1 /*- 2 * Copyright (c) 2010 Isilon Systems, Inc. 3 * Copyright (c) 2010 iX Systems, Inc. 4 * Copyright (c) 2010 Panasas, Inc. 5 * Copyright (c) 2013-2018 Mellanox Technologies, Ltd. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_stack.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/sysctl.h> 40 #include <sys/proc.h> 41 #include <sys/sglist.h> 42 #include <sys/sleepqueue.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/bus.h> 46 #include <sys/fcntl.h> 47 #include <sys/file.h> 48 #include <sys/filio.h> 49 #include <sys/rwlock.h> 50 #include <sys/mman.h> 51 #include <sys/stack.h> 52 #include <sys/user.h> 53 54 #include <vm/vm.h> 55 #include <vm/pmap.h> 56 #include <vm/vm_object.h> 57 #include <vm/vm_page.h> 58 #include <vm/vm_pager.h> 59 60 #include <machine/stdarg.h> 61 62 #if defined(__i386__) || defined(__amd64__) 63 #include <machine/md_var.h> 64 #endif 65 66 #include <linux/kobject.h> 67 #include <linux/device.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/moduleparam.h> 71 #include <linux/cdev.h> 72 #include <linux/file.h> 73 #include <linux/sysfs.h> 74 #include <linux/mm.h> 75 #include <linux/io.h> 76 #include <linux/vmalloc.h> 77 #include <linux/netdevice.h> 78 #include <linux/timer.h> 79 #include <linux/interrupt.h> 80 #include <linux/uaccess.h> 81 #include <linux/list.h> 82 #include <linux/kthread.h> 83 #include <linux/kernel.h> 84 #include <linux/compat.h> 85 #include <linux/poll.h> 86 #include <linux/smp.h> 87 88 #if defined(__i386__) || defined(__amd64__) 89 #include <asm/smp.h> 90 #endif 91 92 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters"); 93 94 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat"); 95 96 #include <linux/rbtree.h> 97 /* Undo Linux compat changes. */ 98 #undef RB_ROOT 99 #undef file 100 #undef cdev 101 #define RB_ROOT(head) (head)->rbh_root 102 103 static struct vm_area_struct *linux_cdev_handle_find(void *handle); 104 105 struct kobject linux_class_root; 106 struct device linux_root_device; 107 struct class linux_class_misc; 108 struct list_head pci_drivers; 109 struct list_head pci_devices; 110 spinlock_t pci_lock; 111 112 unsigned long linux_timer_hz_mask; 113 114 int 115 panic_cmp(struct rb_node *one, struct rb_node *two) 116 { 117 panic("no cmp"); 118 } 119 120 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp); 121 122 int 123 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args) 124 { 125 va_list tmp_va; 126 int len; 127 char *old; 128 char *name; 129 char dummy; 130 131 old = kobj->name; 132 133 if (old && fmt == NULL) 134 return (0); 135 136 /* compute length of string */ 137 va_copy(tmp_va, args); 138 len = vsnprintf(&dummy, 0, fmt, tmp_va); 139 va_end(tmp_va); 140 141 /* account for zero termination */ 142 len++; 143 144 /* check for error */ 145 if (len < 1) 146 return (-EINVAL); 147 148 /* allocate memory for string */ 149 name = kzalloc(len, GFP_KERNEL); 150 if (name == NULL) 151 return (-ENOMEM); 152 vsnprintf(name, len, fmt, args); 153 kobj->name = name; 154 155 /* free old string */ 156 kfree(old); 157 158 /* filter new string */ 159 for (; *name != '\0'; name++) 160 if (*name == '/') 161 *name = '!'; 162 return (0); 163 } 164 165 int 166 kobject_set_name(struct kobject *kobj, const char *fmt, ...) 167 { 168 va_list args; 169 int error; 170 171 va_start(args, fmt); 172 error = kobject_set_name_vargs(kobj, fmt, args); 173 va_end(args); 174 175 return (error); 176 } 177 178 static int 179 kobject_add_complete(struct kobject *kobj, struct kobject *parent) 180 { 181 const struct kobj_type *t; 182 int error; 183 184 kobj->parent = parent; 185 error = sysfs_create_dir(kobj); 186 if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) { 187 struct attribute **attr; 188 t = kobj->ktype; 189 190 for (attr = t->default_attrs; *attr != NULL; attr++) { 191 error = sysfs_create_file(kobj, *attr); 192 if (error) 193 break; 194 } 195 if (error) 196 sysfs_remove_dir(kobj); 197 198 } 199 return (error); 200 } 201 202 int 203 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...) 204 { 205 va_list args; 206 int error; 207 208 va_start(args, fmt); 209 error = kobject_set_name_vargs(kobj, fmt, args); 210 va_end(args); 211 if (error) 212 return (error); 213 214 return kobject_add_complete(kobj, parent); 215 } 216 217 void 218 linux_kobject_release(struct kref *kref) 219 { 220 struct kobject *kobj; 221 char *name; 222 223 kobj = container_of(kref, struct kobject, kref); 224 sysfs_remove_dir(kobj); 225 name = kobj->name; 226 if (kobj->ktype && kobj->ktype->release) 227 kobj->ktype->release(kobj); 228 kfree(name); 229 } 230 231 static void 232 linux_kobject_kfree(struct kobject *kobj) 233 { 234 kfree(kobj); 235 } 236 237 static void 238 linux_kobject_kfree_name(struct kobject *kobj) 239 { 240 if (kobj) { 241 kfree(kobj->name); 242 } 243 } 244 245 const struct kobj_type linux_kfree_type = { 246 .release = linux_kobject_kfree 247 }; 248 249 static void 250 linux_device_release(struct device *dev) 251 { 252 pr_debug("linux_device_release: %s\n", dev_name(dev)); 253 kfree(dev); 254 } 255 256 static ssize_t 257 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf) 258 { 259 struct class_attribute *dattr; 260 ssize_t error; 261 262 dattr = container_of(attr, struct class_attribute, attr); 263 error = -EIO; 264 if (dattr->show) 265 error = dattr->show(container_of(kobj, struct class, kobj), 266 dattr, buf); 267 return (error); 268 } 269 270 static ssize_t 271 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf, 272 size_t count) 273 { 274 struct class_attribute *dattr; 275 ssize_t error; 276 277 dattr = container_of(attr, struct class_attribute, attr); 278 error = -EIO; 279 if (dattr->store) 280 error = dattr->store(container_of(kobj, struct class, kobj), 281 dattr, buf, count); 282 return (error); 283 } 284 285 static void 286 linux_class_release(struct kobject *kobj) 287 { 288 struct class *class; 289 290 class = container_of(kobj, struct class, kobj); 291 if (class->class_release) 292 class->class_release(class); 293 } 294 295 static const struct sysfs_ops linux_class_sysfs = { 296 .show = linux_class_show, 297 .store = linux_class_store, 298 }; 299 300 const struct kobj_type linux_class_ktype = { 301 .release = linux_class_release, 302 .sysfs_ops = &linux_class_sysfs 303 }; 304 305 static void 306 linux_dev_release(struct kobject *kobj) 307 { 308 struct device *dev; 309 310 dev = container_of(kobj, struct device, kobj); 311 /* This is the precedence defined by linux. */ 312 if (dev->release) 313 dev->release(dev); 314 else if (dev->class && dev->class->dev_release) 315 dev->class->dev_release(dev); 316 } 317 318 static ssize_t 319 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf) 320 { 321 struct device_attribute *dattr; 322 ssize_t error; 323 324 dattr = container_of(attr, struct device_attribute, attr); 325 error = -EIO; 326 if (dattr->show) 327 error = dattr->show(container_of(kobj, struct device, kobj), 328 dattr, buf); 329 return (error); 330 } 331 332 static ssize_t 333 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf, 334 size_t count) 335 { 336 struct device_attribute *dattr; 337 ssize_t error; 338 339 dattr = container_of(attr, struct device_attribute, attr); 340 error = -EIO; 341 if (dattr->store) 342 error = dattr->store(container_of(kobj, struct device, kobj), 343 dattr, buf, count); 344 return (error); 345 } 346 347 static const struct sysfs_ops linux_dev_sysfs = { 348 .show = linux_dev_show, 349 .store = linux_dev_store, 350 }; 351 352 const struct kobj_type linux_dev_ktype = { 353 .release = linux_dev_release, 354 .sysfs_ops = &linux_dev_sysfs 355 }; 356 357 struct device * 358 device_create(struct class *class, struct device *parent, dev_t devt, 359 void *drvdata, const char *fmt, ...) 