xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_stack.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/proc.h>
41 #include <sys/sglist.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/refcount.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/bus.h>
47 #include <sys/eventhandler.h>
48 #include <sys/fcntl.h>
49 #include <sys/file.h>
50 #include <sys/filio.h>
51 #include <sys/rwlock.h>
52 #include <sys/mman.h>
53 #include <sys/stack.h>
54 #include <sys/sysent.h>
55 #include <sys/time.h>
56 #include <sys/user.h>
57 
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_pager.h>
63 
64 #include <machine/stdarg.h>
65 
66 #if defined(__i386__) || defined(__amd64__)
67 #include <machine/md_var.h>
68 #endif
69 
70 #include <linux/kobject.h>
71 #include <linux/cpu.h>
72 #include <linux/device.h>
73 #include <linux/slab.h>
74 #include <linux/module.h>
75 #include <linux/moduleparam.h>
76 #include <linux/cdev.h>
77 #include <linux/file.h>
78 #include <linux/sysfs.h>
79 #include <linux/mm.h>
80 #include <linux/io.h>
81 #include <linux/vmalloc.h>
82 #include <linux/netdevice.h>
83 #include <linux/timer.h>
84 #include <linux/interrupt.h>
85 #include <linux/uaccess.h>
86 #include <linux/list.h>
87 #include <linux/kthread.h>
88 #include <linux/kernel.h>
89 #include <linux/compat.h>
90 #include <linux/io-mapping.h>
91 #include <linux/poll.h>
92 #include <linux/smp.h>
93 #include <linux/wait_bit.h>
94 #include <linux/rcupdate.h>
95 #include <linux/interval_tree.h>
96 #include <linux/interval_tree_generic.h>
97 
98 #if defined(__i386__) || defined(__amd64__)
99 #include <asm/smp.h>
100 #endif
101 
102 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
103     "LinuxKPI parameters");
104 
105 int linuxkpi_debug;
106 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
107     &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
108 
109 int linuxkpi_warn_dump_stack = 0;
110 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
111     &linuxkpi_warn_dump_stack, 0,
112     "Set to enable stack traces from WARN_ON(). Clear to disable.");
113 
114 static struct timeval lkpi_net_lastlog;
115 static int lkpi_net_curpps;
116 static int lkpi_net_maxpps = 99;
117 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
118     &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
119 
120 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
121 
122 #include <linux/rbtree.h>
123 /* Undo Linux compat changes. */
124 #undef RB_ROOT
125 #undef file
126 #undef cdev
127 #define	RB_ROOT(head)	(head)->rbh_root
128 
129 static void linux_destroy_dev(struct linux_cdev *);
130 static void linux_cdev_deref(struct linux_cdev *ldev);
131 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
132 
133 cpumask_t cpu_online_mask;
134 struct kobject linux_class_root;
135 struct device linux_root_device;
136 struct class linux_class_misc;
137 struct list_head pci_drivers;
138 struct list_head pci_devices;
139 spinlock_t pci_lock;
140 
141 unsigned long linux_timer_hz_mask;
142 
143 wait_queue_head_t linux_bit_waitq;
144 wait_queue_head_t linux_var_waitq;
145 
146 int
147 panic_cmp(struct rb_node *one, struct rb_node *two)
148 {
149 	panic("no cmp");
150 }
151 
152 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
153 
154 #define	START(node)	((node)->start)
155 #define	LAST(node)	((node)->last)
156 
157 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
158     LAST,, lkpi_interval_tree)
159 
160 struct kobject *
161 kobject_create(void)
162 {
163 	struct kobject *kobj;
164 
165 	kobj = kzalloc(sizeof(*kobj), GFP_KERNEL);
166 	if (kobj == NULL)
167 		return (NULL);
168 	kobject_init(kobj, &linux_kfree_type);
169 
170 	return (kobj);
171 }
172 
173 
174 int
175 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
176 {
177 	va_list tmp_va;
178 	int len;
179 	char *old;
180 	char *name;
181 	char dummy;
182 
183 	old = kobj->name;
184 
185 	if (old && fmt == NULL)
186 		return (0);
187 
188 	/* compute length of string */
189 	va_copy(tmp_va, args);
190 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
191 	va_end(tmp_va);
192 
193 	/* account for zero termination */
194 	len++;
195 
196 	/* check for error */
197 	if (len < 1)
198 		return (-EINVAL);
199 
200 	/* allocate memory for string */
201 	name = kzalloc(len, GFP_KERNEL);
202 	if (name == NULL)
203 		return (-ENOMEM);
204 	vsnprintf(name, len, fmt, args);
205 	kobj->name = name;
206 
207 	/* free old string */
208 	kfree(old);
209 
210 	/* filter new string */
211 	for (; *name != '\0'; name++)
212 		if (*name == '/')
213 			*name = '!';
214 	return (0);
215 }
216 
217 int
218 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
219 {
220 	va_list args;
221 	int error;
222 
223 	va_start(args, fmt);
224 	error = kobject_set_name_vargs(kobj, fmt, args);
225 	va_end(args);
226 
227 	return (error);
228 }
229 
230 static int
231 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
232 {
233 	const struct kobj_type *t;
234 	int error;
235 
236 	kobj->parent = parent;
237 	error = sysfs_create_dir(kobj);
238 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
239 		struct attribute **attr;
240 		t = kobj->ktype;
241 
242 		for (attr = t->default_attrs; *attr != NULL; attr++) {
243 			error = sysfs_create_file(kobj, *attr);
244 			if (error)
245 				break;
246 		}
247 		if (error)
248 			sysfs_remove_dir(kobj);
249 	}
250 	return (error);
251 }
252 
253 int
254 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
255 {
256 	va_list args;
257 	int error;
258 
259 	va_start(args, fmt);
260 	error = kobject_set_name_vargs(kobj, fmt, args);
261 	va_end(args);
262 	if (error)
263 		return (error);
264 
265 	return kobject_add_complete(kobj, parent);
266 }
267 
268 void
269 linux_kobject_release(struct kref *kref)
270 {
271 	struct kobject *kobj;
272 	char *name;
273 
274 	kobj = container_of(kref, struct kobject, kref);
275 	sysfs_remove_dir(kobj);
276 	name = kobj->name;
277 	if (kobj->ktype && kobj->ktype->release)
278 		kobj->ktype->release(kobj);
279 	kfree(name);
280 }
281 
282 static void
283 linux_kobject_kfree(struct kobject *kobj)
284 {
285 	kfree(kobj);
286 }
287 
288 static void
289 linux_kobject_kfree_name(struct kobject *kobj)
290 {
291 	if (kobj) {
292 		kfree(kobj->name);
293 	}
294 }
295 
296 const struct kobj_type linux_kfree_type = {
297 	.release = linux_kobject_kfree
298 };
299 
300 static ssize_t
301 lkpi_kobj_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
302 {
303 	struct kobj_attribute *ka =
304 	    container_of(attr, struct kobj_attribute, attr);
305 
306 	if (ka->show == NULL)
307 		return (-EIO);
308 
309 	return (ka->show(kobj, ka, buf));
310 }
311 
312 static ssize_t
313 lkpi_kobj_attr_store(struct kobject *kobj, struct attribute *attr,
314     const char *buf, size_t count)
315 {
316 	struct kobj_attribute *ka =
317 	    container_of(attr, struct kobj_attribute, attr);
318 
319 	if (ka->store == NULL)
320 		return (-EIO);
321 
322 	return (ka->store(kobj, ka, buf, count));
323 }
324 
325 const struct sysfs_ops kobj_sysfs_ops = {
326 	.show	= lkpi_kobj_attr_show,
327 	.store	= lkpi_kobj_attr_store,
328 };
329 
330 static void
331 linux_device_release(struct device *dev)
332 {
333 	pr_debug("linux_device_release: %s\n", dev_name(dev));
334 	kfree(dev);
335 }
336 
337 static ssize_t
338 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
339 {
340 	struct class_attribute *dattr;
341 	ssize_t error;
342 
343 	dattr = container_of(attr, struct class_attribute, attr);
344 	error = -EIO;
345 	if (dattr->show)
346 		error = dattr->show(container_of(kobj, struct class, kobj),
347 		    dattr, buf);
348 	return (error);
349 }
350 
351 static ssize_t
352 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
353     size_t count)
354 {
355 	struct class_attribute *dattr;
356 	ssize_t error;
357 
358 	dattr = container_of(attr, struct class_attribute, attr);
359 	error = -EIO;
360 	if (dattr->store)
361 		error = dattr->store(container_of(kobj, struct class, kobj),
362 		    dattr, buf, count);
363 	return (error);
364 }
365 
366 static void
367 linux_class_release(struct kobject *kobj)
368 {
369 	struct class *class;
370 
371 	class = container_of(kobj, struct class, kobj);
372 	if (class->class_release)
373 		class->class_release(class);
374 }
375 
376 static const struct sysfs_ops linux_class_sysfs = {
377 	.show  = linux_class_show,
378 	.store = linux_class_store,
379 };
380 
381 const struct kobj_type linux_class_ktype = {
382 	.release = linux_class_release,
383 	.sysfs_ops = &linux_class_sysfs
384 };
385 
386 static void
387 linux_dev_release(struct kobject *kobj)
388 {
389 	struct device *dev;
390 
391 	dev = container_of(kobj, struct device, kobj);
392 	/* This is the precedence defined by linux. */
393 	if (dev->release)
394 		dev->release(dev);
395 	else if (dev->class && dev->class->dev_release)
396 		dev->class->dev_release(dev);
397 }
398 
399 static ssize_t
400 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
401 {
402 	struct device_attribute *dattr;
403 	ssize_t error;
404 
405 	dattr = container_of(attr, struct device_attribute, attr);
406 	error = -EIO;
407 	if (dattr->show)
408 		error = dattr->show(container_of(kobj, struct device, kobj),
409 		    dattr, buf);
410 	return (error);
411 }
412 
413 static ssize_t
414 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
415     size_t count)
416 {
417 	struct device_attribute *dattr;
418 	ssize_t error;
419 
420 	dattr = container_of(attr, struct device_attribute, attr);
421 	error = -EIO;
422 	if (dattr->store)
423 		error = dattr->store(container_of(kobj, struct device, kobj),
424 		    dattr, buf, count);
425 	return (error);
426 }
427 
428 static const struct sysfs_ops linux_dev_sysfs = {
429 	.show  = linux_dev_show,
430 	.store = linux_dev_store,
431 };
432 
433 const struct kobj_type linux_dev_ktype = {
434 	.release = linux_dev_release,
435 	.sysfs_ops = &linux_dev_sysfs
436 };
437 
438 struct device *
439 device_create(struct class *class, struct device *parent, dev_t devt,
440     void *drvdata, const char *fmt, ...)
