1 /*- 2 * Copyright (c) 2010 Isilon Systems, Inc. 3 * Copyright (c) 2010 iX Systems, Inc. 4 * Copyright (c) 2010 Panasas, Inc. 5 * Copyright (c) 2013-2021 Mellanox Technologies, Ltd. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_stack.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/sysctl.h> 40 #include <sys/proc.h> 41 #include <sys/sglist.h> 42 #include <sys/sleepqueue.h> 43 #include <sys/refcount.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/bus.h> 47 #include <sys/eventhandler.h> 48 #include <sys/fcntl.h> 49 #include <sys/file.h> 50 #include <sys/filio.h> 51 #include <sys/rwlock.h> 52 #include <sys/mman.h> 53 #include <sys/stack.h> 54 #include <sys/sysent.h> 55 #include <sys/time.h> 56 #include <sys/user.h> 57 58 #include <vm/vm.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_object.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_pager.h> 63 64 #include <machine/stdarg.h> 65 66 #if defined(__i386__) || defined(__amd64__) 67 #include <machine/md_var.h> 68 #endif 69 70 #include <linux/kobject.h> 71 #include <linux/cpu.h> 72 #include <linux/device.h> 73 #include <linux/slab.h> 74 #include <linux/module.h> 75 #include <linux/moduleparam.h> 76 #include <linux/cdev.h> 77 #include <linux/file.h> 78 #include <linux/sysfs.h> 79 #include <linux/mm.h> 80 #include <linux/io.h> 81 #include <linux/vmalloc.h> 82 #include <linux/netdevice.h> 83 #include <linux/timer.h> 84 #include <linux/interrupt.h> 85 #include <linux/uaccess.h> 86 #include <linux/list.h> 87 #include <linux/kthread.h> 88 #include <linux/kernel.h> 89 #include <linux/compat.h> 90 #include <linux/io-mapping.h> 91 #include <linux/poll.h> 92 #include <linux/smp.h> 93 #include <linux/wait_bit.h> 94 #include <linux/rcupdate.h> 95 #include <linux/interval_tree.h> 96 #include <linux/interval_tree_generic.h> 97 98 #if defined(__i386__) || defined(__amd64__) 99 #include <asm/smp.h> 100 #include <asm/processor.h> 101 #endif 102 103 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 104 "LinuxKPI parameters"); 105 106 int linuxkpi_debug; 107 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN, 108 &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable."); 109 110 int linuxkpi_warn_dump_stack = 0; 111 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN, 112 &linuxkpi_warn_dump_stack, 0, 113 "Set to enable stack traces from WARN_ON(). Clear to disable."); 114 115 static struct timeval lkpi_net_lastlog; 116 static int lkpi_net_curpps; 117 static int lkpi_net_maxpps = 99; 118 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN, 119 &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second."); 120 121 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat"); 122 123 #include <linux/rbtree.h> 124 /* Undo Linux compat changes. */ 125 #undef RB_ROOT 126 #undef file 127 #undef cdev 128 #define RB_ROOT(head) (head)->rbh_root 129 130 static void linux_destroy_dev(struct linux_cdev *); 131 static void linux_cdev_deref(struct linux_cdev *ldev); 132 static struct vm_area_struct *linux_cdev_handle_find(void *handle); 133 134 cpumask_t cpu_online_mask; 135 static cpumask_t static_single_cpu_mask[MAXCPU]; 136 struct kobject linux_class_root; 137 struct device linux_root_device; 138 struct class linux_class_misc; 139 struct list_head pci_drivers; 140 struct list_head pci_devices; 141 spinlock_t pci_lock; 142 143 unsigned long linux_timer_hz_mask; 144 145 wait_queue_head_t linux_bit_waitq; 146 wait_queue_head_t linux_var_waitq; 147 148 int 149 panic_cmp(struct rb_node *one, struct rb_node *two) 150 { 151 panic("no cmp"); 152 } 153 154 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp); 155 156 #define START(node) ((node)->start) 157 #define LAST(node) ((node)->last) 158 159 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START, 160 LAST,, lkpi_interval_tree) 161 162 struct kobject * 163 kobject_create(void) 164 { 165 struct kobject *kobj; 166 167 kobj = kzalloc(sizeof(*kobj), GFP_KERNEL); 168 if (kobj == NULL) 169 return (NULL); 170 kobject_init(kobj, &linux_kfree_type); 171 172 return (kobj); 173 } 174 175 176 int 177 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args) 178 { 179 va_list tmp_va; 180 int len; 181 char *old; 182 char *name; 183 char dummy; 184 185 old = kobj->name; 186 187 if (old && fmt == NULL) 188 return (0); 189 190 /* compute length of string */ 191 va_copy(tmp_va, args); 192 len = vsnprintf(&dummy, 0, fmt, tmp_va); 193 va_end(tmp_va); 194 195 /* account for zero termination */ 196 len++; 197 198 /* check for error */ 199 if (len < 1) 200 return (-EINVAL); 201 202 /* allocate memory for string */ 203 name = kzalloc(len, GFP_KERNEL); 204 if (name == NULL) 205 return (-ENOMEM); 206 vsnprintf(name, len, fmt, args); 207 kobj->name = name; 208 209 /* free old string */ 210 kfree(old); 211 212 /* filter new string */ 213 for (; *name != '\0'; name++) 214 if (*name == '/') 215 *name = '!'; 216 return (0); 217 } 218 219 int 220 kobject_set_name(struct kobject *kobj, const char *fmt, ...) 221 { 222 va_list args; 223 int error; 224 225 va_start(args, fmt); 226 error = kobject_set_name_vargs(kobj, fmt, args); 227 va_end(args); 228 229 return (error); 230 } 231 232 static int 233 kobject_add_complete(struct kobject *kobj, struct kobject *parent) 234 { 235 const struct kobj_type *t; 236 int error; 237 238 kobj->parent = parent; 239 error = sysfs_create_dir(kobj); 240 if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) { 241 struct attribute **attr; 242 t = kobj->ktype; 243 244 for (attr = t->default_attrs; *attr != NULL; attr++) { 245 error = sysfs_create_file(kobj, *attr); 246 if (error) 247 break; 248 } 249 if (error) 250 sysfs_remove_dir(kobj); 251 } 252 return (error); 253 } 254 255 int 256 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...) 