xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2018 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/sleepqueue.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/bus.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/filio.h>
47 #include <sys/rwlock.h>
48 #include <sys/mman.h>
49 
50 #include <vm/vm.h>
51 #include <vm/pmap.h>
52 #include <vm/vm_object.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_pager.h>
55 
56 #include <machine/stdarg.h>
57 
58 #if defined(__i386__) || defined(__amd64__)
59 #include <machine/md_var.h>
60 #endif
61 
62 #include <linux/kobject.h>
63 #include <linux/device.h>
64 #include <linux/slab.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/cdev.h>
68 #include <linux/file.h>
69 #include <linux/sysfs.h>
70 #include <linux/mm.h>
71 #include <linux/io.h>
72 #include <linux/vmalloc.h>
73 #include <linux/netdevice.h>
74 #include <linux/timer.h>
75 #include <linux/interrupt.h>
76 #include <linux/uaccess.h>
77 #include <linux/list.h>
78 #include <linux/kthread.h>
79 #include <linux/kernel.h>
80 #include <linux/compat.h>
81 #include <linux/poll.h>
82 #include <linux/smp.h>
83 
84 #if defined(__i386__) || defined(__amd64__)
85 #include <asm/smp.h>
86 #endif
87 
88 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
89 
90 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
91 
92 #include <linux/rbtree.h>
93 /* Undo Linux compat changes. */
94 #undef RB_ROOT
95 #undef file
96 #undef cdev
97 #define	RB_ROOT(head)	(head)->rbh_root
98 
99 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
100 
101 struct kobject linux_class_root;
102 struct device linux_root_device;
103 struct class linux_class_misc;
104 struct list_head pci_drivers;
105 struct list_head pci_devices;
106 spinlock_t pci_lock;
107 
108 unsigned long linux_timer_hz_mask;
109 
110 int
111 panic_cmp(struct rb_node *one, struct rb_node *two)
112 {
113 	panic("no cmp");
114 }
115 
116 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
117 
118 int
119 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
120 {
121 	va_list tmp_va;
122 	int len;
123 	char *old;
124 	char *name;
125 	char dummy;
126 
127 	old = kobj->name;
128 
129 	if (old && fmt == NULL)
130 		return (0);
131 
132 	/* compute length of string */
133 	va_copy(tmp_va, args);
134 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
135 	va_end(tmp_va);
136 
137 	/* account for zero termination */
138 	len++;
139 
140 	/* check for error */
141 	if (len < 1)
142 		return (-EINVAL);
143 
144 	/* allocate memory for string */
145 	name = kzalloc(len, GFP_KERNEL);
146 	if (name == NULL)
147 		return (-ENOMEM);
148 	vsnprintf(name, len, fmt, args);
149 	kobj->name = name;
150 
151 	/* free old string */
152 	kfree(old);
153 
154 	/* filter new string */
155 	for (; *name != '\0'; name++)
156 		if (*name == '/')
157 			*name = '!';
158 	return (0);
159 }
160 
161 int
162 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
163 {
164 	va_list args;
165 	int error;
166 
167 	va_start(args, fmt);
168 	error = kobject_set_name_vargs(kobj, fmt, args);
169 	va_end(args);
170 
171 	return (error);
172 }
173 
174 static int
175 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
176 {
177 	const struct kobj_type *t;
178 	int error;
179 
180 	kobj->parent = parent;
181 	error = sysfs_create_dir(kobj);
182 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
183 		struct attribute **attr;
184 		t = kobj->ktype;
185 
186 		for (attr = t->default_attrs; *attr != NULL; attr++) {
187 			error = sysfs_create_file(kobj, *attr);
188 			if (error)
189 				break;
190 		}
191 		if (error)
192 			sysfs_remove_dir(kobj);
193 
194 	}
195 	return (error);
196 }
197 
198 int
199 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
200 {
201 	va_list args;
202 	int error;
203 
204 	va_start(args, fmt);
205 	error = kobject_set_name_vargs(kobj, fmt, args);
206 	va_end(args);
207 	if (error)
208 		return (error);
209 
210 	return kobject_add_complete(kobj, parent);
211 }
212 
213 void
214 linux_kobject_release(struct kref *kref)
215 {
216 	struct kobject *kobj;
217 	char *name;
218 
219 	kobj = container_of(kref, struct kobject, kref);
220 	sysfs_remove_dir(kobj);
221 	name = kobj->name;
222 	if (kobj->ktype && kobj->ktype->release)
223 		kobj->ktype->release(kobj);
224 	kfree(name);
225 }
226 
227 static void
228 linux_kobject_kfree(struct kobject *kobj)
229 {
230 	kfree(kobj);
231 }
232 
233 static void
234 linux_kobject_kfree_name(struct kobject *kobj)
235 {
236 	if (kobj) {
237 		kfree(kobj->name);
238 	}
239 }
240 
241 const struct kobj_type linux_kfree_type = {
242 	.release = linux_kobject_kfree
243 };
244 
245 static void
246 linux_device_release(struct device *dev)
247 {
248 	pr_debug("linux_device_release: %s\n", dev_name(dev));
249 	kfree(dev);
250 }
251 
252 static ssize_t
253 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
254 {
255 	struct class_attribute *dattr;
256 	ssize_t error;
257 
258 	dattr = container_of(attr, struct class_attribute, attr);
259 	error = -EIO;
260 	if (dattr->show)
261 		error = dattr->show(container_of(kobj, struct class, kobj),
262 		    dattr, buf);
263 	return (error);
264 }
265 
266 static ssize_t
267 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
268     size_t count)
269 {
270 	struct class_attribute *dattr;
271 	ssize_t error;
272 
273 	dattr = container_of(attr, struct class_attribute, attr);
274 	error = -EIO;
275 	if (dattr->store)
276 		error = dattr->store(container_of(kobj, struct class, kobj),
277 		    dattr, buf, count);
278 	return (error);
279 }
280 
281 static void
282 linux_class_release(struct kobject *kobj)
283 {
284 	struct class *class;
285 
286 	class = container_of(kobj, struct class, kobj);
287 	if (class->class_release)
288 		class->class_release(class);
289 }
290 
291 static const struct sysfs_ops linux_class_sysfs = {
292 	.show  = linux_class_show,
293 	.store = linux_class_store,
294 };
295 
296 const struct kobj_type linux_class_ktype = {
297 	.release = linux_class_release,
298 	.sysfs_ops = &linux_class_sysfs
299 };
300 
301 static void
302 linux_dev_release(struct kobject *kobj)
303 {
304 	struct device *dev;
305 
306 	dev = container_of(kobj, struct device, kobj);
307 	/* This is the precedence defined by linux. */
308 	if (dev->release)
309 		dev->release(dev);
310 	else if (dev->class && dev->class->dev_release)
311 		dev->class->dev_release(dev);
312 }
313 
314 static ssize_t
315 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
316 {
317 	struct device_attribute *dattr;
318 	ssize_t error;
319 
320 	dattr = container_of(attr, struct device_attribute, attr);
321 	error = -EIO;
322 	if (dattr->show)
323 		error = dattr->show(container_of(kobj, struct device, kobj),
324 		    dattr, buf);
325 	return (error);
326 }
327 
328 static ssize_t
329 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
330     size_t count)
331 {
332 	struct device_attribute *dattr;
333 	ssize_t error;
334 
335 	dattr = container_of(attr, struct device_attribute, attr);
336 	error = -EIO;
337 	if (dattr->store)
338 		error = dattr->store(container_of(kobj, struct device, kobj),
339 		    dattr, buf, count);
340 	return (error);
341 }
342 
343 static const struct sysfs_ops linux_dev_sysfs = {
344 	.show  = linux_dev_show,
345 	.store = linux_dev_store,
346 };
347 
348 const struct kobj_type linux_dev_ktype = {
349 	.release = linux_dev_release,
350 	.sysfs_ops = &linux_dev_sysfs
351 };
352 
353 struct device *
354 device_create(struct class *class, struct device *parent, dev_t devt,
355     void *drvdata, const char *fmt, ...)
