xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision a3a7b74e18a19c7946f9ac716666366ca00fbacc)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2017 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/sleepqueue.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/bus.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/filio.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_pager.h>
54 
55 #include <machine/stdarg.h>
56 
57 #if defined(__i386__) || defined(__amd64__)
58 #include <machine/md_var.h>
59 #endif
60 
61 #include <linux/kobject.h>
62 #include <linux/device.h>
63 #include <linux/slab.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/cdev.h>
67 #include <linux/file.h>
68 #include <linux/sysfs.h>
69 #include <linux/mm.h>
70 #include <linux/io.h>
71 #include <linux/vmalloc.h>
72 #include <linux/netdevice.h>
73 #include <linux/timer.h>
74 #include <linux/interrupt.h>
75 #include <linux/uaccess.h>
76 #include <linux/list.h>
77 #include <linux/kthread.h>
78 #include <linux/kernel.h>
79 #include <linux/compat.h>
80 #include <linux/poll.h>
81 #include <linux/smp.h>
82 
83 #if defined(__i386__) || defined(__amd64__)
84 #include <asm/smp.h>
85 #endif
86 
87 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
88 
89 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
90 
91 #include <linux/rbtree.h>
92 /* Undo Linux compat changes. */
93 #undef RB_ROOT
94 #undef file
95 #undef cdev
96 #define	RB_ROOT(head)	(head)->rbh_root
97 
98 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
99 
100 struct kobject linux_class_root;
101 struct device linux_root_device;
102 struct class linux_class_misc;
103 struct list_head pci_drivers;
104 struct list_head pci_devices;
105 spinlock_t pci_lock;
106 
107 unsigned long linux_timer_hz_mask;
108 
109 int
110 panic_cmp(struct rb_node *one, struct rb_node *two)
111 {
112 	panic("no cmp");
113 }
114 
115 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
116 
117 int
118 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
119 {
120 	va_list tmp_va;
121 	int len;
122 	char *old;
123 	char *name;
124 	char dummy;
125 
126 	old = kobj->name;
127 
128 	if (old && fmt == NULL)
129 		return (0);
130 
131 	/* compute length of string */
132 	va_copy(tmp_va, args);
133 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
134 	va_end(tmp_va);
135 
136 	/* account for zero termination */
137 	len++;
138 
139 	/* check for error */
140 	if (len < 1)
141 		return (-EINVAL);
142 
143 	/* allocate memory for string */
144 	name = kzalloc(len, GFP_KERNEL);
145 	if (name == NULL)
146 		return (-ENOMEM);
147 	vsnprintf(name, len, fmt, args);
148 	kobj->name = name;
149 
150 	/* free old string */
151 	kfree(old);
152 
153 	/* filter new string */
154 	for (; *name != '\0'; name++)
155 		if (*name == '/')
156 			*name = '!';
157 	return (0);
158 }
159 
160 int
161 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
162 {
163 	va_list args;
164 	int error;
165 
166 	va_start(args, fmt);
167 	error = kobject_set_name_vargs(kobj, fmt, args);
168 	va_end(args);
169 
170 	return (error);
171 }
172 
173 static int
174 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
175 {
176 	const struct kobj_type *t;
177 	int error;
178 
179 	kobj->parent = parent;
180 	error = sysfs_create_dir(kobj);
181 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
182 		struct attribute **attr;
183 		t = kobj->ktype;
184 
185 		for (attr = t->default_attrs; *attr != NULL; attr++) {
186 			error = sysfs_create_file(kobj, *attr);
187 			if (error)
188 				break;
189 		}
190 		if (error)
191 			sysfs_remove_dir(kobj);
192 
193 	}
194 	return (error);
195 }
196 
197 int
198 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
199 {
200 	va_list args;
201 	int error;
202 
203 	va_start(args, fmt);
204 	error = kobject_set_name_vargs(kobj, fmt, args);
205 	va_end(args);
206 	if (error)
207 		return (error);
208 
209 	return kobject_add_complete(kobj, parent);
210 }
211 
212 void
213 linux_kobject_release(struct kref *kref)
214 {
215 	struct kobject *kobj;
216 	char *name;
217 
218 	kobj = container_of(kref, struct kobject, kref);
219 	sysfs_remove_dir(kobj);
220 	name = kobj->name;
221 	if (kobj->ktype && kobj->ktype->release)
222 		kobj->ktype->release(kobj);
223 	kfree(name);
224 }
225 
226 static void
227 linux_kobject_kfree(struct kobject *kobj)
228 {
229 	kfree(kobj);
230 }
231 
232 static void
233 linux_kobject_kfree_name(struct kobject *kobj)
234 {
235 	if (kobj) {
236 		kfree(kobj->name);
237 	}
238 }
239 
240 const struct kobj_type linux_kfree_type = {
241 	.release = linux_kobject_kfree
242 };
243 
244 static void
245 linux_device_release(struct device *dev)
246 {
247 	pr_debug("linux_device_release: %s\n", dev_name(dev));
248 	kfree(dev);
249 }
250 
251 static ssize_t
252 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
253 {
254 	struct class_attribute *dattr;
255 	ssize_t error;
256 
257 	dattr = container_of(attr, struct class_attribute, attr);
258 	error = -EIO;
259 	if (dattr->show)
260 		error = dattr->show(container_of(kobj, struct class, kobj),
261 		    dattr, buf);
262 	return (error);
263 }
264 
265 static ssize_t
266 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
267     size_t count)
268 {
269 	struct class_attribute *dattr;
270 	ssize_t error;
271 
272 	dattr = container_of(attr, struct class_attribute, attr);
273 	error = -EIO;
274 	if (dattr->store)
275 		error = dattr->store(container_of(kobj, struct class, kobj),
276 		    dattr, buf, count);
277 	return (error);
278 }
279 
280 static void
281 linux_class_release(struct kobject *kobj)
282 {
283 	struct class *class;
284 
285 	class = container_of(kobj, struct class, kobj);
286 	if (class->class_release)
287 		class->class_release(class);
288 }
289 
290 static const struct sysfs_ops linux_class_sysfs = {
291 	.show  = linux_class_show,
292 	.store = linux_class_store,
293 };
294 
295 const struct kobj_type linux_class_ktype = {
296 	.release = linux_class_release,
297 	.sysfs_ops = &linux_class_sysfs
298 };
299 
300 static void
301 linux_dev_release(struct kobject *kobj)
302 {
303 	struct device *dev;
304 
305 	dev = container_of(kobj, struct device, kobj);
306 	/* This is the precedence defined by linux. */
307 	if (dev->release)
308 		dev->release(dev);
309 	else if (dev->class && dev->class->dev_release)
310 		dev->class->dev_release(dev);
311 }
312 
313 static ssize_t
314 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
315 {
316 	struct device_attribute *dattr;
317 	ssize_t error;
318 
319 	dattr = container_of(attr, struct device_attribute, attr);
320 	error = -EIO;
321 	if (dattr->show)
322 		error = dattr->show(container_of(kobj, struct device, kobj),
323 		    dattr, buf);
324 	return (error);
325 }
326 
327 static ssize_t
328 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
329     size_t count)
330 {
331 	struct device_attribute *dattr;
332 	ssize_t error;
333 
334 	dattr = container_of(attr, struct device_attribute, attr);
335 	error = -EIO;
336 	if (dattr->store)
337 		error = dattr->store(container_of(kobj, struct device, kobj),
338 		    dattr, buf, count);
339 	return (error);
340 }
341 
342 static const struct sysfs_ops linux_dev_sysfs = {
343 	.show  = linux_dev_show,
344 	.store = linux_dev_store,
345 };
346 
347 const struct kobj_type linux_dev_ktype = {
348 	.release = linux_dev_release,
349 	.sysfs_ops = &linux_dev_sysfs
350 };
351 
352 struct device *
353 device_create(struct class *class, struct device *parent, dev_t devt,
354     void *drvdata, const char *fmt, ...)