257 { 258 va_list args; 259 int error; 260 261 va_start(args, fmt); 262 error = kobject_set_name_vargs(kobj, fmt, args); 263 va_end(args); 264 if (error) 265 return (error); 266 267 return kobject_add_complete(kobj, parent); 268 } 269 270 void 271 linux_kobject_release(struct kref *kref) 272 { 273 struct kobject *kobj; 274 char *name; 275 276 kobj = container_of(kref, struct kobject, kref); 277 sysfs_remove_dir(kobj); 278 name = kobj->name; 279 if (kobj->ktype && kobj->ktype->release) 280 kobj->ktype->release(kobj); 281 kfree(name); 282 } 283 284 static void 285 linux_kobject_kfree(struct kobject *kobj) 286 { 287 kfree(kobj); 288 } 289 290 static void 291 linux_kobject_kfree_name(struct kobject *kobj) 292 { 293 if (kobj) { 294 kfree(kobj->name); 295 } 296 } 297 298 const struct kobj_type linux_kfree_type = { 299 .release = linux_kobject_kfree 300 }; 301 302 static ssize_t 303 lkpi_kobj_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) 304 { 305 struct kobj_attribute *ka = 306 container_of(attr, struct kobj_attribute, attr); 307 308 if (ka->show == NULL) 309 return (-EIO); 310 311 return (ka->show(kobj, ka, buf)); 312 } 313 314 static ssize_t 315 lkpi_kobj_attr_store(struct kobject *kobj, struct attribute *attr, 316 const char *buf, size_t count) 317 { 318 struct kobj_attribute *ka = 319 container_of(attr, struct kobj_attribute, attr); 320 321 if (ka->store == NULL) 322 return (-EIO); 323 324 return (ka->store(kobj, ka, buf, count)); 325 } 326 327 const struct sysfs_ops kobj_sysfs_ops = { 328 .show = lkpi_kobj_attr_show, 329 .store = lkpi_kobj_attr_store, 330 }; 331 332 static void 333 linux_device_release(struct device *dev) 334 { 335 pr_debug("linux_device_release: %s\n", dev_name(dev)); 336 kfree(dev); 337 } 338 339 static ssize_t 340 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf) 341 { 342 struct class_attribute *dattr; 343 ssize_t error; 344 345 dattr = container_of(attr, struct class_attribute, attr); 346 error = -EIO; 347 if (dattr->show) 348 error = dattr->show(container_of(kobj, struct class, kobj), 349 dattr, buf); 350 return (error); 351 } 352 353 static ssize_t 354 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf, 355 size_t count) 356 { 357 struct class_attribute *dattr; 358 ssize_t error; 359 360 dattr = container_of(attr, struct class_attribute, attr); 361 error = -EIO; 362 if (dattr->store) 363 error = dattr->store(container_of(kobj, struct class, kobj), 364 dattr, buf, count); 365 return (error); 366 } 367 368 static void 369 linux_class_release(struct kobject *kobj) 370 { 371 struct class *class; 372 373 class = container_of(kobj, struct class, kobj); 374 if (class->class_release) 375 class->class_release(class); 376 } 377 378 static const struct sysfs_ops linux_class_sysfs = { 379 .show = linux_class_show, 380 .store = linux_class_store, 381 }; 382 383 const struct kobj_type linux_class_ktype = { 384 .release = linux_class_release, 385 .sysfs_ops = &linux_class_sysfs 386 }; 387 388 static void 389 linux_dev_release(struct kobject *kobj) 390 { 391 struct device *dev; 392 393 dev = container_of(kobj, struct device, kobj); 394 /* This is the precedence defined by linux. */ 395 if (dev->release) 396 dev->release(dev); 397 else if (dev->class && dev->class->dev_release) 398 dev->class->dev_release(dev); 399 } 400 401 static ssize_t 402 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf) 403 { 404 struct device_attribute *dattr; 405 ssize_t error; 406 407 dattr = container_of(attr, struct device_attribute, attr); 408 error = -EIO; 409 if (dattr->show) 410 error = dattr->show(container_of(kobj, struct device, kobj), 411 dattr, buf); 412 return (error); 413 } 414 415 static ssize_t 416 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf, 417 size_t count) 418 { 419 struct device_attribute *dattr; 420 ssize_t error; 421 422 dattr = container_of(attr, struct device_attribute, attr); 423 error = -EIO; 424 if (dattr->store) 425 error = dattr->store(container_of(kobj, struct device, kobj), 426 dattr, buf, count); 427 return (error); 428 } 429 430 static const struct sysfs_ops linux_dev_sysfs = { 431 .show = linux_dev_show, 432 .store = linux_dev_store, 433 }; 434 435 const struct kobj_type linux_dev_ktype = { 436 .release = linux_dev_release, 437 .sysfs_ops = &linux_dev_sysfs 438 }; 439 440 struct device * 441 device_create(struct class *class, struct device *parent, dev_t devt, 442 void *drvdata, const char *fmt, ...) 443 { 444 struct device *dev; 445 va_list args; 446 447 dev = kzalloc(sizeof(*dev), M_WAITOK); 448 dev->parent = parent; 449 dev->class = class; 450 dev->devt = devt; 451 dev->driver_data = drvdata; 452 dev->release = linux_device_release; 453 va_start(args, fmt); 454 kobject_set_name_vargs(&dev->kobj, fmt, args); 455 va_end(args); 456 device_register(dev); 457 458 return (dev); 459 } 460 461 struct device * 462 device_create_groups_vargs(struct class *class, struct device *parent, 463 dev_t devt, void *drvdata, const struct attribute_group **groups, 464 const char *fmt, va_list args) 465 { 466 struct device *dev = NULL; 467 int retval = -ENODEV; 468 469 if (class == NULL || IS_ERR(class)) 470 goto error; 471 472 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 473 if (!dev) { 474 retval = -ENOMEM; 475 goto error; 476 } 477 478 dev->devt = devt; 479 dev->class = class; 480 dev->parent = parent; 481 dev->groups = groups; 482 dev->release = device_create_release; 483 /* device_initialize() needs the class and parent to be set */ 484 device_initialize(dev); 485 dev_set_drvdata(dev, drvdata); 486 487 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 488 if (retval) 489 goto error; 490 491 retval = device_add(dev); 492 if (retval) 493 goto error; 494 495 return dev; 496 497 error: 498 put_device(dev); 499 return ERR_PTR(retval); 500 } 501 502 struct class * 503 class_create(struct module *owner, const char *name) 504 { 505 struct class *class; 506 int error; 507 508 class = kzalloc(sizeof(*class), M_WAITOK); 509 class->owner = owner; 510 class->name = name; 511 class->class_release = linux_class_kfree; 512 error = class_register(class); 513 if (error) { 514 kfree(class); 515 return (NULL); 516 } 517 518 return (class); 519 } 520 521 int 522 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype, 523 struct kobject *parent, const char *fmt, ...) 