1 /*- 2 * Copyright (c) 2010 Isilon Systems, Inc. 3 * Copyright (c) 2010 iX Systems, Inc. 4 * Copyright (c) 2010 Panasas, Inc. 5 * Copyright (c) 2013-2018 Mellanox Technologies, Ltd. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_stack.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/sysctl.h> 40 #include <sys/proc.h> 41 #include <sys/sglist.h> 42 #include <sys/sleepqueue.h> 43 #include <sys/refcount.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/bus.h> 47 #include <sys/eventhandler.h> 48 #include <sys/fcntl.h> 49 #include <sys/file.h> 50 #include <sys/filio.h> 51 #include <sys/rwlock.h> 52 #include <sys/mman.h> 53 #include <sys/stack.h> 54 #include <sys/user.h> 55 56 #include <vm/vm.h> 57 #include <vm/pmap.h> 58 #include <vm/vm_object.h> 59 #include <vm/vm_page.h> 60 #include <vm/vm_pager.h> 61 62 #include <machine/stdarg.h> 63 64 #if defined(__i386__) || defined(__amd64__) 65 #include <machine/md_var.h> 66 #endif 67 68 #include <linux/kobject.h> 69 #include <linux/device.h> 70 #include <linux/slab.h> 71 #include <linux/module.h> 72 #include <linux/moduleparam.h> 73 #include <linux/cdev.h> 74 #include <linux/file.h> 75 #include <linux/sysfs.h> 76 #include <linux/mm.h> 77 #include <linux/io.h> 78 #include <linux/vmalloc.h> 79 #include <linux/netdevice.h> 80 #include <linux/timer.h> 81 #include <linux/interrupt.h> 82 #include <linux/uaccess.h> 83 #include <linux/list.h> 84 #include <linux/kthread.h> 85 #include <linux/kernel.h> 86 #include <linux/compat.h> 87 #include <linux/poll.h> 88 #include <linux/smp.h> 89 90 #if defined(__i386__) || defined(__amd64__) 91 #include <asm/smp.h> 92 #endif 93 94 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters"); 95 96 int linuxkpi_debug; 97 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN, 98 &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable."); 99 100 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat"); 101 102 #include <linux/rbtree.h> 103 /* Undo Linux compat changes. */ 104 #undef RB_ROOT 105 #undef file 106 #undef cdev 107 #define RB_ROOT(head) (head)->rbh_root 108 109 static void linux_cdev_deref(struct linux_cdev *ldev); 110 static struct vm_area_struct *linux_cdev_handle_find(void *handle); 111 112 struct kobject linux_class_root; 113 struct device linux_root_device; 114 struct class linux_class_misc; 115 struct list_head pci_drivers; 116 struct list_head pci_devices; 117 spinlock_t pci_lock; 118 119 unsigned long linux_timer_hz_mask; 120 121 int 122 panic_cmp(struct rb_node *one, struct rb_node *two) 123 { 124 panic("no cmp"); 125 } 126 127 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp); 128 129 int 130 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args) 131 { 132 va_list tmp_va; 133 int len; 134 char *old; 135 char *name; 136 char dummy; 137 138 old = kobj->name; 139 140 if (old && fmt == NULL) 141 return (0); 142 143 /* compute length of string */ 144 va_copy(tmp_va, args); 145 len = vsnprintf(&dummy, 0, fmt, tmp_va); 146 va_end(tmp_va); 147 148 /* account for zero termination */ 149 len++; 150 151 /* check for error */ 152 if (len < 1) 153 return (-EINVAL); 154 155 /* allocate memory for string */ 156 name = kzalloc(len, GFP_KERNEL); 157 if (name == NULL) 158 return (-ENOMEM); 159 vsnprintf(name, len, fmt, args); 160 kobj->name = name; 161 162 /* free old string */ 163 kfree(old); 164 165 /* filter new string */ 166 for (; *name != '\0'; name++) 167 if (*name == '/') 168 *name = '!'; 169 return (0); 170 } 171 172 int 173 kobject_set_name(struct kobject *kobj, const char *fmt, ...) 174 { 175 va_list args; 176 int error; 177 178 va_start(args, fmt); 179 error = kobject_set_name_vargs(kobj, fmt, args); 180 va_end(args); 181 182 return (error); 183 } 184 185 static int 186 kobject_add_complete(struct kobject *kobj, struct kobject *parent) 187 { 188 const struct kobj_type *t; 189 int error; 190 191 kobj->parent = parent; 192 error = sysfs_create_dir(kobj); 193 if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) { 194 struct attribute **attr; 195 t = kobj->ktype; 196 197 for (attr = t->default_attrs; *attr != NULL; attr++) { 198 error = sysfs_create_file(kobj, *attr); 199 if (error) 200 break; 201 } 202 if (error) 203 sysfs_remove_dir(kobj); 204 205 } 206 return (error); 207 } 208 209 int 210 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...) 211 { 212 va_list args; 213 int error; 214 215 va_start(args, fmt); 216 error = kobject_set_name_vargs(kobj, fmt, args); 217 va_end(args); 218 if (error) 219 return (error); 220 221 return kobject_add_complete(kobj, parent); 222 } 223 224 void 225 linux_kobject_release(struct kref *kref) 226 { 227 struct kobject *kobj; 228 char *name; 229 230 kobj = container_of(kref, struct kobject, kref); 231 sysfs_remove_dir(kobj); 232 name = kobj->name; 233 if (kobj->ktype && kobj->ktype->release) 234 kobj->ktype->release(kobj); 235 kfree(name); 236 } 237 238 static void 239 linux_kobject_kfree(struct kobject *kobj) 240 { 241 kfree(kobj); 242 } 243 244 static void 245 linux_kobject_kfree_name(struct kobject *kobj) 246 { 247 if (kobj) { 248 kfree(kobj->name); 249 } 250 } 251 252 const struct kobj_type linux_kfree_type = { 253 .release = linux_kobject_kfree 254 }; 255 256 static void 257 linux_device_release(struct device *dev) 258 { 259 pr_debug("linux_device_release: %s\n", dev_name(dev)); 260 kfree(dev); 261 } 262 263 static ssize_t 264 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf) 265 { 266 struct class_attribute *dattr; 267 ssize_t error; 268 269 dattr = container_of(attr, struct class_attribute, attr); 270 error = -EIO; 271 if (dattr->show) 272 error = dattr->show(container_of(kobj, struct class, kobj), 273 dattr, buf); 274 return (error); 275 } 276 277 static ssize_t 278 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf, 279 size_t count) 280 { 281 struct class_attribute *dattr; 282 ssize_t error; 283 284 dattr = container_of(attr, struct class_attribute, attr); 285 error = -EIO; 286 if (dattr->store) 287 error = dattr->store(container_of(kobj, struct class, kobj), 288 dattr, buf, count); 289 return (error); 290 } 291 292 static void 293 linux_class_release(struct kobject *kobj) 294 { 295 struct class *class; 296 297 class = container_of(kobj, struct class, kobj); 298 if (class->class_release) 299 class->class_release(class); 300 } 301 302 static const struct sysfs_ops linux_class_sysfs = { 303 .show = linux_class_show, 304 .store = linux_class_store, 305 }; 306 307 const struct kobj_type linux_class_ktype = { 308 .release = linux_class_release, 309 .sysfs_ops = &linux_class_sysfs 310 }; 311 312 static void 313 linux_dev_release(struct kobject *kobj) 314 { 315 struct device *dev; 316 317 dev = container_of(kobj, struct device, kobj); 318 /* This is the precedence defined by linux. */ 319 if (dev->release) 320 dev->release(dev); 321 else if (dev->class && dev->class->dev_release) 322 dev->class->dev_release(dev); 323 } 324 325 static ssize_t 326 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf) 327 { 328 struct device_attribute *dattr; 329 ssize_t error; 330 331 dattr = container_of(attr, struct device_attribute, attr); 332 error = -EIO; 333 if (dattr->show) 334 error = dattr->show(container_of(kobj, struct device, kobj), 335 dattr, buf); 336 return (error); 337 } 338 339 static ssize_t 340 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf, 341 size_t count) 342 { 343 struct device_attribute *dattr; 344 ssize_t error; 345 346 dattr = container_of(attr, struct device_attribute, attr); 347 error = -EIO; 348 if (dattr->store) 349 error = dattr->store(container_of(kobj, struct device, kobj), 350 dattr, buf, count); 351 return (error); 352 } 353 354 static const struct sysfs_ops linux_dev_sysfs = { 355 .show = linux_dev_show, 356 .store = linux_dev_store, 357 }; 358 359 const struct kobj_type linux_dev_ktype = { 360 .release = linux_dev_release, 361 .sysfs_ops = &linux_dev_sysfs 362 }; 363 364 struct device * 365 device_create(struct class *class, struct device *parent, dev_t devt, 366 void *drvdata, const char *fmt, ...) 