355 {
356 	struct device *dev;
357 	va_list args;
358 
359 	dev = kzalloc(sizeof(*dev), M_WAITOK);
360 	dev->parent = parent;
361 	dev->class = class;
362 	dev->devt = devt;
363 	dev->driver_data = drvdata;
364 	dev->release = linux_device_release;
365 	va_start(args, fmt);
366 	kobject_set_name_vargs(&dev->kobj, fmt, args);
367 	va_end(args);
368 	device_register(dev);
369 
370 	return (dev);
371 }
372 
373 int
374 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
375     struct kobject *parent, const char *fmt, ...)
376 {
377 	va_list args;
378 	int error;
379 
380 	kobject_init(kobj, ktype);
381 	kobj->ktype = ktype;
382 	kobj->parent = parent;
383 	kobj->name = NULL;
384 
385 	va_start(args, fmt);
386 	error = kobject_set_name_vargs(kobj, fmt, args);
387 	va_end(args);
388 	if (error)
389 		return (error);
390 	return kobject_add_complete(kobj, parent);
391 }
392 
393 static void
394 linux_file_dtor(void *cdp)
395 {
396 	struct linux_file *filp;
397 
398 	linux_set_current(curthread);
399 	filp = cdp;
400 	filp->f_op->release(filp->f_vnode, filp);
401 	vdrop(filp->f_vnode);
402 	kfree(filp);
403 }
404 
405 static void
406 linux_kq_lock(void *arg)
407 {
408 	spinlock_t *s = arg;
409 
410 	spin_lock(s);
411 }
412 static void
413 linux_kq_unlock(void *arg)
414 {
415 	spinlock_t *s = arg;
416 
417 	spin_unlock(s);
418 }
419 
420 static void
421 linux_kq_lock_owned(void *arg)
422 {
423 #ifdef INVARIANTS
424 	spinlock_t *s = arg;
425 
426 	mtx_assert(&s->m, MA_OWNED);
427 #endif
428 }
429 
430 static void
431 linux_kq_lock_unowned(void *arg)
432 {
433 #ifdef INVARIANTS
434 	spinlock_t *s = arg;
435 
436 	mtx_assert(&s->m, MA_NOTOWNED);
437 #endif
438 }
439 
440 static void
441 linux_dev_kqfilter_poll(struct linux_file *, int);
442 
443 struct linux_file *
444 linux_file_alloc(void)
445 {
446 	struct linux_file *filp;
447 
448 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
449 
450 	/* set initial refcount */
451 	filp->f_count = 1;
452 
453 	/* setup fields needed by kqueue support */
454 	spin_lock_init(&filp->f_kqlock);
455 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
456 	    linux_kq_lock, linux_kq_unlock,
457 	    linux_kq_lock_owned, linux_kq_lock_unowned);
458 
459 	return (filp);
460 }
461 
462 void
463 linux_file_free(struct linux_file *filp)
464 {
465 	if (filp->_file == NULL) {
466 		if (filp->f_shmem != NULL)
467 			vm_object_deallocate(filp->f_shmem);
468 		kfree(filp);
469 	} else {
470 		/*
471 		 * The close method of the character device or file
472 		 * will free the linux_file structure:
473 		 */
474 		_fdrop(filp->_file, curthread);
475 	}
476 }
477 
478 static int
479 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
480     vm_page_t *mres)
481 {
482 	struct vm_area_struct *vmap;
483 
484 	vmap = linux_cdev_handle_find(vm_obj->handle);
485 
486 	MPASS(vmap != NULL);
487 	MPASS(vmap->vm_private_data == vm_obj->handle);
488 
489 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
490 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
491 		vm_page_t page;
492 
493 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
494 			/*
495 			 * If the passed in result page is a fake
496 			 * page, update it with the new physical
497 			 * address.
498 			 */
499 			page = *mres;
500 			vm_page_updatefake(page, paddr, vm_obj->memattr);
501 		} else {
502 			/*
503 			 * Replace the passed in "mres" page with our
504 			 * own fake page and free up the all of the
505 			 * original pages.
506 			 */
507 			VM_OBJECT_WUNLOCK(vm_obj);
508 			page = vm_page_getfake(paddr, vm_obj->memattr);
509 			VM_OBJECT_WLOCK(vm_obj);
510 
511 			vm_page_replace_checked(page, vm_obj,
512 			    (*mres)->pindex, *mres);
513 
514 			vm_page_lock(*mres);
515 			vm_page_free(*mres);
516 			vm_page_unlock(*mres);
517 			*mres = page;
518 		}
519 		page->valid = VM_PAGE_BITS_ALL;
520 		return (VM_PAGER_OK);
521 	}
522 	return (VM_PAGER_FAIL);
523 }
524 
525 static int
526 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
527     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
528 {
529 	struct vm_area_struct *vmap;
530 	int err;
531 
532 	linux_set_current(curthread);
533 
534 	/* get VM area structure */
535 	vmap = linux_cdev_handle_find(vm_obj->handle);
536 	MPASS(vmap != NULL);
537 	MPASS(vmap->vm_private_data == vm_obj->handle);
538 
539 	VM_OBJECT_WUNLOCK(vm_obj);
540 
541 	down_write(&vmap->vm_mm->mmap_sem);
542 	if (unlikely(vmap->vm_ops == NULL)) {
543 		err = VM_FAULT_SIGBUS;
544 	} else {
545 		struct vm_fault vmf;
546 
547 		/* fill out VM fault structure */
548 		vmf.virtual_address = (void *)((uintptr_t)pidx << PAGE_SHIFT);
549 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
550 		vmf.pgoff = 0;
551 		vmf.page = NULL;
552 
553 		vmap->vm_pfn_count = 0;
554 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
555 		vmap->vm_obj = vm_obj;
556 
557 		err = vmap->vm_ops->fault(vmap, &vmf);
558 
559 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
560 			kern_yield(PRI_USER);
561 			err = vmap->vm_ops->fault(vmap, &vmf);
562 		}
563 	}
564 
565 	/* translate return code */
566 	switch (err) {
567 	case VM_FAULT_OOM:
568 		err = VM_PAGER_AGAIN;
569 		break;
570 	case VM_FAULT_SIGBUS:
571 		err = VM_PAGER_BAD;
572 		break;
573 	case VM_FAULT_NOPAGE:
574 		/*
575 		 * By contract the fault handler will return having
576 		 * busied all the pages itself. If pidx is already
577 		 * found in the object, it will simply xbusy the first
578 		 * page and return with vm_pfn_count set to 1.