356 {
357 	struct device *dev;
358 	va_list args;
359 
360 	dev = kzalloc(sizeof(*dev), M_WAITOK);
361 	dev->parent = parent;
362 	dev->class = class;
363 	dev->devt = devt;
364 	dev->driver_data = drvdata;
365 	dev->release = linux_device_release;
366 	va_start(args, fmt);
367 	kobject_set_name_vargs(&dev->kobj, fmt, args);
368 	va_end(args);
369 	device_register(dev);
370 
371 	return (dev);
372 }
373 
374 int
375 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
376     struct kobject *parent, const char *fmt, ...)
377 {
378 	va_list args;
379 	int error;
380 
381 	kobject_init(kobj, ktype);
382 	kobj->ktype = ktype;
383 	kobj->parent = parent;
384 	kobj->name = NULL;
385 
386 	va_start(args, fmt);
387 	error = kobject_set_name_vargs(kobj, fmt, args);
388 	va_end(args);
389 	if (error)
390 		return (error);
391 	return kobject_add_complete(kobj, parent);
392 }
393 
394 static void
395 linux_kq_lock(void *arg)
396 {
397 	spinlock_t *s = arg;
398 
399 	spin_lock(s);
400 }
401 static void
402 linux_kq_unlock(void *arg)
403 {
404 	spinlock_t *s = arg;
405 
406 	spin_unlock(s);
407 }
408 
409 static void
410 linux_kq_lock_owned(void *arg)
411 {
412 #ifdef INVARIANTS
413 	spinlock_t *s = arg;
414 
415 	mtx_assert(&s->m, MA_OWNED);
416 #endif
417 }
418 
419 static void
420 linux_kq_lock_unowned(void *arg)
421 {
422 #ifdef INVARIANTS
423 	spinlock_t *s = arg;
424 
425 	mtx_assert(&s->m, MA_NOTOWNED);
426 #endif
427 }
428 
429 static void
430 linux_file_kqfilter_poll(struct linux_file *, int);
431 
432 struct linux_file *
433 linux_file_alloc(void)
434 {
435 	struct linux_file *filp;
436 
437 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
438 
439 	/* set initial refcount */
440 	filp->f_count = 1;
441 
442 	/* setup fields needed by kqueue support */
443 	spin_lock_init(&filp->f_kqlock);
444 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
445 	    linux_kq_lock, linux_kq_unlock,
446 	    linux_kq_lock_owned, linux_kq_lock_unowned);
447 
448 	return (filp);
449 }
450 
451 void
452 linux_file_free(struct linux_file *filp)
453 {
454 	if (filp->_file == NULL) {
455 		if (filp->f_shmem != NULL)
456 			vm_object_deallocate(filp->f_shmem);
457 		kfree(filp);
458 	} else {
459 		/*
460 		 * The close method of the character device or file
461 		 * will free the linux_file structure:
462 		 */
463 		_fdrop(filp->_file, curthread);
464 	}
465 }
466 
467 static int
468 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
469     vm_page_t *mres)
470 {
471 	struct vm_area_struct *vmap;
472 
473 	vmap = linux_cdev_handle_find(vm_obj->handle);
474 
475 	MPASS(vmap != NULL);
476 	MPASS(vmap->vm_private_data == vm_obj->handle);
477 
478 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
479 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
480 		vm_page_t page;
481 
482 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
483 			/*
484 			 * If the passed in result page is a fake
485 			 * page, update it with the new physical
486 			 * address.
487 			 */
488 			page = *mres;
489 			vm_page_updatefake(page, paddr, vm_obj->memattr);
490 		} else {
491 			/*
492 			 * Replace the passed in "mres" page with our
493 			 * own fake page and free up the all of the
494 			 * original pages.
495 			 */
496 			VM_OBJECT_WUNLOCK(vm_obj);
497 			page = vm_page_getfake(paddr, vm_obj->memattr);
498 			VM_OBJECT_WLOCK(vm_obj);
499 
500 			vm_page_replace_checked(page, vm_obj,
501 			    (*mres)->pindex, *mres);
502 
503 			vm_page_lock(*mres);
504 			vm_page_free(*mres);
505 			vm_page_unlock(*mres);
506 			*mres = page;
507 		}
508 		page->valid = VM_PAGE_BITS_ALL;
509 		return (VM_PAGER_OK);
510 	}
511 	return (VM_PAGER_FAIL);
512 }
513 
514 static int
515 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
516     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
517 {
518 	struct vm_area_struct *vmap;
519 	int err;
520 
521 	linux_set_current(curthread);
522 
523 	/* get VM area structure */
524 	vmap = linux_cdev_handle_find(vm_obj->handle);
525 	MPASS(vmap != NULL);
526 	MPASS(vmap->vm_private_data == vm_obj->handle);
527 
528 	VM_OBJECT_WUNLOCK(vm_obj);
529 
530 	down_write(&vmap->vm_mm->mmap_sem);
531 	if (unlikely(vmap->vm_ops == NULL)) {
532 		err = VM_FAULT_SIGBUS;
533 	} else {
534 		struct vm_fault vmf;
535 
536 		/* fill out VM fault structure */
537 		vmf.virtual_address = (void *)((uintptr_t)pidx << PAGE_SHIFT);
538 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
539 		vmf.pgoff = 0;
540 		vmf.page = NULL;
541 		vmf.vma = vmap;
542 
543 		vmap->vm_pfn_count = 0;
544 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
545 		vmap->vm_obj = vm_obj;
546 
547 		err = vmap->vm_ops->fault(vmap, &vmf);
548 
549 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
550 			kern_yield(PRI_USER);
551 			err = vmap->vm_ops->fault(vmap, &vmf);
552 		}
553 	}
554 
555 	/* translate return code */
556 	switch (err) {
557 	case VM_FAULT_OOM:
558 		err = VM_PAGER_AGAIN;
559 		break;
560 	case VM_FAULT_SIGBUS:
561 		err = VM_PAGER_BAD;
562 		break;
563 	case VM_FAULT_NOPAGE:
564 		/*
565 		 * By contract the fault handler will return having
566 		 * busied all the pages itself. If pidx is already
567 		 * found in the object, it will simply xbusy the first
568 		 * page and return with vm_pfn_count set to 1.
569 		 */
570 		*first = vmap->vm_pfn_first;
571 		*last = *first + vmap->vm_pfn_count - 1;
572 		err = VM_PAGER_OK;
573 		break;
574 	default:
575 		err = VM_PAGER_ERROR;
576 		break;
577 	}
578 	up_write(&vmap->vm_mm->mmap_sem);
579 	VM_OBJECT_WLOCK(vm_obj);
580 	return (err);
581 }
582 
583 static struct rwlock linux_vma_lock;
584 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
585     TAILQ_HEAD_INITIALIZER(linux_vma_head);
586 
587 static void
588 linux_cdev_handle_free(struct vm_area_struct *vmap)
589 {
590 	/* Drop reference on vm_file */
591 	if (vmap->vm_file != NULL)
592 		fput(vmap->vm_file);
593 
594 	/* Drop reference on mm_struct */
595 	mmput(vmap->vm_mm);
596 
597 	kfree(vmap);
598 }
599 
600 static void
601 linux_cdev_handle_remove(struct vm_area_struct *vmap)
602 {
603 	rw_wlock(&linux_vma_lock);
604 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
605 	rw_wunlock(&linux_vma_lock);
606 }
607 
608 static struct vm_area_struct *
609 linux_cdev_handle_find(void *handle)
610 {
611 	struct vm_area_struct *vmap;
612 
613 	rw_rlock(&linux_vma_lock);
614 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
615 		if (vmap->vm_private_data == handle)
616 			break;
617 	}
618 	rw_runlock(&linux_vma_lock);
619 	return (vmap);
620 }
621 
622 static int
623 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
624 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
625 {
626 
627 	MPASS(linux_cdev_handle_find(handle) != NULL);
628 	*color = 0;
629 	return (0);
630 }
631 
632 static void
633 linux_cdev_pager_dtor(void *handle)
634 {
635 	const struct vm_operations_struct *vm_ops;
636 	struct vm_area_struct *vmap;
637 
638 	vmap = linux_cdev_handle_find(handle);
639 	MPASS(vmap != NULL);
640 
641 	/*
642 	 * Remove handle before calling close operation to prevent
643 	 * other threads from reusing the handle pointer.
