux_cdev *ldev;
1558 	int error;
1559 
1560 	filp = (struct linux_file *)file->f_data;
1561 
1562 	KASSERT(file_count(filp) == 0,
1563 	    ("File refcount(%d) is not zero", file_count(filp)));
1564 
1565 	if (td == NULL)
1566 		td = curthread;
1567 
1568 	error = 0;
1569 	filp->f_flags = file->f_flag;
1570 	linux_set_current(td);
1571 	linux_poll_wait_dequeue(filp);
1572 	linux_get_fop(filp, &fop, &ldev);
1573 	/*
1574 	 * Always use the real release function, if any, to avoid
1575 	 * leaking device resources:
1576 	 */
1577 	release = filp->f_op->release;
1578 	if (release != NULL)
1579 		error = -OPW(file, td, release(filp->f_vnode, filp));
1580 	funsetown(&filp->f_sigio);
1581 	if (filp->f_vnode != NULL)
1582 		vdrop(filp->f_vnode);
1583 	linux_drop_fop(ldev);
1584 	ldev = filp->f_cdev;
1585 	if (ldev != NULL)
1586 		linux_cdev_deref(ldev);
1587 	linux_synchronize_rcu(RCU_TYPE_REGULAR);
1588 	kfree(filp);
1589 
1590 	return (error);
1591 }
1592 
1593 static int
1594 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1595     struct thread *td)
1596 {
1597 	struct linux_file *filp;
1598 	const struct file_operations *fop;
1599 	struct linux_cdev *ldev;
1600 	struct fiodgname_arg *fgn;
1601 	const char *p;
1602 	int error, i;
1603 
1604 	error = 0;
1605 	filp = (struct linux_file *)fp->f_data;
1606 	filp->f_flags = fp->f_flag;
1607 	linux_get_fop(filp, &fop, &ldev);
1608 
1609 	linux_set_current(td);
1610 	switch (cmd) {
1611 	case FIONBIO:
1612 		break;
1613 	case FIOASYNC:
1614 		if (fop->fasync == NULL)
1615 			break;
1616 		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1617 		break;
1618 	case FIOSETOWN:
1619 		error = fsetown(*(int *)data, &filp->f_sigio);
1620 		if (error == 0) {
1621 			if (fop->fasync == NULL)
1622 				break;
1623 			error = -OPW(fp, td, fop->fasync(0, filp,
1624 			    fp->f_flag & FASYNC));
1625 		}
1626 		break;
1627 	case FIOGETOWN:
1628 		*(int *)data = fgetown(&filp->f_sigio);
1629 		break;
1630 	case FIODGNAME:
1631 #ifdef	COMPAT_FREEBSD32
1632 	case FIODGNAME_32:
1633 #endif
1634 		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1635 			error = ENXIO;
1636 			break;
1637 		}
1638 		fgn = data;
1639 		p = devtoname(filp->f_cdev->cdev);
1640 		i = strlen(p) + 1;
1641 		if (i > fgn->len) {
1642 			error = EINVAL;
1643 			break;
1644 		}
1645 		error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1646 		break;
1647 	default:
1648 		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1649 		break;
1650 	}
1651 	linux_drop_fop(ldev);
1652 	return (error);
1653 }
1654 
1655 static int
1656 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1657     vm_prot_t maxprot, int flags, struct file *fp,
1658     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1659 {
1660 	/*
1661 	 * Character devices do not provide private mappings
1662 	 * of any kind:
1663 	 */
1664 	if ((maxprot & VM_PROT_WRITE) == 0 &&
1665 	    (prot & VM_PROT_WRITE) != 0)
1666 		return (EACCES);
1667 	if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1668 		return (EINVAL);
1669 
1670 	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1671 	    (int)prot, (flags & MAP_SHARED) ? true : false, td));
1672 }
1673 
1674 static int
1675 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1676     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1677     struct thread *td)
1678 {
1679 	struct linux_file *filp;
1680 	const struct file_operations *fop;
1681 	struct linux_cdev *ldev;
1682 	struct mount *mp;
1683 	struct vnode *vp;
1684 	vm_object_t object;
1685 	vm_prot_t maxprot;
1686 	int error;
1687 
1688 	filp = (struct linux_file *)fp->f_data;
1689 
1690 	vp = filp->f_vnode;
1691 	if (vp == NULL)
1692 		return (EOPNOTSUPP);
1693 
1694 	/*
1695 	 * Ensure that file and memory protections are
1696 	 * compatible.