360 { 361 struct device *dev; 362 va_list args; 363 364 dev = kzalloc(sizeof(*dev), M_WAITOK); 365 dev->parent = parent; 366 dev->class = class; 367 dev->devt = devt; 368 dev->driver_data = drvdata; 369 dev->release = linux_device_release; 370 va_start(args, fmt); 371 kobject_set_name_vargs(&dev->kobj, fmt, args); 372 va_end(args); 373 device_register(dev); 374 375 return (dev); 376 } 377 378 int 379 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype, 380 struct kobject *parent, const char *fmt, ...) 381 { 382 va_list args; 383 int error; 384 385 kobject_init(kobj, ktype); 386 kobj->ktype = ktype; 387 kobj->parent = parent; 388 kobj->name = NULL; 389 390 va_start(args, fmt); 391 error = kobject_set_name_vargs(kobj, fmt, args); 392 va_end(args); 393 if (error) 394 return (error); 395 return kobject_add_complete(kobj, parent); 396 } 397 398 static void 399 linux_kq_lock(void *arg) 400 { 401 spinlock_t *s = arg; 402 403 spin_lock(s); 404 } 405 static void 406 linux_kq_unlock(void *arg) 407 { 408 spinlock_t *s = arg; 409 410 spin_unlock(s); 411 } 412 413 static void 414 linux_kq_lock_owned(void *arg) 415 { 416 #ifdef INVARIANTS 417 spinlock_t *s = arg; 418 419 mtx_assert(&s->m, MA_OWNED); 420 #endif 421 } 422 423 static void 424 linux_kq_lock_unowned(void *arg) 425 { 426 #ifdef INVARIANTS 427 spinlock_t *s = arg; 428 429 mtx_assert(&s->m, MA_NOTOWNED); 430 #endif 431 } 432 433 static void 434 linux_file_kqfilter_poll(struct linux_file *, int); 435 436 struct linux_file * 437 linux_file_alloc(void) 438 { 439 struct linux_file *filp; 440 441 filp = kzalloc(sizeof(*filp), GFP_KERNEL); 442 443 /* set initial refcount */ 444 filp->f_count = 1; 445 446 /* setup fields needed by kqueue support */ 447 spin_lock_init(&filp->f_kqlock); 448 knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock, 449 linux_kq_lock, linux_kq_unlock, 450 linux_kq_lock_owned, linux_kq_lock_unowned); 451 452 return (filp); 453 } 454 455 void 456 linux_file_free(struct linux_file *filp) 457 { 458 if (filp->_file == NULL) { 459 if (filp->f_shmem != NULL) 460 vm_object_deallocate(filp->f_shmem); 461 kfree(filp); 462 } else { 463 /* 464 * The close method of the character device or file 465 * will free the linux_file structure: 466 */ 467 _fdrop(filp->_file, curthread); 468 } 469 } 470 471 static int 472 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, 473 vm_page_t *mres) 474 { 475 struct vm_area_struct *vmap; 476 477 vmap = linux_cdev_handle_find(vm_obj->handle); 478 479 MPASS(vmap != NULL); 480 MPASS(vmap->vm_private_data == vm_obj->handle); 481 482 if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) { 483 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset; 484 vm_page_t page; 485 486 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 487 /* 488 * If the passed in result page is a fake 489 * page, update it with the new physical 490 * address. 491 */ 492 page = *mres; 493 vm_page_updatefake(page, paddr, vm_obj->memattr); 494 } else { 495 /* 496 * Replace the passed in "mres" page with our 497 * own fake page and free up the all of the 498 * original pages. 499 */ 500 VM_OBJECT_WUNLOCK(vm_obj); 501 page = vm_page_getfake(paddr, vm_obj->memattr); 502 VM_OBJECT_WLOCK(vm_obj); 503 504 vm_page_replace_checked(page, vm_obj, 505 (*mres)->pindex, *mres); 506 507 vm_page_lock(*mres); 508 vm_page_free(*mres); 509 vm_page_unlock(*mres); 510 *mres = page; 511 } 512 page->valid = VM_PAGE_BITS_ALL; 513 return (VM_PAGER_OK); 514 } 515 return (VM_PAGER_FAIL); 516 } 517 518 static int 519 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type, 520 vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last) 521 { 522 struct vm_area_struct *vmap; 523 int err; 524 525 linux_set_current(curthread); 526 527 /* get VM area structure */ 528 vmap = linux_cdev_handle_find(vm_obj->handle); 529 MPASS(vmap != NULL); 530 MPASS(vmap->vm_private_data == vm_obj->handle); 531 532 VM_OBJECT_WUNLOCK(vm_obj); 533 534 down_write(&vmap->vm_mm->mmap_sem); 535 if (unlikely(vmap->vm_ops == NULL)) { 536 err = VM_FAULT_SIGBUS; 537 } else { 538 struct vm_fault vmf; 539 540 /* fill out VM fault structure */ 541 vmf.virtual_address = (void *)((uintptr_t)pidx << PAGE_SHIFT); 542 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 543 vmf.pgoff = 0; 544 vmf.page = NULL; 545 vmf.vma = vmap; 546 547 vmap->vm_pfn_count = 0; 548 vmap->vm_pfn_pcount = &vmap->vm_pfn_count; 549 vmap->vm_obj = vm_obj; 550 551 err = vmap->vm_ops->fault(vmap, &vmf); 552 553 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) { 554 kern_yield(PRI_USER); 555 err = vmap->vm_ops->fault(vmap, &vmf); 556 } 557 } 558 559 /* translate return code */ 560 switch (err) { 561 case VM_FAULT_OOM: 562 err = VM_PAGER_AGAIN; 563 break; 564 case VM_FAULT_SIGBUS: 565 err = VM_PAGER_BAD; 566 break; 567 case VM_FAULT_NOPAGE: 568 /* 569 * By contract the fault handler will return having 570 * busied all the pages itself. If pidx is already 571 * found in the object, it will simply xbusy the first 572 * page and return with vm_pfn_count set to 1. 573 */ 574 *first = vmap->vm_pfn_first; 575 *last = *first + vmap->vm_pfn_count - 1; 576 err = VM_PAGER_OK; 577 break; 578 default: 579 err = VM_PAGER_ERROR; 580 break; 581 } 582 up_write(&vmap->vm_mm->mmap_sem); 583 VM_OBJECT_WLOCK(vm_obj); 584 return (err); 585 } 586 587 static struct rwlock linux_vma_lock; 588 static TAILQ_HEAD(, vm_area_struct) linux_vma_head = 589 TAILQ_HEAD_INITIALIZER(linux_vma_head); 590 591 static void 592 linux_cdev_handle_free(struct vm_area_struct *vmap) 593 { 594 /* Drop reference on vm_file */ 595 if (vmap->vm_file != NULL) 596 fput(vmap->vm_file); 597 598 /* Drop reference on mm_struct */ 599 mmput(vmap->vm_mm); 600 601 kfree(vmap); 602 } 603 604 static void 605 linux_cdev_handle_remove(struct vm_area_struct *vmap) 606 { 607 rw_wlock(&linux_vma_lock); 608 TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry); 609 rw_wunlock(&linux_vma_lock); 610 } 611 612 static struct vm_area_struct * 613 linux_cdev_handle_find(void *handle) 614 { 615 struct vm_area_struct *vmap; 616 617 rw_rlock(&linux_vma_lock); 618 TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) { 619 if (vmap->vm_private_data == handle) 620 break; 621 } 622 rw_runlock(&linux_vma_lock); 623 return (vmap); 624 } 625 626 static int 627 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 628 vm_ooffset_t foff, struct ucred *cred, u_short *color) 629 { 630 631 MPASS(linux_cdev_handle_find(handle) != NULL); 632 *color = 0; 633 return (0); 634 } 635 636 static void 637 linux_cdev_pager_dtor(void *handle) 638 { 639 const struct vm_operations_struct *vm_ops; 640 struct vm_area_struct *vmap; 641 642 vmap = linux_cdev_handle_find(handle); 643 MPASS(vmap != NULL); 644 645 /* 646 * Remove handle before calling close operation to prevent 647 * other threads from reusing the handle pointer. 