1 /*- 2 * Copyright (c) 2010 Isilon Systems, Inc. 3 * Copyright (c) 2010 iX Systems, Inc. 4 * Copyright (c) 2010 Panasas, Inc. 5 * Copyright (c) 2013-2021 Mellanox Technologies, Ltd. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_stack.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/sysctl.h> 40 #include <sys/proc.h> 41 #include <sys/sglist.h> 42 #include <sys/sleepqueue.h> 43 #include <sys/refcount.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/bus.h> 47 #include <sys/eventhandler.h> 48 #include <sys/fcntl.h> 49 #include <sys/file.h> 50 #include <sys/filio.h> 51 #include <sys/rwlock.h> 52 #include <sys/mman.h> 53 #include <sys/stack.h> 54 #include <sys/sysent.h> 55 #include <sys/time.h> 56 #include <sys/user.h> 57 58 #include <vm/vm.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_object.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_pager.h> 63 64 #include <machine/stdarg.h> 65 66 #if defined(__i386__) || defined(__amd64__) 67 #include <machine/md_var.h> 68 #endif 69 70 #include <linux/kobject.h> 71 #include <linux/cpu.h> 72 #include <linux/device.h> 73 #include <linux/slab.h> 74 #include <linux/module.h> 75 #include <linux/moduleparam.h> 76 #include <linux/cdev.h> 77 #include <linux/file.h> 78 #include <linux/sysfs.h> 79 #include <linux/mm.h> 80 #include <linux/io.h> 81 #include <linux/vmalloc.h> 82 #include <linux/netdevice.h> 83 #include <linux/timer.h> 84 #include <linux/interrupt.h> 85 #include <linux/uaccess.h> 86 #include <linux/list.h> 87 #include <linux/kthread.h> 88 #include <linux/kernel.h> 89 #include <linux/compat.h> 90 #include <linux/io-mapping.h> 91 #include <linux/poll.h> 92 #include <linux/smp.h> 93 #include <linux/wait_bit.h> 94 #include <linux/rcupdate.h> 95 #include <linux/interval_tree.h> 96 #include <linux/interval_tree_generic.h> 97 98 #if defined(__i386__) || defined(__amd64__) 99 #include <asm/smp.h> 100 #include <asm/processor.h> 101 #endif 102 103 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 104 "LinuxKPI parameters"); 105 106 int linuxkpi_debug; 107 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN, 108 &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable."); 109 110 int linuxkpi_warn_dump_stack = 0; 111 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN, 112 &linuxkpi_warn_dump_stack, 0, 113 "Set to enable stack traces from WARN_ON(). Clear to disable."); 114 115 static struct timeval lkpi_net_lastlog; 116 static int lkpi_net_curpps; 117 static int lkpi_net_maxpps = 99; 118 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN, 119 &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second."); 120 121 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat"); 122 123 #include <linux/rbtree.h> 124 /* Undo Linux compat changes. */ 125 #undef RB_ROOT 126 #undef file 127 #undef cdev 128 #define RB_ROOT(head) (head)->rbh_root 129 130 static void linux_destroy_dev(struct linux_cdev *); 131 static void linux_cdev_deref(struct linux_cdev *ldev); 132 static struct vm_area_struct *linux_cdev_handle_find(void *handle); 133 134 cpumask_t cpu_online_mask; 135 static cpumask_t static_single_cpu_mask[MAXCPU]; 136 struct kobject linux_class_root; 137 struct device linux_root_device; 138 struct class linux_class_misc; 139 struct list_head pci_drivers; 140 struct list_head pci_devices; 141 spinlock_t pci_lock; 142 143 unsigned long linux_timer_hz_mask; 144 145 wait_queue_head_t linux_bit_waitq; 146 wait_queue_head_t linux_var_waitq; 147 148 int 149 panic_cmp(struct rb_node *one, struct rb_node *two) 150 { 151 panic("no cmp"); 152 } 153 154 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp); 155 156 #define START(node) ((node)->start) 157 #define LAST(node) ((node)->last) 158 159 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START, 160 LAST,, lkpi_interval_tree) 161 162 struct kobject * 163 kobject_create(void) 164 { 165 struct kobject *kobj; 166 167 kobj = kzalloc(sizeof(*kobj), GFP_KERNEL); 168 if (kobj == NULL) 169 return (NULL); 170 kobject_init(kobj, &linux_kfree_type); 171 172 return (kobj); 173 } 174 175 176 int 177 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args) 178 { 179 va_list tmp_va; 180 int len; 181 char *old; 182 char *name; 183 char dummy; 184 185 old = kobj->name; 186 187 if (old && fmt == NULL) 188 return (0); 189 190 /* compute length of string */ 191 va_copy(tmp_va, args); 192 len = vsnprintf(&dummy, 0, fmt, tmp_va); 193 va_end(tmp_va); 194 195 /* account for zero termination */ 196 len++; 197 198 /* check for error */ 199 if (len < 1) 200 return (-EINVAL); 201 202 /* allocate memory for string */ 203 name = kzalloc(len, GFP_KERNEL); 204 if (name == NULL) 205 return (-ENOMEM); 206 vsnprintf(name, len, fmt, args); 207 kobj->name = name; 208 209 /* free old string */ 210 kfree(old); 211 212 /* filter new string */ 213 for (; *name != '\0'; name++) 214 if (*name == '/') 215 *name = '!'; 216 return (0); 217 } 218 219 int 220 kobject_set_name(struct kobject *kobj, const char *fmt, ...) 221 { 222 va_list args; 223 int error; 224 225 va_start(args, fmt); 226 error = kobject_set_name_vargs(kobj, fmt, args); 227 va_end(args); 228 229 return (error); 230 } 231 232 static int 233 kobject_add_complete(struct kobject *kobj, struct kobject *parent) 234 { 235 const struct kobj_type *t; 236 int error; 237 238 kobj->parent = parent; 239 error = sysfs_create_dir(kobj); 240 if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) { 241 struct attribute **attr; 242 t = kobj->ktype; 243 244 for (attr = t->default_attrs; *attr != NULL; attr++) { 245 error = sysfs_create_file(kobj, *attr); 246 if (error) 247 break; 248 } 249 if (error) 250 sysfs_remove_dir(kobj); 251 } 252 return (error); 253 } 254 255 int 256 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...) 257 { 258 va_list args; 259 int error; 260 261 va_start(args, fmt); 262 error = kobject_set_name_vargs(kobj, fmt, args); 263 va_end(args); 264 if (error) 265 return (error); 266 267 return kobject_add_complete(kobj, parent); 268 } 269 270 void 271 linux_kobject_release(struct kref *kref) 272 { 273 struct kobject *kobj; 274 char *name; 275 276 kobj = container_of(kref, struct kobject, kref); 277 sysfs_remove_dir(kobj); 278 name = kobj->name; 279 if (kobj->ktype && kobj->ktype->release) 280 kobj->ktype->release(kobj); 281 kfree(name); 282 } 283 284 static void 285 linux_kobject_kfree(struct kobject *kobj) 286 { 287 kfree(kobj); 288 } 289 290 static void 291 linux_kobject_kfree_name(struct kobject *kobj) 292 { 293 if (kobj) { 294 kfree(kobj->name); 295 } 296 } 297 298 const struct kobj_type linux_kfree_type = { 299 .release = linux_kobject_kfree 300 }; 301 302 static ssize_t 303 lkpi_kobj_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) 304 { 305 struct kobj_attribute *ka = 306 container_of(attr, struct kobj_attribute, attr); 307 308 if (ka->show == NULL) 309 return (-EIO); 310 311 return (ka->show(kobj, ka, buf)); 312 } 313 314 static ssize_t 315 lkpi_kobj_attr_store(struct kobject *kobj, struct attribute *attr, 316 const char *buf, size_t count) 317 { 318 struct kobj_attribute *ka = 319 container_of(attr, struct kobj_attribute, attr); 320 321 if (ka->store == NULL) 322 return (-EIO); 323 324 return (ka->store(kobj, ka, buf, count)); 325 } 326 327 const struct sysfs_ops kobj_sysfs_ops = { 328 .show = lkpi_kobj_attr_show, 329 .store = lkpi_kobj_attr_store, 330 }; 331 332 static void 333 linux_device_release(struct device *dev) 334 { 335 pr_debug("linux_device_release: %s\n", dev_name(dev)); 336 kfree(dev); 337 } 338 339 static ssize_t 340 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf) 341 { 342 struct class_attribute *dattr; 343 ssize_t error; 344 345 dattr = container_of(attr, struct class_attribute, attr); 346 error = -EIO; 347 if (dattr->show) 348 error = dattr->show(container_of(kobj, struct class, kobj), 349 dattr, buf); 350 return (error); 351 } 352 353 static ssize_t 354 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf, 355 size_t count) 356 { 357 struct class_attribute *dattr; 358 ssize_t error; 359 360 dattr = container_of(attr, struct class_attribute, attr); 361 error = -EIO; 362 if (dattr->store) 363 error = dattr->store(container_of(kobj, struct class, kobj), 364 dattr, buf, count); 365 return (error); 366 } 367 368 static void 369 linux_class_release(struct kobject *kobj) 370 { 371 struct class *class; 372 373 class = container_of(kobj, struct class, kobj); 374 if (class->class_release) 375 class->class_release(class); 376 } 377 378 static const struct sysfs_ops linux_class_sysfs = { 379 .show = linux_class_show, 380 .store = linux_class_store, 381 }; 382 383 const struct kobj_type linux_class_ktype = { 384 .release = linux_class_release, 385 .sysfs_ops = &linux_class_sysfs 386 }; 387 388 static void 389 linux_dev_release(struct kobject *kobj) 390 { 391 struct device *dev; 392 393 dev = container_of(kobj, struct device, kobj); 394 /* This is the precedence defined by linux. */ 395 if (dev->release) 396 dev->release(dev); 397 else if (dev->class && dev->class->dev_release) 398 dev->class->dev_release(dev); 399 } 400 401 static ssize_t 402 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf) 403 { 404 struct device_attribute *dattr; 405 ssize_t error; 406 407 dattr = container_of(attr, struct device_attribute, attr); 408 error = -EIO; 409 if (dattr->show) 410 error = dattr->show(container_of(kobj, struct device, kobj), 411 dattr, buf); 412 return (error); 413 } 414 415 static ssize_t 416 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf, 417 size_t count) 418 { 419 struct device_attribute *dattr; 420 ssize_t error; 421 422 dattr = container_of(attr, struct device_attribute, attr); 423 error = -EIO; 424 if (dattr->store) 425 error = dattr->store(container_of(kobj, struct device, kobj), 426 dattr, buf, count); 427 return (error); 428 } 429 430 static const struct sysfs_ops linux_dev_sysfs = { 431 .show = linux_dev_show, 432 .store = linux_dev_store, 433 }; 434 435 const struct kobj_type linux_dev_ktype = { 436 .release = linux_dev_release, 437 .sysfs_ops = &linux_dev_sysfs 438 }; 439 440 struct device * 441 device_create(struct class *class, struct device *parent, dev_t devt, 442 void *drvdata, const char *fmt, ...) 