1697 	 */
1698 	mp = vp->v_mount;
1699 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1700 		maxprot = VM_PROT_NONE;
1701 		if ((prot & VM_PROT_EXECUTE) != 0)
1702 			return (EACCES);
1703 	} else
1704 		maxprot = VM_PROT_EXECUTE;
1705 	if ((fp->f_flag & FREAD) != 0)
1706 		maxprot |= VM_PROT_READ;
1707 	else if ((prot & VM_PROT_READ) != 0)
1708 		return (EACCES);
1709 
1710 	/*
1711 	 * If we are sharing potential changes via MAP_SHARED and we
1712 	 * are trying to get write permission although we opened it
1713 	 * without asking for it, bail out.
1714 	 *
1715 	 * Note that most character devices always share mappings.
1716 	 *
1717 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1718 	 * requests rather than doing it here.
1719 	 */
1720 	if ((flags & MAP_SHARED) != 0) {
1721 		if ((fp->f_flag & FWRITE) != 0)
1722 			maxprot |= VM_PROT_WRITE;
1723 		else if ((prot & VM_PROT_WRITE) != 0)
1724 			return (EACCES);
1725 	}
1726 	maxprot &= cap_maxprot;
1727 
1728 	linux_get_fop(filp, &fop, &ldev);
1729 	error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1730 	    &foff, fop, &object);
1731 	if (error != 0)
1732 		goto out;
1733 
1734 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1735 	    foff, FALSE, td);
1736 	if (error != 0)
1737 		vm_object_deallocate(object);
1738 out:
1739 	linux_drop_fop(ldev);
1740 	return (error);
1741 }
1742 
1743 static int
1744 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1745 {
1746 	struct linux_file *filp;
1747 	struct vnode *vp;
1748 	int error;
1749 
1750 	filp = (struct linux_file *)fp->f_data;
1751 	if (filp->f_vnode == NULL)
1752 		return (EOPNOTSUPP);
1753 
1754 	vp = filp->f_vnode;
1755 
1756 	vn_lock(vp, LK_SHARED | LK_RETRY);
1757 	error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1758 	VOP_UNLOCK(vp);
1759 
1760 	return (error);
1761 }
1762 
1763 static int
1764 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1765     struct filedesc *fdp)
1766 {
1767 	struct linux_file *filp;
1768 	struct vnode *vp;
1769 	int error;
1770 
1771 	filp = fp->f_data;
1772 	vp = filp->f_vnode;
1773 	if (vp == NULL) {
1774 		error = 0;
1775 		kif->kf_type = KF_TYPE_DEV;
1776 	} else {
1777 		vref(vp);
1778 		FILEDESC_SUNLOCK(fdp);
1779 		error = vn_fill_kinfo_vnode(vp, kif);
1780 		vrele(vp);
1781 		kif->kf_type = KF_TYPE_VNODE;
1782 		FILEDESC_SLOCK(fdp);
1783 	}
1784 	return (error);
1785 }
1786 
1787 unsigned int
1788 linux_iminor(struct inode *inode)
1789 {
1790 	struct linux_cdev *ldev;
1791 
1792 	if (inode == NULL || inode->v_rdev == NULL ||
1793 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1794 		return (-1U);
1795 	ldev = inode->v_rdev->si_drv1;
1796 	if (ldev == NULL)
1797 		return (-1U);
1798 
1799 	return (minor(ldev->dev));
1800 }
1801 
1802 struct fileops linuxfileops = {
1803 	.fo_read = linux_file_read,
1804 	.fo_write = linux_file_write,
1805 	.fo_truncate = invfo_truncate,
1806 	.fo_kqfilter = linux_file_kqfilter,
1807 	.fo_stat = linux_file_stat,
1808 	.fo_fill_kinfo = linux_file_fill_kinfo,
1809 	.fo_poll = linux_file_poll,
1810 	.fo_close = linux_file_close,
1811 	.fo_ioctl = linux_file_ioctl,
1812 	.fo_mmap = linux_file_mmap,
1813 	.fo_chmod = invfo_chmod,
1814 	.fo_chown = invfo_chown,
1815 	.fo_sendfile = invfo_sendfile,
1816 	.fo_flags = DFLAG_PASSABLE,
1817 };
1818 
1819 /*
1820  * Hash of vmmap addresses.  This is infrequently accessed and does not
1821  * need to be particularly large.  This is done because we must store the
1822  * caller's idea of the map size to properly unmap.