644 	 */
645 	linux_cdev_handle_remove(vmap);
646 
647 	down_write(&vmap->vm_mm->mmap_sem);
648 	vm_ops = vmap->vm_ops;
649 	if (likely(vm_ops != NULL))
650 		vm_ops->close(vmap);
651 	up_write(&vmap->vm_mm->mmap_sem);
652 
653 	linux_cdev_handle_free(vmap);
654 }
655 
656 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
657   {
658 	/* OBJT_MGTDEVICE */
659 	.cdev_pg_populate	= linux_cdev_pager_populate,
660 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
661 	.cdev_pg_dtor	= linux_cdev_pager_dtor
662   },
663   {
664 	/* OBJT_DEVICE */
665 	.cdev_pg_fault	= linux_cdev_pager_fault,
666 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
667 	.cdev_pg_dtor	= linux_cdev_pager_dtor
668   },
669 };
670 
671 #define	OPW(fp,td,code) ({			\
672 	struct file *__fpop;			\
673 	__typeof(code) __retval;		\
674 						\
675 	__fpop = (td)->td_fpop;			\
676 	(td)->td_fpop = (fp);			\
677 	__retval = (code);			\
678 	(td)->td_fpop = __fpop;			\
679 	__retval;				\
680 })
681 
682 static int
683 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td, struct file *file)
684 {
685 	struct linux_cdev *ldev;
686 	struct linux_file *filp;
687 	int error;
688 
689 	ldev = dev->si_drv1;
690 
691 	filp = linux_file_alloc();
692 	filp->f_dentry = &filp->f_dentry_store;
693 	filp->f_op = ldev->ops;
694 	filp->f_mode = file->f_flag;
695 	filp->f_flags = file->f_flag;
696 	filp->f_vnode = file->f_vnode;
697 	filp->_file = file;
698 
699 	linux_set_current(td);
700 
701 	if (filp->f_op->open) {
702 		error = -filp->f_op->open(file->f_vnode, filp);
703 		if (error) {
704 			kfree(filp);
705 			return (error);
706 		}
707 	}
708 
709 	/* hold on to the vnode - used for fstat() */
710 	vhold(filp->f_vnode);
711 
712 	/* release the file from devfs */
713 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
714 	return (ENXIO);
715 }
716 
717 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
718 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
719 
720 static inline int
721 linux_remap_address(void **uaddr, size_t len)
722 {
723 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
724 
725 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
726 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
727 		struct task_struct *pts = current;
728 		if (pts == NULL) {
729 			*uaddr = NULL;
730 			return (1);
731 		}
732 
733 		/* compute data offset */
734 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
735 
736 		/* check that length is within bounds */
737 		if ((len > IOCPARM_MAX) ||
738 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
739 			*uaddr = NULL;
740 			return (1);
741 		}
742 
743 		/* re-add kernel buffer address */
744 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
745 
746 		/* update address location */
747 		*uaddr = (void *)uaddr_val;
748 		return (1);
749 	}
750 	return (0);
751 }
752 
753 int
754 linux_copyin(const void *uaddr, void *kaddr, size_t len)
755 {
756 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
757 		if (uaddr == NULL)
758 			return (-EFAULT);
759 		memcpy(kaddr, uaddr, len);
760 		return (0);
761 	}
762 	return (-copyin(uaddr, kaddr, len));
763 }
764 
765 int
766 linux_copyout(const void *kaddr, void *uaddr, size_t len)
767 {
768 	if (linux_remap_address(&uaddr, len)) {
769 		if (uaddr == NULL)
770 			return (-EFAULT);
771 		memcpy(uaddr, kaddr, len);
772 		return (0);
773 	}
774 	return (-copyout(kaddr, uaddr, len));
775 }
776 
777 size_t
778 linux_clear_user(void *_uaddr, size_t _len)
779 {
780 	uint8_t *uaddr = _uaddr;
781 	size_t len = _len;
782 
783 	/* make sure uaddr is aligned before going into the fast loop */
784 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
785 		if (subyte(uaddr, 0))
786 			return (_len);
787 		uaddr++;
788 		len--;
789 	}
790 
791 	/* zero 8 bytes at a time */
792 	while (len > 7) {
793 #ifdef __LP64__
794 		if (suword64(uaddr, 0))
795 			return (_len);
796 #else
797 		if (suword32(uaddr, 0))
798 			return (_len);
799 		if (suword32(uaddr + 4, 0))
800 			return (_len);
801 #endif
802 		uaddr += 8;
803 		len -= 8;
804 	}
805 
806 	/* zero fill end, if any */
807 	while (len > 0) {
808 		if (subyte(uaddr, 0))
809 			return (_len);
810 		uaddr++;
811 		len--;
812 	}
813 	return (0);
814 }
815 
816 int
817 linux_access_ok(int rw, const void *uaddr, size_t len)
818 {
819 	uintptr_t saddr;
820 	uintptr_t eaddr;
821 
822 	/* get start and end address */
823 	saddr = (uintptr_t)uaddr;
824 	eaddr = (uintptr_t)uaddr + len;
825 
826 	/* verify addresses are valid for userspace */
827 	return ((saddr == eaddr) ||
828 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
829 }
830 
831 /*
832  * This function should return either EINTR or ERESTART depending on
833  * the signal type sent to this thread:
834  */
835 static int
836 linux_get_error(struct task_struct *task, int error)
837 {
838 	/* check for signal type interrupt code */
839 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
840 		error = -linux_schedule_get_interrupt_value(task);
841 		if (error == 0)
842 			error = EINTR;
843 	}
844 	return (error);
845 }
846 
847 static int
848 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
849     u_long cmd, caddr_t data, struct thread *td)
850 {
851 	struct task_struct *task = current;
852 	unsigned size;
853 	int error;
854 
855 	size = IOCPARM_LEN(cmd);
856 	/* refer to logic in sys_ioctl() */
857 	if (size > 0) {
858 		/*
859 		 * Setup hint for linux_copyin() and linux_copyout().
860 		 *
861 		 * Background: Linux code expects a user-space address
862 		 * while FreeBSD supplies a kernel-space address.
863 		 */
864 		task->bsd_ioctl_data = data;
865 		task->bsd_ioctl_len = size;
866 		data = (void *)LINUX_IOCTL_MIN_PTR;
867 	} else {
868 		/* fetch user-space pointer */
869 		data = *(void **)data;
870 	}
871 #if defined(__amd64__)
872 	if (td->td_proc->p_elf_machine == EM_386) {
873 		/* try the compat IOCTL handler first */
874 		if (filp->f_op->compat_ioctl != NULL)
875 			error = -OPW(fp, td, filp->f_op->compat_ioctl(filp, cmd, (u_long)data));
876 		else
877 			error = ENOTTY;
878 
879 		/* fallback to the regular IOCTL handler, if any */
880 		if (error == ENOTTY && filp->f_op->unlocked_ioctl != NULL)
881 			error = -OPW(fp, td, filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data));
882 	} else
883 #endif
884 	if (filp->f_op->unlocked_ioctl != NULL)
885 		error = -OPW(fp, td, filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data));
886 	else
887 		error = ENOTTY;
888 	if (size > 0) {
889 		task->bsd_ioctl_data = NULL;
890 		task->bsd_ioctl_len = 0;
891 	}
892 
893 	if (error == EWOULDBLOCK) {
894 		/* update kqfilter status, if any */
895 		linux_file_kqfilter_poll(filp,
896 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
897 	} else {
898 		error = linux_get_error(task, error);
899 	}
900 	return (error);
901 }
902 
903 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
904 
905 /*
906  * This function atomically updates the poll wakeup state and returns
907  * the previous state at the time of update.