443 { 444 struct device *dev; 445 va_list args; 446 447 dev = kzalloc(sizeof(*dev), M_WAITOK); 448 dev->parent = parent; 449 dev->class = class; 450 dev->devt = devt; 451 dev->driver_data = drvdata; 452 dev->release = linux_device_release; 453 va_start(args, fmt); 454 kobject_set_name_vargs(&dev->kobj, fmt, args); 455 va_end(args); 456 device_register(dev); 457 458 return (dev); 459 } 460 461 struct device * 462 device_create_groups_vargs(struct class *class, struct device *parent, 463 dev_t devt, void *drvdata, const struct attribute_group **groups, 464 const char *fmt, va_list args) 465 { 466 struct device *dev = NULL; 467 int retval = -ENODEV; 468 469 if (class == NULL || IS_ERR(class)) 470 goto error; 471 472 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 473 if (!dev) { 474 retval = -ENOMEM; 475 goto error; 476 } 477 478 dev->devt = devt; 479 dev->class = class; 480 dev->parent = parent; 481 dev->groups = groups; 482 dev->release = device_create_release; 483 /* device_initialize() needs the class and parent to be set */ 484 device_initialize(dev); 485 dev_set_drvdata(dev, drvdata); 486 487 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 488 if (retval) 489 goto error; 490 491 retval = device_add(dev); 492 if (retval) 493 goto error; 494 495 return dev; 496 497 error: 498 put_device(dev); 499 return ERR_PTR(retval); 500 } 501 502 struct class * 503 class_create(struct module *owner, const char *name) 504 { 505 struct class *class; 506 int error; 507 508 class = kzalloc(sizeof(*class), M_WAITOK); 509 class->owner = owner; 510 class->name = name; 511 class->class_release = linux_class_kfree; 512 error = class_register(class); 513 if (error) { 514 kfree(class); 515 return (NULL); 516 } 517 518 return (class); 519 } 520 521 int 522 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype, 523 struct kobject *parent, const char *fmt, ...) 524 { 525 va_list args; 526 int error; 527 528 kobject_init(kobj, ktype); 529 kobj->ktype = ktype; 530 kobj->parent = parent; 531 kobj->name = NULL; 532 533 va_start(args, fmt); 534 error = kobject_set_name_vargs(kobj, fmt, args); 535 va_end(args); 536 if (error) 537 return (error); 538 return kobject_add_complete(kobj, parent); 539 } 540 541 static void 542 linux_kq_lock(void *arg) 543 { 544 spinlock_t *s = arg; 545 546 spin_lock(s); 547 } 548 static void 549 linux_kq_unlock(void *arg) 550 { 551 spinlock_t *s = arg; 552 553 spin_unlock(s); 554 } 555 556 static void 557 linux_kq_assert_lock(void *arg, int what) 558 { 559 #ifdef INVARIANTS 560 spinlock_t *s = arg; 561 562 if (what == LA_LOCKED) 563 mtx_assert(&s->m, MA_OWNED); 564 else 565 mtx_assert(&s->m, MA_NOTOWNED); 566 #endif 567 } 568 569 static void 570 linux_file_kqfilter_poll(struct linux_file *, int); 571 572 struct linux_file * 573 linux_file_alloc(void) 574 { 575 struct linux_file *filp; 576 577 filp = kzalloc(sizeof(*filp), GFP_KERNEL); 578 579 /* set initial refcount */ 580 filp->f_count = 1; 581 582 /* setup fields needed by kqueue support */ 583 spin_lock_init(&filp->f_kqlock); 584 knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock, 585 linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock); 586 587 return (filp); 588 } 589 590 void 591 linux_file_free(struct linux_file *filp) 592 { 593 if (filp->_file == NULL) { 594 if (filp->f_op != NULL && filp->f_op->release != NULL) 595 filp->f_op->release(filp->f_vnode, filp); 596 if (filp->f_shmem != NULL) 597 vm_object_deallocate(filp->f_shmem); 598 kfree_rcu(filp, rcu); 599 } else { 600 /* 601 * The close method of the character device or file 602 * will free the linux_file structure: 603 */ 604 _fdrop(filp->_file, curthread); 605 } 606 } 607 608 struct linux_cdev * 609 cdev_alloc(void) 610 { 611 struct linux_cdev *cdev; 612 613 cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK); 614 kobject_init(&cdev->kobj, &linux_cdev_ktype); 615 cdev->refs = 1; 616 return (cdev); 617 } 618 619 static int 620 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, 621 vm_page_t *mres) 622 { 623 struct vm_area_struct *vmap; 624 625 vmap = linux_cdev_handle_find(vm_obj->handle); 626 627 MPASS(vmap != NULL); 628 MPASS(vmap->vm_private_data == vm_obj->handle); 629 630 if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) { 631 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset; 632 vm_page_t page; 633 634 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 635 /* 636 * If the passed in result page is a fake 637 * page, update it with the new physical 638 * address. 639 */ 640 page = *mres; 641 vm_page_updatefake(page, paddr, vm_obj->memattr); 642 } else { 643 /* 644 * Replace the passed in "mres" page with our 645 * own fake page and free up the all of the 646 * original pages. 647 */ 648 VM_OBJECT_WUNLOCK(vm_obj); 649 page = vm_page_getfake(paddr, vm_obj->memattr); 650 VM_OBJECT_WLOCK(vm_obj); 651 652 vm_page_replace(page, vm_obj, (*mres)->pindex, *mres); 653 *mres = page; 654 } 655 vm_page_valid(page); 656 return (VM_PAGER_OK); 657 } 658 return (VM_PAGER_FAIL); 659 } 660 661 static int 662 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type, 663 vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last) 664 { 665 struct vm_area_struct *vmap; 666 int err; 667 668 /* get VM area structure */ 669 vmap = linux_cdev_handle_find(vm_obj->handle); 670 MPASS(vmap != NULL); 671 MPASS(vmap->vm_private_data == vm_obj->handle); 672 673 VM_OBJECT_WUNLOCK(vm_obj); 674 675 linux_set_current(curthread); 676 677 down_write(&vmap->vm_mm->mmap_sem); 678 if (unlikely(vmap->vm_ops == NULL)) { 679 err = VM_FAULT_SIGBUS; 680 } else { 681 struct vm_fault vmf; 682 683 /* fill out VM fault structure */ 684 vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx); 685 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 686 vmf.pgoff = 0; 687 vmf.page = NULL; 688 vmf.vma = vmap; 689 690 vmap->vm_pfn_count = 0; 691 vmap->vm_pfn_pcount = &vmap->vm_pfn_count; 692 vmap->vm_obj = vm_obj; 693 694 err = vmap->vm_ops->fault(&vmf); 695 696 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) { 697 kern_yield(PRI_USER); 698 err = vmap->vm_ops->fault(&vmf); 699 } 700 } 701 702 /* translate return code */ 703 switch (err) { 704 case VM_FAULT_OOM: 705 err = VM_PAGER_AGAIN; 706 break; 707 case VM_FAULT_SIGBUS: 708 err = VM_PAGER_BAD; 709 break; 710 case VM_FAULT_NOPAGE: 711 /* 712 * By contract the fault handler will return having 713 * busied all the pages itself. If pidx is already 714 * found in the object, it will simply xbusy the first 715 * page and return with vm_pfn_count set to 1. 716 */ 717 *first = vmap->vm_pfn_first; 718 *last = *first + vmap->vm_pfn_count - 1; 719 err = VM_PAGER_OK; 720 break; 721 default: 722 err = VM_PAGER_ERROR; 723 break; 724 } 725 up_write(&vmap->vm_mm->mmap_sem); 726 VM_OBJECT_WLOCK(vm_obj); 727 return (err); 728 } 729 730 static struct rwlock linux_vma_lock; 731 static TAILQ_HEAD(, vm_area_struct) linux_vma_head = 732 TAILQ_HEAD_INITIALIZER(linux_vma_head); 733 734 static void 735 linux_cdev_handle_free(struct vm_area_struct *vmap) 736 { 737 /* Drop reference on vm_file */ 738 if (vmap->vm_file != NULL) 739 fput(vmap->vm_file); 740 741 /* Drop reference on mm_struct */ 742 mmput(vmap->vm_mm); 743 744 kfree(vmap); 745 } 746 747 static void 748 linux_cdev_handle_remove(struct vm_area_struct *vmap) 749 { 750 rw_wlock(&linux_vma_lock); 751 TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry); 752 rw_wunlock(&linux_vma_lock); 753 } 754 755 static struct vm_area_struct * 756 linux_cdev_handle_find(void *handle) 757 { 758 struct vm_area_struct *vmap; 759 760 rw_rlock(&linux_vma_lock); 761 TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) { 762 if (vmap->vm_private_data == handle) 763 break; 764 } 765 rw_runlock(&linux_vma_lock); 766 return (vmap); 767 } 768 769 static int 770 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 771 vm_ooffset_t foff, struct ucred *cred, u_short *color) 772 { 773 774 MPASS(linux_cdev_handle_find(handle) != NULL); 775 *color = 0; 776 return (0); 777 } 778 779 static void 780 linux_cdev_pager_dtor(void *handle) 781 { 782 const struct vm_operations_struct *vm_ops; 783 struct vm_area_struct *vmap; 784 785 vmap = linux_cdev_handle_find(handle); 786 MPASS(vmap != NULL); 787 788 /* 789 * Remove handle before calling close operation to prevent 790 * other threads from reusing the handle pointer. 