441 {
442 	struct device *dev;
443 	va_list args;
444 
445 	dev = kzalloc(sizeof(*dev), M_WAITOK);
446 	dev->parent = parent;
447 	dev->class = class;
448 	dev->devt = devt;
449 	dev->driver_data = drvdata;
450 	dev->release = linux_device_release;
451 	va_start(args, fmt);
452 	kobject_set_name_vargs(&dev->kobj, fmt, args);
453 	va_end(args);
454 	device_register(dev);
455 
456 	return (dev);
457 }
458 
459 struct device *
460 device_create_groups_vargs(struct class *class, struct device *parent,
461     dev_t devt, void *drvdata, const struct attribute_group **groups,
462     const char *fmt, va_list args)
463 {
464 	struct device *dev = NULL;
465 	int retval = -ENODEV;
466 
467 	if (class == NULL || IS_ERR(class))
468 		goto error;
469 
470 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
471 	if (!dev) {
472 		retval = -ENOMEM;
473 		goto error;
474 	}
475 
476 	dev->devt = devt;
477 	dev->class = class;
478 	dev->parent = parent;
479 	dev->groups = groups;
480 	dev->release = device_create_release;
481 	/* device_initialize() needs the class and parent to be set */
482 	device_initialize(dev);
483 	dev_set_drvdata(dev, drvdata);
484 
485 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
486 	if (retval)
487 		goto error;
488 
489 	retval = device_add(dev);
490 	if (retval)
491 		goto error;
492 
493 	return dev;
494 
495 error:
496 	put_device(dev);
497 	return ERR_PTR(retval);
498 }
499 
500 struct class *
501 class_create(struct module *owner, const char *name)
502 {
503 	struct class *class;
504 	int error;
505 
506 	class = kzalloc(sizeof(*class), M_WAITOK);
507 	class->owner = owner;
508 	class->name = name;
509 	class->class_release = linux_class_kfree;
510 	error = class_register(class);
511 	if (error) {
512 		kfree(class);
513 		return (NULL);
514 	}
515 
516 	return (class);
517 }
518 
519 int
520 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
521     struct kobject *parent, const char *fmt, ...)
522 {
523 	va_list args;
524 	int error;
525 
526 	kobject_init(kobj, ktype);
527 	kobj->ktype = ktype;
528 	kobj->parent = parent;
529 	kobj->name = NULL;
530 
531 	va_start(args, fmt);
532 	error = kobject_set_name_vargs(kobj, fmt, args);
533 	va_end(args);
534 	if (error)
535 		return (error);
536 	return kobject_add_complete(kobj, parent);
537 }
538 
539 static void
540 linux_kq_lock(void *arg)
541 {
542 	spinlock_t *s = arg;
543 
544 	spin_lock(s);
545 }
546 static void
547 linux_kq_unlock(void *arg)
548 {
549 	spinlock_t *s = arg;
550 
551 	spin_unlock(s);
552 }
553 
554 static void
555 linux_kq_assert_lock(void *arg, int what)
556 {
557 #ifdef INVARIANTS
558 	spinlock_t *s = arg;
559 
560 	if (what == LA_LOCKED)
561 		mtx_assert(&s->m, MA_OWNED);
562 	else
563 		mtx_assert(&s->m, MA_NOTOWNED);
564 #endif
565 }
566 
567 static void
568 linux_file_kqfilter_poll(struct linux_file *, int);
569 
570 struct linux_file *
571 linux_file_alloc(void)
572 {
573 	struct linux_file *filp;
574 
575 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
576 
577 	/* set initial refcount */
578 	filp->f_count = 1;
579 
580 	/* setup fields needed by kqueue support */
581 	spin_lock_init(&filp->f_kqlock);
582 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
583 	    linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
584 
585 	return (filp);
586 }
587 
588 void
589 linux_file_free(struct linux_file *filp)
590 {
591 	if (filp->_file == NULL) {
592 		if (filp->f_op != NULL && filp->f_op->release != NULL)
593 			filp->f_op->release(filp->f_vnode, filp);
594 		if (filp->f_shmem != NULL)
595 			vm_object_deallocate(filp->f_shmem);
596 		kfree_rcu(filp, rcu);
597 	} else {
598 		/*
599 		 * The close method of the character device or file
600 		 * will free the linux_file structure:
601 		 */
602 		_fdrop(filp->_file, curthread);
603 	}
604 }
605 
606 struct linux_cdev *
607 cdev_alloc(void)
608 {
609 	struct linux_cdev *cdev;
610 
611 	cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
612 	kobject_init(&cdev->kobj, &linux_cdev_ktype);
613 	cdev->refs = 1;
614 	return (cdev);
615 }
616 
617 static int
618 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
619     vm_page_t *mres)
620 {
621 	struct vm_area_struct *vmap;
622 
623 	vmap = linux_cdev_handle_find(vm_obj->handle);
624 
625 	MPASS(vmap != NULL);
626 	MPASS(vmap->vm_private_data == vm_obj->handle);
627 
628 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
629 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
630 		vm_page_t page;
631 
632 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
633 			/*
634 			 * If the passed in result page is a fake
635 			 * page, update it with the new physical
636 			 * address.
637 			 */
638 			page = *mres;
639 			vm_page_updatefake(page, paddr, vm_obj->memattr);
640 		} else {
641 			/*
642 			 * Replace the passed in "mres" page with our
643 			 * own fake page and free up the all of the
644 			 * original pages.
645 			 */
646 			VM_OBJECT_WUNLOCK(vm_obj);
647 			page = vm_page_getfake(paddr, vm_obj->memattr);
648 			VM_OBJECT_WLOCK(vm_obj);
649 
650 			vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
651 			*mres = page;
652 		}
653 		vm_page_valid(page);
654 		return (VM_PAGER_OK);
655 	}
656 	return (VM_PAGER_FAIL);
657 }
658 
659 static int
660 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
661     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
662 {
663 	struct vm_area_struct *vmap;
664 	int err;
665 
666 	/* get VM area structure */
667 	vmap = linux_cdev_handle_find(vm_obj->handle);
668 	MPASS(vmap != NULL);
669 	MPASS(vmap->vm_private_data == vm_obj->handle);
670 
671 	VM_OBJECT_WUNLOCK(vm_obj);
672 
673 	linux_set_current(curthread);
674 
675 	down_write(&vmap->vm_mm->mmap_sem);
676 	if (unlikely(vmap->vm_ops == NULL)) {
677 		err = VM_FAULT_SIGBUS;
678 	} else {
679 		struct vm_fault vmf;
680 
681 		/* fill out VM fault structure */
682 		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
683 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
684 		vmf.pgoff = 0;
685 		vmf.page = NULL;
686 		vmf.vma = vmap;
687 
688 		vmap->vm_pfn_count = 0;
689 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
690 		vmap->vm_obj = vm_obj;
691 
692 		err = vmap->vm_ops->fault(&vmf);
693 
694 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
695 			kern_yield(PRI_USER);
696 			err = vmap->vm_ops->fault(&vmf);
697 		}
698 	}
699 
700 	/* translate return code */
701 	switch (err) {
702 	case VM_FAULT_OOM:
703 		err = VM_PAGER_AGAIN;
704 		break;
705 	case VM_FAULT_SIGBUS:
706 		err = VM_PAGER_BAD;
707 		break;
708 	case VM_FAULT_NOPAGE:
709 		/*
710 		 * By contract the fault handler will return having
711 		 * busied all the pages itself. If pidx is already
712 		 * found in the object, it will simply xbusy the first
713 		 * page and return with vm_pfn_count set to 1.
714 		 */
715 		*first = vmap->vm_pfn_first;
716 		*last = *first + vmap->vm_pfn_count - 1;
717 		err = VM_PAGER_OK;
718 		break;
719 	default:
720 		err = VM_PAGER_ERROR;
721 		break;
722 	}
723 	up_write(&vmap->vm_mm->mmap_sem);
724 	VM_OBJECT_WLOCK(vm_obj);
725 	return (err);
726 }
727 
728 static struct rwlock linux_vma_lock;
729 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
730     TAILQ_HEAD_INITIALIZER(linux_vma_head);
731 
732 static void
733 linux_cdev_handle_free(struct vm_area_struct *vmap)
734 {
735 	/* Drop reference on vm_file */
736 	if (vmap->vm_file != NULL)
737 		fput(vmap->vm_file);
738 
739 	/* Drop reference on mm_struct */
740 	mmput(vmap->vm_mm);
741 
742 	kfree(vmap);
743 }
744 
745 static void
746 linux_cdev_handle_remove(struct vm_area_struct *vmap)
747 {
748 	rw_wlock(&linux_vma_lock);
749 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
750 	rw_wunlock(&linux_vma_lock);
751 }
752 
753 static struct vm_area_struct *
754 linux_cdev_handle_find(void *handle)
755 {
756 	struct vm_area_struct *vmap;
757 
758 	rw_rlock(&linux_vma_lock);
759 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
760 		if (vmap->vm_private_data == handle)
761 			break;
762 	}
763 	rw_runlock(&linux_vma_lock);
764 	return (vmap);
765 }
766 
767 static int
768 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
769 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
770 {
771 
772 	MPASS(linux_cdev_handle_find(handle) != NULL);
773 	*color = 0;
774 	return (0);
775 }
776 
777 static void
778 linux_cdev_pager_dtor(void *handle)
779 {
780 	const struct vm_operations_struct *vm_ops;
781 	struct vm_area_struct *vmap;
782 
783 	vmap = linux_cdev_handle_find(handle);
784 	MPASS(vmap != NULL);
785 
786 	/*
787 	 * Remove handle before calling close operation to prevent
788 	 * other threads from reusing the handle pointer.