908  */
909 static uint8_t
910 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
911 {
912 	int c, old;
913 
914 	c = v->counter;
915 
916 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
917 		c = old;
918 
919 	return (c);
920 }
921 
922 
923 static int
924 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
925 {
926 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
927 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
928 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
929 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
930 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
931 	};
932 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
933 
934 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
935 	case LINUX_FWQ_STATE_QUEUED:
936 		linux_poll_wakeup(filp);
937 		return (1);
938 	default:
939 		return (0);
940 	}
941 }
942 
943 void
944 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
945 {
946 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
947 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
948 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
949 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
950 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
951 	};
952 
953 	/* check if we are called inside the select system call */
954 	if (p == LINUX_POLL_TABLE_NORMAL)
955 		selrecord(curthread, &filp->f_selinfo);
956 
957 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
958 	case LINUX_FWQ_STATE_INIT:
959 		/* NOTE: file handles can only belong to one wait-queue */
960 		filp->f_wait_queue.wqh = wqh;
961 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
962 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
963 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
964 		break;
965 	default:
966 		break;
967 	}
968 }
969 
970 static void
971 linux_poll_wait_dequeue(struct linux_file *filp)
972 {
973 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
974 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
975 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
976 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
977 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
978 	};
979 
980 	seldrain(&filp->f_selinfo);
981 
982 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
983 	case LINUX_FWQ_STATE_NOT_READY:
984 	case LINUX_FWQ_STATE_QUEUED:
985 	case LINUX_FWQ_STATE_READY:
986 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
987 		break;
988 	default:
989 		break;
990 	}
991 }
992 
993 void
994 linux_poll_wakeup(struct linux_file *filp)
995 {
996 	/* this function should be NULL-safe */
997 	if (filp == NULL)
998 		return;
999 
1000 	selwakeup(&filp->f_selinfo);
1001 
1002 	spin_lock(&filp->f_kqlock);
1003 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1004 	    LINUX_KQ_FLAG_NEED_WRITE;
1005 
1006 	/* make sure the "knote" gets woken up */
1007 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1008 	spin_unlock(&filp->f_kqlock);
1009 }
1010 
1011 static void
1012 linux_file_kqfilter_detach(struct knote *kn)
1013 {
1014 	struct linux_file *filp = kn->kn_hook;
1015 
1016 	spin_lock(&filp->f_kqlock);
1017 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1018 	spin_unlock(&filp->f_kqlock);
1019 }
1020 
1021 static int
1022 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1023 {
1024 	struct linux_file *filp = kn->kn_hook;
1025 
1026 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1027 
1028 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1029 }
1030 
1031 static int
1032 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1033 {
1034 	struct linux_file *filp = kn->kn_hook;
1035 
1036 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1037 
1038 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1039 }
1040 
1041 static struct filterops linux_dev_kqfiltops_read = {
1042 	.f_isfd = 1,
1043 	.f_detach = linux_file_kqfilter_detach,
1044 	.f_event = linux_file_kqfilter_read_event,
1045 };
1046 
1047 static struct filterops linux_dev_kqfiltops_write = {
1048 	.f_isfd = 1,
1049 	.f_detach = linux_file_kqfilter_detach,
1050 	.f_event = linux_file_kqfilter_write_event,
1051 };
1052 
1053 static void
1054 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1055 {
1056 	int temp;
1057 
1058 	if (filp->f_kqflags & kqflags) {
1059 		struct thread *td = curthread;
1060 
1061 		/* get the latest polling state */
1062 		temp = OPW(filp->_file, td, filp->f_op->poll(filp, NULL));
1063 
1064 		spin_lock(&filp->f_kqlock);
1065 		/* clear kqflags */
1066 		filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1067 		    LINUX_KQ_FLAG_NEED_WRITE);
1068 		/* update kqflags */
1069 		if (temp & (POLLIN | POLLOUT)) {
1070 			if (temp & POLLIN)
1071 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1072 			if (temp & POLLOUT)
1073 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1074 
1075 			/* make sure the "knote" gets woken up */
1076 			KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1077 		}
1078 		spin_unlock(&filp->f_kqlock);
1079 	}
1080 }
1081 
1082 static int
1083 linux_file_kqfilter(struct file *file, struct knote *kn)
1084 {
1085 	struct linux_file *filp;
1086 	struct thread *td;
1087 	int error;
1088 
1089 	td = curthread;
1090 	filp = (struct linux_file *)file->f_data;
1091 	filp->f_flags = file->f_flag;
1092 	if (filp->f_op->poll == NULL)
1093 		return (EINVAL);
1094 
1095 	spin_lock(&filp->f_kqlock);
1096 	switch (kn->kn_filter) {
1097 	case EVFILT_READ:
1098 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1099 		kn->kn_fop = &linux_dev_kqfiltops_read;
1100 		kn->kn_hook = filp;
1101 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1102 		error = 0;
1103 		break;
1104 	case EVFILT_WRITE:
1105 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1106 		kn->kn_fop = &linux_dev_kqfiltops_write;
1107 		kn->kn_hook = filp;
1108 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1109 		error = 0;
1110 		break;
1111 	default:
1112 		error = EINVAL;
1113 		break;
1114 	}
1115 	spin_unlock(&filp->f_kqlock);
1116 
1117 	if (error == 0) {
1118 		linux_set_current(td);
1119 
1120 		/* update kqfilter status, if any */
1121 		linux_file_kqfilter_poll(filp,
1122 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1123 	}
1124 	return (error);
1125 }
1126 
1127 static int
1128 linux_file_mmap_single(struct file *fp, vm_ooffset_t *offset,
1129     vm_size_t size, struct vm_object **object, int nprot,
1130     struct thread *td)
1131 {
1132 	struct task_struct *task;
1133 	struct vm_area_struct *vmap;
1134 	struct mm_struct *mm;
1135 	struct linux_file *filp;
1136 	vm_memattr_t attr;
1137 	int error;
1138 
1139 	filp = (struct linux_file *)fp->f_data;
1140 	filp->f_flags = fp->f_flag;
1141 
1142 	if (filp->f_op->mmap == NULL)
1143 		return (EOPNOTSUPP);
1144 
1145 	linux_set_current(td);
1146 
1147 	/*
1148 	 * The same VM object might be shared by multiple processes
1149 	 * and the mm_struct is usually freed when a process exits.
1150 	 *
1151 	 * The atomic reference below makes sure the mm_struct is
1152 	 * available as long as the vmap is in the linux_vma_head.