367 { 368 struct device *dev; 369 va_list args; 370 371 dev = kzalloc(sizeof(*dev), M_WAITOK); 372 dev->parent = parent; 373 dev->class = class; 374 dev->devt = devt; 375 dev->driver_data = drvdata; 376 dev->release = linux_device_release; 377 va_start(args, fmt); 378 kobject_set_name_vargs(&dev->kobj, fmt, args); 379 va_end(args); 380 device_register(dev); 381 382 return (dev); 383 } 384 385 int 386 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype, 387 struct kobject *parent, const char *fmt, ...) 388 { 389 va_list args; 390 int error; 391 392 kobject_init(kobj, ktype); 393 kobj->ktype = ktype; 394 kobj->parent = parent; 395 kobj->name = NULL; 396 397 va_start(args, fmt); 398 error = kobject_set_name_vargs(kobj, fmt, args); 399 va_end(args); 400 if (error) 401 return (error); 402 return kobject_add_complete(kobj, parent); 403 } 404 405 static void 406 linux_kq_lock(void *arg) 407 { 408 spinlock_t *s = arg; 409 410 spin_lock(s); 411 } 412 static void 413 linux_kq_unlock(void *arg) 414 { 415 spinlock_t *s = arg; 416 417 spin_unlock(s); 418 } 419 420 static void 421 linux_kq_lock_owned(void *arg) 422 { 423 #ifdef INVARIANTS 424 spinlock_t *s = arg; 425 426 mtx_assert(&s->m, MA_OWNED); 427 #endif 428 } 429 430 static void 431 linux_kq_lock_unowned(void *arg) 432 { 433 #ifdef INVARIANTS 434 spinlock_t *s = arg; 435 436 mtx_assert(&s->m, MA_NOTOWNED); 437 #endif 438 } 439 440 static void 441 linux_file_kqfilter_poll(struct linux_file *, int); 442 443 struct linux_file * 444 linux_file_alloc(void) 445 { 446 struct linux_file *filp; 447 448 filp = kzalloc(sizeof(*filp), GFP_KERNEL); 449 450 /* set initial refcount */ 451 filp->f_count = 1; 452 453 /* setup fields needed by kqueue support */ 454 spin_lock_init(&filp->f_kqlock); 455 knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock, 456 linux_kq_lock, linux_kq_unlock, 457 linux_kq_lock_owned, linux_kq_lock_unowned); 458 459 return (filp); 460 } 461 462 void 463 linux_file_free(struct linux_file *filp) 464 { 465 if (filp->_file == NULL) { 466 if (filp->f_shmem != NULL) 467 vm_object_deallocate(filp->f_shmem); 468 kfree(filp); 469 } else { 470 /* 471 * The close method of the character device or file 472 * will free the linux_file structure: 473 */ 474 _fdrop(filp->_file, curthread); 475 } 476 } 477 478 static int 479 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, 480 vm_page_t *mres) 481 { 482 struct vm_area_struct *vmap; 483 484 vmap = linux_cdev_handle_find(vm_obj->handle); 485 486 MPASS(vmap != NULL); 487 MPASS(vmap->vm_private_data == vm_obj->handle); 488 489 if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) { 490 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset; 491 vm_page_t page; 492 493 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 494 /* 495 * If the passed in result page is a fake 496 * page, update it with the new physical 497 * address. 498 */ 499 page = *mres; 500 vm_page_updatefake(page, paddr, vm_obj->memattr); 501 } else { 502 /* 503 * Replace the passed in "mres" page with our 504 * own fake page and free up the all of the 505 * original pages. 506 */ 507 VM_OBJECT_WUNLOCK(vm_obj); 508 page = vm_page_getfake(paddr, vm_obj->memattr); 509 VM_OBJECT_WLOCK(vm_obj); 510 511 vm_page_replace_checked(page, vm_obj, 512 (*mres)->pindex, *mres); 513 514 vm_page_lock(*mres); 515 vm_page_free(*mres); 516 vm_page_unlock(*mres); 517 *mres = page; 518 } 519 page->valid = VM_PAGE_BITS_ALL; 520 return (VM_PAGER_OK); 521 } 522 return (VM_PAGER_FAIL); 523 } 524 525 static int 526 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type, 527 vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last) 528 { 529 struct vm_area_struct *vmap; 530 int err; 531 532 linux_set_current(curthread); 533 534 /* get VM area structure */ 535 vmap = linux_cdev_handle_find(vm_obj->handle); 536 MPASS(vmap != NULL); 537 MPASS(vmap->vm_private_data == vm_obj->handle); 538 539 VM_OBJECT_WUNLOCK(vm_obj); 540 541 down_write(&vmap->vm_mm->mmap_sem); 542 if (unlikely(vmap->vm_ops == NULL)) { 543 err = VM_FAULT_SIGBUS; 544 } else { 545 struct vm_fault vmf; 546 547 /* fill out VM fault structure */ 548 vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx); 549 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 550 vmf.pgoff = 0; 551 vmf.page = NULL; 552 vmf.vma = vmap; 553 554 vmap->vm_pfn_count = 0; 555 vmap->vm_pfn_pcount = &vmap->vm_pfn_count; 556 vmap->vm_obj = vm_obj; 557 558 err = vmap->vm_ops->fault(vmap, &vmf); 559 560 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) { 561 kern_yield(PRI_USER); 562 err = vmap->vm_ops->fault(vmap, &vmf); 563 } 564 } 565 566 /* translate return code */ 567 switch (err) { 568 case VM_FAULT_OOM: 569 err = VM_PAGER_AGAIN; 570 break; 571 case VM_FAULT_SIGBUS: 572 err = VM_PAGER_BAD; 573 break; 574 case VM_FAULT_NOPAGE: 575 /* 576 * By contract the fault handler will return having 577 * busied all the pages itself. If pidx is already 578 * found in the object, it will simply xbusy the first 579 * page and return with vm_pfn_count set to 1. 580 */ 581 *first = vmap->vm_pfn_first; 582 *last = *first + vmap->vm_pfn_count - 1; 583 err = VM_PAGER_OK; 584 break; 585 default: 586 err = VM_PAGER_ERROR; 587 break; 588 } 589 up_write(&vmap->vm_mm->mmap_sem); 590 VM_OBJECT_WLOCK(vm_obj); 591 return (err); 592 } 593 594 static struct rwlock linux_vma_lock; 595 static TAILQ_HEAD(, vm_area_struct) linux_vma_head = 596 TAILQ_HEAD_INITIALIZER(linux_vma_head); 597 598 static void 599 linux_cdev_handle_free(struct vm_area_struct *vmap) 600 { 601 /* Drop reference on vm_file */ 602 if (vmap->vm_file != NULL) 603 fput(vmap->vm_file); 604 605 /* Drop reference on mm_struct */ 606 mmput(vmap->vm_mm); 607 608 kfree(vmap); 609 } 610 611 static void 612 linux_cdev_handle_remove(struct vm_area_struct *vmap) 613 { 614 rw_wlock(&linux_vma_lock); 615 TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry); 616 rw_wunlock(&linux_vma_lock); 617 } 618 619 static struct vm_area_struct * 620 linux_cdev_handle_find(void *handle) 621 { 622 struct vm_area_struct *vmap; 623 624 rw_rlock(&linux_vma_lock); 625 TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) { 626 if (vmap->vm_private_data == handle) 627 break; 628 } 629 rw_runlock(&linux_vma_lock); 630 return (vmap); 631 } 632 633 static int 634 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 635 vm_ooffset_t foff, struct ucred *cred, u_short *color) 636 { 637 638 MPASS(linux_cdev_handle_find(handle) != NULL); 639 *color = 0; 640 return (0); 641 } 642 643 static void 644 linux_cdev_pager_dtor(void *handle) 645 { 646 const struct vm_operations_struct *vm_ops; 647 struct vm_area_struct *vmap; 648 649 vmap = linux_cdev_handle_find(handle); 650 MPASS(vmap != NULL); 651 652 /* 653 * Remove handle before calling close operation to prevent 654 * other threads from reusing the handle pointer. 