789 	 */
790 	linux_cdev_handle_remove(vmap);
791 
792 	down_write(&vmap->vm_mm->mmap_sem);
793 	vm_ops = vmap->vm_ops;
794 	if (likely(vm_ops != NULL))
795 		vm_ops->close(vmap);
796 	up_write(&vmap->vm_mm->mmap_sem);
797 
798 	linux_cdev_handle_free(vmap);
799 }
800 
801 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
802   {
803 	/* OBJT_MGTDEVICE */
804 	.cdev_pg_populate	= linux_cdev_pager_populate,
805 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
806 	.cdev_pg_dtor	= linux_cdev_pager_dtor
807   },
808   {
809 	/* OBJT_DEVICE */
810 	.cdev_pg_fault	= linux_cdev_pager_fault,
811 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
812 	.cdev_pg_dtor	= linux_cdev_pager_dtor
813   },
814 };
815 
816 int
817 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
818     unsigned long size)
819 {
820 	vm_object_t obj;
821 	vm_page_t m;
822 
823 	obj = vma->vm_obj;
824 	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
825 		return (-ENOTSUP);
826 	VM_OBJECT_RLOCK(obj);
827 	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
828 	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
829 	    m = TAILQ_NEXT(m, listq))
830 		pmap_remove_all(m);
831 	VM_OBJECT_RUNLOCK(obj);
832 	return (0);
833 }
834 
835 static struct file_operations dummy_ldev_ops = {
836 	/* XXXKIB */
837 };
838 
839 static struct linux_cdev dummy_ldev = {
840 	.ops = &dummy_ldev_ops,
841 };
842 
843 #define	LDEV_SI_DTR	0x0001
844 #define	LDEV_SI_REF	0x0002
845 
846 static void
847 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
848     struct linux_cdev **dev)
849 {
850 	struct linux_cdev *ldev;
851 	u_int siref;
852 
853 	ldev = filp->f_cdev;
854 	*fop = filp->f_op;
855 	if (ldev != NULL) {
856 		if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
857 			refcount_acquire(&ldev->refs);
858 		} else {
859 			for (siref = ldev->siref;;) {
860 				if ((siref & LDEV_SI_DTR) != 0) {
861 					ldev = &dummy_ldev;
862 					*fop = ldev->ops;
863 					siref = ldev->siref;
864 					MPASS((ldev->siref & LDEV_SI_DTR) == 0);
865 				} else if (atomic_fcmpset_int(&ldev->siref,
866 				    &siref, siref + LDEV_SI_REF)) {
867 					break;
868 				}
869 			}
870 		}
871 	}
872 	*dev = ldev;
873 }
874 
875 static void
876 linux_drop_fop(struct linux_cdev *ldev)
877 {
878 
879 	if (ldev == NULL)
880 		return;
881 	if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
882 		linux_cdev_deref(ldev);
883 	} else {
884 		MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
885 		MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
886 		atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
887 	}
888 }
889 
890 #define	OPW(fp,td,code) ({			\
891 	struct file *__fpop;			\
892 	__typeof(code) __retval;		\
893 						\
894 	__fpop = (td)->td_fpop;			\
895 	(td)->td_fpop = (fp);			\
896 	__retval = (code);			\
897 	(td)->td_fpop = __fpop;			\
898 	__retval;				\
899 })
900 
901 static int
902 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
903     struct file *file)
904 {
905 	struct linux_cdev *ldev;
906 	struct linux_file *filp;
907 	const struct file_operations *fop;
908 	int error;
909 
910 	ldev = dev->si_drv1;
911 
912 	filp = linux_file_alloc();
913 	filp->f_dentry = &filp->f_dentry_store;
914 	filp->f_op = ldev->ops;
915 	filp->f_mode = file->f_flag;
916 	filp->f_flags = file->f_flag;
917 	filp->f_vnode = file->f_vnode;
918 	filp->_file = file;
919 	refcount_acquire(&ldev->refs);
920 	filp->f_cdev = ldev;
921 
922 	linux_set_current(td);
923 	linux_get_fop(filp, &fop, &ldev);
924 
925 	if (fop->open != NULL) {
926 		error = -fop->open(file->f_vnode, filp);
927 		if (error != 0) {
928 			linux_drop_fop(ldev);
929 			linux_cdev_deref(filp->f_cdev);
930 			kfree(filp);
931 			return (error);
932 		}
933 	}
934 
935 	/* hold on to the vnode - used for fstat() */
936 	vhold(filp->f_vnode);
937 
938 	/* release the file from devfs */
939 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
940 	linux_drop_fop(ldev);
941 	return (ENXIO);
942 }
943 
944 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
945 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
946 
947 static inline int
948 linux_remap_address(void **uaddr, size_t len)
949 {
950 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
951 
952 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
953 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
954 		struct task_struct *pts = current;
955 		if (pts == NULL) {
956 			*uaddr = NULL;
957 			return (1);
958 		}
959 
960 		/* compute data offset */
961 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
962 
963 		/* check that length is within bounds */
964 		if ((len > IOCPARM_MAX) ||
965 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
966 			*uaddr = NULL;
967 			return (1);
968 		}
969 
970 		/* re-add kernel buffer address */
971 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
972 
973 		/* update address location */
974 		*uaddr = (void *)uaddr_val;
975 		return (1);
976 	}
977 	return (0);
978 }
979 
980 int
981 linux_copyin(const void *uaddr, void *kaddr, size_t len)
982 {
983 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
984 		if (uaddr == NULL)
985 			return (-EFAULT);
986 		memcpy(kaddr, uaddr, len);
987 		return (0);
988 	}
989 	return (-copyin(uaddr, kaddr, len));
990 }
991 
992 int
993 linux_copyout(const void *kaddr, void *uaddr, size_t len)
994 {
995 	if (linux_remap_address(&uaddr, len)) {
996 		if (uaddr == NULL)
997 			return (-EFAULT);
998 		memcpy(uaddr, kaddr, len);
999 		return (0);
1000 	}
1001 	return (-copyout(kaddr, uaddr, len));
1002 }
1003 
1004 size_t
1005 linux_clear_user(void *_uaddr, size_t _len)
1006 {
1007 	uint8_t *uaddr = _uaddr;
1008 	size_t len = _len;
1009 
1010 	/* make sure uaddr is aligned before going into the fast loop */
1011 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
1012 		if (subyte(uaddr, 0))
1013 			return (_len);
1014 		uaddr++;
1015 		len--;
1016 	}
1017 
1018 	/* zero 8 bytes at a time */
1019 	while (len > 7) {
1020 #ifdef __LP64__
1021 		if (suword64(uaddr, 0))
1022 			return (_len);
1023 #else
1024 		if (suword32(uaddr, 0))
1025 			return (_len);
1026 		if (suword32(uaddr + 4, 0))
1027 			return (_len);
1028 #endif
1029 		uaddr += 8;
1030 		len -= 8;
1031 	}
1032 
1033 	/* zero fill end, if any */
1034 	while (len > 0) {
1035 		if (subyte(uaddr, 0))
1036 			return (_len);
1037 		uaddr++;
1038 		len--;
1039 	}
1040 	return (0);
1041 }
1042 
1043 int
1044 linux_access_ok(const void *uaddr, size_t len)
1045 {
1046 	uintptr_t saddr;
1047 	uintptr_t eaddr;
1048 
1049 	/* get start and end address */
1050 	saddr = (uintptr_t)uaddr;
1051 	eaddr = (uintptr_t)uaddr + len;
1052 
1053 	/* verify addresses are valid for userspace */
1054 	return ((saddr == eaddr) ||
1055 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
1056 }
1057 
1058 /*
1059  * This function should return either EINTR or ERESTART depending on
1060  * the signal type sent to this thread:
1061  */
1062 static int
1063 linux_get_error(struct task_struct *task, int error)
1064 {
1065 	/* check for signal type interrupt code */
1066 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
1067 		error = -linux_schedule_get_interrupt_value(task);
1068 		if (error == 0)
1069 			error = EINTR;
1070 	}
1071 	return (error);
1072 }
1073 
1074 static int
1075 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
1076     const struct file_operations *fop, u_long cmd, caddr_t data,
1077     struct thread *td)
1078 {
1079 	struct task_struct *task = current;
1080 	unsigned size;
1081 	int error;
1082 
1083 	size = IOCPARM_LEN(cmd);
1084 	/* refer to logic in sys_ioctl() */
1085 	if (size > 0) {
1086 		/*
1087 		 * Setup hint for linux_copyin() and linux_copyout().
1088 		 *
1089 		 * Background: Linux code expects a user-space address
1090 		 * while FreeBSD supplies a kernel-space address.