791 */ 792 linux_cdev_handle_remove(vmap); 793 794 down_write(&vmap->vm_mm->mmap_sem); 795 vm_ops = vmap->vm_ops; 796 if (likely(vm_ops != NULL)) 797 vm_ops->close(vmap); 798 up_write(&vmap->vm_mm->mmap_sem); 799 800 linux_cdev_handle_free(vmap); 801 } 802 803 static struct cdev_pager_ops linux_cdev_pager_ops[2] = { 804 { 805 /* OBJT_MGTDEVICE */ 806 .cdev_pg_populate = linux_cdev_pager_populate, 807 .cdev_pg_ctor = linux_cdev_pager_ctor, 808 .cdev_pg_dtor = linux_cdev_pager_dtor 809 }, 810 { 811 /* OBJT_DEVICE */ 812 .cdev_pg_fault = linux_cdev_pager_fault, 813 .cdev_pg_ctor = linux_cdev_pager_ctor, 814 .cdev_pg_dtor = linux_cdev_pager_dtor 815 }, 816 }; 817 818 int 819 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 820 unsigned long size) 821 { 822 vm_object_t obj; 823 vm_page_t m; 824 825 obj = vma->vm_obj; 826 if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0) 827 return (-ENOTSUP); 828 VM_OBJECT_RLOCK(obj); 829 for (m = vm_page_find_least(obj, OFF_TO_IDX(address)); 830 m != NULL && m->pindex < OFF_TO_IDX(address + size); 831 m = TAILQ_NEXT(m, listq)) 832 pmap_remove_all(m); 833 VM_OBJECT_RUNLOCK(obj); 834 return (0); 835 } 836 837 void 838 vma_set_file(struct vm_area_struct *vma, struct linux_file *file) 839 { 840 struct linux_file *tmp; 841 842 /* Changing an anonymous vma with this is illegal */ 843 get_file(file); 844 tmp = vma->vm_file; 845 vma->vm_file = file; 846 fput(tmp); 847 } 848 849 static struct file_operations dummy_ldev_ops = { 850 /* XXXKIB */ 851 }; 852 853 static struct linux_cdev dummy_ldev = { 854 .ops = &dummy_ldev_ops, 855 }; 856 857 #define LDEV_SI_DTR 0x0001 858 #define LDEV_SI_REF 0x0002 859 860 static void 861 linux_get_fop(struct linux_file *filp, const struct file_operations **fop, 862 struct linux_cdev **dev) 863 { 864 struct linux_cdev *ldev; 865 u_int siref; 866 867 ldev = filp->f_cdev; 868 *fop = filp->f_op; 869 if (ldev != NULL) { 870 if (ldev->kobj.ktype == &linux_cdev_static_ktype) { 871 refcount_acquire(&ldev->refs); 872 } else { 873 for (siref = ldev->siref;;) { 874 if ((siref & LDEV_SI_DTR) != 0) { 875 ldev = &dummy_ldev; 876 *fop = ldev->ops; 877 siref = ldev->siref; 878 MPASS((ldev->siref & LDEV_SI_DTR) == 0); 879 } else if (atomic_fcmpset_int(&ldev->siref, 880 &siref, siref + LDEV_SI_REF)) { 881 break; 882 } 883 } 884 } 885 } 886 *dev = ldev; 887 } 888 889 static void 890 linux_drop_fop(struct linux_cdev *ldev) 891 { 892 893 if (ldev == NULL) 894 return; 895 if (ldev->kobj.ktype == &linux_cdev_static_ktype) { 896 linux_cdev_deref(ldev); 897 } else { 898 MPASS(ldev->kobj.ktype == &linux_cdev_ktype); 899 MPASS((ldev->siref & ~LDEV_SI_DTR) != 0); 900 atomic_subtract_int(&ldev->siref, LDEV_SI_REF); 901 } 902 } 903 904 #define OPW(fp,td,code) ({ \ 905 struct file *__fpop; \ 906 __typeof(code) __retval; \ 907 \ 908 __fpop = (td)->td_fpop; \ 909 (td)->td_fpop = (fp); \ 910 __retval = (code); \ 911 (td)->td_fpop = __fpop; \ 912 __retval; \ 913 }) 914 915 static int 916 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td, 917 struct file *file) 918 { 919 struct linux_cdev *ldev; 920 struct linux_file *filp; 921 const struct file_operations *fop; 922 int error; 923 924 ldev = dev->si_drv1; 925 926 filp = linux_file_alloc(); 927 filp->f_dentry = &filp->f_dentry_store; 928 filp->f_op = ldev->ops; 929 filp->f_mode = file->f_flag; 930 filp->f_flags = file->f_flag; 931 filp->f_vnode = file->f_vnode; 932 filp->_file = file; 933 refcount_acquire(&ldev->refs); 934 filp->f_cdev = ldev; 935 936 linux_set_current(td); 937 linux_get_fop(filp, &fop, &ldev); 938 939 if (fop->open != NULL) { 940 error = -fop->open(file->f_vnode, filp); 941 if (error != 0) { 942 linux_drop_fop(ldev); 943 linux_cdev_deref(filp->f_cdev); 944 kfree(filp); 945 return (error); 946 } 947 } 948 949 /* hold on to the vnode - used for fstat() */ 950 vhold(filp->f_vnode); 951 952 /* release the file from devfs */ 953 finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops); 954 linux_drop_fop(ldev); 955 return (ENXIO); 956 } 957 958 #define LINUX_IOCTL_MIN_PTR 0x10000UL 959 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX) 960 961 static inline int 962 linux_remap_address(void **uaddr, size_t len) 963 { 964 uintptr_t uaddr_val = (uintptr_t)(*uaddr); 965 966 if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR && 967 uaddr_val < LINUX_IOCTL_MAX_PTR)) { 968 struct task_struct *pts = current; 969 if (pts == NULL) { 970 *uaddr = NULL; 971 return (1); 972 } 973 974 /* compute data offset */ 975 uaddr_val -= LINUX_IOCTL_MIN_PTR; 976 977 /* check that length is within bounds */ 978 if ((len > IOCPARM_MAX) || 979 (uaddr_val + len) > pts->bsd_ioctl_len) { 980 *uaddr = NULL; 981 return (1); 982 } 983 984 /* re-add kernel buffer address */ 985 uaddr_val += (uintptr_t)pts->bsd_ioctl_data; 986 987 /* update address location */ 988 *uaddr = (void *)uaddr_val; 989 return (1); 990 } 991 return (0); 992 } 993 994 int 995 linux_copyin(const void *uaddr, void *kaddr, size_t len) 996 { 997 if (linux_remap_address(__DECONST(void **, &uaddr), len)) { 998 if (uaddr == NULL) 999 return (-EFAULT); 1000 memcpy(kaddr, uaddr, len); 1001 return (0); 1002 } 1003 return (-copyin(uaddr, kaddr, len)); 1004 } 1005 1006 int 1007 linux_copyout(const void *kaddr, void *uaddr, size_t len) 1008 { 1009 if (linux_remap_address(&uaddr, len)) { 1010 if (uaddr == NULL) 1011 return (-EFAULT); 1012 memcpy(uaddr, kaddr, len); 1013 return (0); 1014 } 1015 return (-copyout(kaddr, uaddr, len)); 1016 } 1017 1018 size_t 1019 linux_clear_user(void *_uaddr, size_t _len) 1020 { 1021 uint8_t *uaddr = _uaddr; 1022 size_t len = _len; 1023 1024 /* make sure uaddr is aligned before going into the fast loop */ 1025 while (((uintptr_t)uaddr & 7) != 0 && len > 7) { 1026 if (subyte(uaddr, 0)) 1027 return (_len); 1028 uaddr++; 1029 len--; 1030 } 1031 1032 /* zero 8 bytes at a time */ 1033 while (len > 7) { 1034 #ifdef __LP64__ 1035 if (suword64(uaddr, 0)) 1036 return (_len); 1037 #else 1038 if (suword32(uaddr, 0)) 1039 return (_len); 1040 if (suword32(uaddr + 4, 0)) 1041 return (_len); 1042 #endif 1043 uaddr += 8; 1044 len -= 8; 1045 } 1046 1047 /* zero fill end, if any */ 1048 while (len > 0) { 1049 if (subyte(uaddr, 0)) 1050 return (_len); 1051 uaddr++; 1052 len--; 1053 } 1054 return (0); 1055 } 1056 1057 int 1058 linux_access_ok(const void *uaddr, size_t len) 1059 { 1060 uintptr_t saddr; 1061 uintptr_t eaddr; 1062 1063 /* get start and end address */ 1064 saddr = (uintptr_t)uaddr; 1065 eaddr = (uintptr_t)uaddr + len; 1066 1067 /* verify addresses are valid for userspace */ 1068 return ((saddr == eaddr) || 1069 (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS)); 1070 } 1071 1072 /* 1073 * This function should return either EINTR or ERESTART depending on 1074 * the signal type sent to this thread: 1075 */ 1076 static int 1077 linux_get_error(struct task_struct *task, int error) 1078 { 1079 /* check for signal type interrupt code */ 1080 if (error == EINTR || error == ERESTARTSYS || error == ERESTART) { 1081 error = -linux_schedule_get_interrupt_value(task); 1082 if (error == 0) 1083 error = EINTR; 1084 } 1085 return (error); 1086 } 1087 1088 static int 1089 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp, 1090 const struct file_operations *fop, u_long cmd, caddr_t data, 1091 struct thread *td) 1092 { 1093 struct task_struct *task = current; 1094 unsigned size; 1095 int error; 1096 1097 size = IOCPARM_LEN(cmd); 1098 /* refer to logic in sys_ioctl() */ 1099 if (size > 0) { 1100 /* 1101 * Setup hint for linux_copyin() and linux_copyout(). 1102 * 1103 * Background: Linux code expects a user-space address 1104 * while FreeBSD supplies a kernel-space address. 