655 */ 656 linux_cdev_handle_remove(vmap); 657 658 down_write(&vmap->vm_mm->mmap_sem); 659 vm_ops = vmap->vm_ops; 660 if (likely(vm_ops != NULL)) 661 vm_ops->close(vmap); 662 up_write(&vmap->vm_mm->mmap_sem); 663 664 linux_cdev_handle_free(vmap); 665 } 666 667 static struct cdev_pager_ops linux_cdev_pager_ops[2] = { 668 { 669 /* OBJT_MGTDEVICE */ 670 .cdev_pg_populate = linux_cdev_pager_populate, 671 .cdev_pg_ctor = linux_cdev_pager_ctor, 672 .cdev_pg_dtor = linux_cdev_pager_dtor 673 }, 674 { 675 /* OBJT_DEVICE */ 676 .cdev_pg_fault = linux_cdev_pager_fault, 677 .cdev_pg_ctor = linux_cdev_pager_ctor, 678 .cdev_pg_dtor = linux_cdev_pager_dtor 679 }, 680 }; 681 682 int 683 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 684 unsigned long size) 685 { 686 vm_object_t obj; 687 vm_page_t m; 688 689 obj = vma->vm_obj; 690 if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0) 691 return (-ENOTSUP); 692 VM_OBJECT_RLOCK(obj); 693 for (m = vm_page_find_least(obj, OFF_TO_IDX(address)); 694 m != NULL && m->pindex < OFF_TO_IDX(address + size); 695 m = TAILQ_NEXT(m, listq)) 696 pmap_remove_all(m); 697 VM_OBJECT_RUNLOCK(obj); 698 return (0); 699 } 700 701 static struct file_operations dummy_ldev_ops = { 702 /* XXXKIB */ 703 }; 704 705 static struct linux_cdev dummy_ldev = { 706 .ops = &dummy_ldev_ops, 707 }; 708 709 #define LDEV_SI_DTR 0x0001 710 #define LDEV_SI_REF 0x0002 711 712 static void 713 linux_get_fop(struct linux_file *filp, const struct file_operations **fop, 714 struct linux_cdev **dev) 715 { 716 struct linux_cdev *ldev; 717 u_int siref; 718 719 ldev = filp->f_cdev; 720 *fop = filp->f_op; 721 if (ldev != NULL) { 722 for (siref = ldev->siref;;) { 723 if ((siref & LDEV_SI_DTR) != 0) { 724 ldev = &dummy_ldev; 725 siref = ldev->siref; 726 *fop = ldev->ops; 727 MPASS((ldev->siref & LDEV_SI_DTR) == 0); 728 } else if (atomic_fcmpset_int(&ldev->siref, &siref, 729 siref + LDEV_SI_REF)) { 730 break; 731 } 732 } 733 } 734 *dev = ldev; 735 } 736 737 static void 738 linux_drop_fop(struct linux_cdev *ldev) 739 { 740 741 if (ldev == NULL) 742 return; 743 MPASS((ldev->siref & ~LDEV_SI_DTR) != 0); 744 atomic_subtract_int(&ldev->siref, LDEV_SI_REF); 745 } 746 747 #define OPW(fp,td,code) ({ \ 748 struct file *__fpop; \ 749 __typeof(code) __retval; \ 750 \ 751 __fpop = (td)->td_fpop; \ 752 (td)->td_fpop = (fp); \ 753 __retval = (code); \ 754 (td)->td_fpop = __fpop; \ 755 __retval; \ 756 }) 757 758 static int 759 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td, 760 struct file *file) 761 { 762 struct linux_cdev *ldev; 763 struct linux_file *filp; 764 const struct file_operations *fop; 765 int error; 766 767 ldev = dev->si_drv1; 768 769 filp = linux_file_alloc(); 770 filp->f_dentry = &filp->f_dentry_store; 771 filp->f_op = ldev->ops; 772 filp->f_mode = file->f_flag; 773 filp->f_flags = file->f_flag; 774 filp->f_vnode = file->f_vnode; 775 filp->_file = file; 776 refcount_acquire(&ldev->refs); 777 filp->f_cdev = ldev; 778 779 linux_set_current(td); 780 linux_get_fop(filp, &fop, &ldev); 781 782 if (fop->open != NULL) { 783 error = -fop->open(file->f_vnode, filp); 784 if (error != 0) { 785 linux_drop_fop(ldev); 786 linux_cdev_deref(filp->f_cdev); 787 kfree(filp); 788 return (error); 789 } 790 } 791 792 /* hold on to the vnode - used for fstat() */ 793 vhold(filp->f_vnode); 794 795 /* release the file from devfs */ 796 finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops); 797 linux_drop_fop(ldev); 798 return (ENXIO); 799 } 800 801 #define LINUX_IOCTL_MIN_PTR 0x10000UL 802 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX) 803 804 static inline int 805 linux_remap_address(void **uaddr, size_t len) 806 { 807 uintptr_t uaddr_val = (uintptr_t)(*uaddr); 808 809 if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR && 810 uaddr_val < LINUX_IOCTL_MAX_PTR)) { 811 struct task_struct *pts = current; 812 if (pts == NULL) { 813 *uaddr = NULL; 814 return (1); 815 } 816 817 /* compute data offset */ 818 uaddr_val -= LINUX_IOCTL_MIN_PTR; 819 820 /* check that length is within bounds */ 821 if ((len > IOCPARM_MAX) || 822 (uaddr_val + len) > pts->bsd_ioctl_len) { 823 *uaddr = NULL; 824 return (1); 825 } 826 827 /* re-add kernel buffer address */ 828 uaddr_val += (uintptr_t)pts->bsd_ioctl_data; 829 830 /* update address location */ 831 *uaddr = (void *)uaddr_val; 832 return (1); 833 } 834 return (0); 835 } 836 837 int 838 linux_copyin(const void *uaddr, void *kaddr, size_t len) 839 { 840 if (linux_remap_address(__DECONST(void **, &uaddr), len)) { 841 if (uaddr == NULL) 842 return (-EFAULT); 843 memcpy(kaddr, uaddr, len); 844 return (0); 845 } 846 return (-copyin(uaddr, kaddr, len)); 847 } 848 849 int 850 linux_copyout(const void *kaddr, void *uaddr, size_t len) 851 { 852 if (linux_remap_address(&uaddr, len)) { 853 if (uaddr == NULL) 854 return (-EFAULT); 855 memcpy(uaddr, kaddr, len); 856 return (0); 857 } 858 return (-copyout(kaddr, uaddr, len)); 859 } 860 861 size_t 862 linux_clear_user(void *_uaddr, size_t _len) 863 { 864 uint8_t *uaddr = _uaddr; 865 size_t len = _len; 866 867 /* make sure uaddr is aligned before going into the fast loop */ 868 while (((uintptr_t)uaddr & 7) != 0 && len > 7) { 869 if (subyte(uaddr, 0)) 870 return (_len); 871 uaddr++; 872 len--; 873 } 874 875 /* zero 8 bytes at a time */ 876 while (len > 7) { 877 #ifdef __LP64__ 878 if (suword64(uaddr, 0)) 879 return (_len); 880 #else 881 if (suword32(uaddr, 0)) 882 return (_len); 883 if (suword32(uaddr + 4, 0)) 884 return (_len); 885 #endif 886 uaddr += 8; 887 len -= 8; 888 } 889 890 /* zero fill end, if any */ 891 while (len > 0) { 892 if (subyte(uaddr, 0)) 893 return (_len); 894 uaddr++; 895 len--; 896 } 897 return (0); 898 } 899 900 int 901 linux_access_ok(const void *uaddr, size_t len) 902 { 903 uintptr_t saddr; 904 uintptr_t eaddr; 905 906 /* get start and end address */ 907 saddr = (uintptr_t)uaddr; 908 eaddr = (uintptr_t)uaddr + len; 909 910 /* verify addresses are valid for userspace */ 911 return ((saddr == eaddr) || 912 (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS)); 913 } 914 915 /* 916 * This function should return either EINTR or ERESTART depending on 917 * the signal type sent to this thread: 918 */ 919 static int 920 linux_get_error(struct task_struct *task, int error) 921 { 922 /* check for signal type interrupt code */ 923 if (error == EINTR || error == ERESTARTSYS || error == ERESTART) { 924 error = -linux_schedule_get_interrupt_value(task); 925 if (error == 0) 926 error = EINTR; 927 } 928 return (error); 929 } 930 931 static int 932 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp, 933 const struct file_operations *fop, u_long cmd, caddr_t data, 934 struct thread *td) 935 { 936 struct task_struct *task = current; 937 unsigned size; 938 int error; 939 940 size = IOCPARM_LEN(cmd); 941 /* refer to logic in sys_ioctl() */ 942 if (size > 0) { 943 /* 944 * Setup hint for linux_copyin() and linux_copyout(). 945 * 946 * Background: Linux code expects a user-space address 947 * while FreeBSD supplies a kernel-space address. 948 */ 949 task->bsd_ioctl_data = data; 950 task->bsd_ioctl_len = size; 951 data = (void *)LINUX_IOCTL_MIN_PTR; 952 } else { 953 /* fetch user-space pointer */ 954 data = *(void **)data; 955 } 956 #if defined(__amd64__) 957 if (td->td_proc->p_elf_machine == EM_386) { 958 /* try the compat IOCTL handler first */ 959 if (fop->compat_ioctl != NULL) { 960 error = -OPW(fp, td, fop->compat_ioctl(filp, 961 cmd, (u_long)data)); 962 } else { 963 error = ENOTTY; 964 } 965 966 /* fallback to the regular IOCTL handler, if any */ 967 if (error == ENOTTY && fop->unlocked_ioctl != NULL) { 968 error = -OPW(fp, td, fop->unlocked_ioctl(filp, 969 cmd, (u_long)data)); 970 } 971 } else 972 #endif 973 { 974 if (fop->unlocked_ioctl != NULL) { 975 error = -OPW(fp, td, fop->unlocked_ioctl(filp, 976 cmd, (u_long)data)); 977 } else { 978 error = ENOTTY; 979 } 980 } 981 if (size > 0) { 982 task->bsd_ioctl_data = NULL; 983 task->bsd_ioctl_len = 0; 984 } 985 986 if (error == EWOULDBLOCK) { 987 /* update kqfilter status, if any */ 988 linux_file_kqfilter_poll(filp, 989 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 990 } else { 991 error = linux_get_error(task, error); 992 } 993 return (error); 994 } 995 996 #define LINUX_POLL_TABLE_NORMAL ((poll_table *)1) 997 998 /* 999 * This function atomically updates the poll wakeup state and returns 1000 * the previous state at the time of update. 