1153 	 */
1154 	task = current;
1155 	mm = task->mm;
1156 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1157 		return (EINVAL);
1158 
1159 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1160 	vmap->vm_start = 0;
1161 	vmap->vm_end = size;
1162 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1163 	vmap->vm_pfn = 0;
1164 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1165 	vmap->vm_ops = NULL;
1166 	vmap->vm_file = get_file(filp);
1167 	vmap->vm_mm = mm;
1168 
1169 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1170 		error = linux_get_error(task, EINTR);
1171 	} else {
1172 		error = -OPW(fp, td, filp->f_op->mmap(filp, vmap));
1173 		error = linux_get_error(task, error);
1174 		up_write(&vmap->vm_mm->mmap_sem);
1175 	}
1176 
1177 	if (error != 0) {
1178 		linux_cdev_handle_free(vmap);
1179 		return (error);
1180 	}
1181 
1182 	attr = pgprot2cachemode(vmap->vm_page_prot);
1183 
1184 	if (vmap->vm_ops != NULL) {
1185 		struct vm_area_struct *ptr;
1186 		void *vm_private_data;
1187 		bool vm_no_fault;
1188 
1189 		if (vmap->vm_ops->open == NULL ||
1190 		    vmap->vm_ops->close == NULL ||
1191 		    vmap->vm_private_data == NULL) {
1192 			/* free allocated VM area struct */
1193 			linux_cdev_handle_free(vmap);
1194 			return (EINVAL);
1195 		}
1196 
1197 		vm_private_data = vmap->vm_private_data;
1198 
1199 		rw_wlock(&linux_vma_lock);
1200 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1201 			if (ptr->vm_private_data == vm_private_data)
1202 				break;
1203 		}
1204 		/* check if there is an existing VM area struct */
1205 		if (ptr != NULL) {
1206 			/* check if the VM area structure is invalid */
1207 			if (ptr->vm_ops == NULL ||
1208 			    ptr->vm_ops->open == NULL ||
1209 			    ptr->vm_ops->close == NULL) {
1210 				error = ESTALE;
1211 				vm_no_fault = 1;
1212 			} else {
1213 				error = EEXIST;
1214 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1215 			}
1216 		} else {
1217 			/* insert VM area structure into list */
1218 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1219 			error = 0;
1220 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1221 		}
1222 		rw_wunlock(&linux_vma_lock);
1223 
1224 		if (error != 0) {
1225 			/* free allocated VM area struct */
1226 			linux_cdev_handle_free(vmap);
1227 			/* check for stale VM area struct */
1228 			if (error != EEXIST)
1229 				return (error);
1230 		}
1231 
1232 		/* check if there is no fault handler */
1233 		if (vm_no_fault) {
1234 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1235 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1236 			    td->td_ucred);
1237 		} else {
1238 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1239 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1240 			    td->td_ucred);
1241 		}
1242 
1243 		/* check if allocating the VM object failed */
1244 		if (*object == NULL) {
1245 			if (error == 0) {
1246 				/* remove VM area struct from list */
1247 				linux_cdev_handle_remove(vmap);
1248 				/* free allocated VM area struct */
1249 				linux_cdev_handle_free(vmap);
1250 			}
1251 			return (EINVAL);
1252 		}
1253 	} else {
1254 		struct sglist *sg;
1255 
1256 		sg = sglist_alloc(1, M_WAITOK);
1257 		sglist_append_phys(sg,
1258 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1259 
1260 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1261 		    nprot, 0, td->td_ucred);
1262 
1263 		linux_cdev_handle_free(vmap);
1264 
1265 		if (*object == NULL) {
1266 			sglist_free(sg);
1267 			return (EINVAL);
1268 		}
1269 	}
1270 
1271 	if (attr != VM_MEMATTR_DEFAULT) {
1272 		VM_OBJECT_WLOCK(*object);
1273 		vm_object_set_memattr(*object, attr);
1274 		VM_OBJECT_WUNLOCK(*object);
1275 	}
1276 	*offset = 0;
1277 	return (0);
1278 }
1279 
1280 struct cdevsw linuxcdevsw = {
1281 	.d_version = D_VERSION,
1282 	.d_fdopen = linux_dev_fdopen,
1283 	.d_name = "lkpidev",
1284 };
1285 
1286 static int
1287 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1288     int flags, struct thread *td)
1289 {
1290 	struct linux_file *filp;
1291 	ssize_t bytes;
1292 	int error;
1293 
1294 	error = 0;
1295 	filp = (struct linux_file *)file->f_data;
1296 	filp->f_flags = file->f_flag;
1297 	/* XXX no support for I/O vectors currently */
1298 	if (uio->uio_iovcnt != 1)
1299 		return (EOPNOTSUPP);
1300 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1301 		return (EINVAL);
1302 	linux_set_current(td);
1303 	if (filp->f_op->read) {
1304 		bytes = OPW(file, td, filp->f_op->read(filp, uio->uio_iov->iov_base,
1305 		    uio->uio_iov->iov_len, &uio->uio_offset));
1306 		if (bytes >= 0) {
1307 			uio->uio_iov->iov_base =
1308 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1309 			uio->uio_iov->iov_len -= bytes;
1310 			uio->uio_resid -= bytes;
1311 		} else {
1312 			error = linux_get_error(current, -bytes);
1313 		}
1314 	} else
1315 		error = ENXIO;
1316 
1317 	/* update kqfilter status, if any */
1318 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1319 
1320 	return (error);
1321 }
1322 
1323 static int
1324 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1325     int flags, struct thread *td)
1326 {
1327 	struct linux_file *filp;
1328 	ssize_t bytes;
1329 	int error;
1330 
1331 	error = 0;
1332 	filp = (struct linux_file *)file->f_data;
1333 	filp->f_flags = file->f_flag;
1334 	/* XXX no support for I/O vectors currently */
1335 	if (uio->uio_iovcnt != 1)
1336 		return (EOPNOTSUPP);
1337 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1338 		return (EINVAL);
1339 	linux_set_current(td);
1340 	if (filp->f_op->write) {
1341 		bytes = OPW(file, td, filp->f_op->write(filp, uio->uio_iov->iov_base,
1342 		    uio->uio_iov->iov_len, &uio->uio_offset));
1343 		if (bytes >= 0) {
1344 			uio->uio_iov->iov_base =
1345 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1346 			uio->uio_iov->iov_len -= bytes;
1347 			uio->uio_resid -= bytes;
1348 		} else {
1349 			error = linux_get_error(current, -bytes);
1350 		}
1351 	} else
1352 		error = ENXIO;
1353 
1354 	/* update kqfilter status, if any */
1355 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1356 
1357 	return (error);
1358 }
1359 
1360 static int
1361 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1362     struct thread *td)
1363 {
1364 	struct linux_file *filp;
1365 	int revents;
1366 
1367 	filp = (struct linux_file *)file->f_data;
1368 	filp->f_flags = file->f_flag;
1369 	linux_set_current(td);
1370 	if (filp->f_op->poll != NULL)
1371 		revents = OPW(file, td, filp->f_op->poll(filp, LINUX_POLL_TABLE_NORMAL)) & events;
1372 	else
1373 		revents = 0;
1374 
1375 	return (revents);
1376 }
1377 
1378 static int
1379 linux_file_close(struct file *file, struct thread *td)
1380 {
1381 	struct linux_file *filp;
1382 	int error;
1383 
1384 	filp = (struct linux_file *)file->f_data;
1385 
1386 	KASSERT(file_count(filp) == 0, ("File refcount(%d) is not zero", file_count(filp)));
1387 
1388 	filp->f_flags = file->f_flag;
1389 	linux_set_current(td);
1390 	linux_poll_wait_dequeue(filp);
1391 	error = -OPW(file, td, filp->f_op->release(filp->f_vnode, filp));
1392 	funsetown(&filp->f_sigio);
1393 	if (filp->f_vnode != NULL)
1394 		vdrop(filp->f_vnode);
1395 	kfree(filp);
1396 
1397 	return (error);
1398 }
1399 
1400 static int
1401 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1402     struct thread *td)
1403 {
1404 	struct linux_file *filp;
1405 	int error;
1406 
1407 	filp = (struct linux_file *)fp->f_data;
1408 	filp->f_flags = fp->f_flag;
1409 	error = 0;
1410 
1411 	linux_set_current(td);
1412 	switch (cmd) {
1413 	case FIONBIO:
1414 		break;
1415 	case FIOASYNC:
1416 		if (filp->f_op->fasync == NULL)
1417 			break;
1418 		error = -OPW(fp, td, filp->f_op->fasync(0, filp, fp->f_flag & FASYNC));
1419 		break;
1420 	case FIOSETOWN:
1421 		error = fsetown(*(int *)data, &filp->f_sigio);
1422 		if (error == 0) {
1423 			if (filp->f_op->fasync == NULL)
1424 				break;
1425 			error = -OPW(fp, td, filp->f_op->fasync(0, filp,
1426 			    fp->f_flag & FASYNC));
1427 		}
1428 		break;
1429 	case FIOGETOWN:
1430 		*(int *)data = fgetown(&filp->f_sigio);
1431 		break;
1432 	default:
1433 		error = linux_file_ioctl_sub(fp, filp, cmd, data, td);
1434 		break;
1435 	}
1436 	return (error);
1437 }
1438 
1439 static int
1440 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1441     vm_prot_t *maxprotp, int *flagsp, struct file *fp,
1442     vm_ooffset_t *foff, vm_object_t *objp)
1443 {
1444 	/*
1445 	 * Character devices do not provide private mappings
1446 	 * of any kind:
1447 	 */
1448 	if ((*maxprotp & VM_PROT_WRITE) == 0 &&
1449 	    (prot & VM_PROT_WRITE) != 0)
1450 		return (EACCES);
1451 	if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0)
1452 		return (EINVAL);
1453 
1454 	return (linux_file_mmap_single(fp, foff, objsize, objp, (int)prot, td));
1455 }
1456 
1457 static int
1458 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1459     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1460     struct thread *td)
1461 {
1462 	struct linux_file *filp;
1463 	struct mount *mp;
1464 	struct vnode *vp;
1465 	vm_object_t object;
1466 	vm_prot_t maxprot;
1467 	int error;
1468 
1469 	filp = (struct linux_file *)fp->f_data;
1470 
1471 	vp = filp->f_vnode;
1472 	if (vp == NULL)
1473 		return (EOPNOTSUPP);
1474 
1475 	/*
1476 	 * Ensure that file and memory protections are
1477 	 * compatible.