1091 		 */
1092 		task->bsd_ioctl_data = data;
1093 		task->bsd_ioctl_len = size;
1094 		data = (void *)LINUX_IOCTL_MIN_PTR;
1095 	} else {
1096 		/* fetch user-space pointer */
1097 		data = *(void **)data;
1098 	}
1099 #ifdef COMPAT_FREEBSD32
1100 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1101 		/* try the compat IOCTL handler first */
1102 		if (fop->compat_ioctl != NULL) {
1103 			error = -OPW(fp, td, fop->compat_ioctl(filp,
1104 			    cmd, (u_long)data));
1105 		} else {
1106 			error = ENOTTY;
1107 		}
1108 
1109 		/* fallback to the regular IOCTL handler, if any */
1110 		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
1111 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
1112 			    cmd, (u_long)data));
1113 		}
1114 	} else
1115 #endif
1116 	{
1117 		if (fop->unlocked_ioctl != NULL) {
1118 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
1119 			    cmd, (u_long)data));
1120 		} else {
1121 			error = ENOTTY;
1122 		}
1123 	}
1124 	if (size > 0) {
1125 		task->bsd_ioctl_data = NULL;
1126 		task->bsd_ioctl_len = 0;
1127 	}
1128 
1129 	if (error == EWOULDBLOCK) {
1130 		/* update kqfilter status, if any */
1131 		linux_file_kqfilter_poll(filp,
1132 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1133 	} else {
1134 		error = linux_get_error(task, error);
1135 	}
1136 	return (error);
1137 }
1138 
1139 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
1140 
1141 /*
1142  * This function atomically updates the poll wakeup state and returns
1143  * the previous state at the time of update.
1144  */
1145 static uint8_t
1146 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1147 {
1148 	int c, old;
1149 
1150 	c = v->counter;
1151 
1152 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1153 		c = old;
1154 
1155 	return (c);
1156 }
1157 
1158 static int
1159 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1160 {
1161 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1162 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1163 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1164 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1165 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1166 	};
1167 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1168 
1169 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1170 	case LINUX_FWQ_STATE_QUEUED:
1171 		linux_poll_wakeup(filp);
1172 		return (1);
1173 	default:
1174 		return (0);
1175 	}
1176 }
1177 
1178 void
1179 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1180 {
1181 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1182 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1183 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1184 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1185 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1186 	};
1187 
1188 	/* check if we are called inside the select system call */
1189 	if (p == LINUX_POLL_TABLE_NORMAL)
1190 		selrecord(curthread, &filp->f_selinfo);
1191 
1192 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1193 	case LINUX_FWQ_STATE_INIT:
1194 		/* NOTE: file handles can only belong to one wait-queue */
1195 		filp->f_wait_queue.wqh = wqh;
1196 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1197 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1198 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1199 		break;
1200 	default:
1201 		break;
1202 	}
1203 }
1204 
1205 static void
1206 linux_poll_wait_dequeue(struct linux_file *filp)
1207 {
1208 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1209 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1210 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1211 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1212 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1213 	};
1214 
1215 	seldrain(&filp->f_selinfo);
1216 
1217 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1218 	case LINUX_FWQ_STATE_NOT_READY:
1219 	case LINUX_FWQ_STATE_QUEUED:
1220 	case LINUX_FWQ_STATE_READY:
1221 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1222 		break;
1223 	default:
1224 		break;
1225 	}
1226 }
1227 
1228 void
1229 linux_poll_wakeup(struct linux_file *filp)
1230 {
1231 	/* this function should be NULL-safe */
1232 	if (filp == NULL)
1233 		return;
1234 
1235 	selwakeup(&filp->f_selinfo);
1236 
1237 	spin_lock(&filp->f_kqlock);
1238 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1239 	    LINUX_KQ_FLAG_NEED_WRITE;
1240 
1241 	/* make sure the "knote" gets woken up */
1242 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1243 	spin_unlock(&filp->f_kqlock);
1244 }
1245 
1246 static void
1247 linux_file_kqfilter_detach(struct knote *kn)
1248 {
1249 	struct linux_file *filp = kn->kn_hook;
1250 
1251 	spin_lock(&filp->f_kqlock);
1252 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1253 	spin_unlock(&filp->f_kqlock);
1254 }
1255 
1256 static int
1257 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1258 {
1259 	struct linux_file *filp = kn->kn_hook;
1260 
1261 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1262 
1263 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1264 }
1265 
1266 static int
1267 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1268 {
1269 	struct linux_file *filp = kn->kn_hook;
1270 
1271 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1272 
1273 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1274 }
1275 
1276 static struct filterops linux_dev_kqfiltops_read = {
1277 	.f_isfd = 1,
1278 	.f_detach = linux_file_kqfilter_detach,
1279 	.f_event = linux_file_kqfilter_read_event,
1280 };
1281 
1282 static struct filterops linux_dev_kqfiltops_write = {
1283 	.f_isfd = 1,
1284 	.f_detach = linux_file_kqfilter_detach,
1285 	.f_event = linux_file_kqfilter_write_event,
1286 };
1287 
1288 static void
1289 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1290 {
1291 	struct thread *td;
1292 	const struct file_operations *fop;
1293 	struct linux_cdev *ldev;
1294 	int temp;
1295 
1296 	if ((filp->f_kqflags & kqflags) == 0)
1297 		return;
1298 
1299 	td = curthread;
1300 
1301 	linux_get_fop(filp, &fop, &ldev);
1302 	/* get the latest polling state */
1303 	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1304 	linux_drop_fop(ldev);
1305 
1306 	spin_lock(&filp->f_kqlock);
1307 	/* clear kqflags */
1308 	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1309 	    LINUX_KQ_FLAG_NEED_WRITE);
1310 	/* update kqflags */
1311 	if ((temp & (POLLIN | POLLOUT)) != 0) {
1312 		if ((temp & POLLIN) != 0)
1313 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1314 		if ((temp & POLLOUT) != 0)
1315 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1316 
1317 		/* make sure the "knote" gets woken up */
1318 		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1319 	}
1320 	spin_unlock(&filp->f_kqlock);
1321 }
1322 
1323 static int
1324 linux_file_kqfilter(struct file *file, struct knote *kn)
1325 {
1326 	struct linux_file *filp;
1327 	struct thread *td;
1328 	int error;
1329 
1330 	td = curthread;
1331 	filp = (struct linux_file *)file->f_data;
1332 	filp->f_flags = file->f_flag;
1333 	if (filp->f_op->poll == NULL)
1334 		return (EINVAL);
1335 
1336 	spin_lock(&filp->f_kqlock);
1337 	switch (kn->kn_filter) {
1338 	case EVFILT_READ:
1339 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1340 		kn->kn_fop = &linux_dev_kqfiltops_read;
1341 		kn->kn_hook = filp;
1342 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1343 		error = 0;
1344 		break;
1345 	case EVFILT_WRITE:
1346 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1347 		kn->kn_fop = &linux_dev_kqfiltops_write;
1348 		kn->kn_hook = filp;
1349 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1350 		error = 0;
1351 		break;
1352 	default:
1353 		error = EINVAL;
1354 		break;
1355 	}
1356 	spin_unlock(&filp->f_kqlock);
1357 
1358 	if (error == 0) {
1359 		linux_set_current(td);
1360 
1361 		/* update kqfilter status, if any */
1362 		linux_file_kqfilter_poll(filp,
1363 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1364 	}
1365 	return (error);
1366 }
1367 
1368 static int
1369 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1370     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1371     int nprot, bool is_shared, struct thread *td)
1372 {
1373 	struct task_struct *task;
1374 	struct vm_area_struct *vmap;
1375 	struct mm_struct *mm;
1376 	struct linux_file *filp;
1377 	vm_memattr_t attr;
1378 	int error;
1379 
1380 	filp = (struct linux_file *)fp->f_data;
1381 	filp->f_flags = fp->f_flag;
1382 
1383 	if (fop->mmap == NULL)
1384 		return (EOPNOTSUPP);
1385 
1386 	linux_set_current(td);
1387 
1388 	/*
1389 	 * The same VM object might be shared by multiple processes
1390 	 * and the mm_struct is usually freed when a process exits.
1391 	 *
1392 	 * The atomic reference below makes sure the mm_struct is
1393 	 * available as long as the vmap is in the linux_vma_head.