1001 */ 1002 static uint8_t 1003 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate) 1004 { 1005 int c, old; 1006 1007 c = v->counter; 1008 1009 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c) 1010 c = old; 1011 1012 return (c); 1013 } 1014 1015 1016 static int 1017 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key) 1018 { 1019 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1020 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1021 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1022 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY, 1023 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */ 1024 }; 1025 struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq); 1026 1027 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1028 case LINUX_FWQ_STATE_QUEUED: 1029 linux_poll_wakeup(filp); 1030 return (1); 1031 default: 1032 return (0); 1033 } 1034 } 1035 1036 void 1037 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p) 1038 { 1039 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1040 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY, 1041 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1042 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */ 1043 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED, 1044 }; 1045 1046 /* check if we are called inside the select system call */ 1047 if (p == LINUX_POLL_TABLE_NORMAL) 1048 selrecord(curthread, &filp->f_selinfo); 1049 1050 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1051 case LINUX_FWQ_STATE_INIT: 1052 /* NOTE: file handles can only belong to one wait-queue */ 1053 filp->f_wait_queue.wqh = wqh; 1054 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback; 1055 add_wait_queue(wqh, &filp->f_wait_queue.wq); 1056 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED); 1057 break; 1058 default: 1059 break; 1060 } 1061 } 1062 1063 static void 1064 linux_poll_wait_dequeue(struct linux_file *filp) 1065 { 1066 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1067 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1068 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT, 1069 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT, 1070 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT, 1071 }; 1072 1073 seldrain(&filp->f_selinfo); 1074 1075 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1076 case LINUX_FWQ_STATE_NOT_READY: 1077 case LINUX_FWQ_STATE_QUEUED: 1078 case LINUX_FWQ_STATE_READY: 1079 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq); 1080 break; 1081 default: 1082 break; 1083 } 1084 } 1085 1086 void 1087 linux_poll_wakeup(struct linux_file *filp) 1088 { 1089 /* this function should be NULL-safe */ 1090 if (filp == NULL) 1091 return; 1092 1093 selwakeup(&filp->f_selinfo); 1094 1095 spin_lock(&filp->f_kqlock); 1096 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ | 1097 LINUX_KQ_FLAG_NEED_WRITE; 1098 1099 /* make sure the "knote" gets woken up */ 1100 KNOTE_LOCKED(&filp->f_selinfo.si_note, 1); 1101 spin_unlock(&filp->f_kqlock); 1102 } 1103 1104 static void 1105 linux_file_kqfilter_detach(struct knote *kn) 1106 { 1107 struct linux_file *filp = kn->kn_hook; 1108 1109 spin_lock(&filp->f_kqlock); 1110 knlist_remove(&filp->f_selinfo.si_note, kn, 1); 1111 spin_unlock(&filp->f_kqlock); 1112 } 1113 1114 static int 1115 linux_file_kqfilter_read_event(struct knote *kn, long hint) 1116 { 1117 struct linux_file *filp = kn->kn_hook; 1118 1119 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1120 1121 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0); 1122 } 1123 1124 static int 1125 linux_file_kqfilter_write_event(struct knote *kn, long hint) 1126 { 1127 struct linux_file *filp = kn->kn_hook; 1128 1129 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1130 1131 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0); 1132 } 1133 1134 static struct filterops linux_dev_kqfiltops_read = { 1135 .f_isfd = 1, 1136 .f_detach = linux_file_kqfilter_detach, 1137 .f_event = linux_file_kqfilter_read_event, 1138 }; 1139 1140 static struct filterops linux_dev_kqfiltops_write = { 1141 .f_isfd = 1, 1142 .f_detach = linux_file_kqfilter_detach, 1143 .f_event = linux_file_kqfilter_write_event, 1144 }; 1145 1146 static void 1147 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags) 1148 { 1149 struct thread *td; 1150 const struct file_operations *fop; 1151 struct linux_cdev *ldev; 1152 int temp; 1153 1154 if ((filp->f_kqflags & kqflags) == 0) 1155 return; 1156 1157 td = curthread; 1158 1159 linux_get_fop(filp, &fop, &ldev); 1160 /* get the latest polling state */ 1161 temp = OPW(filp->_file, td, fop->poll(filp, NULL)); 1162 linux_drop_fop(ldev); 1163 1164 spin_lock(&filp->f_kqlock); 1165 /* clear kqflags */ 1166 filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ | 1167 LINUX_KQ_FLAG_NEED_WRITE); 1168 /* update kqflags */ 1169 if ((temp & (POLLIN | POLLOUT)) != 0) { 1170 if ((temp & POLLIN) != 0) 1171 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ; 1172 if ((temp & POLLOUT) != 0) 1173 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE; 1174 1175 /* make sure the "knote" gets woken up */ 1176 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0); 1177 } 1178 spin_unlock(&filp->f_kqlock); 1179 } 1180 1181 static int 1182 linux_file_kqfilter(struct file *file, struct knote *kn) 1183 { 1184 struct linux_file *filp; 1185 struct thread *td; 1186 int error; 1187 1188 td = curthread; 1189 filp = (struct linux_file *)file->f_data; 1190 filp->f_flags = file->f_flag; 1191 if (filp->f_op->poll == NULL) 1192 return (EINVAL); 1193 1194 spin_lock(&filp->f_kqlock); 1195 switch (kn->kn_filter) { 1196 case EVFILT_READ: 1197 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ; 1198 kn->kn_fop = &linux_dev_kqfiltops_read; 1199 kn->kn_hook = filp; 1200 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1201 error = 0; 1202 break; 1203 case EVFILT_WRITE: 1204 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE; 1205 kn->kn_fop = &linux_dev_kqfiltops_write; 1206 kn->kn_hook = filp; 1207 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1208 error = 0; 1209 break; 1210 default: 1211 error = EINVAL; 1212 break; 1213 } 1214 spin_unlock(&filp->f_kqlock); 1215 1216 if (error == 0) { 1217 linux_set_current(td); 1218 1219 /* update kqfilter status, if any */ 1220 linux_file_kqfilter_poll(filp, 1221 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 1222 } 1223 return (error); 1224 } 1225 1226 static int 1227 linux_file_mmap_single(struct file *fp, const struct file_operations *fop, 1228 vm_ooffset_t *offset, vm_size_t size, struct vm_object **object, 1229 int nprot, struct thread *td) 1230 { 1231 struct task_struct *task; 1232 struct vm_area_struct *vmap; 1233 struct mm_struct *mm; 1234 struct linux_file *filp; 1235 vm_memattr_t attr; 1236 int error; 1237 1238 filp = (struct linux_file *)fp->f_data; 1239 filp->f_flags = fp->f_flag; 1240 1241 if (fop->mmap == NULL) 1242 return (EOPNOTSUPP); 1243 1244 linux_set_current(td); 1245 1246 /* 1247 * The same VM object might be shared by multiple processes 1248 * and the mm_struct is usually freed when a process exits. 