1823  */
1824 struct vmmap {
1825 	LIST_ENTRY(vmmap)	vm_next;
1826 	void 			*vm_addr;
1827 	unsigned long		vm_size;
1828 };
1829 
1830 struct vmmaphd {
1831 	struct vmmap *lh_first;
1832 };
1833 #define	VMMAP_HASH_SIZE	64
1834 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1835 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1836 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1837 static struct mtx vmmaplock;
1838 
1839 static void
1840 vmmap_add(void *addr, unsigned long size)
1841 {
1842 	struct vmmap *vmmap;
1843 
1844 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1845 	mtx_lock(&vmmaplock);
1846 	vmmap->vm_size = size;
1847 	vmmap->vm_addr = addr;
1848 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1849 	mtx_unlock(&vmmaplock);
1850 }
1851 
1852 static struct vmmap *
1853 vmmap_remove(void *addr)
1854 {
1855 	struct vmmap *vmmap;
1856 
1857 	mtx_lock(&vmmaplock);
1858 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1859 		if (vmmap->vm_addr == addr)
1860 			break;
1861 	if (vmmap)
1862 		LIST_REMOVE(vmmap, vm_next);
1863 	mtx_unlock(&vmmaplock);
1864 
1865 	return (vmmap);
1866 }
1867 
1868 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1869 void *
1870 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1871 {
1872 	void *addr;
1873 
1874 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1875 	if (addr == NULL)
1876 		return (NULL);
1877 	vmmap_add(addr, size);
1878 
1879 	return (addr);
1880 }
1881 #endif
1882 
1883 void
1884 iounmap(void *addr)
1885 {
1886 	struct vmmap *vmmap;
1887 
1888 	vmmap = vmmap_remove(addr);
1889 	if (vmmap == NULL)
1890 		return;
1891 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1892 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1893 #endif
1894 	kfree(vmmap);
1895 }
1896 
1897 void *
1898 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1899 {
1900 	vm_offset_t off;
1901 	size_t size;
1902 
1903 	size = count * PAGE_SIZE;
1904 	off = kva_alloc(size);
1905 	if (off == 0)
1906 		return (NULL);
1907 	vmmap_add((void *)off, size);
1908 	pmap_qenter(off, pages, count);
1909 
1910 	return ((void *)off);
1911 }
1912 
1913 void
1914 vunmap(void *addr)
1915 {
1916 	struct vmmap *vmmap;
1917 
1918 	vmmap = vmmap_remove(addr);
1919 	if (vmmap == NULL)
1920 		return;
1921 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1922 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1923 	kfree(vmmap);
1924 }
1925 
1926 static char *
1927 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1928 {
1929 	unsigned int len;
1930 	char *p;
1931 	va_list aq;
1932 
1933 	va_copy(aq, ap);
1934 	len = vsnprintf(NULL, 0, fmt, aq);
1935 	va_end(aq);
1936 
1937 	if (dev != NULL)
1938 		p = devm_kmalloc(dev, len + 1, gfp);
1939 	else
1940 		p = kmalloc(len + 1, gfp);
1941 	if (p != NULL)
1942 		vsnprintf(p, len + 1, fmt, ap);
1943 
1944 	return (p);
1945 }
1946 
1947 char *
1948 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1949 {
1950 
1951 	return (devm_kvasprintf(NULL, gfp, fmt, ap));
1952 }
1953 
1954 char *
1955 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1956 {
1957 	va_list ap;
1958 	char *p;
1959 
1960 	va_start(ap, fmt);
1961 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1962 	va_end(ap);
1963 
1964 	return (p);
1965 }
1966 
1967 char *
1968 kasprintf(gfp_t gfp, const char *fmt, ...)