648 */ 649 linux_cdev_handle_remove(vmap); 650 651 down_write(&vmap->vm_mm->mmap_sem); 652 vm_ops = vmap->vm_ops; 653 if (likely(vm_ops != NULL)) 654 vm_ops->close(vmap); 655 up_write(&vmap->vm_mm->mmap_sem); 656 657 linux_cdev_handle_free(vmap); 658 } 659 660 static struct cdev_pager_ops linux_cdev_pager_ops[2] = { 661 { 662 /* OBJT_MGTDEVICE */ 663 .cdev_pg_populate = linux_cdev_pager_populate, 664 .cdev_pg_ctor = linux_cdev_pager_ctor, 665 .cdev_pg_dtor = linux_cdev_pager_dtor 666 }, 667 { 668 /* OBJT_DEVICE */ 669 .cdev_pg_fault = linux_cdev_pager_fault, 670 .cdev_pg_ctor = linux_cdev_pager_ctor, 671 .cdev_pg_dtor = linux_cdev_pager_dtor 672 }, 673 }; 674 675 #define OPW(fp,td,code) ({ \ 676 struct file *__fpop; \ 677 __typeof(code) __retval; \ 678 \ 679 __fpop = (td)->td_fpop; \ 680 (td)->td_fpop = (fp); \ 681 __retval = (code); \ 682 (td)->td_fpop = __fpop; \ 683 __retval; \ 684 }) 685 686 static int 687 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td, struct file *file) 688 { 689 struct linux_cdev *ldev; 690 struct linux_file *filp; 691 int error; 692 693 ldev = dev->si_drv1; 694 695 filp = linux_file_alloc(); 696 filp->f_dentry = &filp->f_dentry_store; 697 filp->f_op = ldev->ops; 698 filp->f_mode = file->f_flag; 699 filp->f_flags = file->f_flag; 700 filp->f_vnode = file->f_vnode; 701 filp->_file = file; 702 703 linux_set_current(td); 704 705 if (filp->f_op->open) { 706 error = -filp->f_op->open(file->f_vnode, filp); 707 if (error) { 708 kfree(filp); 709 return (error); 710 } 711 } 712 713 /* hold on to the vnode - used for fstat() */ 714 vhold(filp->f_vnode); 715 716 /* release the file from devfs */ 717 finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops); 718 return (ENXIO); 719 } 720 721 #define LINUX_IOCTL_MIN_PTR 0x10000UL 722 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX) 723 724 static inline int 725 linux_remap_address(void **uaddr, size_t len) 726 { 727 uintptr_t uaddr_val = (uintptr_t)(*uaddr); 728 729 if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR && 730 uaddr_val < LINUX_IOCTL_MAX_PTR)) { 731 struct task_struct *pts = current; 732 if (pts == NULL) { 733 *uaddr = NULL; 734 return (1); 735 } 736 737 /* compute data offset */ 738 uaddr_val -= LINUX_IOCTL_MIN_PTR; 739 740 /* check that length is within bounds */ 741 if ((len > IOCPARM_MAX) || 742 (uaddr_val + len) > pts->bsd_ioctl_len) { 743 *uaddr = NULL; 744 return (1); 745 } 746 747 /* re-add kernel buffer address */ 748 uaddr_val += (uintptr_t)pts->bsd_ioctl_data; 749 750 /* update address location */ 751 *uaddr = (void *)uaddr_val; 752 return (1); 753 } 754 return (0); 755 } 756 757 int 758 linux_copyin(const void *uaddr, void *kaddr, size_t len) 759 { 760 if (linux_remap_address(__DECONST(void **, &uaddr), len)) { 761 if (uaddr == NULL) 762 return (-EFAULT); 763 memcpy(kaddr, uaddr, len); 764 return (0); 765 } 766 return (-copyin(uaddr, kaddr, len)); 767 } 768 769 int 770 linux_copyout(const void *kaddr, void *uaddr, size_t len) 771 { 772 if (linux_remap_address(&uaddr, len)) { 773 if (uaddr == NULL) 774 return (-EFAULT); 775 memcpy(uaddr, kaddr, len); 776 return (0); 777 } 778 return (-copyout(kaddr, uaddr, len)); 779 } 780 781 size_t 782 linux_clear_user(void *_uaddr, size_t _len) 783 { 784 uint8_t *uaddr = _uaddr; 785 size_t len = _len; 786 787 /* make sure uaddr is aligned before going into the fast loop */ 788 while (((uintptr_t)uaddr & 7) != 0 && len > 7) { 789 if (subyte(uaddr, 0)) 790 return (_len); 791 uaddr++; 792 len--; 793 } 794 795 /* zero 8 bytes at a time */ 796 while (len > 7) { 797 #ifdef __LP64__ 798 if (suword64(uaddr, 0)) 799 return (_len); 800 #else 801 if (suword32(uaddr, 0)) 802 return (_len); 803 if (suword32(uaddr + 4, 0)) 804 return (_len); 805 #endif 806 uaddr += 8; 807 len -= 8; 808 } 809 810 /* zero fill end, if any */ 811 while (len > 0) { 812 if (subyte(uaddr, 0)) 813 return (_len); 814 uaddr++; 815 len--; 816 } 817 return (0); 818 } 819 820 int 821 linux_access_ok(int rw, const void *uaddr, size_t len) 822 { 823 uintptr_t saddr; 824 uintptr_t eaddr; 825 826 /* get start and end address */ 827 saddr = (uintptr_t)uaddr; 828 eaddr = (uintptr_t)uaddr + len; 829 830 /* verify addresses are valid for userspace */ 831 return ((saddr == eaddr) || 832 (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS)); 833 } 834 835 /* 836 * This function should return either EINTR or ERESTART depending on 837 * the signal type sent to this thread: 838 */ 839 static int 840 linux_get_error(struct task_struct *task, int error) 841 { 842 /* check for signal type interrupt code */ 843 if (error == EINTR || error == ERESTARTSYS || error == ERESTART) { 844 error = -linux_schedule_get_interrupt_value(task); 845 if (error == 0) 846 error = EINTR; 847 } 848 return (error); 849 } 850 851 static int 852 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp, 853 u_long cmd, caddr_t data, struct thread *td) 854 { 855 struct task_struct *task = current; 856 unsigned size; 857 int error; 858 859 size = IOCPARM_LEN(cmd); 860 /* refer to logic in sys_ioctl() */ 861 if (size > 0) { 862 /* 863 * Setup hint for linux_copyin() and linux_copyout(). 864 * 865 * Background: Linux code expects a user-space address 866 * while FreeBSD supplies a kernel-space address. 867 */ 868 task->bsd_ioctl_data = data; 869 task->bsd_ioctl_len = size; 870 data = (void *)LINUX_IOCTL_MIN_PTR; 871 } else { 872 /* fetch user-space pointer */ 873 data = *(void **)data; 874 } 875 #if defined(__amd64__) 876 if (td->td_proc->p_elf_machine == EM_386) { 877 /* try the compat IOCTL handler first */ 878 if (filp->f_op->compat_ioctl != NULL) 879 error = -OPW(fp, td, filp->f_op->compat_ioctl(filp, cmd, (u_long)data)); 880 else 881 error = ENOTTY; 882 883 /* fallback to the regular IOCTL handler, if any */ 884 if (error == ENOTTY && filp->f_op->unlocked_ioctl != NULL) 885 error = -OPW(fp, td, filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data)); 886 } else 887 #endif 888 if (filp->f_op->unlocked_ioctl != NULL) 889 error = -OPW(fp, td, filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data)); 890 else 891 error = ENOTTY; 892 if (size > 0) { 893 task->bsd_ioctl_data = NULL; 894 task->bsd_ioctl_len = 0; 895 } 896 897 if (error == EWOULDBLOCK) { 898 /* update kqfilter status, if any */ 899 linux_file_kqfilter_poll(filp, 900 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 901 } else { 902 error = linux_get_error(task, error); 903 } 904 return (error); 905 } 906 907 #define LINUX_POLL_TABLE_NORMAL ((poll_table *)1) 908 909 /* 910 * This function atomically updates the poll wakeup state and returns 911 * the previous state at the time of update. 