1249 * 1250 * The atomic reference below makes sure the mm_struct is 1251 * available as long as the vmap is in the linux_vma_head. 1252 */ 1253 task = current; 1254 mm = task->mm; 1255 if (atomic_inc_not_zero(&mm->mm_users) == 0) 1256 return (EINVAL); 1257 1258 vmap = kzalloc(sizeof(*vmap), GFP_KERNEL); 1259 vmap->vm_start = 0; 1260 vmap->vm_end = size; 1261 vmap->vm_pgoff = *offset / PAGE_SIZE; 1262 vmap->vm_pfn = 0; 1263 vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL); 1264 vmap->vm_ops = NULL; 1265 vmap->vm_file = get_file(filp); 1266 vmap->vm_mm = mm; 1267 1268 if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) { 1269 error = linux_get_error(task, EINTR); 1270 } else { 1271 error = -OPW(fp, td, fop->mmap(filp, vmap)); 1272 error = linux_get_error(task, error); 1273 up_write(&vmap->vm_mm->mmap_sem); 1274 } 1275 1276 if (error != 0) { 1277 linux_cdev_handle_free(vmap); 1278 return (error); 1279 } 1280 1281 attr = pgprot2cachemode(vmap->vm_page_prot); 1282 1283 if (vmap->vm_ops != NULL) { 1284 struct vm_area_struct *ptr; 1285 void *vm_private_data; 1286 bool vm_no_fault; 1287 1288 if (vmap->vm_ops->open == NULL || 1289 vmap->vm_ops->close == NULL || 1290 vmap->vm_private_data == NULL) { 1291 /* free allocated VM area struct */ 1292 linux_cdev_handle_free(vmap); 1293 return (EINVAL); 1294 } 1295 1296 vm_private_data = vmap->vm_private_data; 1297 1298 rw_wlock(&linux_vma_lock); 1299 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) { 1300 if (ptr->vm_private_data == vm_private_data) 1301 break; 1302 } 1303 /* check if there is an existing VM area struct */ 1304 if (ptr != NULL) { 1305 /* check if the VM area structure is invalid */ 1306 if (ptr->vm_ops == NULL || 1307 ptr->vm_ops->open == NULL || 1308 ptr->vm_ops->close == NULL) { 1309 error = ESTALE; 1310 vm_no_fault = 1; 1311 } else { 1312 error = EEXIST; 1313 vm_no_fault = (ptr->vm_ops->fault == NULL); 1314 } 1315 } else { 1316 /* insert VM area structure into list */ 1317 TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry); 1318 error = 0; 1319 vm_no_fault = (vmap->vm_ops->fault == NULL); 1320 } 1321 rw_wunlock(&linux_vma_lock); 1322 1323 if (error != 0) { 1324 /* free allocated VM area struct */ 1325 linux_cdev_handle_free(vmap); 1326 /* check for stale VM area struct */ 1327 if (error != EEXIST) 1328 return (error); 1329 } 1330 1331 /* check if there is no fault handler */ 1332 if (vm_no_fault) { 1333 *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE, 1334 &linux_cdev_pager_ops[1], size, nprot, *offset, 1335 td->td_ucred); 1336 } else { 1337 *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE, 1338 &linux_cdev_pager_ops[0], size, nprot, *offset, 1339 td->td_ucred); 1340 } 1341 1342 /* check if allocating the VM object failed */ 1343 if (*object == NULL) { 1344 if (error == 0) { 1345 /* remove VM area struct from list */ 1346 linux_cdev_handle_remove(vmap); 1347 /* free allocated VM area struct */ 1348 linux_cdev_handle_free(vmap); 1349 } 1350 return (EINVAL); 1351 } 1352 } else { 1353 struct sglist *sg; 1354 1355 sg = sglist_alloc(1, M_WAITOK); 1356 sglist_append_phys(sg, 1357 (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len); 1358 1359 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len, 1360 nprot, 0, td->td_ucred); 1361 1362 linux_cdev_handle_free(vmap); 1363 1364 if (*object == NULL) { 1365 sglist_free(sg); 1366 return (EINVAL); 1367 } 1368 } 1369 1370 if (attr != VM_MEMATTR_DEFAULT) { 1371 VM_OBJECT_WLOCK(*object); 1372 vm_object_set_memattr(*object, attr); 1373 VM_OBJECT_WUNLOCK(*object); 1374 } 1375 *offset = 0; 1376 return (0); 1377 } 1378 1379 struct cdevsw linuxcdevsw = { 1380 .d_version = D_VERSION, 1381 .d_fdopen = linux_dev_fdopen, 1382 .d_name = "lkpidev", 1383 }; 1384 1385 static int 1386 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred, 1387 int flags, struct thread *td) 1388 { 1389 struct linux_file *filp; 1390 const struct file_operations *fop; 1391 struct linux_cdev *ldev; 1392 ssize_t bytes; 1393 int error; 1394 1395 error = 0; 1396 filp = (struct linux_file *)file->f_data; 1397 filp->f_flags = file->f_flag; 1398 /* XXX no support for I/O vectors currently */ 1399 if (uio->uio_iovcnt != 1) 1400 return (EOPNOTSUPP); 1401 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1402 return (EINVAL); 1403 linux_set_current(td); 1404 linux_get_fop(filp, &fop, &ldev); 1405 if (fop->read != NULL) { 1406 bytes = OPW(file, td, fop->read(filp, 1407 uio->uio_iov->iov_base, 1408 uio->uio_iov->iov_len, &uio->uio_offset)); 1409 if (bytes >= 0) { 1410 uio->uio_iov->iov_base = 1411 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1412 uio->uio_iov->iov_len -= bytes; 1413 uio->uio_resid -= bytes; 1414 } else { 1415 error = linux_get_error(current, -bytes); 1416 } 1417 } else 1418 error = ENXIO; 1419 1420 /* update kqfilter status, if any */ 1421 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ); 1422 linux_drop_fop(ldev); 1423 1424 return (error); 1425 } 1426 1427 static int 1428 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred, 1429 int flags, struct thread *td) 1430 { 1431 struct linux_file *filp; 1432 const struct file_operations *fop; 1433 struct linux_cdev *ldev; 1434 ssize_t bytes; 1435 int error; 1436 1437 filp = (struct linux_file *)file->f_data; 1438 filp->f_flags = file->f_flag; 1439 /* XXX no support for I/O vectors currently */ 1440 if (uio->uio_iovcnt != 1) 1441 return (EOPNOTSUPP); 1442 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1443 return (EINVAL); 1444 linux_set_current(td); 1445 linux_get_fop(filp, &fop, &ldev); 1446 if (fop->write != NULL) { 1447 bytes = OPW(file, td, fop->write(filp, 1448 uio->uio_iov->iov_base, 1449 uio->uio_iov->iov_len, &uio->uio_offset)); 1450 if (bytes >= 0) { 1451 uio->uio_iov->iov_base = 1452 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1453 uio->uio_iov->iov_len -= bytes; 1454 uio->uio_resid -= bytes; 1455 error = 0; 1456 } else { 1457 error = linux_get_error(current, -bytes); 1458 } 1459 } else 1460 error = ENXIO; 1461 1462 /* update kqfilter status, if any */ 1463 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE); 1464 1465 linux_drop_fop(ldev); 1466 1467 return (error); 1468 } 1469 1470 static int 1471 linux_file_poll(struct file *file, int events, struct ucred *active_cred, 1472 struct thread *td) 1473 { 1474 struct linux_file *filp; 1475 const struct file_operations *fop; 1476 struct linux_cdev *ldev; 1477 int revents; 1478 1479 filp = (struct linux_file *)file->f_data; 1480 filp->f_flags = file->f_flag; 1481 linux_set_current(td); 1482 linux_get_fop(filp, &fop, &ldev); 1483 if (fop->poll != NULL) { 1484 revents = OPW(file, td, fop->poll(filp, 1485 LINUX_POLL_TABLE_NORMAL)) & events; 1486 } else { 1487 revents = 0; 1488 } 1489 linux_drop_fop(ldev); 1490 return (revents); 1491 } 1492 1493 static int 1494 linux_file_close(struct file *file, struct thread *td) 1495 { 1496 struct linux_file *filp; 1497 const struct file_operations *fop; 1498 struct linux_cdev *ldev; 1499 int error; 1500 1501 filp = (struct linux_file *)file->f_data; 1502 1503 KASSERT(file_count(filp) == 0, 1504 ("File refcount(%d) is not zero", file_count(filp))); 1505 1506 error = 0; 1507 filp->f_flags = file->f_flag; 1508 linux_set_current(td); 1509 linux_poll_wait_dequeue(filp); 1510 linux_get_fop(filp, &fop, &ldev); 1511 if (fop->release != NULL) 1512 error = -OPW(file, td, fop->release(filp->f_vnode, filp)); 1513 funsetown(&filp->f_sigio); 1514 if (filp->f_vnode != NULL) 1515 vdrop(filp->f_vnode); 1516 linux_drop_fop(ldev); 1517 if (filp->f_cdev != NULL) 1518 linux_cdev_deref(filp->f_cdev); 1519 kfree(filp); 1520 1521 return (error); 1522 } 1523 1524 static int 1525 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred, 1526 struct thread *td) 1527 { 1528 struct linux_file *filp; 1529 const struct file_operations *fop; 1530 struct linux_cdev *ldev; 1531 int error; 1532 1533 error = 0; 1534 filp = (struct