1394 	 */
1395 	task = current;
1396 	mm = task->mm;
1397 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1398 		return (EINVAL);
1399 
1400 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1401 	vmap->vm_start = 0;
1402 	vmap->vm_end = size;
1403 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1404 	vmap->vm_pfn = 0;
1405 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1406 	if (is_shared)
1407 		vmap->vm_flags |= VM_SHARED;
1408 	vmap->vm_ops = NULL;
1409 	vmap->vm_file = get_file(filp);
1410 	vmap->vm_mm = mm;
1411 
1412 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1413 		error = linux_get_error(task, EINTR);
1414 	} else {
1415 		error = -OPW(fp, td, fop->mmap(filp, vmap));
1416 		error = linux_get_error(task, error);
1417 		up_write(&vmap->vm_mm->mmap_sem);
1418 	}
1419 
1420 	if (error != 0) {
1421 		linux_cdev_handle_free(vmap);
1422 		return (error);
1423 	}
1424 
1425 	attr = pgprot2cachemode(vmap->vm_page_prot);
1426 
1427 	if (vmap->vm_ops != NULL) {
1428 		struct vm_area_struct *ptr;
1429 		void *vm_private_data;
1430 		bool vm_no_fault;
1431 
1432 		if (vmap->vm_ops->open == NULL ||
1433 		    vmap->vm_ops->close == NULL ||
1434 		    vmap->vm_private_data == NULL) {
1435 			/* free allocated VM area struct */
1436 			linux_cdev_handle_free(vmap);
1437 			return (EINVAL);
1438 		}
1439 
1440 		vm_private_data = vmap->vm_private_data;
1441 
1442 		rw_wlock(&linux_vma_lock);
1443 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1444 			if (ptr->vm_private_data == vm_private_data)
1445 				break;
1446 		}
1447 		/* check if there is an existing VM area struct */
1448 		if (ptr != NULL) {
1449 			/* check if the VM area structure is invalid */
1450 			if (ptr->vm_ops == NULL ||
1451 			    ptr->vm_ops->open == NULL ||
1452 			    ptr->vm_ops->close == NULL) {
1453 				error = ESTALE;
1454 				vm_no_fault = 1;
1455 			} else {
1456 				error = EEXIST;
1457 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1458 			}
1459 		} else {
1460 			/* insert VM area structure into list */
1461 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1462 			error = 0;
1463 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1464 		}
1465 		rw_wunlock(&linux_vma_lock);
1466 
1467 		if (error != 0) {
1468 			/* free allocated VM area struct */
1469 			linux_cdev_handle_free(vmap);
1470 			/* check for stale VM area struct */
1471 			if (error != EEXIST)
1472 				return (error);
1473 		}
1474 
1475 		/* check if there is no fault handler */
1476 		if (vm_no_fault) {
1477 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1478 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1479 			    td->td_ucred);
1480 		} else {
1481 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1482 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1483 			    td->td_ucred);
1484 		}
1485 
1486 		/* check if allocating the VM object failed */
1487 		if (*object == NULL) {
1488 			if (error == 0) {
1489 				/* remove VM area struct from list */
1490 				linux_cdev_handle_remove(vmap);
1491 				/* free allocated VM area struct */
1492 				linux_cdev_handle_free(vmap);
1493 			}
1494 			return (EINVAL);
1495 		}
1496 	} else {
1497 		struct sglist *sg;
1498 
1499 		sg = sglist_alloc(1, M_WAITOK);
1500 		sglist_append_phys(sg,
1501 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1502 
1503 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1504 		    nprot, 0, td->td_ucred);
1505 
1506 		linux_cdev_handle_free(vmap);
1507 
1508 		if (*object == NULL) {
1509 			sglist_free(sg);
1510 			return (EINVAL);
1511 		}
1512 	}
1513 
1514 	if (attr != VM_MEMATTR_DEFAULT) {
1515 		VM_OBJECT_WLOCK(*object);
1516 		vm_object_set_memattr(*object, attr);
1517 		VM_OBJECT_WUNLOCK(*object);
1518 	}
1519 	*offset = 0;
1520 	return (0);
1521 }
1522 
1523 struct cdevsw linuxcdevsw = {
1524 	.d_version = D_VERSION,
1525 	.d_fdopen = linux_dev_fdopen,
1526 	.d_name = "lkpidev",
1527 };
1528 
1529 static int
1530 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1531     int flags, struct thread *td)
1532 {
1533 	struct linux_file *filp;
1534 	const struct file_operations *fop;
1535 	struct linux_cdev *ldev;
1536 	ssize_t bytes;
1537 	int error;
1538 
1539 	error = 0;
1540 	filp = (struct linux_file *)file->f_data;
1541 	filp->f_flags = file->f_flag;
1542 	/* XXX no support for I/O vectors currently */
1543 	if (uio->uio_iovcnt != 1)
1544 		return (EOPNOTSUPP);
1545 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1546 		return (EINVAL);
1547 	linux_set_current(td);
1548 	linux_get_fop(filp, &fop, &ldev);
1549 	if (fop->read != NULL) {
1550 		bytes = OPW(file, td, fop->read(filp,
1551 		    uio->uio_iov->iov_base,
1552 		    uio->uio_iov->iov_len, &uio->uio_offset));
1553 		if (bytes >= 0) {
1554 			uio->uio_iov->iov_base =
1555 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1556 			uio->uio_iov->iov_len -= bytes;
1557 			uio->uio_resid -= bytes;
1558 		} else {
1559 			error = linux_get_error(current, -bytes);
1560 		}
1561 	} else
1562 		error = ENXIO;
1563 
1564 	/* update kqfilter status, if any */
1565 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1566 	linux_drop_fop(ldev);
1567 
1568 	return (error);
1569 }
1570 
1571 static int
1572 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1573     int flags, struct thread *td)
1574 {
1575 	struct linux_file *filp;
1576 	const struct file_operations *fop;
1577 	struct linux_cdev *ldev;
1578 	ssize_t bytes;
1579 	int error;
1580 
1581 	filp = (struct linux_file *)file->f_data;
1582 	filp->f_flags = file->f_flag;
1583 	/* XXX no support for I/O vectors currently */
1584 	if (uio->uio_iovcnt != 1)
1585 		return (EOPNOTSUPP);
1586 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1587 		return (EINVAL);
1588 	linux_set_current(td);
1589 	linux_get_fop(filp, &fop, &ldev);
1590 	if (fop->write != NULL) {
1591 		bytes = OPW(file, td, fop->write(filp,
1592 		    uio->uio_iov->iov_base,
1593 		    uio->uio_iov->iov_len, &uio->uio_offset));
1594 		if (bytes >= 0) {
1595 			uio->uio_iov->iov_base =
1596 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1597 			uio->uio_iov->iov_len -= bytes;
1598 			uio->uio_resid -= bytes;
1599 			error = 0;
1600 		} else {
1601 			error = linux_get_error(current, -bytes);
1602 		}
1603 	} else
1604 		error = ENXIO;
1605 
1606 	/* update kqfilter status, if any */
1607 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1608 
1609 	linux_drop_fop(ldev);
1610 
1611 	return (error);
1612 }
1613 
1614 static int
1615 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1616     struct thread *td)
1617 {
1618 	struct linux_file *filp;
1619 	const struct file_operations *fop;
1620 	struct linux_cdev *ldev;
1621 	int revents;
1622 
1623 	filp = (struct linux_file *)file->f_data;
1624 	filp->f_flags = file->f_flag;
1625 	linux_set_current(td);
1626 	linux_get_fop(filp, &fop, &ldev);
1627 	if (fop->poll != NULL) {
1628 		revents = OPW(file, td, fop->poll(filp,
1629 		    LINUX_POLL_TABLE_NORMAL)) & events;
1630 	} else {
1631 		revents = 0;
1632 	}
1633 	linux_drop_fop(ldev);
1634 	return (revents);
1635 }
1636 
1637 static int
1638 linux_file_close(struct file *file, struct thread *td)
1639 {
1640 	struct linux_file *filp;
1641 	int (*release)(struct inode *, struct linux_file *);
1642 	const struct file_operations *fop;
1643 	struct linux_cdev *ldev;
1644 	int error;
1645 
1646 	filp = (struct linux_file *)file->f_data;
1647 
1648 	KASSERT(file_count(filp) == 0,
1649 	    ("File refcount(%d) is not zero", file_count(filp)));
1650 
1651 	if (td == NULL)
1652 		td = curthread;
1653 
1654 	error = 0;
1655 	filp->f_flags = file->f_flag;
1656 	linux_set_current(td);
1657 	linux_poll_wait_dequeue(filp);
1658 	linux_get_fop(filp, &fop, &ldev);
1659 	/*
1660 	 * Always use the real release function, if any, to avoid
1661 	 * leaking device resources:
1662 	 */
1663 	release = filp->f_op->release;
1664 	if (release != NULL)
1665 		error = -OPW(file, td, release(filp->f_vnode, filp));
1666 	funsetown(&filp->f_sigio);
1667 	if (filp->f_vnode != NULL)
1668 		vdrop(filp->f_vnode);
1669 	linux_drop_fop(ldev);
1670 	ldev = filp->f_cdev;
1671 	if (ldev != NULL)
1672 		linux_cdev_deref(ldev);
1673 	linux_synchronize_rcu(RCU_TYPE_REGULAR);
1674 	kfree(filp);
1675 
1676 	return (error);
1677 }
1678 
1679 static int
1680 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1681     struct thread *td)
1682 {
1683 	struct linux_file *filp;
1684 	const struct file_operations *fop;
1685 	struct linux_cdev *ldev;
1686 	struct fiodgname_arg *fgn;
1687 	const char *p;
1688 	int error, i;
1689 
1690 	error = 0;
1691 	filp = (struct linux_file *)fp->f_data;
1692 	filp->f_flags = fp->f_flag;
1693 	linux_get_fop(filp, &fop, &ldev);
1694 
1695 	linux_set_current(td);
1696 	switch (cmd) {
1697 	case FIONBIO:
1698 		break;
1699 	case FIOASYNC:
1700 		if (fop->fasync == NULL)
1701 			break;
1702 		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1703 		break;
1704 	case FIOSETOWN:
1705 		error = fsetown(*(int *)data, &filp->f_sigio);
1706 		if (error == 0) {
1707 			if (fop->fasync == NULL)
1708 				break;
1709 			error = -OPW(fp, td, fop->fasync(0, filp,
1710 			    fp->f_flag & FASYNC));
1711 		}
1712 		break;
1713 	case FIOGETOWN:
1714 		*(int *)data = fgetown(&filp->f_sigio);
1715 		break;
1716 	case FIODGNAME:
1717 #ifdef	COMPAT_FREEBSD32
1718 	case FIODGNAME_32:
1719 #endif
1720 		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1721 			error = ENXIO;
1722 			break;
1723 		}
1724 		fgn = data;
1725 		p = devtoname(filp->f_cdev->cdev);
1726 		i = strlen(p) + 1;
1727 		if (i > fgn->len) {
1728 			error = EINVAL;
1729 			break;
1730 		}
1731 		error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1732 		break;
1733 	default:
1734 		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1735 		break;
1736 	}
1737 	linux_drop_fop(ldev);
1738 	return (error);
1739 }
1740 
1741 static int
1742 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1743     vm_prot_t maxprot, int flags, struct file *fp,
1744     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1745 {
1746 	/*
1747 	 * Character devices do not provide private mappings
1748 	 * of any kind:
1749 	 */
1750 	if ((maxprot & VM_PROT_WRITE) == 0 &&
1751 	    (prot & VM_PROT_WRITE) != 0)
1752 		return (EACCES);
1753 	if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1754 		return (EINVAL);
1755 
1756 	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1757 	    (int)prot, (flags & MAP_SHARED) ? true : false, td));
1758 }
1759 
1760 static int
1761 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1762     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1763     struct thread *td)
1764 {
1765 	struct linux_file *filp;
1766 	const struct file_operations *fop;
1767 	struct linux_cdev *ldev;
1768 	struct mount *mp;
1769 	struct vnode *vp;
1770 	vm_object_t object;
1771 	vm_prot_t maxprot;
1772 	int error;
1773 
1774 	filp = (struct linux_file *)fp->f_data;
1775 
1776 	vp = filp->f_vnode;
1777 	if (vp == NULL)
1778 		return (EOPNOTSUPP);
1779 
1780 	/*
1781 	 * Ensure that file and memory protections are
1782 	 * compatible.