1969 {
1970 	va_list ap;
1971 	char *p;
1972 
1973 	va_start(ap, fmt);
1974 	p = kvasprintf(gfp, fmt, ap);
1975 	va_end(ap);
1976 
1977 	return (p);
1978 }
1979 
1980 static void
1981 linux_timer_callback_wrapper(void *context)
1982 {
1983 	struct timer_list *timer;
1984 
1985 	timer = context;
1986 
1987 	if (linux_set_current_flags(curthread, M_NOWAIT)) {
1988 		/* try again later */
1989 		callout_reset(&timer->callout, 1,
1990 		    &linux_timer_callback_wrapper, timer);
1991 		return;
1992 	}
1993 
1994 	timer->function(timer->data);
1995 }
1996 
1997 int
1998 mod_timer(struct timer_list *timer, int expires)
1999 {
2000 	int ret;
2001 
2002 	timer->expires = expires;
2003 	ret = callout_reset(&timer->callout,
2004 	    linux_timer_jiffies_until(expires),
2005 	    &linux_timer_callback_wrapper, timer);
2006 
2007 	MPASS(ret == 0 || ret == 1);
2008 
2009 	return (ret == 1);
2010 }
2011 
2012 void
2013 add_timer(struct timer_list *timer)
2014 {
2015 
2016 	callout_reset(&timer->callout,
2017 	    linux_timer_jiffies_until(timer->expires),
2018 	    &linux_timer_callback_wrapper, timer);
2019 }
2020 
2021 void
2022 add_timer_on(struct timer_list *timer, int cpu)
2023 {
2024 
2025 	callout_reset_on(&timer->callout,
2026 	    linux_timer_jiffies_until(timer->expires),
2027 	    &linux_timer_callback_wrapper, timer, cpu);
2028 }
2029 
2030 int
2031 del_timer(struct timer_list *timer)
2032 {
2033 
2034 	if (callout_stop(&(timer)->callout) == -1)
2035 		return (0);
2036 	return (1);
2037 }
2038 
2039 int
2040 del_timer_sync(struct timer_list *timer)
2041 {
2042 
2043 	if (callout_drain(&(timer)->callout) == -1)
2044 		return (0);
2045 	return (1);
2046 }
2047 
2048 /* greatest common divisor, Euclid equation */
2049 static uint64_t
2050 lkpi_gcd_64(uint64_t a, uint64_t b)
2051 {
2052 	uint64_t an;
2053 	uint64_t bn;
2054 
2055 	while (b != 0) {
2056 		an = b;
2057 		bn = a % b;
2058 		a = an;
2059 		b = bn;
2060 	}
2061 	return (a);
2062 }
2063 
2064 uint64_t lkpi_nsec2hz_rem;
2065 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2066 uint64_t lkpi_nsec2hz_max;
2067 
2068 uint64_t lkpi_usec2hz_rem;
2069 uint64_t lkpi_usec2hz_div = 1000000ULL;
2070 uint64_t lkpi_usec2hz_max;
2071 
2072 uint64_t lkpi_msec2hz_rem;
2073 uint64_t lkpi_msec2hz_div = 1000ULL;
2074 uint64_t lkpi_msec2hz_max;
2075 
2076 static void
2077 linux_timer_init(void *arg)
2078 {
2079 	uint64_t gcd;
2080 
2081 	/*
2082 	 * Compute an internal HZ value which can divide 2**32 to
2083 	 * avoid timer rounding problems when the tick value wraps
2084 	 * around 2**32:
2085 	 */
2086 	linux_timer_hz_mask = 1;
2087 	while (linux_timer_hz_mask < (unsigned long)hz)
2088 		linux_timer_hz_mask *= 2;
2089 	linux_timer_hz_mask--;
2090 
2091 	/* compute some internal constants */
2092 
2093 	lkpi_nsec2hz_rem = hz;
2094 	lkpi_usec2hz_rem = hz;
2095 	lkpi_msec2hz_rem = hz;
2096 
2097 	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2098 	lkpi_nsec2hz_rem /= gcd;
2099 	lkpi_nsec2hz_div /= gcd;
2100 	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2101 
2102 	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2103 	lkpi_usec2hz_rem /= gcd;
2104 	lkpi_usec2hz_div /= gcd;
2105 	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2106 
2107 	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2108 	lkpi_msec2hz_rem /= gcd;
2109 	lkpi_msec2hz_div /= gcd;
2110 	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2111 }
2112 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2113 
2114 void
2115 linux_complete_common(struct completion *c, int all)
2116 {
2117 	int wakeup_swapper;
2118 
2119 	sleepq_lock(c);
2120 	if (all) {
2121 		c->done = UINT_MAX;
2122 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2123 	} else {
2124 		if (c->done != UINT_MAX)
2125 			c->done++;
2126 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2127 	}
2128 	sleepq_release(c);
2129 	if (wakeup_swapper)
2130 		kick_proc0();
2131 }
2132 
2133 /*
2134  * Indefinite wait for done != 0 with or without signals.