579 		 */
580 		*first = vmap->vm_pfn_first;
581 		*last = *first + vmap->vm_pfn_count - 1;
582 		err = VM_PAGER_OK;
583 		break;
584 	default:
585 		err = VM_PAGER_ERROR;
586 		break;
587 	}
588 	up_write(&vmap->vm_mm->mmap_sem);
589 	VM_OBJECT_WLOCK(vm_obj);
590 	return (err);
591 }
592 
593 static struct rwlock linux_vma_lock;
594 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
595     TAILQ_HEAD_INITIALIZER(linux_vma_head);
596 
597 static void
598 linux_cdev_handle_free(struct vm_area_struct *vmap)
599 {
600 	/* Drop reference on vm_file */
601 	if (vmap->vm_file != NULL)
602 		fput(vmap->vm_file);
603 
604 	/* Drop reference on mm_struct */
605 	mmput(vmap->vm_mm);
606 
607 	kfree(vmap);
608 }
609 
610 static struct vm_area_struct *
611 linux_cdev_handle_insert(void *handle, struct vm_area_struct *vmap)
612 {
613 	struct vm_area_struct *ptr;
614 
615 	rw_wlock(&linux_vma_lock);
616 	TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
617 		if (ptr->vm_private_data == handle) {
618 			rw_wunlock(&linux_vma_lock);
619 			linux_cdev_handle_free(vmap);
620 			return (NULL);
621 		}
622 	}
623 	TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
624 	rw_wunlock(&linux_vma_lock);
625 	return (vmap);
626 }
627 
628 static void
629 linux_cdev_handle_remove(struct vm_area_struct *vmap)
630 {
631 	rw_wlock(&linux_vma_lock);
632 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
633 	rw_wunlock(&linux_vma_lock);
634 }
635 
636 static struct vm_area_struct *
637 linux_cdev_handle_find(void *handle)
638 {
639 	struct vm_area_struct *vmap;
640 
641 	rw_rlock(&linux_vma_lock);
642 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
643 		if (vmap->vm_private_data == handle)
644 			break;
645 	}
646 	rw_runlock(&linux_vma_lock);
647 	return (vmap);
648 }
649 
650 static int
651 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
652 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
653 {
654 
655 	MPASS(linux_cdev_handle_find(handle) != NULL);
656 	*color = 0;
657 	return (0);
658 }
659 
660 static void
661 linux_cdev_pager_dtor(void *handle)
662 {
663 	const struct vm_operations_struct *vm_ops;
664 	struct vm_area_struct *vmap;
665 
666 	vmap = linux_cdev_handle_find(handle);
667 	MPASS(vmap != NULL);
668 
669 	/*
670 	 * Remove handle before calling close operation to prevent
671 	 * other threads from reusing the handle pointer.
672 	 */
673 	linux_cdev_handle_remove(vmap);
674 
675 	down_write(&vmap->vm_mm->mmap_sem);
676 	vm_ops = vmap->vm_ops;
677 	if (likely(vm_ops != NULL))
678 		vm_ops->close(vmap);
679 	up_write(&vmap->vm_mm->mmap_sem);
680 
681 	linux_cdev_handle_free(vmap);
682 }
683 
684 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
685   {
686 	/* OBJT_MGTDEVICE */
687 	.cdev_pg_populate	= linux_cdev_pager_populate,
688 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
689 	.cdev_pg_dtor	= linux_cdev_pager_dtor
690   },
691   {
692 	/* OBJT_DEVICE */
693 	.cdev_pg_fault	= linux_cdev_pager_fault,
694 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
695 	.cdev_pg_dtor	= linux_cdev_pager_dtor
696   },
697 };
698 
699 static int
700 linux_dev_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
701 {
702 	struct linux_cdev *ldev;
703 	struct linux_file *filp;
704 	struct file *file;
705 	int error;
706 
707 	file = td->td_fpop;
708 	ldev = dev->si_drv1;
709 	if (ldev == NULL)
710 		return (ENODEV);
711 
712 	filp = linux_file_alloc();
713 	filp->f_dentry = &filp->f_dentry_store;
714 	filp->f_op = ldev->ops;
715 	filp->f_flags = file->f_flag;
716 	vhold(file->f_vnode);
717 	filp->f_vnode = file->f_vnode;
718 	filp->_file = file;
719 
720 	linux_set_current(td);
721 
722 	if (filp->f_op->open) {
723 		error = -filp->f_op->open(file->f_vnode, filp);
724 		if (error) {
725 			vdrop(filp->f_vnode);
726 			kfree(filp);
727 			goto done;
728 		}
729 	}
730 	error = devfs_set_cdevpriv(filp, linux_file_dtor);
731 	if (error) {
732 		filp->f_op->release(file->f_vnode, filp);
733 		vdrop(filp->f_vnode);
734 		kfree(filp);
735 	}
736 done:
737 	return (error);
738 }
739 
740 static int
741 linux_dev_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
742 {
743 	struct linux_file *filp;
744 	struct file *file;
745 	int error;
746 
747 	file = td->td_fpop;
748 	if (dev->si_drv1 == NULL)
749 		return (0);
750 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
751 		return (error);
752 	filp->f_flags = file->f_flag;
753 	devfs_clear_cdevpriv();
754 
755 	return (0);
756 }
757 
758 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
759 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
760 
761 static inline int
762 linux_remap_address(void **uaddr, size_t len)
763 {
764 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
765 
766 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
767 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
768 		struct task_struct *pts = current;
769 		if (pts == NULL) {
770 			*uaddr = NULL;
771 			return (1);
772 		}
773 
774 		/* compute data offset */
775 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
776 
777 		/* check that length is within bounds */
778 		if ((len > IOCPARM_MAX) ||
779 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
780 			*uaddr = NULL;
781 			return (1);
782 		}
783 
784 		/* re-add kernel buffer address */
785 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
786 
787 		/* update address location */
788 		*uaddr = (void *)uaddr_val;
789 		return (1);
790 	}
791 	return (0);
792 }
793 
794 int
795 linux_copyin(const void *uaddr, void *kaddr, size_t len)
796 {
797 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
798 		if (uaddr == NULL)
799 			return (-EFAULT);
800 		memcpy(kaddr, uaddr, len);
801 		return (0);
802 	}
803 	return (-copyin(uaddr, kaddr, len));
804 }
805 
806 int
807 linux_copyout(const void *kaddr, void *uaddr, size_t len)
808 {
809 	if (linux_remap_address(&uaddr, len)) {
810 		if (uaddr == NULL)
811 			return (-EFAULT);
812 		memcpy(uaddr, kaddr, len);
813 		return (0);
814 	}
815 	return (-copyout(kaddr, uaddr, len));
816 }
817 
818 size_t
819 linux_clear_user(void *_uaddr, size_t _len)
820 {
821 	uint8_t *uaddr = _uaddr;
822 	size_t len = _len;
823 
824 	/* make sure uaddr is aligned before going into the fast loop */
825 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
826 		if (subyte(uaddr, 0))
827 			return (_len);
828 		uaddr++;
829 		len--;
830 	}
831 
832 	/* zero 8 bytes at a time */
833 	while (len > 7) {
834 #ifdef __LP64__
835 		if (suword64(uaddr, 0))
836 			return (_len);
837 #else
838 		if (suword32(uaddr, 0))
839 			return (_len);
840 		if (suword32(uaddr + 4, 0))
841 			return (_len);
842 #endif
843 		uaddr += 8;
844 		len -= 8;
845 	}
846 
847 	/* zero fill end, if any */
848 	while (len > 0) {
849 		if (subyte(uaddr, 0))
850 			return (_len);
851 		uaddr++;
852 		len--;
853 	}
854 	return (0);
855 }
856 
857 int
858 linux_access_ok(int rw, const void *uaddr, size_t len)
859 {
860 	uintptr_t saddr;
861 	uintptr_t eaddr;
862 
863 	/* get start and end address */
864 	saddr = (uintptr_t)uaddr;
865 	eaddr = (uintptr_t)uaddr + len;
866 
867 	/* verify addresses are valid for userspace */
868 	return ((saddr == eaddr) ||
869 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
870 }
871 
872 static int
873 linux_dev_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
874     struct thread *td)
875 {
876 	struct linux_file *filp;
877 	struct file *file;
878 	unsigned size;
879 	int error;
880 
881 	file = td->td_fpop;
882 	if (dev->si_drv1 == NULL)
883 		return (ENXIO);
884 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
885 		return (error);
886 	filp->f_flags = file->f_flag;
887 
888 	/* the LinuxKPI supports blocking and non-blocking I/O */
889 	if (cmd == FIONBIO || cmd == FIOASYNC)
890 		return (0);
891 
892 	linux_set_current(td);
893 	size = IOCPARM_LEN(cmd);
894 	/* refer to logic in sys_ioctl() */
895 	if (size > 0) {
896 		/*
897 		 * Setup hint for linux_copyin() and linux_copyout().