linux_file *)fp->f_data; 1535 filp->f_flags = fp->f_flag; 1536 linux_get_fop(filp, &fop, &ldev); 1537 1538 linux_set_current(td); 1539 switch (cmd) { 1540 case FIONBIO: 1541 break; 1542 case FIOASYNC: 1543 if (fop->fasync == NULL) 1544 break; 1545 error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC)); 1546 break; 1547 case FIOSETOWN: 1548 error = fsetown(*(int *)data, &filp->f_sigio); 1549 if (error == 0) { 1550 if (fop->fasync == NULL) 1551 break; 1552 error = -OPW(fp, td, fop->fasync(0, filp, 1553 fp->f_flag & FASYNC)); 1554 } 1555 break; 1556 case FIOGETOWN: 1557 *(int *)data = fgetown(&filp->f_sigio); 1558 break; 1559 default: 1560 error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td); 1561 break; 1562 } 1563 linux_drop_fop(ldev); 1564 return (error); 1565 } 1566 1567 static int 1568 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot, 1569 vm_prot_t *maxprotp, int *flagsp, struct file *fp, 1570 vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp) 1571 { 1572 /* 1573 * Character devices do not provide private mappings 1574 * of any kind: 1575 */ 1576 if ((*maxprotp & VM_PROT_WRITE) == 0 && 1577 (prot & VM_PROT_WRITE) != 0) 1578 return (EACCES); 1579 if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0) 1580 return (EINVAL); 1581 1582 return (linux_file_mmap_single(fp, fop, foff, objsize, objp, 1583 (int)prot, td)); 1584 } 1585 1586 static int 1587 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 1588 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 1589 struct thread *td) 1590 { 1591 struct linux_file *filp; 1592 const struct file_operations *fop; 1593 struct linux_cdev *ldev; 1594 struct mount *mp; 1595 struct vnode *vp; 1596 vm_object_t object; 1597 vm_prot_t maxprot; 1598 int error; 1599 1600 filp = (struct linux_file *)fp->f_data; 1601 1602 vp = filp->f_vnode; 1603 if (vp == NULL) 1604 return (EOPNOTSUPP); 1605 1606 /* 1607 * Ensure that file and memory protections are 1608 * compatible. 1609 */ 1610 mp = vp->v_mount; 1611 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) { 1612 maxprot = VM_PROT_NONE; 1613 if ((prot & VM_PROT_EXECUTE) != 0) 1614 return (EACCES); 1615 } else 1616 maxprot = VM_PROT_EXECUTE; 1617 if ((fp->f_flag & FREAD) != 0) 1618 maxprot |= VM_PROT_READ; 1619 else if ((prot & VM_PROT_READ) != 0) 1620 return (EACCES); 1621 1622 /* 1623 * If we are sharing potential changes via MAP_SHARED and we 1624 * are trying to get write permission although we opened it 1625 * without asking for it, bail out. 1626 * 1627 * Note that most character devices always share mappings. 1628 * 1629 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE 1630 * requests rather than doing it here. 1631 */ 1632 if ((flags & MAP_SHARED) != 0) { 1633 if ((fp->f_flag & FWRITE) != 0) 1634 maxprot |= VM_PROT_WRITE; 1635 else if ((prot & VM_PROT_WRITE) != 0) 1636 return (EACCES); 1637 } 1638 maxprot &= cap_maxprot; 1639 1640 linux_get_fop(filp, &fop, &ldev); 1641 error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp, 1642 &foff, fop, &object); 1643 if (error != 0) 1644 goto out; 1645 1646 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 1647 foff, FALSE, td); 1648 if (error != 0) 1649 vm_object_deallocate(object); 1650 out: 1651 linux_drop_fop(ldev); 1652 return (error); 1653 } 1654 1655 static int 1656 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred, 1657 struct thread *td) 1658 { 1659 struct linux_file *filp; 1660 struct vnode *vp; 1661 int error; 1662 1663 filp = (struct linux_file *)fp->f_data; 1664 if (filp->f_vnode == NULL) 1665 return (EOPNOTSUPP); 1666 1667 vp = filp->f_vnode; 1668 1669 vn_lock(vp, LK_SHARED | LK_RETRY); 1670 error = vn_stat(vp, sb, td->td_ucred, NOCRED, td); 1671 VOP_UNLOCK(vp, 0); 1672 1673 return (error); 1674 } 1675 1676 static int 1677 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif, 1678 struct filedesc *fdp) 1679 { 1680 struct linux_file *filp; 1681 struct vnode *vp; 1682 int error; 1683 1684 filp = fp->f_data; 1685 vp = filp->f_vnode; 1686 if (vp == NULL) { 1687 error = 0; 1688 kif->kf_type = KF_TYPE_DEV; 1689 } else { 1690 vref(vp); 1691 FILEDESC_SUNLOCK(fdp); 1692 error = vn_fill_kinfo_vnode(vp, kif); 1693 vrele(vp); 1694 kif->kf_type = KF_TYPE_VNODE; 1695 FILEDESC_SLOCK(fdp); 1696 } 1697 return (error); 1698 } 1699 1700 unsigned int 1701 linux_iminor(struct inode *inode) 1702 { 1703 struct linux_cdev *ldev; 1704 1705 if (inode == NULL || inode->v_rdev == NULL || 1706 inode->v_rdev->si_devsw != &linuxcdevsw) 1707 return (-1U); 1708 ldev = inode->v_rdev->si_drv1; 1709 if (ldev == NULL) 1710 return (-1U); 1711 1712 return (minor(ldev->dev)); 1713 } 1714 1715 struct fileops linuxfileops = { 1716 .fo_read = linux_file_read, 1717 .fo_write = linux_file_write, 1718 .fo_truncate = invfo_truncate, 1719 .fo_kqfilter = linux_file_kqfilter, 1720 .fo_stat = linux_file_stat, 1721 .fo_fill_kinfo = linux_file_fill_kinfo, 1722 .fo_poll = linux_file_poll, 1723 .fo_close = linux_file_close, 1724 .fo_ioctl = linux_file_ioctl, 1725 .fo_mmap = linux_file_mmap, 1726 .fo_chmod = invfo_chmod, 1727 .fo_chown = invfo_chown, 1728 .fo_sendfile = invfo_sendfile, 1729 .fo_flags = DFLAG_PASSABLE, 1730 }; 1731 1732 /* 1733 * Hash of vmmap addresses. This is infrequently accessed and does not 1734 * need to be particularly large. This is done because we must store the 1735 * caller's idea of the map size to properly unmap. 1736 */ 1737 struct vmmap { 1738 LIST_ENTRY(vmmap) vm_next; 1739 void *vm_addr; 1740 unsigned long vm_size; 1741 }; 1742 1743 struct vmmaphd { 1744 struct vmmap *lh_first; 1745 }; 1746 #define VMMAP_HASH_SIZE 64 1747 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1) 1748 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK 1749 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE]; 1750 static struct mtx vmmaplock; 1751 1752 static void 1753 vmmap_add(void *addr, unsigned long size) 1754 { 1755 struct vmmap *vmmap; 1756 1757 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL); 1758 mtx_lock(&vmmaplock); 1759 vmmap->vm_size = size; 1760 vmmap->vm_addr = addr; 1761 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next); 1762 mtx_unlock(&vmmaplock); 1763 } 1764 1765 static struct vmmap * 1766 vmmap_remove(void *addr) 1767 { 1768 struct vmmap *vmmap; 1769 1770 mtx_lock(&vmmaplock); 1771 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next) 1772 if (vmmap->vm_addr == addr) 1773 break; 1774 if (vmmap) 1775 LIST_REMOVE(vmmap, vm_next); 1776 mtx_unlock(&vmmaplock); 1777 1778 return (vmmap); 1779 } 1780 1781 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) 1782 void * 1783 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr) 1784 { 1785 void *addr; 1786 1787 addr = pmap_mapdev_attr(phys_addr, size, attr); 1788 if (addr == NULL) 1789 return (NULL); 1790 vmmap_add(addr, size); 1791 1792 return (addr); 1793 } 1794 #endif 1795 1796 void 1797 iounmap(void *addr) 1798 { 1799 struct vmmap *vmmap; 1800 1801 vmmap = vmmap_remove(addr); 1802 if (vmmap == NULL) 1803 return; 1804 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) 1805 pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size); 1806 #endif 1807 kfree(vmmap); 1808 } 1809 1810 1811 void * 1812 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot) 1813 { 1814 vm_offset_t off; 1815 size_t size; 1816 1817 size = count * PAGE_SIZE; 1818 off = kva_alloc(size); 1819 if (off == 0) 1820 return (NULL); 1821 vmmap_add((void *)off, size); 1822 pmap_qenter(off, pages, count); 1823 1824 return ((void *)off); 1825 } 1826 1827 void 1828 vunmap(void *addr) 1829 { 1830 struct vmmap *vmmap; 1831 1832 vmmap = vmmap_remove(addr); 1833 if (vmmap == NULL) 1834 return; 1835 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE); 1836 kva_free((vm_offset_t)addr, vmmap->vm_size); 1837 kfree(vmmap); 1838 } 1839 1840 char * 1841 kvasprintf(gfp_t gfp, const char *fmt, va_list ap) 1842 { 1843 unsigned int len; 1844 char *p; 1845 va_list aq; 1846 1847 va_copy(aq, ap); 1848 len = vsnprintf(NULL, 0, fmt, aq); 1849 va_end(aq); 1850 1851 p = kmalloc(len + 1, gfp); 1852 if (p != NULL) 1853 vsnprintf(p, len + 1, fmt, ap); 1854 1855 return (p); 1856 } 1857 1858 char * 1859 kasprintf(gfp_t gfp, const char *fmt, ...) 