2135  */
2136 int
2137 linux_wait_for_common(struct completion *c, int flags)
2138 {
2139 	struct task_struct *task;
2140 	int error;
2141 
2142 	if (SCHEDULER_STOPPED())
2143 		return (0);
2144 
2145 	task = current;
2146 
2147 	if (flags != 0)
2148 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2149 	else
2150 		flags = SLEEPQ_SLEEP;
2151 	error = 0;
2152 	for (;;) {
2153 		sleepq_lock(c);
2154 		if (c->done)
2155 			break;
2156 		sleepq_add(c, NULL, "completion", flags, 0);
2157 		if (flags & SLEEPQ_INTERRUPTIBLE) {
2158 			DROP_GIANT();
2159 			error = -sleepq_wait_sig(c, 0);
2160 			PICKUP_GIANT();
2161 			if (error != 0) {
2162 				linux_schedule_save_interrupt_value(task, error);
2163 				error = -ERESTARTSYS;
2164 				goto intr;
2165 			}
2166 		} else {
2167 			DROP_GIANT();
2168 			sleepq_wait(c, 0);
2169 			PICKUP_GIANT();
2170 		}
2171 	}
2172 	if (c->done != UINT_MAX)
2173 		c->done--;
2174 	sleepq_release(c);
2175 
2176 intr:
2177 	return (error);
2178 }
2179 
2180 /*
2181  * Time limited wait for done != 0 with or without signals.
2182  */
2183 int
2184 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2185 {
2186 	struct task_struct *task;
2187 	int end = jiffies + timeout;
2188 	int error;
2189 
2190 	if (SCHEDULER_STOPPED())
2191 		return (0);
2192 
2193 	task = current;
2194 
2195 	if (flags != 0)
2196 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2197 	else
2198 		flags = SLEEPQ_SLEEP;
2199 
2200 	for (;;) {
2201 		sleepq_lock(c);
2202 		if (c->done)
2203 			break;
2204 		sleepq_add(c, NULL, "completion", flags, 0);
2205 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2206 
2207 		DROP_GIANT();
2208 		if (flags & SLEEPQ_INTERRUPTIBLE)
2209 			error = -sleepq_timedwait_sig(c, 0);
2210 		else
2211 			error = -sleepq_timedwait(c, 0);
2212 		PICKUP_GIANT();
2213 
2214 		if (error != 0) {
2215 			/* check for timeout */
2216 			if (error == -EWOULDBLOCK) {
2217 				error = 0;	/* timeout */
2218 			} else {
2219 				/* signal happened */
2220 				linux_schedule_save_interrupt_value(task, error);
2221 				error = -ERESTARTSYS;
2222 			}
2223 			goto done;
2224 		}
2225 	}
2226 	if (c->done != UINT_MAX)
2227 		c->done--;
2228 	sleepq_release(c);
2229 
2230 	/* return how many jiffies are left */
2231 	error = linux_timer_jiffies_until(end);
2232 done:
2233 	return (error);
2234 }
2235 
2236 int
2237 linux_try_wait_for_completion(struct completion *c)
2238 {
2239 	int isdone;
2240 
2241 	sleepq_lock(c);
2242 	isdone = (c->done != 0);
2243 	if (c->done != 0 && c->done != UINT_MAX)
2244 		c->done--;
2245 	sleepq_release(c);
2246 	return (isdone);
2247 }
2248 
2249 int
2250 linux_completion_done(struct completion *c)
2251 {
2252 	int isdone;
2253 
2254 	sleepq_lock(c);
2255 	isdone = (c->done != 0);
2256 	sleepq_release(c);
2257 	return (isdone);
2258 }
2259 
2260 static void
2261 linux_cdev_deref(struct linux_cdev *ldev)
2262 {
2263 	if (refcount_release(&ldev->refs) &&
2264 	    ldev->kobj.ktype == &linux_cdev_ktype)
2265 		kfree(ldev);
2266 }
2267 
2268 static void
2269 linux_cdev_release(struct kobject *kobj)
2270 {
2271 	struct linux_cdev *cdev;
2272 	struct kobject *parent;
2273 
2274 	cdev = container_of(kobj, struct linux_cdev, kobj);
2275 	parent = kobj->parent;
2276 	linux_destroy_dev(cdev);
2277 	linux_cdev_deref(cdev);
2278 	kobject_put(parent);
2279 }
2280 
2281 static void
2282 linux_cdev_static_release(struct kobject *kobj)
2283 {
2284 	struct cdev *cdev;
2285 	struct linux_cdev *ldev;
2286 
2287 	ldev = container_of(kobj, struct linux_cdev, kobj);
2288 	cdev = ldev->cdev;
2289 	if (cdev != NULL) {
2290 		destroy_dev(cdev);
2291 		ldev->cdev = NULL;
2292 	}