524 { 525 va_list args; 526 int error; 527 528 kobject_init(kobj, ktype); 529 kobj->ktype = ktype; 530 kobj->parent = parent; 531 kobj->name = NULL; 532 533 va_start(args, fmt); 534 error = kobject_set_name_vargs(kobj, fmt, args); 535 va_end(args); 536 if (error) 537 return (error); 538 return kobject_add_complete(kobj, parent); 539 } 540 541 static void 542 linux_kq_lock(void *arg) 543 { 544 spinlock_t *s = arg; 545 546 spin_lock(s); 547 } 548 static void 549 linux_kq_unlock(void *arg) 550 { 551 spinlock_t *s = arg; 552 553 spin_unlock(s); 554 } 555 556 static void 557 linux_kq_assert_lock(void *arg, int what) 558 { 559 #ifdef INVARIANTS 560 spinlock_t *s = arg; 561 562 if (what == LA_LOCKED) 563 mtx_assert(&s->m, MA_OWNED); 564 else 565 mtx_assert(&s->m, MA_NOTOWNED); 566 #endif 567 } 568 569 static void 570 linux_file_kqfilter_poll(struct linux_file *, int); 571 572 struct linux_file * 573 linux_file_alloc(void) 574 { 575 struct linux_file *filp; 576 577 filp = kzalloc(sizeof(*filp), GFP_KERNEL); 578 579 /* set initial refcount */ 580 filp->f_count = 1; 581 582 /* setup fields needed by kqueue support */ 583 spin_lock_init(&filp->f_kqlock); 584 knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock, 585 linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock); 586 587 return (filp); 588 } 589 590 void 591 linux_file_free(struct linux_file *filp) 592 { 593 if (filp->_file == NULL) { 594 if (filp->f_op != NULL && filp->f_op->release != NULL) 595 filp->f_op->release(filp->f_vnode, filp); 596 if (filp->f_shmem != NULL) 597 vm_object_deallocate(filp->f_shmem); 598 kfree_rcu(filp, rcu); 599 } else { 600 /* 601 * The close method of the character device or file 602 * will free the linux_file structure: 603 */ 604 _fdrop(filp->_file, curthread); 605 } 606 } 607 608 struct linux_cdev * 609 cdev_alloc(void) 610 { 611 struct linux_cdev *cdev; 612 613 cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK); 614 kobject_init(&cdev->kobj, &linux_cdev_ktype); 615 cdev->refs = 1; 616 return (cdev); 617 } 618 619 static int 620 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, 621 vm_page_t *mres) 622 { 623 struct vm_area_struct *vmap; 624 625 vmap = linux_cdev_handle_find(vm_obj->handle); 626 627 MPASS(vmap != NULL); 628 MPASS(vmap->vm_private_data == vm_obj->handle); 629 630 if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) { 631 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset; 632 vm_page_t page; 633 634 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 635 /* 636 * If the passed in result page is a fake 637 * page, update it with the new physical 638 * address. 639 */ 640 page = *mres; 641 vm_page_updatefake(page, paddr, vm_obj->memattr); 642 } else { 643 /* 644 * Replace the passed in "mres" page with our 645 * own fake page and free up the all of the 646 * original pages. 647 */ 648 VM_OBJECT_WUNLOCK(vm_obj); 649 page = vm_page_getfake(paddr, vm_obj->memattr); 650 VM_OBJECT_WLOCK(vm_obj); 651 652 vm_page_replace(page, vm_obj, (*mres)->pindex, *mres); 653 *mres = page; 654 } 655 vm_page_valid(page); 656 return (VM_PAGER_OK); 657 } 658 return (VM_PAGER_FAIL); 659 } 660 661 static int 662 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type, 663 vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last) 664 { 665 struct vm_area_struct *vmap; 666 int err; 667 668 /* get VM area structure */ 669 vmap = linux_cdev_handle_find(vm_obj->handle); 670 MPASS(vmap != NULL); 671 MPASS(vmap->vm_private_data == vm_obj->handle); 672 673 VM_OBJECT_WUNLOCK(vm_obj); 674 675 linux_set_current(curthread); 676 677 down_write(&vmap->vm_mm->mmap_sem); 678 if (unlikely(vmap->vm_ops == NULL)) { 679 err = VM_FAULT_SIGBUS; 680 } else { 681 struct vm_fault vmf; 682 683 /* fill out VM fault structure */ 684 vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx); 685 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 686 vmf.pgoff = 0; 687 vmf.page = NULL; 688 vmf.vma = vmap; 689 690 vmap->vm_pfn_count = 0; 691 vmap->vm_pfn_pcount = &vmap->vm_pfn_count; 692 vmap->vm_obj = vm_obj; 693 694 err = vmap->vm_ops->fault(&vmf); 695 696 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) { 697 kern_yield(PRI_USER); 698 err = vmap->vm_ops->fault(&vmf); 699 } 700 } 701 702 /* translate return code */ 703 switch (err) { 704 case VM_FAULT_OOM: 705 err = VM_PAGER_AGAIN; 706 break; 707 case VM_FAULT_SIGBUS: 708 err = VM_PAGER_BAD; 709 break; 710 case VM_FAULT_NOPAGE: 711 /* 712 * By contract the fault handler will return having 713 * busied all the pages itself. If pidx is already 714 * found in the object, it will simply xbusy the first 715 * page and return with vm_pfn_count set to 1. 716 */ 717 *first = vmap->vm_pfn_first; 718 *last = *first + vmap->vm_pfn_count - 1; 719 err = VM_PAGER_OK; 720 break; 721 default: 722 err = VM_PAGER_ERROR; 723 break; 724 } 725 up_write(&vmap->vm_mm->mmap_sem); 726 VM_OBJECT_WLOCK(vm_obj); 727 return (err); 728 } 729 730 static struct rwlock linux_vma_lock; 731 static TAILQ_HEAD(, vm_area_struct) linux_vma_head = 732 TAILQ_HEAD_INITIALIZER(linux_vma_head); 733 734 static void 735 linux_cdev_handle_free(struct vm_area_struct *vmap) 736 { 737 /* Drop reference on vm_file */ 738 if (vmap->vm_file != NULL) 739 fput(vmap->vm_file); 740 741 /* Drop reference on mm_struct */ 742 mmput(vmap->vm_mm); 743 744 kfree(vmap); 745 } 746 747 static void 748 linux_cdev_handle_remove(struct vm_area_struct *vmap) 749 { 750 rw_wlock(&linux_vma_lock); 751 TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry); 752 rw_wunlock(&linux_vma_lock); 753 } 754 755 static struct vm_area_struct * 756 linux_cdev_handle_find(void *handle) 757 { 758 struct vm_area_struct *vmap; 759 760 rw_rlock(&linux_vma_lock); 761 TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) { 762 if (vmap->vm_private_data == handle) 763 break; 764 } 765 rw_runlock(&linux_vma_lock); 766 return (vmap); 767 } 768 769 static int 770 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 771 vm_ooffset_t foff, struct ucred *cred, u_short *color) 772 { 773 774 MPASS(linux_cdev_handle_find(handle) != NULL); 775 *color = 0; 776 return (0); 777 } 778 779 static void 780 linux_cdev_pager_dtor(void *handle) 781 { 782 const struct vm_operations_struct *vm_ops; 783 struct vm_area_struct *vmap; 784 785 vmap = linux_cdev_handle_find(handle); 786 MPASS(vmap != NULL); 787 788 /* 789 * Remove handle before calling close operation to prevent 790 * other threads from reusing the handle pointer. 