1783 	 */
1784 	mp = vp->v_mount;
1785 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1786 		maxprot = VM_PROT_NONE;
1787 		if ((prot & VM_PROT_EXECUTE) != 0)
1788 			return (EACCES);
1789 	} else
1790 		maxprot = VM_PROT_EXECUTE;
1791 	if ((fp->f_flag & FREAD) != 0)
1792 		maxprot |= VM_PROT_READ;
1793 	else if ((prot & VM_PROT_READ) != 0)
1794 		return (EACCES);
1795 
1796 	/*
1797 	 * If we are sharing potential changes via MAP_SHARED and we
1798 	 * are trying to get write permission although we opened it
1799 	 * without asking for it, bail out.
1800 	 *
1801 	 * Note that most character devices always share mappings.
1802 	 *
1803 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1804 	 * requests rather than doing it here.
1805 	 */
1806 	if ((flags & MAP_SHARED) != 0) {
1807 		if ((fp->f_flag & FWRITE) != 0)
1808 			maxprot |= VM_PROT_WRITE;
1809 		else if ((prot & VM_PROT_WRITE) != 0)
1810 			return (EACCES);
1811 	}
1812 	maxprot &= cap_maxprot;
1813 
1814 	linux_get_fop(filp, &fop, &ldev);
1815 	error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1816 	    &foff, fop, &object);
1817 	if (error != 0)
1818 		goto out;
1819 
1820 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1821 	    foff, FALSE, td);
1822 	if (error != 0)
1823 		vm_object_deallocate(object);
1824 out:
1825 	linux_drop_fop(ldev);
1826 	return (error);
1827 }
1828 
1829 static int
1830 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1831 {
1832 	struct linux_file *filp;
1833 	struct vnode *vp;
1834 	int error;
1835 
1836 	filp = (struct linux_file *)fp->f_data;
1837 	if (filp->f_vnode == NULL)
1838 		return (EOPNOTSUPP);
1839 
1840 	vp = filp->f_vnode;
1841 
1842 	vn_lock(vp, LK_SHARED | LK_RETRY);
1843 	error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1844 	VOP_UNLOCK(vp);
1845 
1846 	return (error);
1847 }
1848 
1849 static int
1850 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1851     struct filedesc *fdp)
1852 {
1853 	struct linux_file *filp;
1854 	struct vnode *vp;
1855 	int error;
1856 
1857 	filp = fp->f_data;
1858 	vp = filp->f_vnode;
1859 	if (vp == NULL) {
1860 		error = 0;
1861 		kif->kf_type = KF_TYPE_DEV;
1862 	} else {
1863 		vref(vp);
1864 		FILEDESC_SUNLOCK(fdp);
1865 		error = vn_fill_kinfo_vnode(vp, kif);
1866 		vrele(vp);
1867 		kif->kf_type = KF_TYPE_VNODE;
1868 		FILEDESC_SLOCK(fdp);
1869 	}
1870 	return (error);
1871 }
1872 
1873 unsigned int
1874 linux_iminor(struct inode *inode)
1875 {
1876 	struct linux_cdev *ldev;
1877 
1878 	if (inode == NULL || inode->v_rdev == NULL ||
1879 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1880 		return (-1U);
1881 	ldev = inode->v_rdev->si_drv1;
1882 	if (ldev == NULL)
1883 		return (-1U);
1884 
1885 	return (minor(ldev->dev));
1886 }
1887 
1888 struct fileops linuxfileops = {
1889 	.fo_read = linux_file_read,
1890 	.fo_write = linux_file_write,
1891 	.fo_truncate = invfo_truncate,
1892 	.fo_kqfilter = linux_file_kqfilter,
1893 	.fo_stat = linux_file_stat,
1894 	.fo_fill_kinfo = linux_file_fill_kinfo,
1895 	.fo_poll = linux_file_poll,
1896 	.fo_close = linux_file_close,
1897 	.fo_ioctl = linux_file_ioctl,
1898 	.fo_mmap = linux_file_mmap,
1899 	.fo_chmod = invfo_chmod,
1900 	.fo_chown = invfo_chown,
1901 	.fo_sendfile = invfo_sendfile,
1902 	.fo_flags = DFLAG_PASSABLE,
1903 };
1904 
1905 /*
1906  * Hash of vmmap addresses.  This is infrequently accessed and does not
1907  * need to be particularly large.  This is done because we must store the
1908  * caller's idea of the map size to properly unmap.
1909  */
1910 struct vmmap {
1911 	LIST_ENTRY(vmmap)	vm_next;
1912 	void 			*vm_addr;
1913 	unsigned long		vm_size;
1914 };
1915 
1916 struct vmmaphd {
1917 	struct vmmap *lh_first;
1918 };
1919 #define	VMMAP_HASH_SIZE	64
1920 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1921 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1922 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1923 static struct mtx vmmaplock;
1924 
1925 static void
1926 vmmap_add(void *addr, unsigned long size)
1927 {
1928 	struct vmmap *vmmap;
1929 
1930 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1931 	mtx_lock(&vmmaplock);
1932 	vmmap->vm_size = size;
1933 	vmmap->vm_addr = addr;
1934 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1935 	mtx_unlock(&vmmaplock);
1936 }
1937 
1938 static struct vmmap *
1939 vmmap_remove(void *addr)
1940 {
1941 	struct vmmap *vmmap;
1942 
1943 	mtx_lock(&vmmaplock);
1944 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1945 		if (vmmap->vm_addr == addr)
1946 			break;
1947 	if (vmmap)
1948 		LIST_REMOVE(vmmap, vm_next);
1949 	mtx_unlock(&vmmaplock);
1950 
1951 	return (vmmap);
1952 }
1953 
1954 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1955 void *
1956 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1957 {
1958 	void *addr;
1959 
1960 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1961 	if (addr == NULL)
1962 		return (NULL);
1963 	vmmap_add(addr, size);
1964 
1965 	return (addr);
1966 }
1967 #endif
1968 
1969 void
1970 iounmap(void *addr)
1971 {
1972 	struct vmmap *vmmap;
1973 
1974 	vmmap = vmmap_remove(addr);
1975 	if (vmmap == NULL)
1976 		return;
1977 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1978 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1979 #endif
1980 	kfree(vmmap);
1981 }
1982 
1983 void *
1984 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1985 {
1986 	vm_offset_t off;
1987 	size_t size;
1988 
1989 	size = count * PAGE_SIZE;
1990 	off = kva_alloc(size);
1991 	if (off == 0)
1992 		return (NULL);
1993 	vmmap_add((void *)off, size);
1994 	pmap_qenter(off, pages, count);
1995 
1996 	return ((void *)off);
1997 }
1998 
1999 void
2000 vunmap(void *addr)
2001 {
2002 	struct vmmap *vmmap;
2003 
2004 	vmmap = vmmap_remove(addr);
2005 	if (vmmap == NULL)
2006 		return;
2007 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
2008 	kva_free((vm_offset_t)addr, vmmap->vm_size);
2009 	kfree(vmmap);
2010 }
2011 
2012 static char *
2013 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
2014 {
2015 	unsigned int len;
2016 	char *p;
2017 	va_list aq;
2018 
2019 	va_copy(aq, ap);
2020 	len = vsnprintf(NULL, 0, fmt, aq);
2021 	va_end(aq);
2022 
2023 	if (dev != NULL)
2024 		p = devm_kmalloc(dev, len + 1, gfp);
2025 	else
2026 		p = kmalloc(len + 1, gfp);
2027 	if (p != NULL)
2028 		vsnprintf(p, len + 1, fmt, ap);
2029 
2030 	return (p);
2031 }
2032 
2033 char *
2034 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
2035 {
2036 
2037 	return (devm_kvasprintf(NULL, gfp, fmt, ap));
2038 }
2039 
2040 char *
2041 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
2042 {
2043 	va_list ap;
2044 	char *p;
2045 
2046 	va_start(ap, fmt);
2047 	p = devm_kvasprintf(dev, gfp, fmt, ap);
2048 	va_end(ap);
2049 
2050 	return (p);
2051 }
2052 
2053 char *
2054 kasprintf(gfp_t gfp, const char *fmt, ...)