2293 	kobject_put(kobj->parent);
2294 }
2295 
2296 int
2297 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2298 {
2299 	int ret;
2300 
2301 	if (dev->devt != 0) {
2302 		/* Set parent kernel object. */
2303 		ldev->kobj.parent = &dev->kobj;
2304 
2305 		/*
2306 		 * Unlike Linux we require the kobject of the
2307 		 * character device structure to have a valid name
2308 		 * before calling this function:
2309 		 */
2310 		if (ldev->kobj.name == NULL)
2311 			return (-EINVAL);
2312 
2313 		ret = cdev_add(ldev, dev->devt, 1);
2314 		if (ret)
2315 			return (ret);
2316 	}
2317 	ret = device_add(dev);
2318 	if (ret != 0 && dev->devt != 0)
2319 		cdev_del(ldev);
2320 	return (ret);
2321 }
2322 
2323 void
2324 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2325 {
2326 	device_del(dev);
2327 
2328 	if (dev->devt != 0)
2329 		cdev_del(ldev);
2330 }
2331 
2332 static void
2333 linux_destroy_dev(struct linux_cdev *ldev)
2334 {
2335 
2336 	if (ldev->cdev == NULL)
2337 		return;
2338 
2339 	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2340 	MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2341 
2342 	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2343 	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2344 		pause("ldevdtr", hz / 4);
2345 
2346 	destroy_dev(ldev->cdev);
2347 	ldev->cdev = NULL;
2348 }
2349 
2350 const struct kobj_type linux_cdev_ktype = {
2351 	.release = linux_cdev_release,
2352 };
2353 
2354 const struct kobj_type linux_cdev_static_ktype = {
2355 	.release = linux_cdev_static_release,
2356 };
2357 
2358 static void
2359 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2360 {
2361 	struct notifier_block *nb;
2362 	struct netdev_notifier_info ni;
2363 
2364 	nb = arg;
2365 	ni.ifp = ifp;
2366 	ni.dev = (struct net_device *)ifp;
2367 	if (linkstate == LINK_STATE_UP)
2368 		nb->notifier_call(nb, NETDEV_UP, &ni);
2369 	else
2370 		nb->notifier_call(nb, NETDEV_DOWN, &ni);
2371 }
2372 
2373 static void
2374 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2375 {
2376 	struct notifier_block *nb;
2377 	struct netdev_notifier_info ni;
2378 
2379 	nb = arg;
2380 	ni.ifp = ifp;
2381 	ni.dev = (struct net_device *)ifp;
2382 	nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2383 }
2384 
2385 static void
2386 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2387 {
2388 	struct notifier_block *nb;
2389 	struct netdev_notifier_info ni;
2390 
2391 	nb = arg;
2392 	ni.ifp = ifp;
2393 	ni.dev = (struct net_device *)ifp;
2394 	nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2395 }
2396 
2397 static void
2398 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2399 {
2400 	struct notifier_block *nb;
2401 	struct netdev_notifier_info ni;
2402 
2403 	nb = arg;
2404 	ni.ifp = ifp;
2405 	ni.dev = (struct net_device *)ifp;
2406 	nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2407 }
2408 
2409 static void
2410 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2411 {
2412 	struct notifier_block *nb;
2413 	struct netdev_notifier_info ni;
2414 
2415 	nb = arg;
2416 	ni.ifp = ifp;
2417 	ni.dev = (struct net_device *)ifp;
2418 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2419 }
2420 
2421 int
2422 register_netdevice_notifier(struct notifier_block *nb)
2423 {
2424 
2425 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2426 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2427 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2428 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2429 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2430 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2431 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2432 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2433 