1105 */ 1106 task->bsd_ioctl_data = data; 1107 task->bsd_ioctl_len = size; 1108 data = (void *)LINUX_IOCTL_MIN_PTR; 1109 } else { 1110 /* fetch user-space pointer */ 1111 data = *(void **)data; 1112 } 1113 #ifdef COMPAT_FREEBSD32 1114 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1115 /* try the compat IOCTL handler first */ 1116 if (fop->compat_ioctl != NULL) { 1117 error = -OPW(fp, td, fop->compat_ioctl(filp, 1118 cmd, (u_long)data)); 1119 } else { 1120 error = ENOTTY; 1121 } 1122 1123 /* fallback to the regular IOCTL handler, if any */ 1124 if (error == ENOTTY && fop->unlocked_ioctl != NULL) { 1125 error = -OPW(fp, td, fop->unlocked_ioctl(filp, 1126 cmd, (u_long)data)); 1127 } 1128 } else 1129 #endif 1130 { 1131 if (fop->unlocked_ioctl != NULL) { 1132 error = -OPW(fp, td, fop->unlocked_ioctl(filp, 1133 cmd, (u_long)data)); 1134 } else { 1135 error = ENOTTY; 1136 } 1137 } 1138 if (size > 0) { 1139 task->bsd_ioctl_data = NULL; 1140 task->bsd_ioctl_len = 0; 1141 } 1142 1143 if (error == EWOULDBLOCK) { 1144 /* update kqfilter status, if any */ 1145 linux_file_kqfilter_poll(filp, 1146 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 1147 } else { 1148 error = linux_get_error(task, error); 1149 } 1150 return (error); 1151 } 1152 1153 #define LINUX_POLL_TABLE_NORMAL ((poll_table *)1) 1154 1155 /* 1156 * This function atomically updates the poll wakeup state and returns 1157 * the previous state at the time of update. 1158 */ 1159 static uint8_t 1160 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate) 1161 { 1162 int c, old; 1163 1164 c = v->counter; 1165 1166 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c) 1167 c = old; 1168 1169 return (c); 1170 } 1171 1172 static int 1173 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key) 1174 { 1175 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1176 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1177 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1178 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY, 1179 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */ 1180 }; 1181 struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq); 1182 1183 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1184 case LINUX_FWQ_STATE_QUEUED: 1185 linux_poll_wakeup(filp); 1186 return (1); 1187 default: 1188 return (0); 1189 } 1190 } 1191 1192 void 1193 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p) 1194 { 1195 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1196 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY, 1197 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1198 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */ 1199 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED, 1200 }; 1201 1202 /* check if we are called inside the select system call */ 1203 if (p == LINUX_POLL_TABLE_NORMAL) 1204 selrecord(curthread, &filp->f_selinfo); 1205 1206 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1207 case LINUX_FWQ_STATE_INIT: 1208 /* NOTE: file handles can only belong to one wait-queue */ 1209 filp->f_wait_queue.wqh = wqh; 1210 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback; 1211 add_wait_queue(wqh, &filp->f_wait_queue.wq); 1212 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED); 1213 break; 1214 default: 1215 break; 1216 } 1217 } 1218 1219 static void 1220 linux_poll_wait_dequeue(struct linux_file *filp) 1221 { 1222 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1223 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1224 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT, 1225 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT, 1226 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT, 1227 }; 1228 1229 seldrain(&filp->f_selinfo); 1230 1231 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1232 case LINUX_FWQ_STATE_NOT_READY: 1233 case LINUX_FWQ_STATE_QUEUED: 1234 case LINUX_FWQ_STATE_READY: 1235 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq); 1236 break; 1237 default: 1238 break; 1239 } 1240 } 1241 1242 void 1243 linux_poll_wakeup(struct linux_file *filp) 1244 { 1245 /* this function should be NULL-safe */ 1246 if (filp == NULL) 1247 return; 1248 1249 selwakeup(&filp->f_selinfo); 1250 1251 spin_lock(&filp->f_kqlock); 1252 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ | 1253 LINUX_KQ_FLAG_NEED_WRITE; 1254 1255 /* make sure the "knote" gets woken up */ 1256 KNOTE_LOCKED(&filp->f_selinfo.si_note, 1); 1257 spin_unlock(&filp->f_kqlock); 1258 } 1259 1260 static void 1261 linux_file_kqfilter_detach(struct knote *kn) 1262 { 1263 struct linux_file *filp = kn->kn_hook; 1264 1265 spin_lock(&filp->f_kqlock); 1266 knlist_remove(&filp->f_selinfo.si_note, kn, 1); 1267 spin_unlock(&filp->f_kqlock); 1268 } 1269 1270 static int 1271 linux_file_kqfilter_read_event(struct knote *kn, long hint) 1272 { 1273 struct linux_file *filp = kn->kn_hook; 1274 1275 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1276 1277 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0); 1278 } 1279 1280 static int 1281 linux_file_kqfilter_write_event(struct knote *kn, long hint) 1282 { 1283 struct linux_file *filp = kn->kn_hook; 1284 1285 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1286 1287 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0); 1288 } 1289 1290 static struct filterops linux_dev_kqfiltops_read = { 1291 .f_isfd = 1, 1292 .f_detach = linux_file_kqfilter_detach, 1293 .f_event = linux_file_kqfilter_read_event, 1294 }; 1295 1296 static struct filterops linux_dev_kqfiltops_write = { 1297 .f_isfd = 1, 1298 .f_detach = linux_file_kqfilter_detach, 1299 .f_event = linux_file_kqfilter_write_event, 1300 }; 1301 1302 static void 1303 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags) 1304 { 1305 struct thread *td; 1306 const struct file_operations *fop; 1307 struct linux_cdev *ldev; 1308 int temp; 1309 1310 if ((filp->f_kqflags & kqflags) == 0) 1311 return; 1312 1313 td = curthread; 1314 1315 linux_get_fop(filp, &fop, &ldev); 1316 /* get the latest polling state */ 1317 temp = OPW(filp->_file, td, fop->poll(filp, NULL)); 1318 linux_drop_fop(ldev); 1319 1320 spin_lock(&filp->f_kqlock); 1321 /* clear kqflags */ 1322 filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ | 1323 LINUX_KQ_FLAG_NEED_WRITE); 1324 /* update kqflags */ 1325 if ((temp & (POLLIN | POLLOUT)) != 0) { 1326 if ((temp & POLLIN) != 0) 1327 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ; 1328 if ((temp & POLLOUT) != 0) 1329 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE; 1330 1331 /* make sure the "knote" gets woken up */ 1332 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0); 1333 } 1334 spin_unlock(&filp->f_kqlock); 1335 } 1336 1337 static int 1338 linux_file_kqfilter(struct file *file, struct knote *kn) 1339 { 1340 struct linux_file *filp; 1341 struct thread *td; 1342 int error; 1343 1344 td = curthread; 1345 filp = (struct linux_file *)file->f_data; 1346 filp->f_flags = file->f_flag; 1347 if (filp->f_op->poll == NULL) 1348 return (EINVAL); 1349 1350 spin_lock(&filp->f_kqlock); 1351 switch (kn->kn_filter) { 1352 case EVFILT_READ: 1353 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ; 1354 kn->kn_fop = &linux_dev_kqfiltops_read; 1355 kn->kn_hook = filp; 1356 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1357 error = 0; 1358 break; 1359 case EVFILT_WRITE: 1360 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE; 1361 kn->kn_fop = &linux_dev_kqfiltops_write; 1362 kn->kn_hook = filp; 1363 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1364 error = 0; 1365 break; 1366 default: 1367 error = EINVAL; 1368 break; 1369 } 1370 spin_unlock(&filp->f_kqlock); 1371 1372 if (error == 0) { 1373 linux_set_current(td); 1374 1375 /* update kqfilter status, if any */ 1376 linux_file_kqfilter_poll(filp, 1377 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 1378 } 1379 return (error); 1380 } 1381 1382 static int 1383 linux_file_mmap_single(struct file *fp, const struct file_operations *fop, 1384 vm_ooffset_t *offset, vm_size_t size, struct vm_object **object, 1385 int nprot, bool is_shared, struct thread *td) 1386 { 1387 struct task_struct *task; 1388 struct vm_area_struct *vmap; 1389 struct mm_struct *mm; 1390 struct linux_file *filp; 1391 vm_memattr_t attr; 1392 int error; 1393 1394 filp = (struct linux_file *)fp->f_data; 1395 filp->f_flags = fp->f_flag; 1396 1397 if (fop->mmap == NULL) 1398 return (EOPNOTSUPP); 1399 1400 linux_set_current(td); 1401 1402 /* 1403 * The same VM object might be shared by multiple processes 1404 * and the mm_struct is usually freed when a process exits. 