912 */ 913 static uint8_t 914 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate) 915 { 916 int c, old; 917 918 c = v->counter; 919 920 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c) 921 c = old; 922 923 return (c); 924 } 925 926 927 static int 928 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key) 929 { 930 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 931 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 932 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 933 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY, 934 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */ 935 }; 936 struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq); 937 938 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 939 case LINUX_FWQ_STATE_QUEUED: 940 linux_poll_wakeup(filp); 941 return (1); 942 default: 943 return (0); 944 } 945 } 946 947 void 948 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p) 949 { 950 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 951 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY, 952 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 953 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */ 954 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED, 955 }; 956 957 /* check if we are called inside the select system call */ 958 if (p == LINUX_POLL_TABLE_NORMAL) 959 selrecord(curthread, &filp->f_selinfo); 960 961 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 962 case LINUX_FWQ_STATE_INIT: 963 /* NOTE: file handles can only belong to one wait-queue */ 964 filp->f_wait_queue.wqh = wqh; 965 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback; 966 add_wait_queue(wqh, &filp->f_wait_queue.wq); 967 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED); 968 break; 969 default: 970 break; 971 } 972 } 973 974 static void 975 linux_poll_wait_dequeue(struct linux_file *filp) 976 { 977 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 978 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 979 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT, 980 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT, 981 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT, 982 }; 983 984 seldrain(&filp->f_selinfo); 985 986 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 987 case LINUX_FWQ_STATE_NOT_READY: 988 case LINUX_FWQ_STATE_QUEUED: 989 case LINUX_FWQ_STATE_READY: 990 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq); 991 break; 992 default: 993 break; 994 } 995 } 996 997 void 998 linux_poll_wakeup(struct linux_file *filp) 999 { 1000 /* this function should be NULL-safe */ 1001 if (filp == NULL) 1002 return; 1003 1004 selwakeup(&filp->f_selinfo); 1005 1006 spin_lock(&filp->f_kqlock); 1007 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ | 1008 LINUX_KQ_FLAG_NEED_WRITE; 1009 1010 /* make sure the "knote" gets woken up */ 1011 KNOTE_LOCKED(&filp->f_selinfo.si_note, 1); 1012 spin_unlock(&filp->f_kqlock); 1013 } 1014 1015 static void 1016 linux_file_kqfilter_detach(struct knote *kn) 1017 { 1018 struct linux_file *filp = kn->kn_hook; 1019 1020 spin_lock(&filp->f_kqlock); 1021 knlist_remove(&filp->f_selinfo.si_note, kn, 1); 1022 spin_unlock(&filp->f_kqlock); 1023 } 1024 1025 static int 1026 linux_file_kqfilter_read_event(struct knote *kn, long hint) 1027 { 1028 struct linux_file *filp = kn->kn_hook; 1029 1030 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1031 1032 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0); 1033 } 1034 1035 static int 1036 linux_file_kqfilter_write_event(struct knote *kn, long hint) 1037 { 1038 struct linux_file *filp = kn->kn_hook; 1039 1040 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1041 1042 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0); 1043 } 1044 1045 static struct filterops linux_dev_kqfiltops_read = { 1046 .f_isfd = 1, 1047 .f_detach = linux_file_kqfilter_detach, 1048 .f_event = linux_file_kqfilter_read_event, 1049 }; 1050 1051 static struct filterops linux_dev_kqfiltops_write = { 1052 .f_isfd = 1, 1053 .f_detach = linux_file_kqfilter_detach, 1054 .f_event = linux_file_kqfilter_write_event, 1055 }; 1056 1057 static void 1058 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags) 1059 { 1060 int temp; 1061 1062 if (filp->f_kqflags & kqflags) { 1063 struct thread *td = curthread; 1064 1065 /* get the latest polling state */ 1066 temp = OPW(filp->_file, td, filp->f_op->poll(filp, NULL)); 1067 1068 spin_lock(&filp->f_kqlock); 1069 /* clear kqflags */ 1070 filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ | 1071 LINUX_KQ_FLAG_NEED_WRITE); 1072 /* update kqflags */ 1073 if (temp & (POLLIN | POLLOUT)) { 1074 if (temp & POLLIN) 1075 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ; 1076 if (temp & POLLOUT) 1077 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE; 1078 1079 /* make sure the "knote" gets woken up */ 1080 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0); 1081 } 1082 spin_unlock(&filp->f_kqlock); 1083 } 1084 } 1085 1086 static int 1087 linux_file_kqfilter(struct file *file, struct knote *kn) 1088 { 1089 struct linux_file *filp; 1090 struct thread *td; 1091 int error; 1092 1093 td = curthread; 1094 filp = (struct linux_file *)file->f_data; 1095 filp->f_flags = file->f_flag; 1096 if (filp->f_op->poll == NULL) 1097 return (EINVAL); 1098 1099 spin_lock(&filp->f_kqlock); 1100 switch (kn->kn_filter) { 1101 case EVFILT_READ: 1102 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ; 1103 kn->kn_fop = &linux_dev_kqfiltops_read; 1104 kn->kn_hook = filp; 1105 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1106 error = 0; 1107 break; 1108 case EVFILT_WRITE: 1109 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE; 1110 kn->kn_fop = &linux_dev_kqfiltops_write; 1111 kn->kn_hook = filp; 1112 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1113 error = 0; 1114 break; 1115 default: 1116 error = EINVAL; 1117 break; 1118 } 1119 spin_unlock(&filp->f_kqlock); 1120 1121 if (error == 0) { 1122 linux_set_current(td); 1123 1124 /* update kqfilter status, if any */ 1125 linux_file_kqfilter_poll(filp, 1126 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 1127 } 1128 return (error); 1129 } 1130 1131 static int 1132 linux_file_mmap_single(struct file *fp, vm_ooffset_t *offset, 1133 vm_size_t size, struct vm_object **object, int nprot, 1134 struct thread *td) 1135 { 1136 struct task_struct *task; 1137 struct vm_area_struct *vmap; 1138 struct mm_struct *mm; 1139 struct linux_file *filp; 1140 vm_memattr_t attr; 1141 int error; 1142 1143 filp = (struct linux_file *)fp->f_data; 1144 filp->f_flags = fp->f_flag; 1145 1146 if (filp->f_op->mmap == NULL) 1147 return (EOPNOTSUPP); 1148 1149 linux_set_current(td); 1150 1151 /* 1152 * The same VM object might be shared by multiple processes 1153 * and the mm_struct is usually freed when a process exits. 