2434 	return (0);
2435 }
2436 
2437 int
2438 register_inetaddr_notifier(struct notifier_block *nb)
2439 {
2440 
2441 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2442 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2443 	return (0);
2444 }
2445 
2446 int
2447 unregister_netdevice_notifier(struct notifier_block *nb)
2448 {
2449 
2450 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2451 	    nb->tags[NETDEV_UP]);
2452 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2453 	    nb->tags[NETDEV_REGISTER]);
2454 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2455 	    nb->tags[NETDEV_UNREGISTER]);
2456 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2457 	    nb->tags[NETDEV_CHANGEADDR]);
2458 
2459 	return (0);
2460 }
2461 
2462 int
2463 unregister_inetaddr_notifier(struct notifier_block *nb)
2464 {
2465 
2466 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2467 	    nb->tags[NETDEV_CHANGEIFADDR]);
2468 
2469 	return (0);
2470 }
2471 
2472 struct list_sort_thunk {
2473 	int (*cmp)(void *, struct list_head *, struct list_head *);
2474 	void *priv;
2475 };
2476 
2477 static inline int
2478 linux_le_cmp(void *priv, const void *d1, const void *d2)
2479 {
2480 	struct list_head *le1, *le2;
2481 	struct list_sort_thunk *thunk;
2482 
2483 	thunk = priv;
2484 	le1 = *(__DECONST(struct list_head **, d1));
2485 	le2 = *(__DECONST(struct list_head **, d2));
2486 	return ((thunk->cmp)(thunk->priv, le1, le2));
2487 }
2488 
2489 void
2490 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2491     struct list_head *a, struct list_head *b))
2492 {
2493 	struct list_sort_thunk thunk;
2494 	struct list_head **ar, *le;
2495 	size_t count, i;
2496 
2497 	count = 0;
2498 	list_for_each(le, head)
2499 		count++;
2500 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2501 	i = 0;
2502 	list_for_each(le, head)
2503 		ar[i++] = le;
2504 	thunk.cmp = cmp;
2505 	thunk.priv = priv;
2506 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2507 	INIT_LIST_HEAD(head);
2508 	for (i = 0; i < count; i++)
2509 		list_add_tail(ar[i], head);
2510 	free(ar, M_KMALLOC);
2511 }
2512 
2513 #if defined(__i386__) || defined(__amd64__)
2514 int
2515 linux_wbinvd_on_all_cpus(void)
2516 {
2517 
2518 	pmap_invalidate_cache();
2519 	return (0);
2520 }
2521 #endif
2522 
2523 int
2524 linux_on_each_cpu(void callback(void *), void *data)
2525 {
2526 
2527 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2528 	    smp_no_rendezvous_barrier, data);
2529 	return (0);
2530 }
2531 
2532 int
2533 linux_in_atomic(void)
2534 {
2535 
2536 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2537 }
2538 
2539 struct linux_cdev *
2540 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2541 {
2542 	dev_t dev = MKDEV(major, minor);
2543 	struct cdev *cdev;
2544 
2545 	dev_lock();
2546 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2547 		struct linux_cdev *ldev = cdev->si_drv1;
2548 		if (ldev->dev == dev &&
2549 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2550 			break;
2551 		}
2552 	}
2553 	dev_unlock();
2554 
2555 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2556 }
2557 
2558 int
2559 __register_chrdev(unsigned int major, unsigned int baseminor,
2560     unsigned int count, const char *name,
2561     const struct file_operations *fops)
2562 {
2563 	struct linux_cdev *cdev;
2564 	int ret = 0;
2565 	int i;
2566 
2567 	for (i = baseminor; i < baseminor + count; i++) {
2568 		cdev = cdev_alloc();
2569 		cdev->ops = fops;
2570 		kobject_set_name(&cdev->kobj, name);
2571 
2572 		ret = cdev_add(cdev, makedev(major, i), 1);