791 */ 792 linux_cdev_handle_remove(vmap); 793 794 down_write(&vmap->vm_mm->mmap_sem); 795 vm_ops = vmap->vm_ops; 796 if (likely(vm_ops != NULL)) 797 vm_ops->close(vmap); 798 up_write(&vmap->vm_mm->mmap_sem); 799 800 linux_cdev_handle_free(vmap); 801 } 802 803 static struct cdev_pager_ops linux_cdev_pager_ops[2] = { 804 { 805 /* OBJT_MGTDEVICE */ 806 .cdev_pg_populate = linux_cdev_pager_populate, 807 .cdev_pg_ctor = linux_cdev_pager_ctor, 808 .cdev_pg_dtor = linux_cdev_pager_dtor 809 }, 810 { 811 /* OBJT_DEVICE */ 812 .cdev_pg_fault = linux_cdev_pager_fault, 813 .cdev_pg_ctor = linux_cdev_pager_ctor, 814 .cdev_pg_dtor = linux_cdev_pager_dtor 815 }, 816 }; 817 818 int 819 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 820 unsigned long size) 821 { 822 vm_object_t obj; 823 vm_page_t m; 824 825 obj = vma->vm_obj; 826 if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0) 827 return (-ENOTSUP); 828 VM_OBJECT_RLOCK(obj); 829 for (m = vm_page_find_least(obj, OFF_TO_IDX(address)); 830 m != NULL && m->pindex < OFF_TO_IDX(address + size); 831 m = TAILQ_NEXT(m, listq)) 832 pmap_remove_all(m); 833 VM_OBJECT_RUNLOCK(obj); 834 return (0); 835 } 836 837 static struct file_operations dummy_ldev_ops = { 838 /* XXXKIB */ 839 }; 840 841 static struct linux_cdev dummy_ldev = { 842 .ops = &dummy_ldev_ops, 843 }; 844 845 #define LDEV_SI_DTR 0x0001 846 #define LDEV_SI_REF 0x0002 847 848 static void 849 linux_get_fop(struct linux_file *filp, const struct file_operations **fop, 850 struct linux_cdev **dev) 851 { 852 struct linux_cdev *ldev; 853 u_int siref; 854 855 ldev = filp->f_cdev; 856 *fop = filp->f_op; 857 if (ldev != NULL) { 858 if (ldev->kobj.ktype == &linux_cdev_static_ktype) { 859 refcount_acquire(&ldev->refs); 860 } else { 861 for (siref = ldev->siref;;) { 862 if ((siref & LDEV_SI_DTR) != 0) { 863 ldev = &dummy_ldev; 864 *fop = ldev->ops; 865 siref = ldev->siref; 866 MPASS((ldev->siref & LDEV_SI_DTR) == 0); 867 } else if (atomic_fcmpset_int(&ldev->siref, 868 &siref, siref + LDEV_SI_REF)) { 869 break; 870 } 871 } 872 } 873 } 874 *dev = ldev; 875 } 876 877 static void 878 linux_drop_fop(struct linux_cdev *ldev) 879 { 880 881 if (ldev == NULL) 882 return; 883 if (ldev->kobj.ktype == &linux_cdev_static_ktype) { 884 linux_cdev_deref(ldev); 885 } else { 886 MPASS(ldev->kobj.ktype == &linux_cdev_ktype); 887 MPASS((ldev->siref & ~LDEV_SI_DTR) != 0); 888 atomic_subtract_int(&ldev->siref, LDEV_SI_REF); 889 } 890 } 891 892 #define OPW(fp,td,code) ({ \ 893 struct file *__fpop; \ 894 __typeof(code) __retval; \ 895 \ 896 __fpop = (td)->td_fpop; \ 897 (td)->td_fpop = (fp); \ 898 __retval = (code); \ 899 (td)->td_fpop = __fpop; \ 900 __retval; \ 901 }) 902 903 static int 904 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td, 905 struct file *file) 906 { 907 struct linux_cdev *ldev; 908 struct linux_file *filp; 909 const struct file_operations *fop; 910 int error; 911 912 ldev = dev->si_drv1; 913 914 filp = linux_file_alloc(); 915 filp->f_dentry = &filp->f_dentry_store; 916 filp->f_op = ldev->ops; 917 filp->f_mode = file->f_flag; 918 filp->f_flags = file->f_flag; 919 filp->f_vnode = file->f_vnode; 920 filp->_file = file; 921 refcount_acquire(&ldev->refs); 922 filp->f_cdev = ldev; 923 924 linux_set_current(td); 925 linux_get_fop(filp, &fop, &ldev); 926 927 if (fop->open != NULL) { 928 error = -fop->open(file->f_vnode, filp); 929 if (error != 0) { 930 linux_drop_fop(ldev); 931 linux_cdev_deref(filp->f_cdev); 932 kfree(filp); 933 return (error); 934 } 935 } 936 937 /* hold on to the vnode - used for fstat() */ 938 vhold(filp->f_vnode); 939 940 /* release the file from devfs */ 941 finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops); 942 linux_drop_fop(ldev); 943 return (ENXIO); 944 } 945 946 #define LINUX_IOCTL_MIN_PTR 0x10000UL 947 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX) 948 949 static inline int 950 linux_remap_address(void **uaddr, size_t len) 951 { 952 uintptr_t uaddr_val = (uintptr_t)(*uaddr); 953 954 if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR && 955 uaddr_val < LINUX_IOCTL_MAX_PTR)) { 956 struct task_struct *pts = current; 957 if (pts == NULL) { 958 *uaddr = NULL; 959 return (1); 960 } 961 962 /* compute data offset */ 963 uaddr_val -= LINUX_IOCTL_MIN_PTR; 964 965 /* check that length is within bounds */ 966 if ((len > IOCPARM_MAX) || 967 (uaddr_val + len) > pts->bsd_ioctl_len) { 968 *uaddr = NULL; 969 return (1); 970 } 971 972 /* re-add kernel buffer address */ 973 uaddr_val += (uintptr_t)pts->bsd_ioctl_data; 974 975 /* update address location */ 976 *uaddr = (void *)uaddr_val; 977 return (1); 978 } 979 return (0); 980 } 981 982 int 983 linux_copyin(const void *uaddr, void *kaddr, size_t len) 984 { 985 if (linux_remap_address(__DECONST(void **, &uaddr), len)) { 986 if (uaddr == NULL) 987 return (-EFAULT); 988 memcpy(kaddr, uaddr, len); 989 return (0); 990 } 991 return (-copyin(uaddr, kaddr, len)); 992 } 993 994 int 995 linux_copyout(const void *kaddr, void *uaddr, size_t len) 996 { 997 if (linux_remap_address(&uaddr, len)) { 998 if (uaddr == NULL) 999 return (-EFAULT); 1000 memcpy(uaddr, kaddr, len); 1001 return (0); 1002 } 1003 return (-copyout(kaddr, uaddr, len)); 1004 } 1005 1006 size_t 1007 linux_clear_user(void *_uaddr, size_t _len) 1008 { 1009 uint8_t *uaddr = _uaddr; 1010 size_t len = _len; 1011 1012 /* make sure uaddr is aligned before going into the fast loop */ 1013 while (((uintptr_t)uaddr & 7) != 0 && len > 7) { 1014 if (subyte(uaddr, 0)) 1015 return (_len); 1016 uaddr++; 1017 len--; 1018 } 1019 1020 /* zero 8 bytes at a time */ 1021 while (len > 7) { 1022 #ifdef __LP64__ 1023 if (suword64(uaddr, 0)) 1024 return (_len); 1025 #else 1026 if (suword32(uaddr, 0)) 1027 return (_len); 1028 if (suword32(uaddr + 4, 0)) 1029 return (_len); 1030 #endif 1031 uaddr += 8; 1032 len -= 8; 1033 } 1034 1035 /* zero fill end, if any */ 1036 while (len > 0) { 1037 if (subyte(uaddr, 0)) 1038 return (_len); 1039 uaddr++; 1040 len--; 1041 } 1042 return (0); 1043 } 1044 1045 int 1046 linux_access_ok(const void *uaddr, size_t len) 1047 { 1048 uintptr_t saddr; 1049 uintptr_t eaddr; 1050 1051 /* get start and end address */ 1052 saddr = (uintptr_t)uaddr; 1053 eaddr = (uintptr_t)uaddr + len; 1054 1055 /* verify addresses are valid for userspace */ 1056 return ((saddr == eaddr) || 1057 (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS)); 1058 } 1059 1060 /* 1061 * This function should return either EINTR or ERESTART depending on 1062 * the signal type sent to this thread: 1063 */ 1064 static int 1065 linux_get_error(struct task_struct *task, int error) 1066 { 1067 /* check for signal type interrupt code */ 1068 if (error == EINTR || error == ERESTARTSYS || error == ERESTART) { 1069 error = -linux_schedule_get_interrupt_value(task); 1070 if (error == 0) 1071 error = EINTR; 1072 } 1073 return (error); 1074 } 1075 1076 static int 1077 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp, 1078 const struct file_operations *fop, u_long cmd, caddr_t data, 1079 struct thread *td) 1080 { 1081 struct task_struct *task = current; 1082 unsigned size; 1083 int error; 1084 1085 size = IOCPARM_LEN(cmd); 1086 /* refer to logic in sys_ioctl() */ 1087 if (size > 0) { 1088 /* 1089 * Setup hint for linux_copyin() and linux_copyout(). 