898 		 *
899 		 * Background: Linux code expects a user-space address
900 		 * while FreeBSD supplies a kernel-space address.
901 		 */
902 		current->bsd_ioctl_data = data;
903 		current->bsd_ioctl_len = size;
904 		data = (void *)LINUX_IOCTL_MIN_PTR;
905 	} else {
906 		/* fetch user-space pointer */
907 		data = *(void **)data;
908 	}
909 	if (filp->f_op->unlocked_ioctl)
910 		error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data);
911 	else
912 		error = ENOTTY;
913 	if (size > 0) {
914 		current->bsd_ioctl_data = NULL;
915 		current->bsd_ioctl_len = 0;
916 	}
917 
918 	if (error == EWOULDBLOCK) {
919 		/* update kqfilter status, if any */
920 		linux_dev_kqfilter_poll(filp,
921 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
922 	} else if (error == ERESTARTSYS)
923 		error = ERESTART;
924 	return (error);
925 }
926 
927 static int
928 linux_dev_read(struct cdev *dev, struct uio *uio, int ioflag)
929 {
930 	struct linux_file *filp;
931 	struct thread *td;
932 	struct file *file;
933 	ssize_t bytes;
934 	int error;
935 
936 	td = curthread;
937 	file = td->td_fpop;
938 	if (dev->si_drv1 == NULL)
939 		return (ENXIO);
940 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
941 		return (error);
942 	filp->f_flags = file->f_flag;
943 	/* XXX no support for I/O vectors currently */
944 	if (uio->uio_iovcnt != 1)
945 		return (EOPNOTSUPP);
946 	linux_set_current(td);
947 	if (filp->f_op->read) {
948 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
949 		    uio->uio_iov->iov_len, &uio->uio_offset);
950 		if (bytes >= 0) {
951 			uio->uio_iov->iov_base =
952 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
953 			uio->uio_iov->iov_len -= bytes;
954 			uio->uio_resid -= bytes;
955 		} else {
956 			error = -bytes;
957 			if (error == ERESTARTSYS)
958 				error = ERESTART;
959 		}
960 	} else
961 		error = ENXIO;
962 
963 	/* update kqfilter status, if any */
964 	linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
965 
966 	return (error);
967 }
968 
969 static int
970 linux_dev_write(struct cdev *dev, struct uio *uio, int ioflag)
971 {
972 	struct linux_file *filp;
973 	struct thread *td;
974 	struct file *file;
975 	ssize_t bytes;
976 	int error;
977 
978 	td = curthread;
979 	file = td->td_fpop;
980 	if (dev->si_drv1 == NULL)
981 		return (ENXIO);
982 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
983 		return (error);
984 	filp->f_flags = file->f_flag;
985 	/* XXX no support for I/O vectors currently */
986 	if (uio->uio_iovcnt != 1)
987 		return (EOPNOTSUPP);
988 	linux_set_current(td);
989 	if (filp->f_op->write) {
990 		bytes = filp->f_op->write(filp, uio->uio_iov->iov_base,
991 		    uio->uio_iov->iov_len, &uio->uio_offset);
992 		if (bytes >= 0) {
993 			uio->uio_iov->iov_base =
994 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
995 			uio->uio_iov->iov_len -= bytes;
996 			uio->uio_resid -= bytes;
997 		} else {
998 			error = -bytes;
999 			if (error == ERESTARTSYS)
1000 				error = ERESTART;
1001 		}
1002 	} else
1003 		error = ENXIO;
1004 
1005 	/* update kqfilter status, if any */
1006 	linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1007 
1008 	return (error);
1009 }
1010 
1011 static int
1012 linux_dev_poll(struct cdev *dev, int events, struct thread *td)
1013 {
1014 	struct linux_file *filp;
1015 	struct file *file;
1016 	int revents;
1017 
1018 	if (dev->si_drv1 == NULL)
1019 		goto error;
1020 	if (devfs_get_cdevpriv((void **)&filp) != 0)
1021 		goto error;
1022 
1023 	file = td->td_fpop;
1024 	filp->f_flags = file->f_flag;
1025 	linux_set_current(td);
1026 	if (filp->f_op->poll != NULL) {
1027 		selrecord(td, &filp->f_selinfo);
1028 		revents = filp->f_op->poll(filp, NULL) & events;
1029 	} else
1030 		revents = 0;
1031 
1032 	return (revents);
1033 error:
1034 	return (events & (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
1035 }
1036 
1037 void
1038 linux_poll_wakeup(struct linux_file *filp)
1039 {
1040 	/* this function should be NULL-safe */
1041 	if (filp == NULL)
1042 		return;
1043 
1044 	selwakeup(&filp->f_selinfo);
1045 
1046 	spin_lock(&filp->f_kqlock);
1047 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1048 	    LINUX_KQ_FLAG_NEED_WRITE;
1049 
1050 	/* make sure the "knote" gets woken up */
1051 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1052 	spin_unlock(&filp->f_kqlock);
1053 }
1054 
1055 static void
1056 linux_dev_kqfilter_detach(struct knote *kn)
1057 {
1058 	struct linux_file *filp = kn->kn_hook;
1059 
1060 	spin_lock(&filp->f_kqlock);
1061 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1062 	spin_unlock(&filp->f_kqlock);
1063 }
1064 
1065 static int
1066 linux_dev_kqfilter_read_event(struct knote *kn, long hint)
1067 {
1068 	struct linux_file *filp = kn->kn_hook;
1069 
1070 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1071 
1072 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1073 }
1074 
1075 static int
1076 linux_dev_kqfilter_write_event(struct knote *kn, long hint)
1077 {
1078 	struct linux_file *filp = kn->kn_hook;
1079 
1080 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1081 
1082 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1083 }
1084 
1085 static struct filterops linux_dev_kqfiltops_read = {
1086 	.f_isfd = 1,
1087 	.f_detach = linux_dev_kqfilter_detach,
1088 	.f_event = linux_dev_kqfilter_read_event,
1089 };
1090 
1091 static struct filterops linux_dev_kqfiltops_write = {
1092 	.f_isfd = 1,
1093 	.f_detach = linux_dev_kqfilter_detach,
1094 	.f_event = linux_dev_kqfilter_write_event,
1095 };
1096 
1097 static void
1098 linux_dev_kqfilter_poll(struct linux_file *filp, int kqflags)
1099 {
1100 	int temp;
1101 
1102 	if (filp->f_kqflags & kqflags) {
1103 		/* get the latest polling state */
1104 		temp = filp->f_op->poll(filp, NULL);
1105 
1106 		spin_lock(&filp->f_kqlock);
1107 		/* clear kqflags */
1108 		filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1109 		    LINUX_KQ_FLAG_NEED_WRITE);
1110 		/* update kqflags */
1111 		if (temp & (POLLIN | POLLOUT)) {
1112 			if (temp & POLLIN)
1113 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1114 			if (temp & POLLOUT)