1405 * 1406 * The atomic reference below makes sure the mm_struct is 1407 * available as long as the vmap is in the linux_vma_head. 1408 */ 1409 task = current; 1410 mm = task->mm; 1411 if (atomic_inc_not_zero(&mm->mm_users) == 0) 1412 return (EINVAL); 1413 1414 vmap = kzalloc(sizeof(*vmap), GFP_KERNEL); 1415 vmap->vm_start = 0; 1416 vmap->vm_end = size; 1417 vmap->vm_pgoff = *offset / PAGE_SIZE; 1418 vmap->vm_pfn = 0; 1419 vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL); 1420 if (is_shared) 1421 vmap->vm_flags |= VM_SHARED; 1422 vmap->vm_ops = NULL; 1423 vmap->vm_file = get_file(filp); 1424 vmap->vm_mm = mm; 1425 1426 if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) { 1427 error = linux_get_error(task, EINTR); 1428 } else { 1429 error = -OPW(fp, td, fop->mmap(filp, vmap)); 1430 error = linux_get_error(task, error); 1431 up_write(&vmap->vm_mm->mmap_sem); 1432 } 1433 1434 if (error != 0) { 1435 linux_cdev_handle_free(vmap); 1436 return (error); 1437 } 1438 1439 attr = pgprot2cachemode(vmap->vm_page_prot); 1440 1441 if (vmap->vm_ops != NULL) { 1442 struct vm_area_struct *ptr; 1443 void *vm_private_data; 1444 bool vm_no_fault; 1445 1446 if (vmap->vm_ops->open == NULL || 1447 vmap->vm_ops->close == NULL || 1448 vmap->vm_private_data == NULL) { 1449 /* free allocated VM area struct */ 1450 linux_cdev_handle_free(vmap); 1451 return (EINVAL); 1452 } 1453 1454 vm_private_data = vmap->vm_private_data; 1455 1456 rw_wlock(&linux_vma_lock); 1457 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) { 1458 if (ptr->vm_private_data == vm_private_data) 1459 break; 1460 } 1461 /* check if there is an existing VM area struct */ 1462 if (ptr != NULL) { 1463 /* check if the VM area structure is invalid */ 1464 if (ptr->vm_ops == NULL || 1465 ptr->vm_ops->open == NULL || 1466 ptr->vm_ops->close == NULL) { 1467 error = ESTALE; 1468 vm_no_fault = 1; 1469 } else { 1470 error = EEXIST; 1471 vm_no_fault = (ptr->vm_ops->fault == NULL); 1472 } 1473 } else { 1474 /* insert VM area structure into list */ 1475 TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry); 1476 error = 0; 1477 vm_no_fault = (vmap->vm_ops->fault == NULL); 1478 } 1479 rw_wunlock(&linux_vma_lock); 1480 1481 if (error != 0) { 1482 /* free allocated VM area struct */ 1483 linux_cdev_handle_free(vmap); 1484 /* check for stale VM area struct */ 1485 if (error != EEXIST) 1486 return (error); 1487 } 1488 1489 /* check if there is no fault handler */ 1490 if (vm_no_fault) { 1491 *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE, 1492 &linux_cdev_pager_ops[1], size, nprot, *offset, 1493 td->td_ucred); 1494 } else { 1495 *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE, 1496 &linux_cdev_pager_ops[0], size, nprot, *offset, 1497 td->td_ucred); 1498 } 1499 1500 /* check if allocating the VM object failed */ 1501 if (*object == NULL) { 1502 if (error == 0) { 1503 /* remove VM area struct from list */ 1504 linux_cdev_handle_remove(vmap); 1505 /* free allocated VM area struct */ 1506 linux_cdev_handle_free(vmap); 1507 } 1508 return (EINVAL); 1509 } 1510 } else { 1511 struct sglist *sg; 1512 1513 sg = sglist_alloc(1, M_WAITOK); 1514 sglist_append_phys(sg, 1515 (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len); 1516 1517 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len, 1518 nprot, 0, td->td_ucred); 1519 1520 linux_cdev_handle_free(vmap); 1521 1522 if (*object == NULL) { 1523 sglist_free(sg); 1524 return (EINVAL); 1525 } 1526 } 1527 1528 if (attr != VM_MEMATTR_DEFAULT) { 1529 VM_OBJECT_WLOCK(*object); 1530 vm_object_set_memattr(*object, attr); 1531 VM_OBJECT_WUNLOCK(*object); 1532 } 1533 *offset = 0; 1534 return (0); 1535 } 1536 1537 struct cdevsw linuxcdevsw = { 1538 .d_version = D_VERSION, 1539 .d_fdopen = linux_dev_fdopen, 1540 .d_name = "lkpidev", 1541 }; 1542 1543 static int 1544 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred, 1545 int flags, struct thread *td) 1546 { 1547 struct linux_file *filp; 1548 const struct file_operations *fop; 1549 struct linux_cdev *ldev; 1550 ssize_t bytes; 1551 int error; 1552 1553 error = 0; 1554 filp = (struct linux_file *)file->f_data; 1555 filp->f_flags = file->f_flag; 1556 /* XXX no support for I/O vectors currently */ 1557 if (uio->uio_iovcnt != 1) 1558 return (EOPNOTSUPP); 1559 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1560 return (EINVAL); 1561 linux_set_current(td); 1562 linux_get_fop(filp, &fop, &ldev); 1563 if (fop->read != NULL) { 1564 bytes = OPW(file, td, fop->read(filp, 1565 uio->uio_iov->iov_base, 1566 uio->uio_iov->iov_len, &uio->uio_offset)); 1567 if (bytes >= 0) { 1568 uio->uio_iov->iov_base = 1569 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1570 uio->uio_iov->iov_len -= bytes; 1571 uio->uio_resid -= bytes; 1572 } else { 1573 error = linux_get_error(current, -bytes); 1574 } 1575 } else 1576 error = ENXIO; 1577 1578 /* update kqfilter status, if any */ 1579 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ); 1580 linux_drop_fop(ldev); 1581 1582 return (error); 1583 } 1584 1585 static int 1586 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred, 1587 int flags, struct thread *td) 1588 { 1589 struct linux_file *filp; 1590 const struct file_operations *fop; 1591 struct linux_cdev *ldev; 1592 ssize_t bytes; 1593 int error; 1594 1595 filp = (struct linux_file *)file->f_data; 1596 filp->f_flags = file->f_flag; 1597 /* XXX no support for I/O vectors currently */ 1598 if (uio->uio_iovcnt != 1) 1599 return (EOPNOTSUPP); 1600 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1601 return (EINVAL); 1602 linux_set_current(td); 1603 linux_get_fop(filp, &fop, &ldev); 1604 if (fop->write != NULL) { 1605 bytes = OPW(file, td, fop->write(filp, 1606 uio->uio_iov->iov_base, 1607 uio->uio_iov->iov_len, &uio->uio_offset)); 1608 if (bytes >= 0) { 1609 uio->uio_iov->iov_base = 1610 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1611 uio->uio_iov->iov_len -= bytes; 1612 uio->uio_resid -= bytes; 1613 error = 0; 1614 } else { 1615 error = linux_get_error(current, -bytes); 1616 } 1617 } else 1618 error = ENXIO; 1619 1620 /* update kqfilter status, if any */ 1621 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE); 1622 1623 linux_drop_fop(ldev); 1624 1625 return (error); 1626 } 1627 1628 static int 1629 linux_file_poll(struct file *file, int events, struct ucred *active_cred, 1630 struct thread *td) 1631 { 1632 struct linux_file *filp; 1633 const struct file_operations *fop; 1634 struct linux_cdev *ldev; 1635 int revents; 1636 1637 filp = (struct linux_file *)file->f_data; 1638 filp->f_flags = file->f_flag; 1639 linux_set_current(td); 1640 linux_get_fop(filp, &fop, &ldev); 1641 if (fop->poll != NULL) { 1642 revents = OPW(file, td, fop->poll(filp, 1643 LINUX_POLL_TABLE_NORMAL)) & events; 1644 } else { 1645 revents = 0; 1646 } 1647 linux_drop_fop(ldev); 1648 return (revents); 1649 } 1650 1651 static int 1652 linux_file_close(struct file *file, struct thread *td) 1653 { 1654 struct linux_file *filp; 1655 int (*release)(struct inode *, struct linux_file *); 1656 const struct file_operations *fop; 1657 struct linux_cdev *ldev; 1658 int error; 1659 1660 filp = (struct linux_file *)file->f_data; 1661 1662 KASSERT(file_count(filp) == 0, 1663 ("File refcount(%d) is not zero", file_count(filp))); 1664 1665 if (td == NULL) 1666 td = curthread; 1667 1668 error = 0; 1669 filp->f_flags = file->f_flag; 1670 linux_set_current(td); 1671 linux_poll_wait_dequeue(filp); 1672 linux_get_fop(filp, &fop, &ldev); 1673 /* 1674 * Always use the real release function, if any, to avoid 1675 * leaking device resources: 1676 */ 1677 release = filp->f_op->release; 1678 if (release != NULL) 1679 error = -OPW(file, td, release(filp->f_vnode, filp)); 1680 funsetown(&filp->f_sigio); 1681 if (filp->f_vnode != NULL) 1682 vdrop(filp->f_vnode); 1683 linux_drop_fop(ldev); 1684 ldev = filp->f_cdev; 1685 if (ldev != NULL) 1686 linux_cdev_deref(ldev); 1687 linux_synchronize_rcu(RCU_TYPE_REGULAR); 1688 kfree(filp); 1689 1690 return (error); 1691 } 1692 1693 static int 1694 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred, 1695 struct thread *td) 1696 { 1697 struct linux_file *filp; 1698 const struct file_operations *fop; 1699 struct linux_cdev *ldev; 1700 struct fiodgname_arg *fgn; 1701 const char *p; 1702 int error, i; 1703 1704 error = 0; 1705 filp = (struct linux_file *)fp->f_data; 1706 filp->f_flags = fp->f_flag; 1707 linux_get_fop(filp, &fop, &ldev); 1708 1709 linux_set_current(td); 1710 switch (cmd) { 1711 case FIONBIO: 1712 break; 1713 case FIOASYNC: 1714 if (fop->fasync == NULL) 1715 break; 1716 error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC)); 1717 break; 1718 case FIOSETOWN: 1719 error = fsetown(*(int *)data, &filp->f_sigio); 1720 if (error == 0) { 1721 if (fop->fasync == NULL) 1722 break; 1723 error = -OPW(fp, td, fop->fasync(0, filp, 1724 fp->f_flag & FASYNC)); 1725 } 1726 break; 1727 case FIOGETOWN: 1728 *(int *)data = fgetown(&filp->f_sigio); 1729 break; 1730 case FIODGNAME: 1731 #ifdef COMPAT_FREEBSD32 1732 case FIODGNAME_32: 1733 #endif 1734 if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) { 1735 error = ENXIO; 1736 break; 1737 } 1738 fgn = data; 1739 p = devtoname(filp->f_cdev->cdev); 1740 i = strlen(p) + 1; 1741 if (i > fgn->len) { 1742 error = EINVAL; 1743 break; 1744 } 1745 error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i); 1746 break; 1747 default: 1748 error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td); 1749 break; 1750 } 1751 linux_drop_fop(ldev); 1752 return (error); 1753 } 1754 1755 static int 1756 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot, 1757 vm_prot_t maxprot, int flags, struct file *fp, 1758 vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp) 1759 { 1760 /* 1761 * Character devices do not provide private mappings 1762 * of any kind: 1763 */ 1764 if ((maxprot & VM_PROT_WRITE) == 0 && 1765 (prot & VM_PROT_WRITE) != 0) 1766 return (EACCES); 1767 if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0) 1768 return (EINVAL); 1769 1770 return (linux_file_mmap_single(fp, fop, foff, objsize, objp, 1771 (int)prot, (flags & MAP_SHARED) ? true : false, td)); 1772 } 1773 1774 static int 1775 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 1776 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 1777 struct thread *td) 1778 { 1779 struct linux_file *filp; 1780 const struct file_operations *fop; 1781 struct linux_cdev *ldev; 1782 struct mount *mp; 1783 struct vnode *vp; 1784 vm_object_t object; 1785 vm_prot_t maxprot; 1786 int error; 1787 1788 filp = (struct linux_file *)fp->f_data; 1789 1790 vp = filp->f_vnode; 1791 if (vp == NULL) 1792 return (EOPNOTSUPP); 1793 1794 /* 1795 * Ensure that file and memory protections are 1796 * compatible. 