1090 * 1091 * Background: Linux code expects a user-space address 1092 * while FreeBSD supplies a kernel-space address. 1093 */ 1094 task->bsd_ioctl_data = data; 1095 task->bsd_ioctl_len = size; 1096 data = (void *)LINUX_IOCTL_MIN_PTR; 1097 } else { 1098 /* fetch user-space pointer */ 1099 data = *(void **)data; 1100 } 1101 #ifdef COMPAT_FREEBSD32 1102 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1103 /* try the compat IOCTL handler first */ 1104 if (fop->compat_ioctl != NULL) { 1105 error = -OPW(fp, td, fop->compat_ioctl(filp, 1106 cmd, (u_long)data)); 1107 } else { 1108 error = ENOTTY; 1109 } 1110 1111 /* fallback to the regular IOCTL handler, if any */ 1112 if (error == ENOTTY && fop->unlocked_ioctl != NULL) { 1113 error = -OPW(fp, td, fop->unlocked_ioctl(filp, 1114 cmd, (u_long)data)); 1115 } 1116 } else 1117 #endif 1118 { 1119 if (fop->unlocked_ioctl != NULL) { 1120 error = -OPW(fp, td, fop->unlocked_ioctl(filp, 1121 cmd, (u_long)data)); 1122 } else { 1123 error = ENOTTY; 1124 } 1125 } 1126 if (size > 0) { 1127 task->bsd_ioctl_data = NULL; 1128 task->bsd_ioctl_len = 0; 1129 } 1130 1131 if (error == EWOULDBLOCK) { 1132 /* update kqfilter status, if any */ 1133 linux_file_kqfilter_poll(filp, 1134 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 1135 } else { 1136 error = linux_get_error(task, error); 1137 } 1138 return (error); 1139 } 1140 1141 #define LINUX_POLL_TABLE_NORMAL ((poll_table *)1) 1142 1143 /* 1144 * This function atomically updates the poll wakeup state and returns 1145 * the previous state at the time of update. 1146 */ 1147 static uint8_t 1148 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate) 1149 { 1150 int c, old; 1151 1152 c = v->counter; 1153 1154 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c) 1155 c = old; 1156 1157 return (c); 1158 } 1159 1160 static int 1161 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key) 1162 { 1163 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1164 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1165 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1166 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY, 1167 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */ 1168 }; 1169 struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq); 1170 1171 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1172 case LINUX_FWQ_STATE_QUEUED: 1173 linux_poll_wakeup(filp); 1174 return (1); 1175 default: 1176 return (0); 1177 } 1178 } 1179 1180 void 1181 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p) 1182 { 1183 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1184 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY, 1185 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1186 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */ 1187 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED, 1188 }; 1189 1190 /* check if we are called inside the select system call */ 1191 if (p == LINUX_POLL_TABLE_NORMAL) 1192 selrecord(curthread, &filp->f_selinfo); 1193 1194 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1195 case LINUX_FWQ_STATE_INIT: 1196 /* NOTE: file handles can only belong to one wait-queue */ 1197 filp->f_wait_queue.wqh = wqh; 1198 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback; 1199 add_wait_queue(wqh, &filp->f_wait_queue.wq); 1200 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED); 1201 break; 1202 default: 1203 break; 1204 } 1205 } 1206 1207 static void 1208 linux_poll_wait_dequeue(struct linux_file *filp) 1209 { 1210 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1211 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1212 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT, 1213 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT, 1214 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT, 1215 }; 1216 1217 seldrain(&filp->f_selinfo); 1218 1219 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1220 case LINUX_FWQ_STATE_NOT_READY: 1221 case LINUX_FWQ_STATE_QUEUED: 1222 case LINUX_FWQ_STATE_READY: 1223 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq); 1224 break; 1225 default: 1226 break; 1227 } 1228 } 1229 1230 void 1231 linux_poll_wakeup(struct linux_file *filp) 1232 { 1233 /* this function should be NULL-safe */ 1234 if (filp == NULL) 1235 return; 1236 1237 selwakeup(&filp->f_selinfo); 1238 1239 spin_lock(&filp->f_kqlock); 1240 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ | 1241 LINUX_KQ_FLAG_NEED_WRITE; 1242 1243 /* make sure the "knote" gets woken up */ 1244 KNOTE_LOCKED(&filp->f_selinfo.si_note, 1); 1245 spin_unlock(&filp->f_kqlock); 1246 } 1247 1248 static void 1249 linux_file_kqfilter_detach(struct knote *kn) 1250 { 1251 struct linux_file *filp = kn->kn_hook; 1252 1253 spin_lock(&filp->f_kqlock); 1254 knlist_remove(&filp->f_selinfo.si_note, kn, 1); 1255 spin_unlock(&filp->f_kqlock); 1256 } 1257 1258 static int 1259 linux_file_kqfilter_read_event(struct knote *kn, long hint) 1260 { 1261 struct linux_file *filp = kn->kn_hook; 1262 1263 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1264 1265 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0); 1266 } 1267 1268 static int 1269 linux_file_kqfilter_write_event(struct knote *kn, long hint) 1270 { 1271 struct linux_file *filp = kn->kn_hook; 1272 1273 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1274 1275 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0); 1276 } 1277 1278 static struct filterops linux_dev_kqfiltops_read = { 1279 .f_isfd = 1, 1280 .f_detach = linux_file_kqfilter_detach, 1281 .f_event = linux_file_kqfilter_read_event, 1282 }; 1283 1284 static struct filterops linux_dev_kqfiltops_write = { 1285 .f_isfd = 1, 1286 .f_detach = linux_file_kqfilter_detach, 1287 .f_event = linux_file_kqfilter_write_event, 1288 }; 1289 1290 static void 1291 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags) 1292 { 1293 struct thread *td; 1294 const struct file_operations *fop; 1295 struct linux_cdev *ldev; 1296 int temp; 1297 1298 if ((filp->f_kqflags & kqflags) == 0) 1299 return; 1300 1301 td = curthread; 1302 1303 linux_get_fop(filp, &fop, &ldev); 1304 /* get the latest polling state */ 1305 temp = OPW(filp->_file, td, fop->poll(filp, NULL)); 