1154 * 1155 * The atomic reference below makes sure the mm_struct is 1156 * available as long as the vmap is in the linux_vma_head. 1157 */ 1158 task = current; 1159 mm = task->mm; 1160 if (atomic_inc_not_zero(&mm->mm_users) == 0) 1161 return (EINVAL); 1162 1163 vmap = kzalloc(sizeof(*vmap), GFP_KERNEL); 1164 vmap->vm_start = 0; 1165 vmap->vm_end = size; 1166 vmap->vm_pgoff = *offset / PAGE_SIZE; 1167 vmap->vm_pfn = 0; 1168 vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL); 1169 vmap->vm_ops = NULL; 1170 vmap->vm_file = get_file(filp); 1171 vmap->vm_mm = mm; 1172 1173 if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) { 1174 error = linux_get_error(task, EINTR); 1175 } else { 1176 error = -OPW(fp, td, filp->f_op->mmap(filp, vmap)); 1177 error = linux_get_error(task, error); 1178 up_write(&vmap->vm_mm->mmap_sem); 1179 } 1180 1181 if (error != 0) { 1182 linux_cdev_handle_free(vmap); 1183 return (error); 1184 } 1185 1186 attr = pgprot2cachemode(vmap->vm_page_prot); 1187 1188 if (vmap->vm_ops != NULL) { 1189 struct vm_area_struct *ptr; 1190 void *vm_private_data; 1191 bool vm_no_fault; 1192 1193 if (vmap->vm_ops->open == NULL || 1194 vmap->vm_ops->close == NULL || 1195 vmap->vm_private_data == NULL) { 1196 /* free allocated VM area struct */ 1197 linux_cdev_handle_free(vmap); 1198 return (EINVAL); 1199 } 1200 1201 vm_private_data = vmap->vm_private_data; 1202 1203 rw_wlock(&linux_vma_lock); 1204 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) { 1205 if (ptr->vm_private_data == vm_private_data) 1206 break; 1207 } 1208 /* check if there is an existing VM area struct */ 1209 if (ptr != NULL) { 1210 /* check if the VM area structure is invalid */ 1211 if (ptr->vm_ops == NULL || 1212 ptr->vm_ops->open == NULL || 1213 ptr->vm_ops->close == NULL) { 1214 error = ESTALE; 1215 vm_no_fault = 1; 1216 } else { 1217 error = EEXIST; 1218 vm_no_fault = (ptr->vm_ops->fault == NULL); 1219 } 1220 } else { 1221 /* insert VM area structure into list */ 1222 TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry); 1223 error = 0; 1224 vm_no_fault = (vmap->vm_ops->fault == NULL); 1225 } 1226 rw_wunlock(&linux_vma_lock); 1227 1228 if (error != 0) { 1229 /* free allocated VM area struct */ 1230 linux_cdev_handle_free(vmap); 1231 /* check for stale VM area struct */ 1232 if (error != EEXIST) 1233 return (error); 1234 } 1235 1236 /* check if there is no fault handler */ 1237 if (vm_no_fault) { 1238 *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE, 1239 &linux_cdev_pager_ops[1], size, nprot, *offset, 1240 td->td_ucred); 1241 } else { 1242 *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE, 1243 &linux_cdev_pager_ops[0], size, nprot, *offset, 1244 td->td_ucred); 1245 } 1246 1247 /* check if allocating the VM object failed */ 1248 if (*object == NULL) { 1249 if (error == 0) { 1250 /* remove VM area struct from list */ 1251 linux_cdev_handle_remove(vmap); 1252 /* free allocated VM area struct */ 1253 linux_cdev_handle_free(vmap); 1254 } 1255 return (EINVAL); 1256 } 1257 } else { 1258 struct sglist *sg; 1259 1260 sg = sglist_alloc(1, M_WAITOK); 1261 sglist_append_phys(sg, 1262 (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len); 1263 1264 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len, 1265 nprot, 0, td->td_ucred); 1266 1267 linux_cdev_handle_free(vmap); 1268 1269 if (*object == NULL) { 1270 sglist_free(sg); 1271 return (EINVAL); 1272 } 1273 } 1274 1275 if (attr != VM_MEMATTR_DEFAULT) { 1276 VM_OBJECT_WLOCK(*object); 1277 vm_object_set_memattr(*object, attr); 1278 VM_OBJECT_WUNLOCK(*object); 1279 } 1280 *offset = 0; 1281 return (0); 1282 } 1283 1284 struct cdevsw linuxcdevsw = { 1285 .d_version = D_VERSION, 1286 .d_fdopen = linux_dev_fdopen, 1287 .d_name = "lkpidev", 1288 }; 1289 1290 static int 1291 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred, 1292 int flags, struct thread *td) 1293 { 1294 struct linux_file *filp; 1295 ssize_t bytes; 1296 int error; 1297 1298 error = 0; 1299 filp = (struct linux_file *)file->f_data; 1300 filp->f_flags = file->f_flag; 1301 /* XXX no support for I/O vectors currently */ 1302 if (uio->uio_iovcnt != 1) 1303 return (EOPNOTSUPP); 1304 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1305 return (EINVAL); 1306 linux_set_current(td); 1307 if (filp->f_op->read) { 1308 bytes = OPW(file, td, filp->f_op->read(filp, uio->uio_iov->iov_base, 1309 uio->uio_iov->iov_len, &uio->uio_offset)); 1310 if (bytes >= 0) { 1311 uio->uio_iov->iov_base = 1312 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1313 uio->uio_iov->iov_len -= bytes; 1314 uio->uio_resid -= bytes; 1315 } else { 1316 error = linux_get_error(current, -bytes); 1317 } 1318 } else 1319 error = ENXIO; 1320 1321 /* update kqfilter status, if any */ 1322 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ); 1323 1324 return (error); 1325 } 1326 1327 static int 1328 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred, 1329 int flags, struct thread *td) 1330 { 1331 struct linux_file *filp; 1332 ssize_t bytes; 1333 int error; 1334 1335 error = 0; 1336 filp = (struct linux_file *)file->f_data; 1337 filp->f_flags = file->f_flag; 1338 /* XXX no support for I/O vectors currently */ 1339 if (uio->uio_iovcnt != 1) 1340 return (EOPNOTSUPP); 1341 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1342 return (EINVAL); 1343 linux_set_current(td); 1344 if (filp->f_op->write) { 1345 bytes = OPW(file, td, filp->f_op->write(filp, uio->uio_iov->iov_base, 1346 uio->uio_iov->iov_len, &uio->uio_offset)); 1347 if (bytes >= 0) { 1348 uio->uio_iov->iov_base = 1349 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1350 uio->uio_iov->iov_len -= bytes; 1351 uio->uio_resid -= bytes; 1352 } else { 1353 error = linux_get_error(current, -bytes); 1354 } 1355 } else 1356 error = ENXIO; 1357 1358 /* update kqfilter status, if any */ 1359 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE); 1360 1361 return (error); 1362 } 1363 1364 static int 1365 linux_file_poll(struct file *file, int events, struct ucred *active_cred, 1366 struct thread *td) 1367 { 1368 struct linux_file *filp; 1369 int revents; 1370 1371 filp = (struct linux_file *)file->f_data; 1372 filp->f_flags = file->f_flag; 1373 linux_set_current(td); 1374 if (filp->f_op->poll != NULL) 1375 revents = OPW(file, td, filp->f_op->poll(filp, LINUX_POLL_TABLE_NORMAL)) & events; 1376 else 1377 revents = 0; 1378 1379 return (revents); 1380 } 1381 1382 static int 1383 linux_file_close(struct file *file, struct thread *td) 1384 { 1385 struct linux_file *filp; 1386 int error; 1387 1388 filp = (struct linux_file *)file->f_data; 1389 1390 KASSERT(file_count(filp) == 0, ("File refcount(%d) is not zero", file_count(filp))); 1391 1392 filp->f_flags = file->f_flag; 1393 linux_set_current(td); 1394 linux_poll_wait_dequeue(filp); 1395 error = -OPW(file, td, filp->f_op->release(filp->f_vnode, filp)); 1396 funsetown(&filp->f_sigio); 1397 if (filp->f_vnode != NULL) 1398 vdrop(filp->f_vnode); 1399 kfree(filp); 1400 1401 return (error); 1402 } 1403 1404 static int 1405 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred, 1406 struct thread *td) 1407 { 1408 struct linux_file *filp; 1409 int error; 1410 1411 filp = (struct linux_file *)fp->f_data; 1412 filp->f_flags = fp->f_flag; 1413 error = 0; 1414 1415 linux_set_current(td); 1416 switch (cmd) { 1417 case FIONBIO: 1418 break; 1419 case FIOASYNC: 1420 if (filp->f_op->fasync == NULL) 1421 break; 1422 error = -OPW(fp, td, filp->f_op->fasync(0, filp, fp->f_flag & FASYNC)); 1423 break; 1424 case FIOSETOWN: 1425 error = fsetown(*(int *)data, &filp->f_sigio); 1426 if (error == 0) { 1427 if (filp->f_op->fasync == NULL) 1428 break; 1429 error = -OPW(fp, td, filp->f_op->fasync(0, filp, 1430 fp->f_flag & FASYNC)); 1431 } 1432 break; 1433 case FIOGETOWN: 1434 *(int *)data = fgetown(&filp->f_sigio); 