2055 {
2056 	va_list ap;
2057 	char *p;
2058 
2059 	va_start(ap, fmt);
2060 	p = kvasprintf(gfp, fmt, ap);
2061 	va_end(ap);
2062 
2063 	return (p);
2064 }
2065 
2066 static void
2067 linux_timer_callback_wrapper(void *context)
2068 {
2069 	struct timer_list *timer;
2070 
2071 	timer = context;
2072 
2073 	if (linux_set_current_flags(curthread, M_NOWAIT)) {
2074 		/* try again later */
2075 		callout_reset(&timer->callout, 1,
2076 		    &linux_timer_callback_wrapper, timer);
2077 		return;
2078 	}
2079 
2080 	timer->function(timer->data);
2081 }
2082 
2083 int
2084 mod_timer(struct timer_list *timer, int expires)
2085 {
2086 	int ret;
2087 
2088 	timer->expires = expires;
2089 	ret = callout_reset(&timer->callout,
2090 	    linux_timer_jiffies_until(expires),
2091 	    &linux_timer_callback_wrapper, timer);
2092 
2093 	MPASS(ret == 0 || ret == 1);
2094 
2095 	return (ret == 1);
2096 }
2097 
2098 void
2099 add_timer(struct timer_list *timer)
2100 {
2101 
2102 	callout_reset(&timer->callout,
2103 	    linux_timer_jiffies_until(timer->expires),
2104 	    &linux_timer_callback_wrapper, timer);
2105 }
2106 
2107 void
2108 add_timer_on(struct timer_list *timer, int cpu)
2109 {
2110 
2111 	callout_reset_on(&timer->callout,
2112 	    linux_timer_jiffies_until(timer->expires),
2113 	    &linux_timer_callback_wrapper, timer, cpu);
2114 }
2115 
2116 int
2117 del_timer(struct timer_list *timer)
2118 {
2119 
2120 	if (callout_stop(&(timer)->callout) == -1)
2121 		return (0);
2122 	return (1);
2123 }
2124 
2125 int
2126 del_timer_sync(struct timer_list *timer)
2127 {
2128 
2129 	if (callout_drain(&(timer)->callout) == -1)
2130 		return (0);
2131 	return (1);
2132 }
2133 
2134 /* greatest common divisor, Euclid equation */
2135 static uint64_t
2136 lkpi_gcd_64(uint64_t a, uint64_t b)
2137 {
2138 	uint64_t an;
2139 	uint64_t bn;
2140 
2141 	while (b != 0) {
2142 		an = b;
2143 		bn = a % b;
2144 		a = an;
2145 		b = bn;
2146 	}
2147 	return (a);
2148 }
2149 
2150 uint64_t lkpi_nsec2hz_rem;
2151 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2152 uint64_t lkpi_nsec2hz_max;
2153 
2154 uint64_t lkpi_usec2hz_rem;
2155 uint64_t lkpi_usec2hz_div = 1000000ULL;
2156 uint64_t lkpi_usec2hz_max;
2157 
2158 uint64_t lkpi_msec2hz_rem;
2159 uint64_t lkpi_msec2hz_div = 1000ULL;
2160 uint64_t lkpi_msec2hz_max;
2161 
2162 static void
2163 linux_timer_init(void *arg)
2164 {
2165 	uint64_t gcd;
2166 
2167 	/*
2168 	 * Compute an internal HZ value which can divide 2**32 to
2169 	 * avoid timer rounding problems when the tick value wraps
2170 	 * around 2**32:
2171 	 */
2172 	linux_timer_hz_mask = 1;
2173 	while (linux_timer_hz_mask < (unsigned long)hz)
2174 		linux_timer_hz_mask *= 2;
2175 	linux_timer_hz_mask--;
2176 
2177 	/* compute some internal constants */
2178 
2179 	lkpi_nsec2hz_rem = hz;
2180 	lkpi_usec2hz_rem = hz;
2181 	lkpi_msec2hz_rem = hz;
2182 
2183 	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2184 	lkpi_nsec2hz_rem /= gcd;
2185 	lkpi_nsec2hz_div /= gcd;
2186 	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2187 
2188 	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2189 	lkpi_usec2hz_rem /= gcd;
2190 	lkpi_usec2hz_div /= gcd;
2191 	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2192 
2193 	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2194 	lkpi_msec2hz_rem /= gcd;
2195 	lkpi_msec2hz_div /= gcd;
2196 	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2197 }
2198 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2199 
2200 void
2201 linux_complete_common(struct completion *c, int all)
2202 {
2203 	int wakeup_swapper;
2204 
2205 	sleepq_lock(c);
2206 	if (all) {
2207 		c->done = UINT_MAX;
2208 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2209 	} else {
2210 		if (c->done != UINT_MAX)
2211 			c->done++;
2212 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2213 	}
2214 	sleepq_release(c);
2215 	if (wakeup_swapper)
2216 		kick_proc0();
2217 }
2218 
2219 /*
2220  * Indefinite wait for done != 0 with or without signals.
2221  */
2222 int
2223 linux_wait_for_common(struct completion *c, int flags)
2224 {
2225 	struct task_struct *task;
2226 	int error;
2227 
2228 	if (SCHEDULER_STOPPED())
2229 		return (0);
2230 
2231 	task = current;
2232 
2233 	if (flags != 0)
2234 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2235 	else
2236 		flags = SLEEPQ_SLEEP;
2237 	error = 0;
2238 	for (;;) {
2239 		sleepq_lock(c);
2240 		if (c->done)
2241 			break;
2242 		sleepq_add(c, NULL, "completion", flags, 0);
2243 		if (flags & SLEEPQ_INTERRUPTIBLE) {
2244 			DROP_GIANT();
2245 			error = -sleepq_wait_sig(c, 0);
2246 			PICKUP_GIANT();
2247 			if (error != 0) {
2248 				linux_schedule_save_interrupt_value(task, error);
2249 				error = -ERESTARTSYS;
2250 				goto intr;
2251 			}
2252 		} else {
2253 			DROP_GIANT();
2254 			sleepq_wait(c, 0);
2255 			PICKUP_GIANT();
2256 		}
2257 	}
2258 	if (c->done != UINT_MAX)
2259 		c->done--;
2260 	sleepq_release(c);
2261 
2262 intr:
2263 	return (error);
2264 }
2265 
2266 /*
2267  * Time limited wait for done != 0 with or without signals.
2268  */
2269 int
2270 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2271 {
2272 	struct task_struct *task;
2273 	int end = jiffies + timeout;
2274 	int error;
2275 
2276 	if (SCHEDULER_STOPPED())
2277 		return (0);
2278 
2279 	task = current;
2280 
2281 	if (flags != 0)
2282 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2283 	else
2284 		flags = SLEEPQ_SLEEP;
2285 
2286 	for (;;) {
2287 		sleepq_lock(c);
2288 		if (c->done)
2289 			break;
2290 		sleepq_add(c, NULL, "completion", flags, 0);
2291 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2292 
2293 		DROP_GIANT();
2294 		if (flags & SLEEPQ_INTERRUPTIBLE)
2295 			error = -sleepq_timedwait_sig(c, 0);
2296 		else
2297 			error = -sleepq_timedwait(c, 0);
2298 		PICKUP_GIANT();
2299 
2300 		if (error != 0) {
2301 			/* check for timeout */
2302 			if (error == -EWOULDBLOCK) {
2303 				error = 0;	/* timeout */
2304 			} else {
2305 				/* signal happened */
2306 				linux_schedule_save_interrupt_value(task, error);
2307 				error = -ERESTARTSYS;
2308 			}
2309 			goto done;
2310 		}
2311 	}
2312 	if (c->done != UINT_MAX)
2313 		c->done--;
2314 	sleepq_release(c);
2315 
2316 	/* return how many jiffies are left */
2317 	error = linux_timer_jiffies_until(end);
2318 done:
2319 	return (error);
2320 }
2321 
2322 int
2323 linux_try_wait_for_completion(struct completion *c)
2324 {
2325 	int isdone;
2326 
2327 	sleepq_lock(c);
2328 	isdone = (c->done != 0);
2329 	if (c->done != 0 && c->done != UINT_MAX)
2330 		c->done--;
2331 	sleepq_release(c);
2332 	return (isdone);
2333 }
2334 
2335 int
2336 linux_completion_done(struct completion *c)
2337 {
2338 	int isdone;
2339 
2340 	sleepq_lock(c);
2341 	isdone = (c->done != 0);
2342 	sleepq_release(c);
2343 	return (isdone);
2344 }
2345 
2346 static void
2347 linux_cdev_deref(struct linux_cdev *ldev)
2348 {
2349 	if (refcount_release(&ldev->refs) &&
2350 	    ldev->kobj.ktype == &linux_cdev_ktype)
2351 		kfree(ldev);
2352 }
2353 
2354 static void
2355 linux_cdev_release(struct kobject *kobj)
2356 {
2357 	struct linux_cdev *cdev;
2358 	struct kobject *parent;
2359 
2360 	cdev = container_of(kobj, struct linux_cdev, kobj);
2361 	parent = kobj->parent;
2362 	linux_destroy_dev(cdev);
2363 	linux_cdev_deref(cdev);
2364 	kobject_put(parent);
2365 }
2366 
2367 static void
2368 linux_cdev_static_release(struct kobject *kobj)
2369 {
2370 	struct cdev *cdev;
2371 	struct linux_cdev *ldev;
2372 
2373 	ldev = container_of(kobj, struct linux_cdev, kobj);
2374 	cdev = ldev->cdev;
2375 	if (cdev != NULL) {
2376 		destroy_dev(cdev);
2377 		ldev->cdev = NULL;
2378 	}
2379 	kobject_put(kobj->parent);
2380 }
2381 
2382 int
2383 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2384 {
2385 	int ret;
2386 
2387 	if (dev->devt != 0) {
2388 		/* Set parent kernel object. */
2389 		ldev->kobj.parent = &dev->kobj;
2390 
2391 		/*
2392 		 * Unlike Linux we require the kobject of the
2393 		 * character device structure to have a valid name
2394 		 * before calling this function:
2395 		 */
2396 		if (ldev->kobj.name == NULL)
2397 			return (-EINVAL);
2398 
2399 		ret = cdev_add(ldev, dev->devt, 1);
2400 		if (ret)
2401 			return (ret);
2402 	}
2403 	ret = device_add(dev);
2404 	if (ret != 0 && dev->devt != 0)
2405 		cdev_del(ldev);
2406 	return (ret);
2407 }
2408 
2409 void
2410 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2411 {
2412 	device_del(dev);
2413 
2414 	if (dev->devt != 0)
2415 		cdev_del(ldev);
2416 }
2417 
2418 static void
2419 linux_destroy_dev(struct linux_cdev *ldev)
2420 {
2421 
2422 	if (ldev->cdev == NULL)
2423 		return;
2424 
2425 	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2426 	MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2427 
2428 	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2429 	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2430 		pause("ldevdtr", hz / 4);
2431 
2432 	destroy_dev(ldev->cdev);
2433 	ldev->cdev = NULL;
2434 }
2435 
2436 const struct kobj_type linux_cdev_ktype = {
2437 	.release = linux_cdev_release,
2438 };
2439 
2440 const struct kobj_type linux_cdev_static_ktype = {
2441 	.release = linux_cdev_static_release,
2442 };
2443 
2444 static void
2445 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2446 {
2447 	struct notifier_block *nb;
2448 	struct netdev_notifier_info ni;
2449 
2450 	nb = arg;
2451 	ni.ifp = ifp;
2452 	ni.dev = (struct net_device *)ifp;