1306 linux_drop_fop(ldev); 1307 1308 spin_lock(&filp->f_kqlock); 1309 /* clear kqflags */ 1310 filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ | 1311 LINUX_KQ_FLAG_NEED_WRITE); 1312 /* update kqflags */ 1313 if ((temp & (POLLIN | POLLOUT)) != 0) { 1314 if ((temp & POLLIN) != 0) 1315 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ; 1316 if ((temp & POLLOUT) != 0) 1317 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE; 1318 1319 /* make sure the "knote" gets woken up */ 1320 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0); 1321 } 1322 spin_unlock(&filp->f_kqlock); 1323 } 1324 1325 static int 1326 linux_file_kqfilter(struct file *file, struct knote *kn) 1327 { 1328 struct linux_file *filp; 1329 struct thread *td; 1330 int error; 1331 1332 td = curthread; 1333 filp = (struct linux_file *)file->f_data; 1334 filp->f_flags = file->f_flag; 1335 if (filp->f_op->poll == NULL) 1336 return (EINVAL); 1337 1338 spin_lock(&filp->f_kqlock); 1339 switch (kn->kn_filter) { 1340 case EVFILT_READ: 1341 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ; 1342 kn->kn_fop = &linux_dev_kqfiltops_read; 1343 kn->kn_hook = filp; 1344 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1345 error = 0; 1346 break; 1347 case EVFILT_WRITE: 1348 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE; 1349 kn->kn_fop = &linux_dev_kqfiltops_write; 1350 kn->kn_hook = filp; 1351 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1352 error = 0; 1353 break; 1354 default: 1355 error = EINVAL; 1356 break; 1357 } 1358 spin_unlock(&filp->f_kqlock); 1359 1360 if (error == 0) { 1361 linux_set_current(td); 1362 1363 /* update kqfilter status, if any */ 1364 linux_file_kqfilter_poll(filp, 1365 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 1366 } 1367 return (error); 1368 } 1369 1370 static int 1371 linux_file_mmap_single(struct file *fp, const struct file_operations *fop, 1372 vm_ooffset_t *offset, vm_size_t size, struct vm_object **object, 1373 int nprot, bool is_shared, struct thread *td) 1374 { 1375 struct task_struct *task; 1376 struct vm_area_struct *vmap; 1377 struct mm_struct *mm; 1378 struct linux_file *filp; 1379 vm_memattr_t attr; 1380 int error; 1381 1382 filp = (struct linux_file *)fp->f_data; 1383 filp->f_flags = fp->f_flag; 1384 1385 if (fop->mmap == NULL) 1386 return (EOPNOTSUPP); 1387 1388 linux_set_current(td); 1389 1390 /* 1391 * The same VM object might be shared by multiple processes 1392 * and the mm_struct is usually freed when a process exits. 1393 * 1394 * The atomic reference below makes sure the mm_struct is 1395 * available as long as the vmap is in the linux_vma_head. 1396 */ 1397 task = current; 1398 mm = task->mm; 1399 if (atomic_inc_not_zero(&mm->mm_users) == 0) 1400 return (EINVAL); 1401 1402 vmap = kzalloc(sizeof(*vmap), GFP_KERNEL); 1403 vmap->vm_start = 0; 1404 vmap->vm_end = size; 1405 vmap->vm_pgoff = *offset / PAGE_SIZE; 1406 vmap->vm_pfn = 0; 1407 vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL); 1408 if (is_shared) 1409 vmap->vm_flags |= VM_SHARED; 1410 vmap->vm_ops = NULL; 1411 vmap->vm_file = get_file(filp); 1412 vmap->vm_mm = mm; 1413 1414 if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) { 1415 error = linux_get_error(task, EINTR); 1416 } else { 1417 error = -OPW(fp, td, fop->mmap(filp, vmap)); 1418 error = linux_get_error(task, error); 1419 up_write(&vmap->vm_mm->mmap_sem); 1420 } 1421 1422 if (error != 0) { 1423 linux_cdev_handle_free(vmap); 1424 return (error); 1425 } 1426 1427 attr = pgprot2cachemode(vmap->vm_page_prot); 1428 1429 if (vmap->vm_ops != NULL) { 1430 struct vm_area_struct *ptr; 1431 void *vm_private_data; 1432 bool vm_no_fault; 1433 1434 if (vmap->vm_ops->open == NULL || 1435 vmap->vm_ops->close == NULL || 1436 vmap->vm_private_data == NULL) { 1437 /* free allocated VM area struct */ 1438 linux_cdev_handle_free(vmap); 1439 return (EINVAL); 1440 } 1441 1442 vm_private_data = vmap->vm_private_data; 1443 1444 rw_wlock(&linux_vma_lock); 1445 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) { 1446 if (ptr->vm_private_data == vm_private_data) 1447 break; 1448 } 1449 /* check if there is an existing VM area struct */ 1450 if (ptr != NULL) { 1451 /* check if the VM area structure is invalid */ 1452 if (ptr->vm_ops == NULL || 1453 ptr->vm_ops->open == NULL || 1454 ptr->vm_ops->close == NULL) { 1455 error = ESTALE; 1456 vm_no_fault = 1; 1457 } else { 1458 error = EEXIST; 1459 vm_no_fault = (ptr->vm_ops->fault == NULL); 1460 } 1461 } else { 1462 /* insert VM area structure into list */ 1463 TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry); 1464 error = 0; 1465 vm_no_fault = (vmap->vm_ops->fault == NULL); 1466 } 1467 rw_wunlock(&linux_vma_lock); 1468 1469 if (error != 0) { 1470 /* free allocated VM area struct */ 1471 linux_cdev_handle_free(vmap); 1472 /* check for stale VM area struct */ 1473 if (error != EEXIST) 1474 return (error); 1475 } 1476 1477 /* check if there is no fault handler */ 1478 if (vm_no_fault) { 1479 *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE, 1480 &linux_cdev_pager_ops[1], size, nprot, *offset, 1481 td->td_ucred); 1482 } else { 1483 *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE, 1484 &linux_cdev_pager_ops[0], size, nprot, *offset, 1485 td->td_ucred); 1486 } 1487 1488 /* check if allocating the VM object failed */ 1489 if (*object == NULL) { 1490 if (error == 0) { 1491 /* remove VM area struct from list */ 1492 linux_cdev_handle_remove(vmap); 1493 /* free allocated VM area struct */ 1494 linux_cdev_handle_free(vmap); 1495 } 1496 return (EINVAL); 1497 } 1498 } else { 1499 struct sglist *sg; 1500 1501 sg = sglist_alloc(1, M_WAITOK); 1502 sglist_append_phys(sg, 1503 (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len); 1504 1505 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len, 1506 nprot, 0, td->td_ucred); 1507 1508 linux_cdev_handle_free(vmap); 1509 1510 if (*object == NULL) { 1511 sglist_free(sg); 1512 return (EINVAL); 1513 } 1514 } 1515 1516 if (attr != VM_MEMATTR_DEFAULT) { 1517 VM_OBJECT_WLOCK(*object); 1518 vm_object_set_memattr(*object, attr); 1519 VM_OBJECT_WUNLOCK(*object); 1520 } 1521 *offset = 0; 1522 return (0); 1523 } 1524 1525 struct cdevsw linuxcdevsw = { 1526 .d_version = D_VERSION, 1527 .d_fdopen = linux_dev_fdopen, 1528 .d_name = "lkpidev", 1529 }; 1530 1531 static int 1532 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred, 1533 