1478 	 */
1479 	mp = vp->v_mount;
1480 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1481 		maxprot = VM_PROT_NONE;
1482 		if ((prot & VM_PROT_EXECUTE) != 0)
1483 			return (EACCES);
1484 	} else
1485 		maxprot = VM_PROT_EXECUTE;
1486 	if ((fp->f_flag & FREAD) != 0)
1487 		maxprot |= VM_PROT_READ;
1488 	else if ((prot & VM_PROT_READ) != 0)
1489 		return (EACCES);
1490 
1491 	/*
1492 	 * If we are sharing potential changes via MAP_SHARED and we
1493 	 * are trying to get write permission although we opened it
1494 	 * without asking for it, bail out.
1495 	 *
1496 	 * Note that most character devices always share mappings.
1497 	 *
1498 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1499 	 * requests rather than doing it here.
1500 	 */
1501 	if ((flags & MAP_SHARED) != 0) {
1502 		if ((fp->f_flag & FWRITE) != 0)
1503 			maxprot |= VM_PROT_WRITE;
1504 		else if ((prot & VM_PROT_WRITE) != 0)
1505 			return (EACCES);
1506 	}
1507 	maxprot &= cap_maxprot;
1508 
1509 	error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp, &foff,
1510 	    &object);
1511 	if (error != 0)
1512 		return (error);
1513 
1514 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1515 	    foff, FALSE, td);
1516 	if (error != 0)
1517 		vm_object_deallocate(object);
1518 	return (error);
1519 }
1520 
1521 static int
1522 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1523     struct thread *td)
1524 {
1525 	struct linux_file *filp;
1526 	struct vnode *vp;
1527 	int error;
1528 
1529 	filp = (struct linux_file *)fp->f_data;
1530 	if (filp->f_vnode == NULL)
1531 		return (EOPNOTSUPP);
1532 
1533 	vp = filp->f_vnode;
1534 
1535 	vn_lock(vp, LK_SHARED | LK_RETRY);
1536 	error = vn_stat(vp, sb, td->td_ucred, NOCRED, td);
1537 	VOP_UNLOCK(vp, 0);
1538 
1539 	return (error);
1540 }
1541 
1542 static int
1543 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1544     struct filedesc *fdp)
1545 {
1546 
1547 	return (0);
1548 }
1549 
1550 unsigned int
1551 linux_iminor(struct inode *inode)
1552 {
1553 	struct linux_cdev *ldev;
1554 
1555 	if (inode == NULL || inode->v_rdev == NULL ||
1556 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1557 		return (-1U);
1558 	ldev = inode->v_rdev->si_drv1;
1559 	if (ldev == NULL)
1560 		return (-1U);
1561 
1562 	return (minor(ldev->dev));
1563 }
1564 
1565 struct fileops linuxfileops = {
1566 	.fo_read = linux_file_read,
1567 	.fo_write = linux_file_write,
1568 	.fo_truncate = invfo_truncate,
1569 	.fo_kqfilter = linux_file_kqfilter,
1570 	.fo_stat = linux_file_stat,
1571 	.fo_fill_kinfo = linux_file_fill_kinfo,
1572 	.fo_poll = linux_file_poll,
1573 	.fo_close = linux_file_close,
1574 	.fo_ioctl = linux_file_ioctl,
1575 	.fo_mmap = linux_file_mmap,
1576 	.fo_chmod = invfo_chmod,
1577 	.fo_chown = invfo_chown,
1578 	.fo_sendfile = invfo_sendfile,
1579 	.fo_flags = DFLAG_PASSABLE,
1580 };
1581 
1582 /*
1583  * Hash of vmmap addresses.  This is infrequently accessed and does not
1584  * need to be particularly large.  This is done because we must store the
1585  * caller's idea of the map size to properly unmap.
1586  */
1587 struct vmmap {
1588 	LIST_ENTRY(vmmap)	vm_next;
1589 	void 			*vm_addr;
1590 	unsigned long		vm_size;
1591 };
1592 
1593 struct vmmaphd {
1594 	struct vmmap *lh_first;
1595 };
1596 #define	VMMAP_HASH_SIZE	64
1597 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1598 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1599 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1600 static struct mtx vmmaplock;
1601 
1602 static void
1603 vmmap_add(void *addr, unsigned long size)
1604 {
1605 	struct vmmap *vmmap;
1606 
1607 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1608 	mtx_lock(&vmmaplock);
1609 	vmmap->vm_size = size;
1610 	vmmap->vm_addr = addr;
1611 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1612 	mtx_unlock(&vmmaplock);
1613 }
1614 
1615 static struct vmmap *
1616 vmmap_remove(void *addr)
1617 {
1618 	struct vmmap *vmmap;
1619 
1620 	mtx_lock(&vmmaplock);
1621 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1622 		if (vmmap->vm_addr == addr)
1623 			break;
1624 	if (vmmap)
1625 		LIST_REMOVE(vmmap, vm_next);
1626 	mtx_unlock(&vmmaplock);
1627 
1628 	return (vmmap);
1629 }
1630 
1631 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1632 void *
1633 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1634 {
1635 	void *addr;
1636 
1637 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1638 	if (addr == NULL)
1639 		return (NULL);
1640 	vmmap_add(addr, size);
1641 
1642 	return (addr);
1643 }
1644 #endif
1645 
1646 void
1647 iounmap(void *addr)
1648 {
1649 	struct vmmap *vmmap;
1650 
1651 	vmmap = vmmap_remove(addr);
1652 	if (vmmap == NULL)
1653 		return;
1654 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1655 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1656 #endif
1657 	kfree(vmmap);
1658 }
1659 
1660 
1661 void *
1662 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1663 {
1664 	vm_offset_t off;
1665 	size_t size;
1666 
1667 	size = count * PAGE_SIZE;
1668 	off = kva_alloc(size);
1669 	if (off == 0)
1670 		return (NULL);
1671 	vmmap_add((void *)off, size);
1672 	pmap_qenter(off, pages, count);
1673 
1674 	return ((void *)off);
1675 }
1676 
1677 void
1678 vunmap(void *addr)
1679 {
1680 	struct vmmap *vmmap;
1681 
1682 	vmmap = vmmap_remove(addr);
1683 	if (vmmap == NULL)
1684 		return;
1685 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1686 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1687 	kfree(vmmap);
1688 }
1689 
1690 char *
1691 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1692 {
1693 	unsigned int len;
1694 	char *p;
1695 	va_list aq;
1696 
1697 	va_copy(aq, ap);
1698 	len = vsnprintf(NULL, 0, fmt, aq);
1699 	va_end(aq);
1700 
1701 	p = kmalloc(len + 1, gfp);
1702 	if (p != NULL)
1703 		vsnprintf(p, len + 1, fmt, ap);
1704 
1705 	return (p);
1706 }
1707 
1708 char *
1709 kasprintf(gfp_t gfp, const char *fmt, ...)