1115 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1116 
1117 			/* make sure the "knote" gets woken up */
1118 			KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1119 		}
1120 		spin_unlock(&filp->f_kqlock);
1121 	}
1122 }
1123 
1124 static int
1125 linux_dev_kqfilter(struct cdev *dev, struct knote *kn)
1126 {
1127 	struct linux_file *filp;
1128 	struct file *file;
1129 	struct thread *td;
1130 	int error;
1131 
1132 	td = curthread;
1133 	file = td->td_fpop;
1134 	if (dev->si_drv1 == NULL)
1135 		return (ENXIO);
1136 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
1137 		return (error);
1138 	filp->f_flags = file->f_flag;
1139 	if (filp->f_op->poll == NULL)
1140 		return (EINVAL);
1141 
1142 	spin_lock(&filp->f_kqlock);
1143 	switch (kn->kn_filter) {
1144 	case EVFILT_READ:
1145 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1146 		kn->kn_fop = &linux_dev_kqfiltops_read;
1147 		kn->kn_hook = filp;
1148 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1149 		break;
1150 	case EVFILT_WRITE:
1151 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1152 		kn->kn_fop = &linux_dev_kqfiltops_write;
1153 		kn->kn_hook = filp;
1154 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1155 		break;
1156 	default:
1157 		error = EINVAL;
1158 		break;
1159 	}
1160 	spin_unlock(&filp->f_kqlock);
1161 
1162 	if (error == 0) {
1163 		linux_set_current(td);
1164 
1165 		/* update kqfilter status, if any */
1166 		linux_dev_kqfilter_poll(filp,
1167 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1168 	}
1169 	return (error);
1170 }
1171 
1172 static int
1173 linux_dev_mmap_single(struct cdev *dev, vm_ooffset_t *offset,
1174     vm_size_t size, struct vm_object **object, int nprot)
1175 {
1176 	struct vm_area_struct *vmap;
1177 	struct mm_struct *mm;
1178 	struct linux_file *filp;
1179 	struct thread *td;
1180 	struct file *file;
1181 	vm_memattr_t attr;
1182 	int error;
1183 
1184 	td = curthread;
1185 	file = td->td_fpop;
1186 	if (dev->si_drv1 == NULL)
1187 		return (ENODEV);
1188 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
1189 		return (error);
1190 	filp->f_flags = file->f_flag;
1191 
1192 	if (filp->f_op->mmap == NULL)
1193 		return (ENODEV);
1194 
1195 	linux_set_current(td);
1196 
1197 	/*
1198 	 * The same VM object might be shared by multiple processes
1199 	 * and the mm_struct is usually freed when a process exits.
1200 	 *
1201 	 * The atomic reference below makes sure the mm_struct is
1202 	 * available as long as the vmap is in the linux_vma_head.
1203 	 */
1204 	mm = current->mm;
1205 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1206 		return (EINVAL);
1207 
1208 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1209 	vmap->vm_start = 0;
1210 	vmap->vm_end = size;
1211 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1212 	vmap->vm_pfn = 0;
1213 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1214 	vmap->vm_ops = NULL;
1215 	vmap->vm_file = get_file(filp);
1216 	vmap->vm_mm = mm;
1217 
1218 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1219 		error = EINTR;
1220 	} else {
1221 		error = -filp->f_op->mmap(filp, vmap);
1222 		up_write(&vmap->vm_mm->mmap_sem);
1223 	}
1224 
1225 	if (error != 0) {
1226 		linux_cdev_handle_free(vmap);
1227 		return (error);
1228 	}
1229 
1230 	attr = pgprot2cachemode(vmap->vm_page_prot);
1231 
1232 	if (vmap->vm_ops != NULL) {
1233 		void *vm_private_data;
1234 
1235 		if (vmap->vm_ops->open == NULL ||
1236 		    vmap->vm_ops->close == NULL ||
1237 		    vmap->vm_private_data == NULL) {
1238 			linux_cdev_handle_free(vmap);
1239 			return (EINVAL);
1240 		}
1241 
1242 		vm_private_data = vmap->vm_private_data;
1243 
1244 		vmap = linux_cdev_handle_insert(vm_private_data, vmap);
1245 
1246 		if (vmap->vm_ops->fault == NULL) {
1247 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1248 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1249 			    curthread->td_ucred);
1250 		} else {
1251 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1252 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1253 			    curthread->td_ucred);
1254 		}
1255 
1256 		if (*object == NULL) {
1257 			linux_cdev_handle_remove(vmap);
1258 			linux_cdev_handle_free(vmap);
1259 			return (EINVAL);
1260 		}
1261 	} else {
1262 		struct sglist *sg;
1263 
1264 		sg = sglist_alloc(1, M_WAITOK);
1265 		sglist_append_phys(sg,
1266 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1267 
1268 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1269 		    nprot, 0, curthread->td_ucred);
1270 
1271 		linux_cdev_handle_free(vmap);
1272 
1273 		if (*object == NULL) {
1274 			sglist_free(sg);
1275 			return (EINVAL);
1276 		}
1277 	}
1278 
1279 	if (attr != VM_MEMATTR_DEFAULT) {
1280 		VM_OBJECT_WLOCK(*object);
1281 		vm_object_set_memattr(*object, attr);
1282 		VM_OBJECT_WUNLOCK(*object);
1283 	}
1284 	*offset = 0;
1285 	return (0);
1286 }
1287 
1288 struct cdevsw linuxcdevsw = {
1289 	.d_version = D_VERSION,
1290 	.d_flags = D_TRACKCLOSE,
1291 	.d_open = linux_dev_open,
1292 	.d_close = linux_dev_close,
1293 	.d_read = linux_dev_read,
1294 	.d_write = linux_dev_write,
1295 	.d_ioctl = linux_dev_ioctl,
1296 	.d_mmap_single = linux_dev_mmap_single,
1297 	.d_poll = linux_dev_poll,
1298 	.d_kqfilter = linux_dev_kqfilter,
1299 	.d_name = "lkpidev",
1300 };
1301 
1302 static int
1303 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1304     int flags, struct thread *td)
1305 {
1306 	struct linux_file *filp;
1307 	ssize_t bytes;
1308 	int error;
1309 
1310 	error = 0;
1311 	filp = (struct linux_file *)file->f_data;
1312 	filp->f_flags = file->f_flag;
1313 	/* XXX no support for I/O vectors currently */
1314 	if (uio->uio_iovcnt != 1)
1315 		return (EOPNOTSUPP);
1316 	linux_set_current(td);
1317 	if (filp->f_op->read) {
1318 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
1319 		    uio->uio_iov->iov_len, &uio->uio_offset);
1320 		if (bytes >= 0) {
1321 			uio->uio_iov->iov_base =
1322 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1323 			uio->uio_iov->iov_len -= bytes;