int flags, struct thread *td) 1534 { 1535 struct linux_file *filp; 1536 const struct file_operations *fop; 1537 struct linux_cdev *ldev; 1538 ssize_t bytes; 1539 int error; 1540 1541 error = 0; 1542 filp = (struct linux_file *)file->f_data; 1543 filp->f_flags = file->f_flag; 1544 /* XXX no support for I/O vectors currently */ 1545 if (uio->uio_iovcnt != 1) 1546 return (EOPNOTSUPP); 1547 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1548 return (EINVAL); 1549 linux_set_current(td); 1550 linux_get_fop(filp, &fop, &ldev); 1551 if (fop->read != NULL) { 1552 bytes = OPW(file, td, fop->read(filp, 1553 uio->uio_iov->iov_base, 1554 uio->uio_iov->iov_len, &uio->uio_offset)); 1555 if (bytes >= 0) { 1556 uio->uio_iov->iov_base = 1557 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1558 uio->uio_iov->iov_len -= bytes; 1559 uio->uio_resid -= bytes; 1560 } else { 1561 error = linux_get_error(current, -bytes); 1562 } 1563 } else 1564 error = ENXIO; 1565 1566 /* update kqfilter status, if any */ 1567 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ); 1568 linux_drop_fop(ldev); 1569 1570 return (error); 1571 } 1572 1573 static int 1574 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred, 1575 int flags, struct thread *td) 1576 { 1577 struct linux_file *filp; 1578 const struct file_operations *fop; 1579 struct linux_cdev *ldev; 1580 ssize_t bytes; 1581 int error; 1582 1583 filp = (struct linux_file *)file->f_data; 1584 filp->f_flags = file->f_flag; 1585 /* XXX no support for I/O vectors currently */ 1586 if (uio->uio_iovcnt != 1) 1587 return (EOPNOTSUPP); 1588 if (uio->uio_resid > DEVFS_IOSIZE_MAX) 1589 return (EINVAL); 1590 linux_set_current(td); 1591 linux_get_fop(filp, &fop, &ldev); 1592 if (fop->write != NULL) { 1593 bytes = OPW(file, td, fop->write(filp, 1594 uio->uio_iov->iov_base, 1595 uio->uio_iov->iov_len, &uio->uio_offset)); 1596 if (bytes >= 0) { 1597 uio->uio_iov->iov_base = 1598 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1599 uio->uio_iov->iov_len -= bytes; 1600 uio->uio_resid -= bytes; 1601 error = 0; 1602 } else { 1603 error = linux_get_error(current, -bytes); 1604 } 1605 } else 1606 error = ENXIO; 1607 1608 /* update kqfilter status, if any */ 1609 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE); 1610 1611 linux_drop_fop(ldev); 1612 1613 return (error); 1614 } 1615 1616 static int 1617 linux_file_poll(struct file *file, int events, struct ucred *active_cred, 1618 struct thread *td) 1619 { 1620 struct linux_file *filp; 1621 const struct file_operations *fop; 1622 struct linux_cdev *ldev; 1623 int revents; 1624 1625 filp = (struct linux_file *)file->f_data; 1626 filp->f_flags = file->f_flag; 1627 linux_set_current(td); 1628 linux_get_fop(filp, &fop, &ldev); 1629 if (fop->poll != NULL) { 1630 revents = OPW(file, td, fop->poll(filp, 1631 LINUX_POLL_TABLE_NORMAL)) & events; 1632 } else { 1633 revents = 0; 1634 } 1635 linux_drop_fop(ldev); 1636 return (revents); 1637 } 1638 1639 static int 1640 linux_file_close(struct file *file, struct thread *td) 1641 { 1642 struct linux_file *filp; 1643 int (*release)(struct inode *, struct linux_file *); 1644 const struct file_operations *fop; 1645 struct linux_cdev *ldev; 1646 int error; 1647 1648 filp = (struct linux_file *)file->f_data; 1649 1650 KASSERT(file_count(filp) == 0, 1651 ("File refcount(%d) is not zero", file_count(filp))); 1652 1653 if (td == NULL) 1654 td = curthread; 1655 1656 error = 0; 1657 filp->f_flags = file->f_flag; 1658 linux_set_current(td); 1659 linux_poll_wait_dequeue(filp); 1660 linux_get_fop(filp, &fop, &ldev); 1661 /* 1662 * Always use the real release function, if any, to avoid 1663 * leaking device resources: 1664 */ 1665 release = filp->f_op->release; 1666 if (release != NULL) 1667 error = -OPW(file, td, release(filp->f_vnode, filp)); 1668 funsetown(&filp->f_sigio); 1669 if (filp->f_vnode != NULL) 1670 vdrop(filp->f_vnode); 1671 linux_drop_fop(ldev); 1672 ldev = filp->f_cdev; 1673 if (ldev != NULL) 1674 linux_cdev_deref(ldev); 1675 linux_synchronize_rcu(RCU_TYPE_REGULAR); 1676 kfree(filp); 1677 1678 return (error); 1679 } 1680 1681 static int 1682 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred, 1683 struct thread *td) 1684 { 1685 struct linux_file *filp; 1686 const struct file_operations *fop; 1687 struct linux_cdev *ldev; 1688 struct fiodgname_arg *fgn; 1689 const char *p; 1690 int error, i; 1691 1692 error = 0; 1693 filp = (struct linux_file *)fp->f_data; 1694 filp->f_flags = fp->f_flag; 1695 linux_get_fop(filp, &fop, &ldev); 1696 1697 linux_set_current(td); 1698 switch (cmd) { 1699 case FIONBIO: 1700 break; 1701 case FIOASYNC: 1702 if (fop->fasync == NULL) 1703 break; 1704 error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC)); 1705 break; 1706 case FIOSETOWN: 1707 error = fsetown(*(int *)data, &filp->f_sigio); 1708 if (error == 0) { 1709 if (fop->fasync == NULL) 1710 break; 1711 error = -OPW(fp, td, fop->fasync(0, filp, 1712 fp->f_flag & FASYNC)); 1713 } 1714 break; 1715 case FIOGETOWN: 1716 *(int *)data = fgetown(&filp->f_sigio); 1717 break; 1718 case FIODGNAME: 1719 #ifdef COMPAT_FREEBSD32 1720 case FIODGNAME_32: 1721 #endif 1722 if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) { 1723 error = ENXIO; 1724 break; 1725 } 1726 fgn = data; 1727 p = devtoname(filp->f_cdev->cdev); 1728 i = strlen(p) + 1; 1729 if (i > fgn->len) { 1730 error = EINVAL; 1731 break; 1732 } 1733 error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i); 1734 break; 1735 default: 1736 error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td); 1737 break; 1738 } 1739 linux_drop_fop(ldev); 1740 return (error); 1741 } 1742 1743 static int 1744 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot, 1745 vm_prot_t maxprot, int flags, struct file *fp, 1746 vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp) 1747 { 1748 /* 1749 * Character devices do not provide private mappings 1750 * of any kind: 1751 */ 1752 if ((maxprot & VM_PROT_WRITE) == 0 && 1753 (prot & VM_PROT_WRITE) != 0) 1754 return (EACCES); 1755 if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0) 1756 return (EINVAL); 1757 1758 return (linux_file_mmap_single(fp, fop, foff, objsize, objp, 1759 (int)prot, (flags & MAP_SHARED) ? true : false, td)); 1760 } 1761 1762 static int 1763 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 1764 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 1765 struct thread *td) 1766 { 1767 struct linux_file *filp; 1768 const struct file_operations *fop; 1769 struct linux_cdev *ldev; 1770 struct mount *mp; 1771 struct vnode *vp; 1772 vm_object_t object; 1773 vm_prot_t maxprot; 1774 int error; 1775 1776 filp = (struct linux_file *)fp->f_data; 1777 1778 vp = filp->f_vnode; 1779 if (vp == NULL) 1780 return (EOPNOTSUPP); 1781 1782 /* 1783 * Ensure that file and memory protections are 1784 * compatible. 