1797 */ 1798 mp = vp->v_mount; 1799 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) { 1800 maxprot = VM_PROT_NONE; 1801 if ((prot & VM_PROT_EXECUTE) != 0) 1802 return (EACCES); 1803 } else 1804 maxprot = VM_PROT_EXECUTE; 1805 if ((fp->f_flag & FREAD) != 0) 1806 maxprot |= VM_PROT_READ; 1807 else if ((prot & VM_PROT_READ) != 0) 1808 return (EACCES); 1809 1810 /* 1811 * If we are sharing potential changes via MAP_SHARED and we 1812 * are trying to get write permission although we opened it 1813 * without asking for it, bail out. 1814 * 1815 * Note that most character devices always share mappings. 1816 * 1817 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE 1818 * requests rather than doing it here. 1819 */ 1820 if ((flags & MAP_SHARED) != 0) { 1821 if ((fp->f_flag & FWRITE) != 0) 1822 maxprot |= VM_PROT_WRITE; 1823 else if ((prot & VM_PROT_WRITE) != 0) 1824 return (EACCES); 1825 } 1826 maxprot &= cap_maxprot; 1827 1828 linux_get_fop(filp, &fop, &ldev); 1829 error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp, 1830 &foff, fop, &object); 1831 if (error != 0) 1832 goto out; 1833 1834 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 1835 foff, FALSE, td); 1836 if (error != 0) 1837 vm_object_deallocate(object); 1838 out: 1839 linux_drop_fop(ldev); 1840 return (error); 1841 } 1842 1843 static int 1844 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred) 1845 { 1846 struct linux_file *filp; 1847 struct vnode *vp; 1848 int error; 1849 1850 filp = (struct linux_file *)fp->f_data; 1851 if (filp->f_vnode == NULL) 1852 return (EOPNOTSUPP); 1853 1854 vp = filp->f_vnode; 1855 1856 vn_lock(vp, LK_SHARED | LK_RETRY); 1857 error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED); 1858 VOP_UNLOCK(vp); 1859 1860 return (error); 1861 } 1862 1863 static int 1864 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif, 1865 struct filedesc *fdp) 1866 { 1867 struct linux_file *filp; 1868 struct vnode *vp; 1869 int error; 1870 1871 filp = fp->f_data; 1872 vp = filp->f_vnode; 1873 if (vp == NULL) { 1874 error = 0; 1875 kif->kf_type = KF_TYPE_DEV; 1876 } else { 1877 vref(vp); 1878 FILEDESC_SUNLOCK(fdp); 1879 error = vn_fill_kinfo_vnode(vp, kif); 1880 vrele(vp); 1881 kif->kf_type = KF_TYPE_VNODE; 1882 FILEDESC_SLOCK(fdp); 1883 } 1884 return (error); 1885 } 1886 1887 unsigned int 1888 linux_iminor(struct inode *inode) 1889 { 1890 struct linux_cdev *ldev; 1891 1892 if (inode == NULL || inode->v_rdev == NULL || 1893 inode->v_rdev->si_devsw != &linuxcdevsw) 1894 return (-1U); 1895 ldev = inode->v_rdev->si_drv1; 1896 if (ldev == NULL) 1897 return (-1U); 1898 1899 return (minor(ldev->dev)); 1900 } 1901 1902 struct fileops linuxfileops = { 1903 .fo_read = linux_file_read, 1904 .fo_write = linux_file_write, 1905 .fo_truncate = invfo_truncate, 1906 .fo_kqfilter = linux_file_kqfilter, 1907 .fo_stat = linux_file_stat, 1908 .fo_fill_kinfo = linux_file_fill_kinfo, 1909 .fo_poll = linux_file_poll, 1910 .fo_close = linux_file_close, 1911 .fo_ioctl = linux_file_ioctl, 1912 .fo_mmap = linux_file_mmap, 1913 .fo_chmod = invfo_chmod, 1914 .fo_chown = invfo_chown, 1915 .fo_sendfile = invfo_sendfile, 1916 .fo_flags = DFLAG_PASSABLE, 1917 }; 1918 1919 /* 1920 * Hash of vmmap addresses. This is infrequently accessed and does not 1921 * need to be particularly large. This is done because we must store the 1922 * caller's idea of the map size to properly unmap. 1923 */ 1924 struct vmmap { 1925 LIST_ENTRY(vmmap) vm_next; 1926 void *vm_addr; 1927 unsigned long vm_size; 1928 }; 1929 1930 struct vmmaphd { 1931 struct vmmap *lh_first; 1932 }; 1933 #define VMMAP_HASH_SIZE 64 1934 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1) 1935 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK 1936 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE]; 1937 static struct mtx vmmaplock; 1938 1939 static void 1940 vmmap_add(void *addr, unsigned long size) 1941 { 1942 struct vmmap *vmmap; 1943 1944 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL); 1945 mtx_lock(&vmmaplock); 1946 vmmap->vm_size = size; 1947 vmmap->vm_addr = addr; 1948 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next); 1949 mtx_unlock(&vmmaplock); 1950 } 1951 1952 static struct vmmap * 1953 vmmap_remove(void *addr) 1954 { 1955 struct vmmap *vmmap; 1956 1957 mtx_lock(&vmmaplock); 1958 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next) 1959 if (vmmap->vm_addr == addr) 1960 break; 1961 if (vmmap) 1962 LIST_REMOVE(vmmap, vm_next); 1963 mtx_unlock(&vmmaplock); 1964 1965 return (vmmap); 1966 } 1967 1968 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv) 1969 void * 1970 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr) 1971 { 1972 void *addr; 1973 1974 addr = pmap_mapdev_attr(phys_addr, size, attr); 1975 if (addr == NULL) 1976 return (NULL); 1977 vmmap_add(addr, size); 1978 1979 return (addr); 1980 } 1981 #endif 1982 1983 void 1984 iounmap(void *addr) 1985 { 1986 struct vmmap *vmmap; 1987 1988 vmmap = vmmap_remove(addr); 1989 if (vmmap == NULL) 1990 return; 1991 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv) 1992 pmap_unmapdev(addr, vmmap->vm_size); 1993 #endif 1994 kfree(vmmap); 1995 } 1996 1997 void * 1998 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot) 1999 { 2000 vm_offset_t off; 2001 size_t size; 2002 2003 size = count * PAGE_SIZE; 2004 off = kva_alloc(size); 2005 if (off == 0) 2006 return (NULL); 2007 vmmap_add((void *)off, size); 2008 pmap_qenter(off, pages, count); 2009 2010 return ((void *)off); 2011 } 2012 2013 void 2014 vunmap(void *addr) 2015 { 2016 struct vmmap *vmmap; 2017 2018 vmmap = vmmap_remove(addr); 2019 if (vmmap == NULL) 2020 return; 2021 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE); 2022 kva_free((vm_offset_t)addr, vmmap->vm_size); 2023 kfree(vmmap); 2024 } 2025 2026 static char * 2027 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap) 2028 { 2029 unsigned int len; 2030 char *p; 2031 va_list aq; 2032 2033 va_copy(aq, ap); 2034 len = vsnprintf(NULL, 0, fmt, aq); 2035 va_end(aq); 2036 2037 if (dev != NULL) 2038 p = devm_kmalloc(dev, len + 1, gfp); 2039 else 2040 p = kmalloc(len + 1, gfp); 2041 if (p != NULL) 2042 vsnprintf(p, len + 1, fmt, ap); 2043 2044 return (p); 2045 } 2046 2047 char * 2048 kvasprintf(gfp_t gfp, const char *fmt, va_list ap) 2049 { 2050 2051 return (devm_kvasprintf(NULL, gfp, fmt, ap)); 2052 } 2053 2054 char * 2055 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) 2056 { 2057 va_list ap; 2058 char *p; 2059 2060 va_start(ap, fmt); 2061 p = devm_kvasprintf(dev, gfp, fmt, ap); 2062 va_end(ap); 2063 2064 return (p); 2065 } 2066 2067 char * 2068 kasprintf(gfp_t gfp, const char *fmt, ...) 2069 { 2070 va_list ap; 2071 char *p; 2072 2073 va_start(ap, fmt); 2074 p = kvasprintf(gfp, fmt, ap); 2075 va_end(ap); 2076 2077 return (p); 2078 } 2079 2080 static void 2081 linux_timer_callback_wrapper(void *context) 2082 { 2083 struct timer_list *timer; 2084 2085 timer = context; 2086 2087 if (linux_set_current_flags(curthread, M_NOWAIT)) { 2088 /* try again later */ 2089 callout_reset(&timer->callout, 1, 2090 &linux_timer_callback_wrapper, timer); 2091 return; 2092 } 2093 2094 timer->function(timer->data); 2095 } 2096 2097 int 2098 mod_timer(struct timer_list *timer, int expires) 2099 { 2100 int ret; 2101 2102 timer->expires = expires; 2103 ret = callout_reset(&timer->callout, 2104 linux_timer_jiffies_until(expires), 2105 &linux_timer_callback_wrapper, timer); 2106 2107 MPASS(ret == 0 || ret == 1); 2108 2109 return (ret == 1); 2110 } 2111 2112 void 2113 add_timer(struct timer_list *timer) 2114 { 2115 2116 callout_reset(&timer->callout, 2117 linux_timer_jiffies_until(timer->expires), 2118 &linux_timer_callback_wrapper, timer); 2119 } 2120 2121 void 2122 add_timer_on(struct timer_list *timer, int cpu) 2123 { 2124 2125 callout_reset_on(&timer->callout, 2126 linux_timer_jiffies_until(timer->expires), 2127 &linux_timer_callback_wrapper, timer, cpu); 2128 } 2129 2130 int 2131 del_timer(struct timer_list *timer) 2132 { 2133 2134 if (callout_stop(&(timer)->callout) == -1) 2135 return (0); 2136 return (1); 2137 } 2138 2139 