1324 			uio->uio_resid -= bytes;
1325 		} else
1326 			error = -bytes;
1327 	} else
1328 		error = ENXIO;
1329 
1330 	return (error);
1331 }
1332 
1333 static int
1334 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1335     struct thread *td)
1336 {
1337 	struct linux_file *filp;
1338 	int revents;
1339 
1340 	filp = (struct linux_file *)file->f_data;
1341 	filp->f_flags = file->f_flag;
1342 	linux_set_current(td);
1343 	if (filp->f_op->poll != NULL) {
1344 		selrecord(td, &filp->f_selinfo);
1345 		revents = filp->f_op->poll(filp, NULL) & events;
1346 	} else
1347 		revents = 0;
1348 
1349 	return (revents);
1350 }
1351 
1352 static int
1353 linux_file_close(struct file *file, struct thread *td)
1354 {
1355 	struct linux_file *filp;
1356 	int error;
1357 
1358 	filp = (struct linux_file *)file->f_data;
1359 	filp->f_flags = file->f_flag;
1360 	linux_set_current(td);
1361 	error = -filp->f_op->release(NULL, filp);
1362 	funsetown(&filp->f_sigio);
1363 	kfree(filp);
1364 
1365 	return (error);
1366 }
1367 
1368 static int
1369 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1370     struct thread *td)
1371 {
1372 	struct linux_file *filp;
1373 	int error;
1374 
1375 	filp = (struct linux_file *)fp->f_data;
1376 	filp->f_flags = fp->f_flag;
1377 	error = 0;
1378 
1379 	linux_set_current(td);
1380 	switch (cmd) {
1381 	case FIONBIO:
1382 		break;
1383 	case FIOASYNC:
1384 		if (filp->f_op->fasync == NULL)
1385 			break;
1386 		error = filp->f_op->fasync(0, filp, fp->f_flag & FASYNC);
1387 		break;
1388 	case FIOSETOWN:
1389 		error = fsetown(*(int *)data, &filp->f_sigio);
1390 		if (error == 0)
1391 			error = filp->f_op->fasync(0, filp,
1392 			    fp->f_flag & FASYNC);
1393 		break;
1394 	case FIOGETOWN:
1395 		*(int *)data = fgetown(&filp->f_sigio);
1396 		break;
1397 	default:
1398 		error = ENOTTY;
1399 		break;
1400 	}
1401 	return (error);
1402 }
1403 
1404 static int
1405 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1406     struct thread *td)
1407 {
1408 
1409 	return (EOPNOTSUPP);
1410 }
1411 
1412 static int
1413 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1414     struct filedesc *fdp)
1415 {
1416 
1417 	return (0);
1418 }
1419 
1420 unsigned int
1421 linux_iminor(struct inode *inode)
1422 {
1423 	struct linux_cdev *ldev;
1424 
1425 	if (inode == NULL || inode->v_rdev == NULL ||
1426 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1427 		return (-1U);
1428 	ldev = inode->v_rdev->si_drv1;
1429 	if (ldev == NULL)
1430 		return (-1U);
1431 
1432 	return (minor(ldev->dev));
1433 }
1434 
1435 struct fileops linuxfileops = {
1436 	.fo_read = linux_file_read,
1437 	.fo_write = invfo_rdwr,
1438 	.fo_truncate = invfo_truncate,
1439 	.fo_kqfilter = invfo_kqfilter,
1440 	.fo_stat = linux_file_stat,
1441 	.fo_fill_kinfo = linux_file_fill_kinfo,
1442 	.fo_poll = linux_file_poll,
1443 	.fo_close = linux_file_close,
1444 	.fo_ioctl = linux_file_ioctl,
1445 	.fo_chmod = invfo_chmod,
1446 	.fo_chown = invfo_chown,
1447 	.fo_sendfile = invfo_sendfile,
1448 };
1449 
1450 /*
1451  * Hash of vmmap addresses.  This is infrequently accessed and does not
1452  * need to be particularly large.  This is done because we must store the
1453  * caller's idea of the map size to properly unmap.
1454  */
1455 struct vmmap {
1456 	LIST_ENTRY(vmmap)	vm_next;
1457 	void 			*vm_addr;
1458 	unsigned long		vm_size;
1459 };
1460 
1461 struct vmmaphd {
1462 	struct vmmap *lh_first;
1463 };
1464 #define	VMMAP_HASH_SIZE	64
1465 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1466 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1467 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1468 static struct mtx vmmaplock;
1469 
1470 static void
1471 vmmap_add(void *addr, unsigned long size)
1472 {
1473 	struct vmmap *vmmap;
1474 
1475 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1476 	mtx_lock(&vmmaplock);
1477 	vmmap->vm_size = size;
1478 	vmmap->vm_addr = addr;
1479 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1480 	mtx_unlock(&vmmaplock);
1481 }
1482 
1483 static struct vmmap *
1484 vmmap_remove(void *addr)
1485 {
1486 	struct vmmap *vmmap;
1487 
1488 	mtx_lock(&vmmaplock);
1489 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1490 		if (vmmap->vm_addr == addr)
1491 			break;
1492 	if (vmmap)
1493 		LIST_REMOVE(vmmap, vm_next);
1494 	mtx_unlock(&vmmaplock);
1495 
1496 	return (vmmap);
1497 }
1498 
1499 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1500 void *
1501 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1502 {
1503 	void *addr;
1504 
1505 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1506 	if (addr == NULL)
1507 		return (NULL);
1508 	vmmap_add(addr, size);
1509 
1510 	return (addr);
1511 }
1512 #endif
1513 
1514 void
1515 iounmap(void *addr)
1516 {
1517 	struct vmmap *vmmap;
1518 
1519 	vmmap = vmmap_remove(addr);
1520 	if (vmmap == NULL)
1521 		return;
1522 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1523 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1524 #endif
1525 	kfree(vmmap);
1526 }
1527 
1528 
1529 void *
1530 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1531 {
1532 	vm_offset_t off;
1533 	size_t size;
1534 
1535 	size = count * PAGE_SIZE;
1536 	off = kva_alloc(size);
1537 	if (off == 0)
1538 		return (NULL);
1539 	vmmap_add((void *)off, size);
1540 	pmap_qenter(off, pages, count);
1541 
1542 	return ((void *)off);
1543 }
1544 
1545 void
1546 vunmap(void *addr)
1547 {
1548 	struct vmmap *vmmap;
1549 
1550 	vmmap = vmmap_remove(addr);
1551 	if (vmmap == NULL)
1552 		return;
1553 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1554 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1555 	kfree(vmmap);
1556 }
1557 
1558 char *
1559 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1560 {
1561 	unsigned int len;
1562 	char *p;
1563 	va_list aq;
1564 
1565 	va_copy(aq, ap);
1566 	len = vsnprintf(NULL, 0, fmt, aq);
1567 	va_end(aq);
1568 
1569 	p = kmalloc(len + 1, gfp);
1570 	if (p != NULL)
1571 		vsnprintf(p, len + 1, fmt, ap);
1572 
1573 	return (p);
1574 }
1575 
1576 char *
1577 kasprintf(gfp_t gfp, const char *fmt, ...)