1860 { 1861 va_list ap; 1862 char *p; 1863 1864 va_start(ap, fmt); 1865 p = kvasprintf(gfp, fmt, ap); 1866 va_end(ap); 1867 1868 return (p); 1869 } 1870 1871 static void 1872 linux_timer_callback_wrapper(void *context) 1873 { 1874 struct timer_list *timer; 1875 1876 linux_set_current(curthread); 1877 1878 timer = context; 1879 timer->function(timer->data); 1880 } 1881 1882 void 1883 mod_timer(struct timer_list *timer, int expires) 1884 { 1885 1886 timer->expires = expires; 1887 callout_reset(&timer->callout, 1888 linux_timer_jiffies_until(expires), 1889 &linux_timer_callback_wrapper, timer); 1890 } 1891 1892 void 1893 add_timer(struct timer_list *timer) 1894 { 1895 1896 callout_reset(&timer->callout, 1897 linux_timer_jiffies_until(timer->expires), 1898 &linux_timer_callback_wrapper, timer); 1899 } 1900 1901 void 1902 add_timer_on(struct timer_list *timer, int cpu) 1903 { 1904 1905 callout_reset_on(&timer->callout, 1906 linux_timer_jiffies_until(timer->expires), 1907 &linux_timer_callback_wrapper, timer, cpu); 1908 } 1909 1910 int 1911 del_timer(struct timer_list *timer) 1912 { 1913 1914 if (callout_stop(&(timer)->callout) == -1) 1915 return (0); 1916 return (1); 1917 } 1918 1919 static void 1920 linux_timer_init(void *arg) 1921 { 1922 1923 /* 1924 * Compute an internal HZ value which can divide 2**32 to 1925 * avoid timer rounding problems when the tick value wraps 1926 * around 2**32: 1927 */ 1928 linux_timer_hz_mask = 1; 1929 while (linux_timer_hz_mask < (unsigned long)hz) 1930 linux_timer_hz_mask *= 2; 1931 linux_timer_hz_mask--; 1932 } 1933 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL); 1934 1935 void 1936 linux_complete_common(struct completion *c, int all) 1937 { 1938 int wakeup_swapper; 1939 1940 sleepq_lock(c); 1941 if (all) { 1942 c->done = UINT_MAX; 1943 wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0); 1944 } else { 1945 if (c->done != UINT_MAX) 1946 c->done++; 1947 wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0); 1948 } 1949 sleepq_release(c); 1950 if (wakeup_swapper) 1951 kick_proc0(); 1952 } 1953 1954 /* 1955 * Indefinite wait for done != 0 with or without signals. 1956 */ 1957 int 1958 linux_wait_for_common(struct completion *c, int flags) 1959 { 1960 struct task_struct *task; 1961 int error; 1962 1963 if (SCHEDULER_STOPPED()) 1964 return (0); 1965 1966 task = current; 1967 1968 if (flags != 0) 1969 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 1970 else 1971 flags = SLEEPQ_SLEEP; 1972 error = 0; 1973 for (;;) { 1974 sleepq_lock(c); 1975 if (c->done) 1976 break; 1977 sleepq_add(c, NULL, "completion", flags, 0); 1978 if (flags & SLEEPQ_INTERRUPTIBLE) { 1979 DROP_GIANT(); 1980 error = -sleepq_wait_sig(c, 0); 1981 PICKUP_GIANT(); 1982 if (error != 0) { 1983 linux_schedule_save_interrupt_value(task, error); 1984 error = -ERESTARTSYS; 1985 goto intr; 1986 } 1987 } else { 1988 DROP_GIANT(); 1989 sleepq_wait(c, 0); 1990 PICKUP_GIANT(); 1991 } 1992 } 1993 if (c->done != UINT_MAX) 1994 c->done--; 1995 sleepq_release(c); 1996 1997 intr: 1998 return (error); 1999 } 2000 2001 /* 2002 * Time limited wait for done != 0 with or without signals. 2003 */ 2004 int 2005 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags) 2006 { 2007 struct task_struct *task; 2008 int end = jiffies + timeout; 2009 int error; 2010 2011 if (SCHEDULER_STOPPED()) 2012 return (0); 2013 2014 task = current; 2015 2016 if (flags != 0) 2017 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 2018 else 2019 flags = SLEEPQ_SLEEP; 2020 2021 for (;;) { 2022 sleepq_lock(c); 2023 if (c->done) 2024 break; 2025 sleepq_add(c, NULL, "completion", flags, 0); 2026 sleepq_set_timeout(c, linux_timer_jiffies_until(end)); 2027 2028 DROP_GIANT(); 2029 if (flags & SLEEPQ_INTERRUPTIBLE) 2030 error = -sleepq_timedwait_sig(c, 0); 2031 else 2032 error = -sleepq_timedwait(c, 0); 2033 PICKUP_GIANT(); 2034 2035 if (error != 0) { 2036 /* check for timeout */ 2037 if (error == -EWOULDBLOCK) { 2038 error = 0; /* timeout */ 2039 } else { 2040 /* signal happened */ 2041 linux_schedule_save_interrupt_value(task, error); 2042 error = -ERESTARTSYS; 2043 } 2044 goto done; 2045 } 2046 } 2047 if (c->done != UINT_MAX) 2048 c->done--; 2049 sleepq_release(c); 2050 2051 /* return how many jiffies are left */ 2052 error = linux_timer_jiffies_until(end); 2053 done: 2054 return (error); 2055 } 2056 2057 int 2058 linux_try_wait_for_completion(struct completion *c) 2059 { 2060 int isdone; 2061 2062 sleepq_lock(c); 2063 isdone = (c->done != 0); 2064 if (c->done != 0 && c->done != UINT_MAX) 2065 c->done--; 2066 sleepq_release(c); 2067 return (isdone); 2068 } 2069 2070 int 2071 linux_completion_done(struct completion *c) 2072 { 2073 int isdone; 2074 2075 sleepq_lock(c); 2076 isdone = (c->done != 0); 2077 sleepq_release(c); 2078 return (isdone); 2079 } 2080 2081 static void 2082 linux_cdev_deref(struct linux_cdev *ldev) 2083 { 2084 2085 if (refcount_release(&ldev->refs)) 2086 kfree(ldev); 2087 } 2088 2089 static void 2090 linux_cdev_release(struct kobject *kobj) 2091 { 2092 struct linux_cdev *cdev; 2093 struct kobject *parent; 2094 2095 cdev = container_of(kobj, struct linux_cdev, kobj); 2096 parent = kobj->parent; 2097 linux_destroy_dev(cdev); 2098 linux_cdev_deref(cdev); 2099 kobject_put(parent); 2100 } 2101 2102 static void 2103 linux_cdev_static_release(struct kobject *kobj) 2104 { 2105 struct linux_cdev *cdev; 2106 struct kobject *parent; 2107 2108 cdev = container_of(kobj, struct linux_cdev, kobj); 2109 parent = kobj->parent; 2110 linux_destroy_dev(cdev); 2111 kobject_put(parent); 2112 } 2113 2114 void 2115 linux_destroy_dev(struct linux_cdev *ldev) 2116 { 2117 2118 if (ldev->cdev == NULL) 2119 return; 2120 2121 MPASS((ldev->siref & LDEV_SI_DTR) == 0); 2122 atomic_set_int(&ldev->siref, LDEV_SI_DTR); 2123 while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0) 2124 pause("ldevdtr", hz / 4); 2125 2126 destroy_dev(ldev->cdev); 2127 ldev->cdev = NULL; 2128 } 2129 2130 const struct kobj_type linux_cdev_ktype = { 2131 .release = linux_cdev_release, 2132 }; 2133 2134 const struct kobj_type linux_cdev_static_ktype = { 2135 .release = linux_cdev_static_release, 2136 }; 2137 2138 static void 2139 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate) 2140 { 2141 struct notifier_block *nb; 2142 2143 nb = arg; 2144 if (linkstate == LINK_STATE_UP) 2145 nb->notifier_call(nb, NETDEV_UP, ifp); 2146 else 2147 nb->notifier_call(nb, NETDEV_DOWN, ifp); 2148 } 2149 2150 static void 2151 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp) 2152 { 2153 struct notifier_block *nb; 2154 2155 nb = arg; 2156 nb->notifier_call(nb, NETDEV_REGISTER, ifp); 2157 } 2158 2159 static void 2160 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp) 2161 { 2162 struct notifier_block *nb; 2163 2164 nb = arg; 2165 nb->notifier_call(nb, NETDEV_UNREGISTER, ifp); 2166 } 2167 2168 static void 2169 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp) 2170 { 2171 struct notifier_block *nb; 2172 2173 nb = arg; 2174 nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp); 2175 } 2176 2177 static void 2178 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp) 2179 { 