int 2140 del_timer_sync(struct timer_list *timer) 2141 { 2142 2143 if (callout_drain(&(timer)->callout) == -1) 2144 return (0); 2145 return (1); 2146 } 2147 2148 /* greatest common divisor, Euclid equation */ 2149 static uint64_t 2150 lkpi_gcd_64(uint64_t a, uint64_t b) 2151 { 2152 uint64_t an; 2153 uint64_t bn; 2154 2155 while (b != 0) { 2156 an = b; 2157 bn = a % b; 2158 a = an; 2159 b = bn; 2160 } 2161 return (a); 2162 } 2163 2164 uint64_t lkpi_nsec2hz_rem; 2165 uint64_t lkpi_nsec2hz_div = 1000000000ULL; 2166 uint64_t lkpi_nsec2hz_max; 2167 2168 uint64_t lkpi_usec2hz_rem; 2169 uint64_t lkpi_usec2hz_div = 1000000ULL; 2170 uint64_t lkpi_usec2hz_max; 2171 2172 uint64_t lkpi_msec2hz_rem; 2173 uint64_t lkpi_msec2hz_div = 1000ULL; 2174 uint64_t lkpi_msec2hz_max; 2175 2176 static void 2177 linux_timer_init(void *arg) 2178 { 2179 uint64_t gcd; 2180 2181 /* 2182 * Compute an internal HZ value which can divide 2**32 to 2183 * avoid timer rounding problems when the tick value wraps 2184 * around 2**32: 2185 */ 2186 linux_timer_hz_mask = 1; 2187 while (linux_timer_hz_mask < (unsigned long)hz) 2188 linux_timer_hz_mask *= 2; 2189 linux_timer_hz_mask--; 2190 2191 /* compute some internal constants */ 2192 2193 lkpi_nsec2hz_rem = hz; 2194 lkpi_usec2hz_rem = hz; 2195 lkpi_msec2hz_rem = hz; 2196 2197 gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div); 2198 lkpi_nsec2hz_rem /= gcd; 2199 lkpi_nsec2hz_div /= gcd; 2200 lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem; 2201 2202 gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div); 2203 lkpi_usec2hz_rem /= gcd; 2204 lkpi_usec2hz_div /= gcd; 2205 lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem; 2206 2207 gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div); 2208 lkpi_msec2hz_rem /= gcd; 2209 lkpi_msec2hz_div /= gcd; 2210 lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem; 2211 } 2212 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL); 2213 2214 void 2215 linux_complete_common(struct completion *c, int all) 2216 { 2217 int wakeup_swapper; 2218 2219 sleepq_lock(c); 2220 if (all) { 2221 c->done = UINT_MAX; 2222 wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0); 2223 } else { 2224 if (c->done != UINT_MAX) 2225 c->done++; 2226 wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0); 2227 } 2228 sleepq_release(c); 2229 if (wakeup_swapper) 2230 kick_proc0(); 2231 } 2232 2233 /* 2234 * Indefinite wait for done != 0 with or without signals. 2235 */ 2236 int 2237 linux_wait_for_common(struct completion *c, int flags) 2238 { 2239 struct task_struct *task; 2240 int error; 2241 2242 if (SCHEDULER_STOPPED()) 2243 return (0); 2244 2245 task = current; 2246 2247 if (flags != 0) 2248 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 2249 else 2250 flags = SLEEPQ_SLEEP; 2251 error = 0; 2252 for (;;) { 2253 sleepq_lock(c); 2254 if (c->done) 2255 break; 2256 sleepq_add(c, NULL, "completion", flags, 0); 2257 if (flags & SLEEPQ_INTERRUPTIBLE) { 2258 DROP_GIANT(); 2259 error = -sleepq_wait_sig(c, 0); 2260 PICKUP_GIANT(); 2261 if (error != 0) { 2262 linux_schedule_save_interrupt_value(task, error); 2263 error = -ERESTARTSYS; 2264 goto intr; 2265 } 2266 } else { 2267 DROP_GIANT(); 2268 sleepq_wait(c, 0); 2269 PICKUP_GIANT(); 2270 } 2271 } 2272 if (c->done != UINT_MAX) 2273 c->done--; 2274 sleepq_release(c); 2275 2276 intr: 2277 return (error); 2278 } 2279 2280 /* 2281 * Time limited wait for done != 0 with or without signals. 2282 */ 2283 int 2284 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags) 2285 { 2286 struct task_struct *task; 2287 int end = jiffies + timeout; 2288 int error; 2289 2290 if (SCHEDULER_STOPPED()) 2291 return (0); 2292 2293 task = current; 2294 2295 if (flags != 0) 2296 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 2297 else 2298 flags = SLEEPQ_SLEEP; 2299 2300 for (;;) { 2301 sleepq_lock(c); 2302 if (c->done) 2303 break; 2304 sleepq_add(c, NULL, "completion", flags, 0); 2305 sleepq_set_timeout(c, linux_timer_jiffies_until(end)); 2306 2307 DROP_GIANT(); 2308 if (flags & SLEEPQ_INTERRUPTIBLE) 2309 error = -sleepq_timedwait_sig(c, 0); 2310 else 2311 error = -sleepq_timedwait(c, 0); 2312 PICKUP_GIANT(); 2313 2314 if (error != 0) { 2315 /* check for timeout */ 2316 if (error == -EWOULDBLOCK) { 2317 error = 0; /* timeout */ 2318 } else { 2319 /* signal happened */ 2320 linux_schedule_save_interrupt_value(task, error); 2321 error = -ERESTARTSYS; 2322 } 2323 goto done; 2324 } 2325 } 2326 if (c->done != UINT_MAX) 2327 c->done--; 2328 sleepq_release(c); 2329 2330 /* return how many jiffies are left */ 2331 error = linux_timer_jiffies_until(end); 2332 done: 2333 return (error); 2334 } 2335 2336 int 2337 linux_try_wait_for_completion(struct completion *c) 2338 { 2339 int isdone; 2340 2341 sleepq_lock(c); 2342 isdone = (c->done != 0); 2343 if (c->done != 0 && c->done != UINT_MAX) 2344 c->done--; 2345 sleepq_release(c); 2346 return (isdone); 2347 } 2348 2349 int 2350 linux_completion_done(struct completion *c) 2351 { 2352 int isdone; 2353 2354 sleepq_lock(c); 2355 isdone = (c->done != 0); 2356 sleepq_release(c); 2357 return (isdone); 2358 } 2359 2360 static void 2361 linux_cdev_deref(struct linux_cdev *ldev) 2362 { 2363 if (refcount_release(&ldev->refs) && 2364 ldev->kobj.ktype == &linux_cdev_ktype) 2365 kfree(ldev); 2366 } 2367 2368 static void 2369 linux_cdev_release(struct kobject *kobj) 2370 { 2371 struct linux_cdev *cdev; 2372 struct kobject *parent; 2373 2374 cdev = container_of(kobj, struct linux_cdev, kobj); 2375 parent = kobj->parent; 2376 linux_destroy_dev(cdev); 2377 linux_cdev_deref(cdev); 2378 kobject_put(parent); 2379 } 2380 2381 static void 2382 linux_cdev_static_release(struct kobject *kobj) 2383 { 2384 struct cdev *cdev; 2385 struct linux_cdev *ldev; 2386 2387 ldev = container_of(kobj, struct linux_cdev, kobj); 2388 cdev = ldev->cdev; 2389 if (cdev != NULL) { 2390 destroy_dev(cdev); 2391 ldev->cdev = NULL; 2392 } 2393 kobject_put(kobj->parent); 2394 } 2395 2396 int 2397 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev) 2398 { 2399 int ret; 2400 2401 if (dev->devt != 0) { 2402 /* Set parent kernel object. */ 2403 ldev->kobj.parent = &dev->kobj; 2404 2405 /* 2406 * Unlike Linux we require the kobject of the 2407 * character device structure to have a valid name 2408 * before calling this function: 2409 */ 2410 if (ldev->kobj.name == NULL) 2411 return (-EINVAL); 2412 2413 ret = cdev_add(ldev, dev->devt, 1); 2414 if (ret) 2415 return (ret); 2416 } 2417 ret = device_add(dev); 2418 if (ret != 0 && dev->devt != 0) 2419 cdev_del(ldev); 2420 return (ret); 2421 } 2422 2423 void 2424 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev) 2425 { 2426 device_del(dev); 2427 2428 if (dev->devt != 0) 2429 cdev_del(ldev); 2430 } 2431 2432 static void 2433 linux_destroy_dev(struct linux_cdev *ldev) 2434 { 2435 2436 if (ldev->cdev == NULL) 2437 return; 2438 2439 MPASS((ldev->siref & LDEV_SI_DTR) == 0); 2440 MPASS(ldev->kobj.ktype == &linux_cdev_ktype); 2441 2442 atomic_set_int(&ldev->siref, LDEV_SI_DTR); 2443 while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0) 2444 pause("ldevdtr", hz / 4); 2445 2446 destroy_dev(ldev->cdev); 2447 ldev->cdev = NULL; 2448 } 2449 2450 const struct kobj_type linux_cdev_ktype = { 2451 .release = linux_cdev_release, 2452 }; 2453 2454 const struct kobj_type linux_cdev_static_ktype = { 2455 .release = linux_cdev_static_release, 2456 }; 2457 2458 static void 2459 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate) 2460 { 2461 struct notifier_block *nb; 2462 struct netdev_notifier_info ni; 2463 2464 nb = arg; 2465 ni.ifp = ifp; 2466 ni.dev = (struct net_device *)ifp; 2467 if (linkstate == LINK_STATE_UP) 2468 nb->notifier_call(nb, NETDEV_UP, &ni); 2469 else 2470 nb->notifier_call(nb, NETDEV_DOWN, &ni); 2471 } 2472 2473 static void 2474 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp) 2475 { 2476 struct notifier_block *nb; 2477 struct netdev_notifier_info ni; 2478 2479 nb = arg; 2480 ni.ifp = ifp; 2481 ni.dev = (struct net_device *)ifp; 2482 nb->notifier_call(nb, NETDEV_REGISTER, &ni); 2483 } 2484 2485 static void 2486 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp) 2487 { 2488 struct notifier_block *nb; 2489 struct netdev_notifier_info ni; 2490 2491 nb = arg; 2492 ni.ifp = ifp; 2493 ni.dev = (struct net_device *)ifp; 2494 nb->notifier_call(nb, NETDEV_UNREGISTER, &ni); 2495 } 2496 2497 static void 2498 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp) 2499 { 2500 struct notifier_block *nb; 2501 struct netdev_notifier_info ni; 2502 2503 nb = arg; 2504 ni.ifp = ifp; 2505 ni.dev = (struct net_device *)ifp; 2506 nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni); 2507 } 2508 2509 static void 2510 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp) 2511 { 2512 struct notifier_block *nb; 2513 struct netdev_notifier_info ni; 2514 2515 nb = arg; 2516 ni.ifp = ifp; 2517 ni.dev = (struct net_device *)ifp; 2518 nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni); 2519 } 2520 2521 int 2522 register_netdevice_notifier(struct notifier_block *nb) 2523 { 2524 2525 nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER( 2526 ifnet_link_event, linux_handle_ifnet_link_event, nb, 0); 2527 nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER( 2528 ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0); 2529 nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER( 2530 ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0); 2531 nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER( 2532 iflladdr_event, linux_handle_iflladdr_event, nb, 0); 2533 2534 return (0); 2535 } 2536 2537 int 2538 register_inetaddr_notifier(struct notifier_block *nb) 2539 { 2540 2541 nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER( 2542 ifaddr_event, linux_handle_ifaddr_event, nb, 0); 2543 return (0); 2544 } 2545 2546 int 2547 unregister_netdevice_notifier(struct notifier_block *nb) 2548 { 2549 2550 EVENTHANDLER_DEREGISTER(ifnet_link_event, 2551 nb->tags[NETDEV_UP]); 2552 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 2553 nb->tags[NETDEV_REGISTER]); 2554 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 2555 nb->tags[NETDEV_UNREGISTER]); 2556 EVENTHANDLER_DEREGISTER(iflladdr_event, 2557 nb->tags[NETDEV_CHANGEADDR]); 2558 2559 return (0); 2560 } 2561 2562 int 2563 unregister_inetaddr_notifier(struct notifier_block *nb) 2564 { 2565 2566 EVENTHANDLER_DEREGISTER(ifaddr_event, 2567 nb->tags[NETDEV_CHANGEIFADDR]); 2568 2569 return (0); 2570 } 2571 2572 struct list_sort_thunk { 2573 int (*cmp)(void *, struct list_head *, struct list_head *); 2574 void *priv; 2575 }; 2576 2577 static inline int 2578 linux_le_cmp(const void *d1, const void *d2, void *priv) 2579 { 2580 struct list_head *le1, *le2; 2581 struct list_sort_thunk *thunk; 2582 2583 thunk = priv; 2584 le1 = *(__DECONST(struct list_head **, d1)); 2585 le2 = *(__DECONST(struct list_head **, d2)); 2586 return ((thunk->cmp)(thunk->priv, le1, le2)); 2587 } 2588 2589 void 2590 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv, 2591 struct list_head *a, struct list_head *b)) 2592 { 2593 struct list_sort_thunk thunk; 2594 struct list_head **ar, *le; 2595 size_t count, i; 2596 2597 count = 0; 2598 list_for_each(le, head) 2599 count++; 2600 ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK); 2601 i = 0; 2602 list_for_each(le, head) 2603 ar[i++] = le; 2604 thunk.cmp = cmp; 2605 thunk.priv = priv; 2606 qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk); 2607 INIT_LIST_HEAD(head); 2608 for (i = 0; i < count; i++) 2609 list_add_tail(ar[i], head); 2610 free(ar, M_KMALLOC); 2611 } 2612 2613 #if defined(__i386__) || defined(__amd64__) 2614 int 2615 linux_wbinvd_on_all_cpus(void) 2616 { 2617 2618 pmap_invalidate_cache(); 2619 return (0); 2620 } 2621 #endif 2622 2623 int 2624 linux_on_each_cpu(void callback(void *), void *data) 2625 { 2626 2627 smp_rendezvous(smp_no_rendezvous_barrier, callback, 2628 smp_no_rendezvous_barrier, data); 2629 return (0); 2630 } 2631 2632 int 2633 linux_in_atomic(void) 2634 { 2635 2636 return ((curthread->td_pflags & TDP_NOFAULTING) != 0); 2637 } 2638 2639 struct linux_cdev * 2640 linux_find_cdev(const char *name, unsigned major, unsigned minor) 2641 { 2642 dev_t dev = MKDEV(major, minor); 2643 struct cdev *cdev; 2644 2645 dev_lock(); 2646 LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) { 2647 struct linux_cdev *ldev = cdev->si_drv1; 2648 if (ldev->dev == dev && 2649 strcmp(kobject_name(&ldev->kobj), name) == 0) { 2650 break; 2651 } 2652 } 2653 dev_unlock(); 2654 2655 return (cdev != NULL ? cdev->si_drv1 : NULL); 2656 } 2657 2658 int 2659 __register_chrdev(unsigned int major, unsigned int baseminor, 2660 unsigned int count, const char *name, 2661 const struct file_operations *fops) 2662 { 2663 struct linux_cdev *cdev; 2664 int ret = 0; 2665 int i; 2666 2667 for (i = baseminor; i < baseminor + count; i++) { 2668 cdev = cdev_alloc(); 2669 cdev->ops = fops; 2670 kobject_set_name(&cdev->kobj, name); 2671 2672 ret = cdev_add(cdev, makedev(major, i), 1); 2673 if (ret != 0) 2674 break; 2675 } 2676 return (ret); 2677 } 2678 2679 int 2680 __register_chrdev_p(unsigned int major, unsigned int baseminor, 2681 unsigned int count, const char *name, 2682 const struct file_operations *fops, uid_t uid, 2683 gid_t gid, int mode) 2684 { 2685 struct linux_cdev *cdev; 2686 int ret = 0; 2687 int i; 2688 2689 for (i = baseminor; i < baseminor + count; i++) { 2690 cdev = cdev_alloc(); 2691 cdev->ops = fops; 2692 kobject_set_name(&cdev->kobj, name); 2693 2694 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode); 2695 if (ret != 0) 2696 break; 2697 } 2698 return (ret); 2699 } 2700 2701 void 2702 __unregister_chrdev(unsigned int major, unsigned int baseminor, 2703 unsigned int count, const char *name) 2704 { 2705 struct linux_cdev *cdevp; 2706 int i; 2707 2708 for (i = baseminor; i < baseminor + count; i++) { 2709 cdevp = linux_find_cdev(name, major, i); 2710 if (cdevp != NULL) 2711 cdev_del(cdevp); 2712 } 2713 } 2714 2715 void 2716 linux_dump_stack(void) 2717 { 2718 #ifdef STACK 2719 struct stack st; 2720 2721 stack_save(&st); 2722 stack_print(&st); 2723 #endif 2724 } 2725 2726 int 2727 linuxkpi_net_ratelimit(void) 2728 { 2729 2730 return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps, 2731 lkpi_net_maxpps)); 2732 } 2733 2734 struct io_mapping * 2735 io_mapping_create_wc(resource_size_t base, unsigned long size) 2736 { 2737 struct io_mapping *mapping; 2738 2739 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2740 if (mapping == NULL) 2741 return (NULL); 2742 return (io_mapping_init_wc(mapping, base, size)); 2743 } 2744 2745 #if defined(__i386__) || defined(__amd64__) 2746 bool linux_cpu_has_clflush; 2747 struct cpuinfo_x86 boot_cpu_data; 2748 #endif 2749 2750 cpumask_t * 2751 lkpi_get_static_single_cpu_mask(int cpuid) 2752 { 2753 2754 KASSERT((cpuid >= 0 && cpuid < MAXCPU), ("%s: invalid cpuid %d\n", 2755 __func__, cpuid)); 2756 2757 return (&static_single_cpu_mask[cpuid]); 2758 } 2759 2760 static void 2761 linux_compat_init(void *arg) 2762 { 2763 struct sysctl_oid *rootoid; 2764 int i; 2765 2766 #if defined(__i386__) || defined(__amd64__) 2767 linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH); 2768 boot_cpu_data.x86_clflush_size = cpu_clflush_line_size; 2769 boot_cpu_data.x86_max_cores = mp_ncpus; 2770 boot_cpu_data.x86 = ((cpu_id & 0xf0000) >> 12) | ((cpu_id & 0xf0) >> 4); 2771 #endif 2772 rw_init(&linux_vma_lock, "lkpi-vma-lock"); 2773 2774 rootoid = SYSCTL_ADD_ROOT_NODE(NULL, 2775 OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys"); 2776 kobject_init(&linux_class_root, &linux_class_ktype); 2777 kobject_set_name(&linux_class_root, "class"); 2778 linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid), 2779 OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class"); 2780 kobject_init(&linux_root_device.kobj, &linux_dev_ktype); 2781 kobject_set_name(&linux_root_device.kobj, "device"); 2782 linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL, 2783 SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", 2784 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device"); 2785 linux_root_device.bsddev = root_bus; 2786 linux_class_misc.name = "misc"; 2787 class_register(&linux_class_misc); 2788 INIT_LIST_HEAD(&pci_drivers); 2789 INIT_LIST_HEAD(&pci_devices); 2790 spin_lock_init(&pci_lock); 2791 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF); 2792 for (i = 0; i < VMMAP_HASH_SIZE; i++) 2793 LIST_INIT(&vmmaphead[i]); 2794 init_waitqueue_head(&linux_bit_waitq); 2795 init_waitqueue_head(&linux_var_waitq); 2796 2797 CPU_COPY(&all_cpus, &cpu_online_mask); 2798 /* 2799 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system. 2800 * CPUs are indexed from 0..(MAXCPU-1). The entry for cpuid 0 will only 2801 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on. 2802 * This is used by cpumask_of() (and possibly others in the future) for, 2803 * e.g., drivers to pass hints to irq_set_affinity_hint(). 2804 */ 2805 for (i = 0; i < MAXCPU; i++) 2806 CPU_SET(i, &static_single_cpu_mask[i]); 2807 } 2808 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL); 2809 2810 static void 2811 linux_compat_uninit(void *arg) 2812 { 2813 linux_kobject_kfree_name(&linux_class_root); 2814 linux_kobject_kfree_name(&linux_root_device.kobj); 2815 linux_kobject_kfree_name(&linux_class_misc.kobj); 2816 2817 mtx_destroy(&vmmaplock); 2818 spin_lock_destroy(&pci_lock); 2819 rw_destroy(&linux_vma_lock); 2820 } 2821 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL); 2822 2823 /* 2824 * NOTE: Linux frequently uses "unsigned long" for pointer to integer 2825 * conversion and vice versa, where in FreeBSD "uintptr_t" would be 2826 * used. Assert these types have the same size, else some parts of the 2827 * LinuxKPI may not work like expected: 2828 */ 2829 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t)); 2830