1578 {
1579 	va_list ap;
1580 	char *p;
1581 
1582 	va_start(ap, fmt);
1583 	p = kvasprintf(gfp, fmt, ap);
1584 	va_end(ap);
1585 
1586 	return (p);
1587 }
1588 
1589 static void
1590 linux_timer_callback_wrapper(void *context)
1591 {
1592 	struct timer_list *timer;
1593 
1594 	linux_set_current(curthread);
1595 
1596 	timer = context;
1597 	timer->function(timer->data);
1598 }
1599 
1600 void
1601 mod_timer(struct timer_list *timer, int expires)
1602 {
1603 
1604 	timer->expires = expires;
1605 	callout_reset(&timer->timer_callout,
1606 	    linux_timer_jiffies_until(expires),
1607 	    &linux_timer_callback_wrapper, timer);
1608 }
1609 
1610 void
1611 add_timer(struct timer_list *timer)
1612 {
1613 
1614 	callout_reset(&timer->timer_callout,
1615 	    linux_timer_jiffies_until(timer->expires),
1616 	    &linux_timer_callback_wrapper, timer);
1617 }
1618 
1619 void
1620 add_timer_on(struct timer_list *timer, int cpu)
1621 {
1622 
1623 	callout_reset_on(&timer->timer_callout,
1624 	    linux_timer_jiffies_until(timer->expires),
1625 	    &linux_timer_callback_wrapper, timer, cpu);
1626 }
1627 
1628 static void
1629 linux_timer_init(void *arg)
1630 {
1631 
1632 	/*
1633 	 * Compute an internal HZ value which can divide 2**32 to
1634 	 * avoid timer rounding problems when the tick value wraps
1635 	 * around 2**32:
1636 	 */
1637 	linux_timer_hz_mask = 1;
1638 	while (linux_timer_hz_mask < (unsigned long)hz)
1639 		linux_timer_hz_mask *= 2;
1640 	linux_timer_hz_mask--;
1641 }
1642 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1643 
1644 void
1645 linux_complete_common(struct completion *c, int all)
1646 {
1647 	int wakeup_swapper;
1648 
1649 	sleepq_lock(c);
1650 	c->done++;
1651 	if (all)
1652 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1653 	else
1654 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1655 	sleepq_release(c);
1656 	if (wakeup_swapper)
1657 		kick_proc0();
1658 }
1659 
1660 /*
1661  * Indefinite wait for done != 0 with or without signals.
1662  */
1663 int
1664 linux_wait_for_common(struct completion *c, int flags)
1665 {
1666 	int error;
1667 
1668 	if (SCHEDULER_STOPPED())
1669 		return (0);
1670 
1671 	DROP_GIANT();
1672 
1673 	if (flags != 0)
1674 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1675 	else
1676 		flags = SLEEPQ_SLEEP;
1677 	error = 0;
1678 	for (;;) {
1679 		sleepq_lock(c);
1680 		if (c->done)
1681 			break;
1682 		sleepq_add(c, NULL, "completion", flags, 0);
1683 		if (flags & SLEEPQ_INTERRUPTIBLE) {
1684 			if (sleepq_wait_sig(c, 0) != 0) {
1685 				error = -ERESTARTSYS;
1686 				goto intr;
1687 			}
1688 		} else
1689 			sleepq_wait(c, 0);
1690 	}
1691 	c->done--;
1692 	sleepq_release(c);
1693 
1694 intr:
1695 	PICKUP_GIANT();
1696 
1697 	return (error);
1698 }
1699 
1700 /*
1701  * Time limited wait for done != 0 with or without signals.
1702  */
1703 int
1704 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
1705 {
1706 	int end = jiffies + timeout;
1707 	int error;
1708 	int ret;
1709 
1710 	if (SCHEDULER_STOPPED())
1711 		return (0);
1712 
1713 	DROP_GIANT();
1714 
1715 	if (flags != 0)
1716 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1717 	else
1718 		flags = SLEEPQ_SLEEP;
1719 
1720 	error = 0;
1721 	ret = 0;
1722 	for (;;) {
1723 		sleepq_lock(c);
1724 		if (c->done)
1725 			break;
1726 		sleepq_add(c, NULL, "completion", flags, 0);
1727 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
1728 		if (flags & SLEEPQ_INTERRUPTIBLE)
1729 			ret = sleepq_timedwait_sig(c, 0);
1730 		else
1731 			ret = sleepq_timedwait(c, 0);
1732 		if (ret != 0) {
1733 			/* check for timeout or signal */
1734 			if (ret == EWOULDBLOCK)
1735 				error = 0;
1736 			else
1737 				error = -ERESTARTSYS;
1738 			goto intr;
1739 		}
1740 	}
1741 	c->done--;
1742 	sleepq_release(c);
1743 
1744 intr:
1745 	PICKUP_GIANT();
1746 
1747 	/* return how many jiffies are left */
1748 	return (ret != 0 ? error : linux_timer_jiffies_until(end));
1749 }
1750 
1751 int
1752 linux_try_wait_for_completion(struct completion *c)
1753 {
1754 	int isdone;
1755 
1756 	isdone = 1;
1757 	sleepq_lock(c);
1758 	if (c->done)
1759 		c->done--;
1760 	else
1761 		isdone = 0;
1762 	sleepq_release(c);
1763 	return (isdone);
1764 }
1765 
1766 int
1767 linux_completion_done(struct completion *c)
1768 {
1769 	int isdone;
1770 
1771 	isdone = 1;
1772 	sleepq_lock(c);
1773 	if (c->done == 0)
1774 		isdone = 0;
1775 	sleepq_release(c);
1776 	return (isdone);
1777 }
1778 
1779 static void
1780 linux_cdev_release(struct kobject *kobj)
1781 {
1782 	struct linux_cdev *cdev;
1783 	struct kobject *parent;
1784 
1785 	cdev = container_of(kobj, struct linux_cdev, kobj);
1786 	parent = kobj->parent;
1787 	if (cdev->cdev)
1788 		destroy_dev(cdev->cdev);
1789 	kfree(cdev);
1790 	kobject_put(parent);
1791 }
1792 
1793 static void
1794 linux_cdev_static_release(struct kobject *kobj)
1795 {
1796 	struct linux_cdev *cdev;
1797 	struct kobject *parent;
1798 
1799 	cdev = container_of(kobj, struct linux_cdev, kobj);
1800 	parent = kobj->parent;
1801 	if (cdev->cdev)
1802 		destroy_dev(cdev->cdev);
1803 	kobject_put(parent);
1804 }
1805 
1806 const struct kobj_type linux_cdev_ktype = {
1807 	.release = linux_cdev_release,
1808 };
1809 
1810 const struct kobj_type linux_cdev_static_ktype = {
1811 	.release = linux_cdev_static_release,
1812 };
1813 
1814 static void
1815 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
1816 {
1817 	struct notifier_block *nb;
1818 
1819 	nb = arg;
1820 	if (linkstate == LINK_STATE_UP)
1821 		nb->notifier_call(nb, NETDEV_UP, ifp);
1822 	else
1823 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
1824 }
1825 
1826 static void
1827 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
1828 {
1829 	struct notifier_block *nb;
1830 
1831 	nb = arg;
1832 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
1833 }
1834 
1835 static void
1836 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
1837 {
1838 	struct notifier_block *nb;
1839 
1840 	nb = arg;
1841 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
1842 }
1843 
1844 static void
1845 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
1846 {
1847 	struct notifier_block *nb;
1848 
1849 	nb = arg;
1850 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
1851 }
1852 
1853 static void
1854 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
1855 {
1856 	struct notifier_block *nb;
1857 
1858 	nb = arg;
1859 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
1860 }
1861 
1862 int
1863 register_netdevice_notifier(struct notifier_block *nb)
1864 {
1865 
1866 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
1867 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
1868 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
1869 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
1870 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
1871 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
1872 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
1873 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