2180 struct notifier_block *nb; 2181 2182 nb = arg; 2183 nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp); 2184 } 2185 2186 int 2187 register_netdevice_notifier(struct notifier_block *nb) 2188 { 2189 2190 nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER( 2191 ifnet_link_event, linux_handle_ifnet_link_event, nb, 0); 2192 nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER( 2193 ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0); 2194 nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER( 2195 ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0); 2196 nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER( 2197 iflladdr_event, linux_handle_iflladdr_event, nb, 0); 2198 2199 return (0); 2200 } 2201 2202 int 2203 register_inetaddr_notifier(struct notifier_block *nb) 2204 { 2205 2206 nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER( 2207 ifaddr_event, linux_handle_ifaddr_event, nb, 0); 2208 return (0); 2209 } 2210 2211 int 2212 unregister_netdevice_notifier(struct notifier_block *nb) 2213 { 2214 2215 EVENTHANDLER_DEREGISTER(ifnet_link_event, 2216 nb->tags[NETDEV_UP]); 2217 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 2218 nb->tags[NETDEV_REGISTER]); 2219 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 2220 nb->tags[NETDEV_UNREGISTER]); 2221 EVENTHANDLER_DEREGISTER(iflladdr_event, 2222 nb->tags[NETDEV_CHANGEADDR]); 2223 2224 return (0); 2225 } 2226 2227 int 2228 unregister_inetaddr_notifier(struct notifier_block *nb) 2229 { 2230 2231 EVENTHANDLER_DEREGISTER(ifaddr_event, 2232 nb->tags[NETDEV_CHANGEIFADDR]); 2233 2234 return (0); 2235 } 2236 2237 struct list_sort_thunk { 2238 int (*cmp)(void *, struct list_head *, struct list_head *); 2239 void *priv; 2240 }; 2241 2242 static inline int 2243 linux_le_cmp(void *priv, const void *d1, const void *d2) 2244 { 2245 struct list_head *le1, *le2; 2246 struct list_sort_thunk *thunk; 2247 2248 thunk = priv; 2249 le1 = *(__DECONST(struct list_head **, d1)); 2250 le2 = *(__DECONST(struct list_head **, d2)); 2251 return ((thunk->cmp)(thunk->priv, le1, le2)); 2252 } 2253 2254 void 2255 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv, 2256 struct list_head *a, struct list_head *b)) 2257 { 2258 struct list_sort_thunk thunk; 2259 struct list_head **ar, *le; 2260 size_t count, i; 2261 2262 count = 0; 2263 list_for_each(le, head) 2264 count++; 2265 ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK); 2266 i = 0; 2267 list_for_each(le, head) 2268 ar[i++] = le; 2269 thunk.cmp = cmp; 2270 thunk.priv = priv; 2271 qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp); 2272 INIT_LIST_HEAD(head); 2273 for (i = 0; i < count; i++) 2274 list_add_tail(ar[i], head); 2275 free(ar, M_KMALLOC); 2276 } 2277 2278 void 2279 linux_irq_handler(void *ent) 2280 { 2281 struct irq_ent *irqe; 2282 2283 linux_set_current(curthread); 2284 2285 irqe = ent; 2286 irqe->handler(irqe->irq, irqe->arg); 2287 } 2288 2289 #if defined(__i386__) || defined(__amd64__) 2290 int 2291 linux_wbinvd_on_all_cpus(void) 2292 { 2293 2294 pmap_invalidate_cache(); 2295 return (0); 2296 } 2297 #endif 2298 2299 int 2300 linux_on_each_cpu(void callback(void *), void *data) 2301 { 2302 2303 smp_rendezvous(smp_no_rendezvous_barrier, callback, 2304 smp_no_rendezvous_barrier, data); 2305 return (0); 2306 } 2307 2308 int 2309 linux_in_atomic(void) 2310 { 2311 2312 return ((curthread->td_pflags & TDP_NOFAULTING) != 0); 2313 } 2314 2315 struct linux_cdev * 2316 linux_find_cdev(const char *name, unsigned major, unsigned minor) 2317 { 2318 dev_t dev = MKDEV(major, minor); 2319 struct cdev *cdev; 2320 2321 dev_lock(); 2322 LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) { 2323 struct linux_cdev *ldev = cdev->si_drv1; 2324 if (ldev->dev == dev && 2325 strcmp(kobject_name(&ldev->kobj), name) == 0) { 2326 break; 2327 } 2328 } 2329 dev_unlock(); 2330 2331 return (cdev != NULL ? cdev->si_drv1 : NULL); 2332 } 2333 2334 int 2335 __register_chrdev(unsigned int major, unsigned int baseminor, 2336 unsigned int count, const char *name, 2337 const struct file_operations *fops) 2338 { 2339 struct linux_cdev *cdev; 2340 int ret = 0; 2341 int i; 2342 2343 for (i = baseminor; i < baseminor + count; i++) { 2344 cdev = cdev_alloc(); 2345 cdev->ops = fops; 2346 kobject_set_name(&cdev->kobj, name); 2347 2348 ret = cdev_add(cdev, makedev(major, i), 1); 2349 if (ret != 0) 2350 break; 2351 } 2352 return (ret); 2353 } 2354 2355 int 2356 __register_chrdev_p(unsigned int major, unsigned int baseminor, 2357 unsigned int count, const char *name, 2358 const struct file_operations *fops, uid_t uid, 2359 gid_t gid, int mode) 2360 { 2361 struct linux_cdev *cdev; 2362 int ret = 0; 2363 int i; 2364 2365 for (i = baseminor; i < baseminor + count; i++) { 2366 cdev = cdev_alloc(); 2367 cdev->ops = fops; 2368 kobject_set_name(&cdev->kobj, name); 2369 2370 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode); 2371 if (ret != 0) 2372 break; 2373 } 2374 return (ret); 2375 } 2376 2377 void 2378 __unregister_chrdev(unsigned int major, unsigned int baseminor, 2379 unsigned int count, const char *name) 2380 { 2381 struct linux_cdev *cdevp; 2382 int i; 2383 2384 for (i = baseminor; i < baseminor + count; i++) { 2385 cdevp = linux_find_cdev(name, major, i); 2386 if (cdevp != NULL) 2387 cdev_del(cdevp); 2388 } 2389 } 2390 2391 void 2392 linux_dump_stack(void) 2393 { 2394 #ifdef STACK 2395 struct stack st; 2396 2397 stack_zero(&st); 2398 stack_save(&st); 2399 stack_print(&st); 2400 #endif 2401 } 2402 2403 #if defined(__i386__) || defined(__amd64__) 2404 bool linux_cpu_has_clflush; 2405 #endif 2406 2407 static void 2408 linux_compat_init(void *arg) 2409 { 2410 struct sysctl_oid *rootoid; 2411 int i; 2412 2413 #if defined(__i386__) || defined(__amd64__) 2414 linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH); 2415 #endif 2416 rw_init(&linux_vma_lock, "lkpi-vma-lock"); 2417 2418 rootoid = SYSCTL_ADD_ROOT_NODE(NULL, 2419 OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys"); 2420 kobject_init(&linux_class_root, &linux_class_ktype); 2421 kobject_set_name(&linux_class_root, "class"); 2422 linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid), 2423 OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class"); 2424 kobject_init(&linux_root_device.kobj, &linux_dev_ktype); 2425 kobject_set_name(&linux_root_device.kobj, "device"); 2426 linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL, 2427 SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL, 2428 "device"); 2429 linux_root_device.bsddev = root_bus; 2430 linux_class_misc.name = "misc"; 2431 class_register(&linux_class_misc); 2432 INIT_LIST_HEAD(&pci_drivers); 2433 INIT_LIST_HEAD(&pci_devices); 2434 spin_lock_init(&pci_lock); 2435 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF); 2436 for (i = 0; i < VMMAP_HASH_SIZE; i++) 2437 LIST_INIT(&vmmaphead[i]); 2438 } 2439 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL); 2440 2441 static void 2442 linux_compat_uninit(void *arg) 2443 { 2444 linux_kobject_kfree_name(&linux_class_root); 2445 linux_kobject_kfree_name(&linux_root_device.kobj); 2446 linux_kobject_kfree_name(&linux_class_misc.kobj); 2447 2448 mtx_destroy(&vmmaplock); 2449 spin_lock_destroy(&pci_lock); 2450 rw_destroy(&linux_vma_lock); 2451 } 2452 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL); 2453 2454 /* 2455 * NOTE: Linux frequently uses "unsigned long" for pointer to integer 2456 * conversion and vice versa, where in FreeBSD "uintptr_t" would be 2457 * used. Assert these types have the same size, else some parts of the 2458 * LinuxKPI may not work like expected: 2459 */ 2460 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t)); 2461