1710 {
1711 	va_list ap;
1712 	char *p;
1713 
1714 	va_start(ap, fmt);
1715 	p = kvasprintf(gfp, fmt, ap);
1716 	va_end(ap);
1717 
1718 	return (p);
1719 }
1720 
1721 static void
1722 linux_timer_callback_wrapper(void *context)
1723 {
1724 	struct timer_list *timer;
1725 
1726 	linux_set_current(curthread);
1727 
1728 	timer = context;
1729 	timer->function(timer->data);
1730 }
1731 
1732 void
1733 mod_timer(struct timer_list *timer, int expires)
1734 {
1735 
1736 	timer->expires = expires;
1737 	callout_reset(&timer->callout,
1738 	    linux_timer_jiffies_until(expires),
1739 	    &linux_timer_callback_wrapper, timer);
1740 }
1741 
1742 void
1743 add_timer(struct timer_list *timer)
1744 {
1745 
1746 	callout_reset(&timer->callout,
1747 	    linux_timer_jiffies_until(timer->expires),
1748 	    &linux_timer_callback_wrapper, timer);
1749 }
1750 
1751 void
1752 add_timer_on(struct timer_list *timer, int cpu)
1753 {
1754 
1755 	callout_reset_on(&timer->callout,
1756 	    linux_timer_jiffies_until(timer->expires),
1757 	    &linux_timer_callback_wrapper, timer, cpu);
1758 }
1759 
1760 static void
1761 linux_timer_init(void *arg)
1762 {
1763 
1764 	/*
1765 	 * Compute an internal HZ value which can divide 2**32 to
1766 	 * avoid timer rounding problems when the tick value wraps
1767 	 * around 2**32:
1768 	 */
1769 	linux_timer_hz_mask = 1;
1770 	while (linux_timer_hz_mask < (unsigned long)hz)
1771 		linux_timer_hz_mask *= 2;
1772 	linux_timer_hz_mask--;
1773 }
1774 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1775 
1776 void
1777 linux_complete_common(struct completion *c, int all)
1778 {
1779 	int wakeup_swapper;
1780 
1781 	sleepq_lock(c);
1782 	if (all) {
1783 		c->done = UINT_MAX;
1784 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1785 	} else {
1786 		if (c->done != UINT_MAX)
1787 			c->done++;
1788 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1789 	}
1790 	sleepq_release(c);
1791 	if (wakeup_swapper)
1792 		kick_proc0();
1793 }
1794 
1795 /*
1796  * Indefinite wait for done != 0 with or without signals.
1797  */
1798 int
1799 linux_wait_for_common(struct completion *c, int flags)
1800 {
1801 	struct task_struct *task;
1802 	int error;
1803 
1804 	if (SCHEDULER_STOPPED())
1805 		return (0);
1806 
1807 	task = current;
1808 
1809 	if (flags != 0)
1810 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1811 	else
1812 		flags = SLEEPQ_SLEEP;
1813 	error = 0;
1814 	for (;;) {
1815 		sleepq_lock(c);
1816 		if (c->done)
1817 			break;
1818 		sleepq_add(c, NULL, "completion", flags, 0);
1819 		if (flags & SLEEPQ_INTERRUPTIBLE) {
1820 			DROP_GIANT();
1821 			error = -sleepq_wait_sig(c, 0);
1822 			PICKUP_GIANT();
1823 			if (error != 0) {
1824 				linux_schedule_save_interrupt_value(task, error);
1825 				error = -ERESTARTSYS;
1826 				goto intr;
1827 			}
1828 		} else {
1829 			DROP_GIANT();
1830 			sleepq_wait(c, 0);
1831 			PICKUP_GIANT();
1832 		}
1833 	}
1834 	if (c->done != UINT_MAX)
1835 		c->done--;
1836 	sleepq_release(c);
1837 
1838 intr:
1839 	return (error);
1840 }
1841 
1842 /*
1843  * Time limited wait for done != 0 with or without signals.
1844  */
1845 int
1846 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
1847 {
1848 	struct task_struct *task;
1849 	int end = jiffies + timeout;
1850 	int error;
1851 
1852 	if (SCHEDULER_STOPPED())
1853 		return (0);
1854 
1855 	task = current;
1856 
1857 	if (flags != 0)
1858 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1859 	else
1860 		flags = SLEEPQ_SLEEP;
1861 
1862 	for (;;) {
1863 		sleepq_lock(c);
1864 		if (c->done)
1865 			break;
1866 		sleepq_add(c, NULL, "completion", flags, 0);
1867 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
1868 
1869 		DROP_GIANT();
1870 		if (flags & SLEEPQ_INTERRUPTIBLE)
1871 			error = -sleepq_timedwait_sig(c, 0);
1872 		else
1873 			error = -sleepq_timedwait(c, 0);
1874 		PICKUP_GIANT();
1875 
1876 		if (error != 0) {
1877 			/* check for timeout */
1878 			if (error == -EWOULDBLOCK) {
1879 				error = 0;	/* timeout */
1880 			} else {
1881 				/* signal happened */
1882 				linux_schedule_save_interrupt_value(task, error);
1883 				error = -ERESTARTSYS;
1884 			}
1885 			goto done;
1886 		}
1887 	}
1888 	if (c->done != UINT_MAX)
1889 		c->done--;
1890 	sleepq_release(c);
1891 
1892 	/* return how many jiffies are left */
1893 	error = linux_timer_jiffies_until(end);
1894 done:
1895 	return (error);
1896 }
1897 
1898 int
1899 linux_try_wait_for_completion(struct completion *c)
1900 {
1901 	int isdone;
1902 
1903 	sleepq_lock(c);
1904 	isdone = (c->done != 0);
1905 	if (c->done != 0 && c->done != UINT_MAX)
1906 		c->done--;
1907 	sleepq_release(c);
1908 	return (isdone);
1909 }
1910 
1911 int
1912 linux_completion_done(struct completion *c)
1913 {
1914 	int isdone;
1915 
1916 	sleepq_lock(c);
1917 	isdone = (c->done != 0);
1918 	sleepq_release(c);
1919 	return (isdone);
1920 }
1921 
1922 static void
1923 linux_cdev_release(struct kobject *kobj)
1924 {
1925 	struct linux_cdev *cdev;
1926 	struct kobject *parent;
1927 
1928 	cdev = container_of(kobj, struct linux_cdev, kobj);
1929 	parent = kobj->parent;
1930 	if (cdev->cdev)
1931 		destroy_dev(cdev->cdev);
1932 	kfree(cdev);
1933 	kobject_put(parent);
1934 }
1935 
1936 static void
1937 linux_cdev_static_release(struct kobject *kobj)
1938 {
1939 	struct linux_cdev *cdev;
1940 	struct kobject *parent;
1941 
1942 	cdev = container_of(kobj, struct linux_cdev, kobj);
1943 	parent = kobj->parent;
1944 	if (cdev->cdev)
1945 		destroy_dev(cdev->cdev);
1946 	kobject_put(parent);
1947 }
1948 
1949 const struct kobj_type linux_cdev_ktype = {
1950 	.release = linux_cdev_release,
1951 };
1952 
1953 const struct kobj_type linux_cdev_static_ktype = {
1954 	.release = linux_cdev_static_release,
1955 };
1956 
1957 static void
1958 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
1959 {
1960 	struct notifier_block *nb;
1961 
1962 	nb = arg;
1963 	if (linkstate == LINK_STATE_UP)
1964 		nb->notifier_call(nb, NETDEV_UP, ifp);
1965 	else
1966 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
1967 }
1968 
1969 static void
1970 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
1971 {
1972 	struct notifier_block *nb;
1973 
1974 	nb = arg;
1975 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
1976 }
1977 
1978 static void
1979 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
1980 {
1981 	struct notifier_block *nb;
1982 
1983 	nb = arg;
1984 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
1985 }
1986 
1987 static void
1988 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
1989 {
1990 	struct notifier_block *nb;
1991 
1992 	nb = arg;
1993 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
1994 }
1995 
1996 static void
1997 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
1998 {
1999 	struct notifier_block *nb;
2000 
2001 	nb = arg;
2002 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
2003 }
2004 
2005 int
2006 register_netdevice_notifier(struct notifier_block *nb)
2007 {
2008 