1874 
1875 	return (0);
1876 }
1877 
1878 int
1879 register_inetaddr_notifier(struct notifier_block *nb)
1880 {
1881 
1882         nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
1883             ifaddr_event, linux_handle_ifaddr_event, nb, 0);
1884         return (0);
1885 }
1886 
1887 int
1888 unregister_netdevice_notifier(struct notifier_block *nb)
1889 {
1890 
1891         EVENTHANDLER_DEREGISTER(ifnet_link_event,
1892 	    nb->tags[NETDEV_UP]);
1893         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
1894 	    nb->tags[NETDEV_REGISTER]);
1895         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
1896 	    nb->tags[NETDEV_UNREGISTER]);
1897         EVENTHANDLER_DEREGISTER(iflladdr_event,
1898 	    nb->tags[NETDEV_CHANGEADDR]);
1899 
1900 	return (0);
1901 }
1902 
1903 int
1904 unregister_inetaddr_notifier(struct notifier_block *nb)
1905 {
1906 
1907         EVENTHANDLER_DEREGISTER(ifaddr_event,
1908             nb->tags[NETDEV_CHANGEIFADDR]);
1909 
1910         return (0);
1911 }
1912 
1913 struct list_sort_thunk {
1914 	int (*cmp)(void *, struct list_head *, struct list_head *);
1915 	void *priv;
1916 };
1917 
1918 static inline int
1919 linux_le_cmp(void *priv, const void *d1, const void *d2)
1920 {
1921 	struct list_head *le1, *le2;
1922 	struct list_sort_thunk *thunk;
1923 
1924 	thunk = priv;
1925 	le1 = *(__DECONST(struct list_head **, d1));
1926 	le2 = *(__DECONST(struct list_head **, d2));
1927 	return ((thunk->cmp)(thunk->priv, le1, le2));
1928 }
1929 
1930 void
1931 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
1932     struct list_head *a, struct list_head *b))
1933 {
1934 	struct list_sort_thunk thunk;
1935 	struct list_head **ar, *le;
1936 	size_t count, i;
1937 
1938 	count = 0;
1939 	list_for_each(le, head)
1940 		count++;
1941 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
1942 	i = 0;
1943 	list_for_each(le, head)
1944 		ar[i++] = le;
1945 	thunk.cmp = cmp;
1946 	thunk.priv = priv;
1947 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
1948 	INIT_LIST_HEAD(head);
1949 	for (i = 0; i < count; i++)
1950 		list_add_tail(ar[i], head);
1951 	free(ar, M_KMALLOC);
1952 }
1953 
1954 void
1955 linux_irq_handler(void *ent)
1956 {
1957 	struct irq_ent *irqe;
1958 
1959 	linux_set_current(curthread);
1960 
1961 	irqe = ent;
1962 	irqe->handler(irqe->irq, irqe->arg);
1963 }
1964 
1965 #if defined(__i386__) || defined(__amd64__)
1966 int
1967 linux_wbinvd_on_all_cpus(void)
1968 {
1969 
1970 	pmap_invalidate_cache();
1971 	return (0);
1972 }
1973 #endif
1974 
1975 int
1976 linux_on_each_cpu(void callback(void *), void *data)
1977 {
1978 
1979 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
1980 	    smp_no_rendezvous_barrier, data);
1981 	return (0);
1982 }
1983 
1984 int
1985 linux_in_atomic(void)
1986 {
1987 
1988 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
1989 }
1990 
1991 struct linux_cdev *
1992 linux_find_cdev(const char *name, unsigned major, unsigned minor)
1993 {
1994 	dev_t dev = MKDEV(major, minor);
1995 	struct cdev *cdev;
1996 
1997 	dev_lock();
1998 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
1999 		struct linux_cdev *ldev = cdev->si_drv1;
2000 		if (ldev->dev == dev &&
2001 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2002 			break;
2003 		}
2004 	}
2005 	dev_unlock();
2006 
2007 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2008 }
2009 
2010 int
2011 __register_chrdev(unsigned int major, unsigned int baseminor,
2012     unsigned int count, const char *name,
2013     const struct file_operations *fops)
2014 {
2015 	struct linux_cdev *cdev;
2016 	int ret = 0;
2017 	int i;
2018 
2019 	for (i = baseminor; i < baseminor + count; i++) {
2020 		cdev = cdev_alloc();
2021 		cdev_init(cdev, fops);
2022 		kobject_set_name(&cdev->kobj, name);
2023 
2024 		ret = cdev_add(cdev, makedev(major, i), 1);
2025 		if (ret != 0)
2026 			break;
2027 	}
2028 	return (ret);
2029 }
2030 
2031 int
2032 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2033     unsigned int count, const char *name,
2034     const struct file_operations *fops, uid_t uid,
2035     gid_t gid, int mode)
2036 {
2037 	struct linux_cdev *cdev;
2038 	int ret = 0;
2039 	int i;
2040 
2041 	for (i = baseminor; i < baseminor + count; i++) {
2042 		cdev = cdev_alloc();
2043 		cdev_init(cdev, fops);
2044 		kobject_set_name(&cdev->kobj, name);
2045 
2046 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2047 		if (ret != 0)
2048 			break;
2049 	}
2050 	return (ret);
2051 }
2052 
2053 void
2054 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2055     unsigned int count, const char *name)
2056 {
2057 	struct linux_cdev *cdevp;
2058 	int i;
2059 
2060 	for (i = baseminor; i < baseminor + count; i++) {
2061 		cdevp = linux_find_cdev(name, major, i);
2062 		if (cdevp != NULL)
2063 			cdev_del(cdevp);
2064 	}
2065 }
2066 
2067 #if defined(__i386__) || defined(__amd64__)
2068 bool linux_cpu_has_clflush;
2069 #endif
2070 
2071 static void
2072 linux_compat_init(void *arg)
2073 {
2074 	struct sysctl_oid *rootoid;
2075 	int i;
2076 
2077 #if defined(__i386__) || defined(__amd64__)
2078 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2079 #endif
2080 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2081 
2082 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2083 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2084 	kobject_init(&linux_class_root, &linux_class_ktype);
2085 	kobject_set_name(&linux_class_root, "class");
2086 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2087 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2088 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2089 	kobject_set_name(&linux_root_device.kobj, "device");
2090 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2091 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2092 	    "device");
2093 	linux_root_device.bsddev = root_bus;
2094 	linux_class_misc.name = "misc";
2095 	class_register(&linux_class_misc);
2096 	INIT_LIST_HEAD(&pci_drivers);
2097 	INIT_LIST_HEAD(&pci_devices);
2098 	spin_lock_init(&pci_lock);
2099 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2100 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2101 		LIST_INIT(&vmmaphead[i]);
2102 }
2103 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2104 
2105 static void
2106 linux_compat_uninit(void *arg)
2107 {
2108 	linux_kobject_kfree_name(&linux_class_root);
2109 	linux_kobject_kfree_name(&linux_root_device.kobj);
2110 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2111 
2112 	mtx_destroy(&vmmaplock);
2113 	spin_lock_destroy(&pci_lock);
2114 	rw_destroy(&linux_vma_lock);
2115 }
2116 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2117 
2118 /*
2119  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2120  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2121  * used. Assert these types have the same size, else some parts of the
2122  * LinuxKPI may not work like expected:
2123  */
2124 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2125