1435 break; 1436 default: 1437 error = linux_file_ioctl_sub(fp, filp, cmd, data, td); 1438 break; 1439 } 1440 return (error); 1441 } 1442 1443 static int 1444 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot, 1445 vm_prot_t *maxprotp, int *flagsp, struct file *fp, 1446 vm_ooffset_t *foff, vm_object_t *objp) 1447 { 1448 /* 1449 * Character devices do not provide private mappings 1450 * of any kind: 1451 */ 1452 if ((*maxprotp & VM_PROT_WRITE) == 0 && 1453 (prot & VM_PROT_WRITE) != 0) 1454 return (EACCES); 1455 if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0) 1456 return (EINVAL); 1457 1458 return (linux_file_mmap_single(fp, foff, objsize, objp, (int)prot, td)); 1459 } 1460 1461 static int 1462 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 1463 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 1464 struct thread *td) 1465 { 1466 struct linux_file *filp; 1467 struct mount *mp; 1468 struct vnode *vp; 1469 vm_object_t object; 1470 vm_prot_t maxprot; 1471 int error; 1472 1473 filp = (struct linux_file *)fp->f_data; 1474 1475 vp = filp->f_vnode; 1476 if (vp == NULL) 1477 return (EOPNOTSUPP); 1478 1479 /* 1480 * Ensure that file and memory protections are 1481 * compatible. 1482 */ 1483 mp = vp->v_mount; 1484 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) { 1485 maxprot = VM_PROT_NONE; 1486 if ((prot & VM_PROT_EXECUTE) != 0) 1487 return (EACCES); 1488 } else 1489 maxprot = VM_PROT_EXECUTE; 1490 if ((fp->f_flag & FREAD) != 0) 1491 maxprot |= VM_PROT_READ; 1492 else if ((prot & VM_PROT_READ) != 0) 1493 return (EACCES); 1494 1495 /* 1496 * If we are sharing potential changes via MAP_SHARED and we 1497 * are trying to get write permission although we opened it 1498 * without asking for it, bail out. 1499 * 1500 * Note that most character devices always share mappings. 1501 * 1502 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE 1503 * requests rather than doing it here. 1504 */ 1505 if ((flags & MAP_SHARED) != 0) { 1506 if ((fp->f_flag & FWRITE) != 0) 1507 maxprot |= VM_PROT_WRITE; 1508 else if ((prot & VM_PROT_WRITE) != 0) 1509 return (EACCES); 1510 } 1511 maxprot &= cap_maxprot; 1512 1513 error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp, &foff, 1514 &object); 1515 if (error != 0) 1516 return (error); 1517 1518 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 1519 foff, FALSE, td); 1520 if (error != 0) 1521 vm_object_deallocate(object); 1522 return (error); 1523 } 1524 1525 static int 1526 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred, 1527 struct thread *td) 1528 { 1529 struct linux_file *filp; 1530 struct vnode *vp; 1531 int error; 1532 1533 filp = (struct linux_file *)fp->f_data; 1534 if (filp->f_vnode == NULL) 1535 return (EOPNOTSUPP); 1536 1537 vp = filp->f_vnode; 1538 1539 vn_lock(vp, LK_SHARED | LK_RETRY); 1540 error = vn_stat(vp, sb, td->td_ucred, NOCRED, td); 1541 VOP_UNLOCK(vp, 0); 1542 1543 return (error); 1544 } 1545 1546 static int 1547 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif, 1548 struct filedesc *fdp) 1549 { 1550 struct linux_file *filp; 1551 struct vnode *vp; 1552 int error; 1553 1554 filp = fp->f_data; 1555 vp = filp->f_vnode; 1556 if (vp == NULL) { 1557 error = 0; 1558 kif->kf_type = KF_TYPE_DEV; 1559 } else { 1560 vref(vp); 1561 FILEDESC_SUNLOCK(fdp); 1562 error = vn_fill_kinfo_vnode(vp, kif); 1563 vrele(vp); 1564 kif->kf_type = KF_TYPE_VNODE; 1565 FILEDESC_SLOCK(fdp); 1566 } 1567 return (error); 1568 } 1569 1570 unsigned int 1571 linux_iminor(struct inode *inode) 1572 { 1573 struct linux_cdev *ldev; 1574 1575 if (inode == NULL || inode->v_rdev == NULL || 1576 inode->v_rdev->si_devsw != &linuxcdevsw) 1577 return (-1U); 1578 ldev = inode->v_rdev->si_drv1; 1579 if (ldev == NULL) 1580 return (-1U); 1581 1582 return (minor(ldev->dev)); 1583 } 1584 1585 struct fileops linuxfileops = { 1586 .fo_read = linux_file_read, 1587 .fo_write = linux_file_write, 1588 .fo_truncate = invfo_truncate, 1589 .fo_kqfilter = linux_file_kqfilter, 1590 .fo_stat = linux_file_stat, 1591 .fo_fill_kinfo = linux_file_fill_kinfo, 1592 .fo_poll = linux_file_poll, 1593 .fo_close = linux_file_close, 1594 .fo_ioctl = linux_file_ioctl, 1595 .fo_mmap = linux_file_mmap, 1596 .fo_chmod = invfo_chmod, 1597 .fo_chown = invfo_chown, 1598 .fo_sendfile = invfo_sendfile, 1599 .fo_flags = DFLAG_PASSABLE, 1600 }; 1601 1602 /* 1603 * Hash of vmmap addresses. This is infrequently accessed and does not 1604 * need to be particularly large. This is done because we must store the 1605 * caller's idea of the map size to properly unmap. 1606 */ 1607 struct vmmap { 1608 LIST_ENTRY(vmmap) vm_next; 1609 void *vm_addr; 1610 unsigned long vm_size; 1611 }; 1612 1613 struct vmmaphd { 1614 struct vmmap *lh_first; 1615 }; 1616 #define VMMAP_HASH_SIZE 64 1617 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1) 1618 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK 1619 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE]; 1620 static struct mtx vmmaplock; 1621 1622 static void 1623 vmmap_add(void *addr, unsigned long size) 1624 { 1625 struct vmmap *vmmap; 1626 1627 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL); 1628 mtx_lock(&vmmaplock); 1629 vmmap->vm_size = size; 1630 vmmap->vm_addr = addr; 1631 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next); 1632 mtx_unlock(&vmmaplock); 1633 } 1634 1635 static struct vmmap * 1636 vmmap_remove(void *addr) 1637 { 1638 struct vmmap *vmmap; 1639 1640 mtx_lock(&vmmaplock); 1641 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next) 1642 if (vmmap->vm_addr == addr) 1643 break; 1644 if (vmmap) 1645 LIST_REMOVE(vmmap, vm_next); 1646 mtx_unlock(&vmmaplock); 1647 1648 return (vmmap); 1649 } 1650 1651 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 1652 void * 1653 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr) 1654 { 1655 void *addr; 1656 1657 addr = pmap_mapdev_attr(phys_addr, size, attr); 1658 if (addr == NULL) 1659 return (NULL); 1660 vmmap_add(addr, size); 1661 1662 return (addr); 1663 } 1664 #endif 1665 1666 void 1667 iounmap(void *addr) 1668 { 1669 struct vmmap *vmmap; 1670 1671 vmmap = vmmap_remove(addr); 1672 if (vmmap == NULL) 1673 return; 1674 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 1675 pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size); 1676 #endif 1677 kfree(vmmap); 1678 } 1679 1680 1681 void * 1682 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot) 1683 { 1684 vm_offset_t off; 1685 size_t size; 1686 1687 size = count * PAGE_SIZE; 1688 off = kva_alloc(size); 1689 if (off == 0) 1690 return (NULL); 1691 vmmap_add((void *)off, size); 1692 pmap_qenter(off, pages, count); 1693 1694 return ((void *)off); 1695 } 1696 1697 void 1698 vunmap(void *addr) 1699 { 1700 struct vmmap *vmmap; 1701 1702 vmmap = vmmap_remove(addr); 1703 if (vmmap == NULL) 1704 return; 1705 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE); 1706 kva_free((vm_offset_t)addr, vmmap->vm_size); 1707 kfree(vmmap); 1708 } 1709 1710 char * 1711 kvasprintf(gfp_t gfp, const char *fmt, va_list ap) 1712 { 1713 unsigned int len; 1714 char *p; 1715 va_list aq; 1716 1717 va_copy(aq, ap); 1718 len = vsnprintf(NULL, 0, fmt, aq); 1719 va_end(aq); 1720 1721 p = kmalloc(len + 1, gfp); 1722 if (p != NULL) 1723 vsnprintf(p, len + 1, fmt, ap); 1724 1725 return (p); 1726 } 1727 1728 char * 1729 kasprintf(gfp_t gfp, const char *fmt, ...) 