2009 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2010 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2011 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2012 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2013 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2014 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2015 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2016 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2017 
2018 	return (0);
2019 }
2020 
2021 int
2022 register_inetaddr_notifier(struct notifier_block *nb)
2023 {
2024 
2025 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2026 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2027 	return (0);
2028 }
2029 
2030 int
2031 unregister_netdevice_notifier(struct notifier_block *nb)
2032 {
2033 
2034 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2035 	    nb->tags[NETDEV_UP]);
2036 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2037 	    nb->tags[NETDEV_REGISTER]);
2038 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2039 	    nb->tags[NETDEV_UNREGISTER]);
2040 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2041 	    nb->tags[NETDEV_CHANGEADDR]);
2042 
2043 	return (0);
2044 }
2045 
2046 int
2047 unregister_inetaddr_notifier(struct notifier_block *nb)
2048 {
2049 
2050 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2051 	    nb->tags[NETDEV_CHANGEIFADDR]);
2052 
2053 	return (0);
2054 }
2055 
2056 struct list_sort_thunk {
2057 	int (*cmp)(void *, struct list_head *, struct list_head *);
2058 	void *priv;
2059 };
2060 
2061 static inline int
2062 linux_le_cmp(void *priv, const void *d1, const void *d2)
2063 {
2064 	struct list_head *le1, *le2;
2065 	struct list_sort_thunk *thunk;
2066 
2067 	thunk = priv;
2068 	le1 = *(__DECONST(struct list_head **, d1));
2069 	le2 = *(__DECONST(struct list_head **, d2));
2070 	return ((thunk->cmp)(thunk->priv, le1, le2));
2071 }
2072 
2073 void
2074 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2075     struct list_head *a, struct list_head *b))
2076 {
2077 	struct list_sort_thunk thunk;
2078 	struct list_head **ar, *le;
2079 	size_t count, i;
2080 
2081 	count = 0;
2082 	list_for_each(le, head)
2083 		count++;
2084 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2085 	i = 0;
2086 	list_for_each(le, head)
2087 		ar[i++] = le;
2088 	thunk.cmp = cmp;
2089 	thunk.priv = priv;
2090 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2091 	INIT_LIST_HEAD(head);
2092 	for (i = 0; i < count; i++)
2093 		list_add_tail(ar[i], head);
2094 	free(ar, M_KMALLOC);
2095 }
2096 
2097 void
2098 linux_irq_handler(void *ent)
2099 {
2100 	struct irq_ent *irqe;
2101 
2102 	linux_set_current(curthread);
2103 
2104 	irqe = ent;
2105 	irqe->handler(irqe->irq, irqe->arg);
2106 }
2107 
2108 #if defined(__i386__) || defined(__amd64__)
2109 int
2110 linux_wbinvd_on_all_cpus(void)
2111 {
2112 
2113 	pmap_invalidate_cache();
2114 	return (0);
2115 }
2116 #endif
2117 
2118 int
2119 linux_on_each_cpu(void callback(void *), void *data)
2120 {
2121 
2122 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2123 	    smp_no_rendezvous_barrier, data);
2124 	return (0);
2125 }
2126 
2127 int
2128 linux_in_atomic(void)
2129 {
2130 
2131 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2132 }
2133 
2134 struct linux_cdev *
2135 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2136 {
2137 	dev_t dev = MKDEV(major, minor);
2138 	struct cdev *cdev;
2139 
2140 	dev_lock();
2141 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2142 		struct linux_cdev *ldev = cdev->si_drv1;
2143 		if (ldev->dev == dev &&
2144 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2145 			break;
2146 		}
2147 	}
2148 	dev_unlock();
2149 
2150 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2151 }
2152 
2153 int
2154 __register_chrdev(unsigned int major, unsigned int baseminor,
2155     unsigned int count, const char *name,
2156     const struct file_operations *fops)
2157 {
2158 	struct linux_cdev *cdev;
2159 	int ret = 0;
2160 	int i;
2161 
2162 	for (i = baseminor; i < baseminor + count; i++) {
2163 		cdev = cdev_alloc();
2164 		cdev_init(cdev, fops);
2165 		kobject_set_name(&cdev->kobj, name);
2166 
2167 		ret = cdev_add(cdev, makedev(major, i), 1);
2168 		if (ret != 0)
2169 			break;
2170 	}
2171 	return (ret);
2172 }
2173 
2174 int
2175 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2176     unsigned int count, const char *name,
2177     const struct file_operations *fops, uid_t uid,
2178     gid_t gid, int mode)
2179 {
2180 	struct linux_cdev *cdev;
2181 	int ret = 0;
2182 	int i;
2183 
2184 	for (i = baseminor; i < baseminor + count; i++) {
2185 		cdev = cdev_alloc();
2186 		cdev_init(cdev, fops);
2187 		kobject_set_name(&cdev->kobj, name);
2188 
2189 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2190 		if (ret != 0)
2191 			break;
2192 	}
2193 	return (ret);
2194 }
2195 
2196 void
2197 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2198     unsigned int count, const char *name)
2199 {
2200 	struct linux_cdev *cdevp;
2201 	int i;
2202 
2203 	for (i = baseminor; i < baseminor + count; i++) {
2204 		cdevp = linux_find_cdev(name, major, i);
2205 		if (cdevp != NULL)
2206 			cdev_del(cdevp);
2207 	}
2208 }
2209 
2210 #if defined(__i386__) || defined(__amd64__)
2211 bool linux_cpu_has_clflush;
2212 #endif
2213 
2214 static void
2215 linux_compat_init(void *arg)
2216 {
2217 	struct sysctl_oid *rootoid;
2218 	int i;
2219 
2220 #if defined(__i386__) || defined(__amd64__)
2221 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2222 #endif
2223 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2224 
2225 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2226 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2227 	kobject_init(&linux_class_root, &linux_class_ktype);
2228 	kobject_set_name(&linux_class_root, "class");
2229 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2230 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2231 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2232 	kobject_set_name(&linux_root_device.kobj, "device");
2233 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2234 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2235 	    "device");
2236 	linux_root_device.bsddev = root_bus;
2237 	linux_class_misc.name = "misc";
2238 	class_register(&linux_class_misc);
2239 	INIT_LIST_HEAD(&pci_drivers);
2240 	INIT_LIST_HEAD(&pci_devices);
2241 	spin_lock_init(&pci_lock);
2242 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2243 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2244 		LIST_INIT(&vmmaphead[i]);
2245 }
2246 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2247 
2248 static void
2249 linux_compat_uninit(void *arg)
2250 {
2251 	linux_kobject_kfree_name(&linux_class_root);
2252 	linux_kobject_kfree_name(&linux_root_device.kobj);
2253 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2254 
2255 	mtx_destroy(&vmmaplock);
2256 	spin_lock_destroy(&pci_lock);
2257 	rw_destroy(&linux_vma_lock);
2258 }
2259 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2260 
2261 /*
2262  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2263  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2264  * used. Assert these types have the same size, else some parts of the
2265  * LinuxKPI may not work like expected:
2266  */
2267 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2268