2453 	if (linkstate == LINK_STATE_UP)
2454 		nb->notifier_call(nb, NETDEV_UP, &ni);
2455 	else
2456 		nb->notifier_call(nb, NETDEV_DOWN, &ni);
2457 }
2458 
2459 static void
2460 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2461 {
2462 	struct notifier_block *nb;
2463 	struct netdev_notifier_info ni;
2464 
2465 	nb = arg;
2466 	ni.ifp = ifp;
2467 	ni.dev = (struct net_device *)ifp;
2468 	nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2469 }
2470 
2471 static void
2472 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2473 {
2474 	struct notifier_block *nb;
2475 	struct netdev_notifier_info ni;
2476 
2477 	nb = arg;
2478 	ni.ifp = ifp;
2479 	ni.dev = (struct net_device *)ifp;
2480 	nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2481 }
2482 
2483 static void
2484 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2485 {
2486 	struct notifier_block *nb;
2487 	struct netdev_notifier_info ni;
2488 
2489 	nb = arg;
2490 	ni.ifp = ifp;
2491 	ni.dev = (struct net_device *)ifp;
2492 	nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2493 }
2494 
2495 static void
2496 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2497 {
2498 	struct notifier_block *nb;
2499 	struct netdev_notifier_info ni;
2500 
2501 	nb = arg;
2502 	ni.ifp = ifp;
2503 	ni.dev = (struct net_device *)ifp;
2504 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2505 }
2506 
2507 int
2508 register_netdevice_notifier(struct notifier_block *nb)
2509 {
2510 
2511 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2512 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2513 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2514 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2515 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2516 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2517 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2518 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2519 
2520 	return (0);
2521 }
2522 
2523 int
2524 register_inetaddr_notifier(struct notifier_block *nb)
2525 {
2526 
2527 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2528 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2529 	return (0);
2530 }
2531 
2532 int
2533 unregister_netdevice_notifier(struct notifier_block *nb)
2534 {
2535 
2536 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2537 	    nb->tags[NETDEV_UP]);
2538 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2539 	    nb->tags[NETDEV_REGISTER]);
2540 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2541 	    nb->tags[NETDEV_UNREGISTER]);
2542 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2543 	    nb->tags[NETDEV_CHANGEADDR]);
2544 
2545 	return (0);
2546 }
2547 
2548 int
2549 unregister_inetaddr_notifier(struct notifier_block *nb)
2550 {
2551 
2552 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2553 	    nb->tags[NETDEV_CHANGEIFADDR]);
2554 
2555 	return (0);
2556 }
2557 
2558 struct list_sort_thunk {
2559 	int (*cmp)(void *, struct list_head *, struct list_head *);
2560 	void *priv;
2561 };
2562 
2563 static inline int
2564 linux_le_cmp(void *priv, const void *d1, const void *d2)
2565 {
2566 	struct list_head *le1, *le2;
2567 	struct list_sort_thunk *thunk;
2568 
2569 	thunk = priv;
2570 	le1 = *(__DECONST(struct list_head **, d1));
2571 	le2 = *(__DECONST(struct list_head **, d2));
2572 	return ((thunk->cmp)(thunk->priv, le1, le2));
2573 }
2574 
2575 void
2576 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2577     struct list_head *a, struct list_head *b))
2578 {
2579 	struct list_sort_thunk thunk;
2580 	struct list_head **ar, *le;
2581 	size_t count, i;
2582 
2583 	count = 0;
2584 	list_for_each(le, head)
2585 		count++;
2586 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2587 	i = 0;
2588 	list_for_each(le, head)
2589 		ar[i++] = le;
2590 	thunk.cmp = cmp;
2591 	thunk.priv = priv;
2592 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2593 	INIT_LIST_HEAD(head);
2594 	for (i = 0; i < count; i++)
2595 		list_add_tail(ar[i], head);
2596 	free(ar, M_KMALLOC);
2597 }
2598 
2599 #if defined(__i386__) || defined(__amd64__)
2600 int
2601 linux_wbinvd_on_all_cpus(void)
2602 {
2603 
2604 	pmap_invalidate_cache();
2605 	return (0);
2606 }
2607 #endif
2608 
2609 int
2610 linux_on_each_cpu(void callback(void *), void *data)
2611 {
2612 
2613 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2614 	    smp_no_rendezvous_barrier, data);
2615 	return (0);
2616 }
2617 
2618 int
2619 linux_in_atomic(void)
2620 {
2621 
2622 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2623 }
2624 
2625 struct linux_cdev *
2626 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2627 {
2628 	dev_t dev = MKDEV(major, minor);
2629 	struct cdev *cdev;
2630 
2631 	dev_lock();
2632 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2633 		struct linux_cdev *ldev = cdev->si_drv1;
2634 		if (ldev->dev == dev &&
2635 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2636 			break;
2637 		}
2638 	}
2639 	dev_unlock();
2640 
2641 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2642 }
2643 
2644 int
2645 __register_chrdev(unsigned int major, unsigned int baseminor,
2646     unsigned int count, const char *name,
2647     const struct file_operations *fops)
2648 {
2649 	struct linux_cdev *cdev;
2650 	int ret = 0;
2651 	int i;
2652 
2653 	for (i = baseminor; i < baseminor + count; i++) {
2654 		cdev = cdev_alloc();
2655 		cdev->ops = fops;
2656 		kobject_set_name(&cdev->kobj, name);
2657 
2658 		ret = cdev_add(cdev, makedev(major, i), 1);
2659 		if (ret != 0)
2660 			break;
2661 	}
2662 	return (ret);
2663 }
2664 
2665 int
2666 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2667     unsigned int count, const char *name,
2668     const struct file_operations *fops, uid_t uid,
2669     gid_t gid, int mode)
2670 {
2671 	struct linux_cdev *cdev;
2672 	int ret = 0;
2673 	int i;
2674 
2675 	for (i = baseminor; i < baseminor + count; i++) {
2676 		cdev = cdev_alloc();
2677 		cdev->ops = fops;
2678 		kobject_set_name(&cdev->kobj, name);
2679 
2680 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2681 		if (ret != 0)
2682 			break;
2683 	}
2684 	return (ret);
2685 }
2686 
2687 void
2688 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2689     unsigned int count, const char *name)
2690 {
2691 	struct linux_cdev *cdevp;
2692 	int i;
2693 
2694 	for (i = baseminor; i < baseminor + count; i++) {
2695 		cdevp = linux_find_cdev(name, major, i);
2696 		if (cdevp != NULL)
2697 			cdev_del(cdevp);
2698 	}
2699 }
2700 
2701 void
2702 linux_dump_stack(void)
2703 {
2704 #ifdef STACK
2705 	struct stack st;
2706 
2707 	stack_save(&st);
2708 	stack_print(&st);
2709 #endif
2710 }
2711 
2712 int
2713 linuxkpi_net_ratelimit(void)
2714 {
2715 
2716 	return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2717 	   lkpi_net_maxpps));
2718 }
2719 
2720 struct io_mapping *
2721 io_mapping_create_wc(resource_size_t base, unsigned long size)
2722 {
2723 	struct io_mapping *mapping;
2724 
2725 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2726 	if (mapping == NULL)
2727 		return (NULL);
2728 	return (io_mapping_init_wc(mapping, base, size));
2729 }
2730 
2731 #if defined(__i386__) || defined(__amd64__)
2732 bool linux_cpu_has_clflush;
2733 #endif
2734 
2735 static void
2736 linux_compat_init(void *arg)
2737 {
2738 	struct sysctl_oid *rootoid;
2739 	int i;
2740 
2741 #if defined(__i386__) || defined(__amd64__)
2742 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2743 #endif
2744 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2745 
2746 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2747 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2748 	kobject_init(&linux_class_root, &linux_class_ktype);
2749 	kobject_set_name(&linux_class_root, "class");
2750 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2751 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2752 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2753 	kobject_set_name(&linux_root_device.kobj, "device");
2754 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2755 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2756 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2757 	linux_root_device.bsddev = root_bus;
2758 	linux_class_misc.name = "misc";
2759 	class_register(&linux_class_misc);
2760 	INIT_LIST_HEAD(&pci_drivers);
2761 	INIT_LIST_HEAD(&pci_devices);
2762 	spin_lock_init(&pci_lock);
2763 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2764 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2765 		LIST_INIT(&vmmaphead[i]);
2766 	init_waitqueue_head(&linux_bit_waitq);
2767 	init_waitqueue_head(&linux_var_waitq);
2768 
2769 	CPU_COPY(&all_cpus, &cpu_online_mask);
2770 }
2771 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2772 
2773 static void
2774 linux_compat_uninit(void *arg)
2775 {
2776 	linux_kobject_kfree_name(&linux_class_root);
2777 	linux_kobject_kfree_name(&linux_root_device.kobj);
2778 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2779 
2780 	mtx_destroy(&vmmaplock);
2781 	spin_lock_destroy(&pci_lock);
2782 	rw_destroy(&linux_vma_lock);
2783 }
2784 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2785 
2786 /*
2787  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2788  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2789  * used. Assert these types have the same size, else some parts of the
2790  * LinuxKPI may not work like expected:
2791  */
2792 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2793