1730 { 1731 va_list ap; 1732 char *p; 1733 1734 va_start(ap, fmt); 1735 p = kvasprintf(gfp, fmt, ap); 1736 va_end(ap); 1737 1738 return (p); 1739 } 1740 1741 static void 1742 linux_timer_callback_wrapper(void *context) 1743 { 1744 struct timer_list *timer; 1745 1746 linux_set_current(curthread); 1747 1748 timer = context; 1749 timer->function(timer->data); 1750 } 1751 1752 void 1753 mod_timer(struct timer_list *timer, int expires) 1754 { 1755 1756 timer->expires = expires; 1757 callout_reset(&timer->callout, 1758 linux_timer_jiffies_until(expires), 1759 &linux_timer_callback_wrapper, timer); 1760 } 1761 1762 void 1763 add_timer(struct timer_list *timer) 1764 { 1765 1766 callout_reset(&timer->callout, 1767 linux_timer_jiffies_until(timer->expires), 1768 &linux_timer_callback_wrapper, timer); 1769 } 1770 1771 void 1772 add_timer_on(struct timer_list *timer, int cpu) 1773 { 1774 1775 callout_reset_on(&timer->callout, 1776 linux_timer_jiffies_until(timer->expires), 1777 &linux_timer_callback_wrapper, timer, cpu); 1778 } 1779 1780 static void 1781 linux_timer_init(void *arg) 1782 { 1783 1784 /* 1785 * Compute an internal HZ value which can divide 2**32 to 1786 * avoid timer rounding problems when the tick value wraps 1787 * around 2**32: 1788 */ 1789 linux_timer_hz_mask = 1; 1790 while (linux_timer_hz_mask < (unsigned long)hz) 1791 linux_timer_hz_mask *= 2; 1792 linux_timer_hz_mask--; 1793 } 1794 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL); 1795 1796 void 1797 linux_complete_common(struct completion *c, int all) 1798 { 1799 int wakeup_swapper; 1800 1801 sleepq_lock(c); 1802 if (all) { 1803 c->done = UINT_MAX; 1804 wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0); 1805 } else { 1806 if (c->done != UINT_MAX) 1807 c->done++; 1808 wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0); 1809 } 1810 sleepq_release(c); 1811 if (wakeup_swapper) 1812 kick_proc0(); 1813 } 1814 1815 /* 1816 * Indefinite wait for done != 0 with or without signals. 1817 */ 1818 int 1819 linux_wait_for_common(struct completion *c, int flags) 1820 { 1821 struct task_struct *task; 1822 int error; 1823 1824 if (SCHEDULER_STOPPED()) 1825 return (0); 1826 1827 task = current; 1828 1829 if (flags != 0) 1830 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 1831 else 1832 flags = SLEEPQ_SLEEP; 1833 error = 0; 1834 for (;;) { 1835 sleepq_lock(c); 1836 if (c->done) 1837 break; 1838 sleepq_add(c, NULL, "completion", flags, 0); 1839 if (flags & SLEEPQ_INTERRUPTIBLE) { 1840 DROP_GIANT(); 1841 error = -sleepq_wait_sig(c, 0); 1842 PICKUP_GIANT(); 1843 if (error != 0) { 1844 linux_schedule_save_interrupt_value(task, error); 1845 error = -ERESTARTSYS; 1846 goto intr; 1847 } 1848 } else { 1849 DROP_GIANT(); 1850 sleepq_wait(c, 0); 1851 PICKUP_GIANT(); 1852 } 1853 } 1854 if (c->done != UINT_MAX) 1855 c->done--; 1856 sleepq_release(c); 1857 1858 intr: 1859 return (error); 1860 } 1861 1862 /* 1863 * Time limited wait for done != 0 with or without signals. 1864 */ 1865 int 1866 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags) 1867 { 1868 struct task_struct *task; 1869 int end = jiffies + timeout; 1870 int error; 1871 1872 if (SCHEDULER_STOPPED()) 1873 return (0); 1874 1875 task = current; 1876 1877 if (flags != 0) 1878 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 1879 else 1880 flags = SLEEPQ_SLEEP; 1881 1882 for (;;) { 1883 sleepq_lock(c); 1884 if (c->done) 1885 break; 1886 sleepq_add(c, NULL, "completion", flags, 0); 1887 sleepq_set_timeout(c, linux_timer_jiffies_until(end)); 1888 1889 DROP_GIANT(); 1890 if (flags & SLEEPQ_INTERRUPTIBLE) 1891 error = -sleepq_timedwait_sig(c, 0); 1892 else 1893 error = -sleepq_timedwait(c, 0); 1894 PICKUP_GIANT(); 1895 1896 if (error != 0) { 1897 /* check for timeout */ 1898 if (error == -EWOULDBLOCK) { 1899 error = 0; /* timeout */ 1900 } else { 1901 /* signal happened */ 1902 linux_schedule_save_interrupt_value(task, error); 1903 error = -ERESTARTSYS; 1904 } 1905 goto done; 1906 } 1907 } 1908 if (c->done != UINT_MAX) 1909 c->done--; 1910 sleepq_release(c); 1911 1912 /* return how many jiffies are left */ 1913 error = linux_timer_jiffies_until(end); 1914 done: 1915 return (error); 1916 } 1917 1918 int 1919 linux_try_wait_for_completion(struct completion *c) 1920 { 1921 int isdone; 1922 1923 sleepq_lock(c); 1924 isdone = (c->done != 0); 1925 if (c->done != 0 && c->done != UINT_MAX) 1926 c->done--; 1927 sleepq_release(c); 1928 return (isdone); 1929 } 1930 1931 int 1932 linux_completion_done(struct completion *c) 1933 { 1934 int isdone; 1935 1936 sleepq_lock(c); 1937 isdone = (c->done != 0); 1938 sleepq_release(c); 1939 return (isdone); 1940 } 1941 1942 static void 1943 linux_cdev_release(struct kobject *kobj) 1944 { 1945 struct linux_cdev *cdev; 1946 struct kobject *parent; 1947 1948 cdev = container_of(kobj, struct linux_cdev, kobj); 1949 parent = kobj->parent; 1950 if (cdev->cdev) 1951 destroy_dev(cdev->cdev); 1952 kfree(cdev); 1953 kobject_put(parent); 1954 } 1955 1956 static void 1957 linux_cdev_static_release(struct kobject *kobj) 1958 { 1959 struct linux_cdev *cdev; 1960 struct kobject *parent; 1961 1962 cdev = container_of(kobj, struct linux_cdev, kobj); 1963 parent = kobj->parent; 1964 if (cdev->cdev) 1965 destroy_dev(cdev->cdev); 1966 kobject_put(parent); 1967 } 1968 1969 const struct kobj_type linux_cdev_ktype = { 1970 .release = linux_cdev_release, 1971 }; 1972 1973 const struct kobj_type linux_cdev_static_ktype = { 1974 .release = linux_cdev_static_release, 1975 }; 1976 1977 static void 1978 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate) 1979 { 1980 struct notifier_block *nb; 1981 1982 nb = arg; 1983 if (linkstate == LINK_STATE_UP) 1984 nb->notifier_call(nb, NETDEV_UP, ifp); 1985 else 1986 nb->notifier_call(nb, NETDEV_DOWN, ifp); 1987 } 1988 1989 static void 1990 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp) 1991 { 1992 struct notifier_block *nb; 1993 1994 nb = arg; 1995 nb->notifier_call(nb, NETDEV_REGISTER, ifp); 1996 } 1997 1998 static void 1999 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp) 2000 { 2001 struct notifier_block *nb; 2002 2003 nb = arg; 2004 nb->notifier_call(nb, NETDEV_UNREGISTER, ifp); 2005 } 2006 2007 static void 2008 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp) 2009 { 2010 struct notifier_block *nb; 2011 2012 nb = arg; 2013 nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp); 2014 } 2015 2016 static void 2017 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp) 2018 { 2019 struct notifier_block *nb; 2020 2021 nb = arg; 2022 nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp); 2023 } 2024 2025 int 2026 register_netdevice_notifier(struct notifier_block *nb) 2027 { 2028 2029 nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER( 2030 ifnet_link_event, linux_handle_ifnet_link_event, nb, 0); 2031 nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER( 2032 ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0); 2033 nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER( 