2573 		if (ret != 0)
2574 			break;
2575 	}
2576 	return (ret);
2577 }
2578 
2579 int
2580 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2581     unsigned int count, const char *name,
2582     const struct file_operations *fops, uid_t uid,
2583     gid_t gid, int mode)
2584 {
2585 	struct linux_cdev *cdev;
2586 	int ret = 0;
2587 	int i;
2588 
2589 	for (i = baseminor; i < baseminor + count; i++) {
2590 		cdev = cdev_alloc();
2591 		cdev->ops = fops;
2592 		kobject_set_name(&cdev->kobj, name);
2593 
2594 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2595 		if (ret != 0)
2596 			break;
2597 	}
2598 	return (ret);
2599 }
2600 
2601 void
2602 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2603     unsigned int count, const char *name)
2604 {
2605 	struct linux_cdev *cdevp;
2606 	int i;
2607 
2608 	for (i = baseminor; i < baseminor + count; i++) {
2609 		cdevp = linux_find_cdev(name, major, i);
2610 		if (cdevp != NULL)
2611 			cdev_del(cdevp);
2612 	}
2613 }
2614 
2615 void
2616 linux_dump_stack(void)
2617 {
2618 #ifdef STACK
2619 	struct stack st;
2620 
2621 	stack_save(&st);
2622 	stack_print(&st);
2623 #endif
2624 }
2625 
2626 int
2627 linuxkpi_net_ratelimit(void)
2628 {
2629 
2630 	return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2631 	   lkpi_net_maxpps));
2632 }
2633 
2634 #if defined(__i386__) || defined(__amd64__)
2635 bool linux_cpu_has_clflush;
2636 #endif
2637 
2638 static void
2639 linux_compat_init(void *arg)
2640 {
2641 	struct sysctl_oid *rootoid;
2642 	int i;
2643 
2644 #if defined(__i386__) || defined(__amd64__)
2645 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2646 #endif
2647 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2648 
2649 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2650 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2651 	kobject_init(&linux_class_root, &linux_class_ktype);
2652 	kobject_set_name(&linux_class_root, "class");
2653 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2654 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2655 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2656 	kobject_set_name(&linux_root_device.kobj, "device");
2657 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2658 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2659 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2660 	linux_root_device.bsddev = root_bus;
2661 	linux_class_misc.name = "misc";
2662 	class_register(&linux_class_misc);
2663 	INIT_LIST_HEAD(&pci_drivers);
2664 	INIT_LIST_HEAD(&pci_devices);
2665 	spin_lock_init(&pci_lock);
2666 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2667 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2668 		LIST_INIT(&vmmaphead[i]);
2669 	init_waitqueue_head(&linux_bit_waitq);
2670 	init_waitqueue_head(&linux_var_waitq);
2671 
2672 	CPU_COPY(&all_cpus, &cpu_online_mask);
2673 }
2674 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2675 
2676 static void
2677 linux_compat_uninit(void *arg)
2678 {
2679 	linux_kobject_kfree_name(&linux_class_root);
2680 	linux_kobject_kfree_name(&linux_root_device.kobj);
2681 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2682 
2683 	mtx_destroy(&vmmaplock);
2684 	spin_lock_destroy(&pci_lock);
2685 	rw_destroy(&linux_vma_lock);
2686 }
2687 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2688 
2689 /*
2690  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2691  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2692  * used. Assert these types have the same size, else some parts of the
2693  * LinuxKPI may not work like expected:
2694  */
2695 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2696