2034 ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0); 2035 nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER( 2036 iflladdr_event, linux_handle_iflladdr_event, nb, 0); 2037 2038 return (0); 2039 } 2040 2041 int 2042 register_inetaddr_notifier(struct notifier_block *nb) 2043 { 2044 2045 nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER( 2046 ifaddr_event, linux_handle_ifaddr_event, nb, 0); 2047 return (0); 2048 } 2049 2050 int 2051 unregister_netdevice_notifier(struct notifier_block *nb) 2052 { 2053 2054 EVENTHANDLER_DEREGISTER(ifnet_link_event, 2055 nb->tags[NETDEV_UP]); 2056 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 2057 nb->tags[NETDEV_REGISTER]); 2058 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 2059 nb->tags[NETDEV_UNREGISTER]); 2060 EVENTHANDLER_DEREGISTER(iflladdr_event, 2061 nb->tags[NETDEV_CHANGEADDR]); 2062 2063 return (0); 2064 } 2065 2066 int 2067 unregister_inetaddr_notifier(struct notifier_block *nb) 2068 { 2069 2070 EVENTHANDLER_DEREGISTER(ifaddr_event, 2071 nb->tags[NETDEV_CHANGEIFADDR]); 2072 2073 return (0); 2074 } 2075 2076 struct list_sort_thunk { 2077 int (*cmp)(void *, struct list_head *, struct list_head *); 2078 void *priv; 2079 }; 2080 2081 static inline int 2082 linux_le_cmp(void *priv, const void *d1, const void *d2) 2083 { 2084 struct list_head *le1, *le2; 2085 struct list_sort_thunk *thunk; 2086 2087 thunk = priv; 2088 le1 = *(__DECONST(struct list_head **, d1)); 2089 le2 = *(__DECONST(struct list_head **, d2)); 2090 return ((thunk->cmp)(thunk->priv, le1, le2)); 2091 } 2092 2093 void 2094 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv, 2095 struct list_head *a, struct list_head *b)) 2096 { 2097 struct list_sort_thunk thunk; 2098 struct list_head **ar, *le; 2099 size_t count, i; 2100 2101 count = 0; 2102 list_for_each(le, head) 2103 count++; 2104 ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK); 2105 i = 0; 2106 list_for_each(le, head) 2107 ar[i++] = le; 2108 thunk.cmp = cmp; 2109 thunk.priv = priv; 2110 qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp); 2111 INIT_LIST_HEAD(head); 2112 for (i = 0; i < count; i++) 2113 list_add_tail(ar[i], head); 2114 free(ar, M_KMALLOC); 2115 } 2116 2117 void 2118 linux_irq_handler(void *ent) 2119 { 2120 struct irq_ent *irqe; 2121 2122 linux_set_current(curthread); 2123 2124 irqe = ent; 2125 irqe->handler(irqe->irq, irqe->arg); 2126 } 2127 2128 #if defined(__i386__) || defined(__amd64__) 2129 int 2130 linux_wbinvd_on_all_cpus(void) 2131 { 2132 2133 pmap_invalidate_cache(); 2134 return (0); 2135 } 2136 #endif 2137 2138 int 2139 linux_on_each_cpu(void callback(void *), void *data) 2140 { 2141 2142 smp_rendezvous(smp_no_rendezvous_barrier, callback, 2143 smp_no_rendezvous_barrier, data); 2144 return (0); 2145 } 2146 2147 int 2148 linux_in_atomic(void) 2149 { 2150 2151 return ((curthread->td_pflags & TDP_NOFAULTING) != 0); 2152 } 2153 2154 struct linux_cdev * 2155 linux_find_cdev(const char *name, unsigned major, unsigned minor) 2156 { 2157 dev_t dev = MKDEV(major, minor); 2158 struct cdev *cdev; 2159 2160 dev_lock(); 2161 LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) { 2162 struct linux_cdev *ldev = cdev->si_drv1; 2163 if (ldev->dev == dev && 2164 strcmp(kobject_name(&ldev->kobj), name) == 0) { 2165 break; 2166 } 2167 } 2168 dev_unlock(); 2169 2170 return (cdev != NULL ? cdev->si_drv1 : NULL); 2171 } 2172 2173 int 2174 __register_chrdev(unsigned int major, unsigned int baseminor, 2175 unsigned int count, const char *name, 2176 const struct file_operations *fops) 2177 { 2178 struct linux_cdev *cdev; 2179 int ret = 0; 2180 int i; 2181 2182 for (i = baseminor; i < baseminor + count; i++) { 2183 cdev = cdev_alloc(); 2184 cdev_init(cdev, fops); 2185 kobject_set_name(&cdev->kobj, name); 2186 2187 ret = cdev_add(cdev, makedev(major, i), 1); 2188 if (ret != 0) 2189 break; 2190 } 2191 return (ret); 2192 } 2193 2194 int 2195 __register_chrdev_p(unsigned int major, unsigned int baseminor, 2196 unsigned int count, const char *name, 2197 const struct file_operations *fops, uid_t uid, 2198 gid_t gid, int mode) 2199 { 2200 struct linux_cdev *cdev; 2201 int ret = 0; 2202 int i; 2203 2204 for (i = baseminor; i < baseminor + count; i++) { 2205 cdev = cdev_alloc(); 2206 cdev_init(cdev, fops); 2207 kobject_set_name(&cdev->kobj, name); 2208 2209 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode); 2210 if (ret != 0) 2211 break; 2212 } 2213 return (ret); 2214 } 2215 2216 void 2217 __unregister_chrdev(unsigned int major, unsigned int baseminor, 2218 unsigned int count, const char *name) 2219 { 2220 struct linux_cdev *cdevp; 2221 int i; 2222 2223 for (i = baseminor; i < baseminor + count; i++) { 2224 cdevp = linux_find_cdev(name, major, i); 2225 if (cdevp != NULL) 2226 cdev_del(cdevp); 2227 } 2228 } 2229 2230 void 2231 linux_dump_stack(void) 2232 { 2233 #ifdef STACK 2234 struct stack st; 2235 2236 stack_zero(&st); 2237 stack_save(&st); 2238 stack_print(&st); 2239 #endif 2240 } 2241 2242 #if defined(__i386__) || defined(__amd64__) 2243 bool linux_cpu_has_clflush; 2244 #endif 2245 2246 static void 2247 linux_compat_init(void *arg) 2248 { 2249 struct sysctl_oid *rootoid; 2250 int i; 2251 2252 #if defined(__i386__) || defined(__amd64__) 2253 linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH); 2254 #endif 2255 rw_init(&linux_vma_lock, "lkpi-vma-lock"); 2256 2257 rootoid = SYSCTL_ADD_ROOT_NODE(NULL, 2258 OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys"); 2259 kobject_init(&linux_class_root, &linux_class_ktype); 2260 kobject_set_name(&linux_class_root, "class"); 2261 linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid), 2262 OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class"); 2263 kobject_init(&linux_root_device.kobj, &linux_dev_ktype); 2264 kobject_set_name(&linux_root_device.kobj, "device"); 2265 linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL, 2266 SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL, 2267 "device"); 2268 linux_root_device.bsddev = root_bus; 2269 linux_class_misc.name = "misc"; 2270 class_register(&linux_class_misc); 2271 INIT_LIST_HEAD(&pci_drivers); 2272 INIT_LIST_HEAD(&pci_devices); 2273 spin_lock_init(&pci_lock); 2274 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF); 2275 for (i = 0; i < VMMAP_HASH_SIZE; i++) 2276 LIST_INIT(&vmmaphead[i]); 2277 } 2278 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL); 2279 2280 static void 2281 linux_compat_uninit(void *arg) 2282 { 2283 linux_kobject_kfree_name(&linux_class_root); 2284 linux_kobject_kfree_name(&linux_root_device.kobj); 2285 linux_kobject_kfree_name(&linux_class_misc.kobj); 2286 2287 mtx_destroy(&vmmaplock); 2288 spin_lock_destroy(&pci_lock); 2289 rw_destroy(&linux_vma_lock); 2290 } 2291 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL); 2292 2293 /* 2294 * NOTE: Linux frequently uses "unsigned long" for pointer to integer 2295 * conversion and vice versa, where in FreeBSD "uintptr_t" would be 2296 * used. Assert these types have the same size, else some parts of the 2297 * LinuxKPI may not work like expected: 2298 */ 2299 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t)); 2300