1785 */ 1786 mp = vp->v_mount; 1787 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) { 1788 maxprot = VM_PROT_NONE; 1789 if ((prot & VM_PROT_EXECUTE) != 0) 1790 return (EACCES); 1791 } else 1792 maxprot = VM_PROT_EXECUTE; 1793 if ((fp->f_flag & FREAD) != 0) 1794 maxprot |= VM_PROT_READ; 1795 else if ((prot & VM_PROT_READ) != 0) 1796 return (EACCES); 1797 1798 /* 1799 * If we are sharing potential changes via MAP_SHARED and we 1800 * are trying to get write permission although we opened it 1801 * without asking for it, bail out. 1802 * 1803 * Note that most character devices always share mappings. 1804 * 1805 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE 1806 * requests rather than doing it here. 1807 */ 1808 if ((flags & MAP_SHARED) != 0) { 1809 if ((fp->f_flag & FWRITE) != 0) 1810 maxprot |= VM_PROT_WRITE; 1811 else if ((prot & VM_PROT_WRITE) != 0) 1812 return (EACCES); 1813 } 1814 maxprot &= cap_maxprot; 1815 1816 linux_get_fop(filp, &fop, &ldev); 1817 error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp, 1818 &foff, fop, &object); 1819 if (error != 0) 1820 goto out; 1821 1822 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 1823 foff, FALSE, td); 1824 if (error != 0) 1825 vm_object_deallocate(object); 1826 out: 1827 linux_drop_fop(ldev); 1828 return (error); 1829 } 1830 1831 static int 1832 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred) 1833 { 1834 struct linux_file *filp; 1835 struct vnode *vp; 1836 int error; 1837 1838 filp = (struct linux_file *)fp->f_data; 1839 if (filp->f_vnode == NULL) 1840 return (EOPNOTSUPP); 1841 1842 vp = filp->f_vnode; 1843 1844 vn_lock(vp, LK_SHARED | LK_RETRY); 1845 error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED); 1846 VOP_UNLOCK(vp); 1847 1848 return (error); 1849 } 1850 1851 static int 1852 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif, 1853 struct filedesc *fdp) 1854 { 1855 struct linux_file *filp; 1856 struct vnode *vp; 1857 int error; 1858 1859 filp = fp->f_data; 1860 vp = filp->f_vnode; 1861 if (vp == NULL) { 1862 error = 0; 1863 kif->kf_type = KF_TYPE_DEV; 1864 } else { 1865 vref(vp); 1866 FILEDESC_SUNLOCK(fdp); 1867 error = vn_fill_kinfo_vnode(vp, kif); 1868 vrele(vp); 1869 kif->kf_type = KF_TYPE_VNODE; 1870 FILEDESC_SLOCK(fdp); 1871 } 1872 return (error); 1873 } 1874 1875 unsigned int 1876 linux_iminor(struct inode *inode) 1877 { 1878 struct linux_cdev *ldev; 1879 1880 if (inode == NULL || inode->v_rdev == NULL || 1881 inode->v_rdev->si_devsw != &linuxcdevsw) 1882 return (-1U); 1883 ldev = inode->v_rdev->si_drv1; 1884 if (ldev == NULL) 1885 return (-1U); 1886 1887 return (minor(ldev->dev)); 1888 } 1889 1890 struct fileops linuxfileops = { 1891 .fo_read = linux_file_read, 1892 .fo_write = linux_file_write, 1893 .fo_truncate = invfo_truncate, 1894 .fo_kqfilter = linux_file_kqfilter, 1895 .fo_stat = linux_file_stat, 1896 .fo_fill_kinfo = linux_file_fill_kinfo, 1897 .fo_poll = linux_file_poll, 1898 .fo_close = linux_file_close, 1899 .fo_ioctl = linux_file_ioctl, 1900 .fo_mmap = linux_file_mmap, 1901 .fo_chmod = invfo_chmod, 1902 .fo_chown = invfo_chown, 1903 .fo_sendfile = invfo_sendfile, 1904 .fo_flags = DFLAG_PASSABLE, 1905 }; 1906 1907 /* 1908 * Hash of vmmap addresses. This is infrequently accessed and does not 1909 * need to be particularly large. This is done because we must store the 1910 * caller's idea of the map size to properly unmap. 1911 */ 1912 struct vmmap { 1913 LIST_ENTRY(vmmap) vm_next; 1914 void *vm_addr; 1915 unsigned long vm_size; 1916 }; 1917 1918 struct vmmaphd { 1919 struct vmmap *lh_first; 1920 }; 1921 #define VMMAP_HASH_SIZE 64 1922 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1) 1923 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK 1924 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE]; 1925 static struct mtx vmmaplock; 1926 1927 static void 1928 vmmap_add(void *addr, unsigned long size) 1929 { 1930 struct vmmap *vmmap; 1931 1932 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL); 1933 mtx_lock(&vmmaplock); 1934 vmmap->vm_size = size; 1935 vmmap->vm_addr = addr; 1936 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next); 1937 mtx_unlock(&vmmaplock); 1938 } 1939 1940 static struct vmmap * 1941 vmmap_remove(void *addr) 1942 { 1943 struct vmmap *vmmap; 1944 1945 mtx_lock(&vmmaplock); 1946 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next) 1947 if (vmmap->vm_addr == addr) 1948 break; 1949 if (vmmap) 1950 LIST_REMOVE(vmmap, vm_next); 1951 mtx_unlock(&vmmaplock); 1952 1953 return (vmmap); 1954 } 1955 1956 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv) 1957 void * 1958 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr) 1959 { 1960 void *addr; 1961 1962 addr = pmap_mapdev_attr(phys_addr, size, attr); 1963 if (addr == NULL) 1964 return (NULL); 1965 vmmap_add(addr, size); 1966 1967 return (addr); 1968 } 1969 #endif 1970 1971 void 1972 iounmap(void *addr) 1973 { 1974 struct vmmap *vmmap; 1975 1976 vmmap = vmmap_remove(addr); 1977 if (vmmap == NULL) 1978 return; 1979 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv) 1980 pmap_unmapdev(addr, vmmap->vm_size); 1981 #endif 1982 kfree(vmmap); 1983 } 1984 1985 void * 1986 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot) 1987 { 1988 vm_offset_t off; 1989 size_t size; 1990 1991 size = count * PAGE_SIZE; 1992 off = kva_alloc(size); 1993 if (off == 0) 1994 return (NULL); 1995 vmmap_add((void *)off, size); 1996 pmap_qenter(off, pages, count); 1997 1998 return ((void *)off); 1999 } 2000 2001 void 2002 vunmap(void *addr) 2003 { 2004 struct vmmap *vmmap; 2005 2006 vmmap = vmmap_remove(addr); 2007 if (vmmap == NULL) 2008 return; 2009 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE); 2010 kva_free((vm_offset_t)addr, vmmap->vm_size); 2011 kfree(vmmap); 2012 } 2013 2014 static char * 2015 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap) 2016 { 2017 unsigned int len; 2018 char *p; 2019 va_list aq; 2020 2021 va_copy(aq, ap); 2022 len = vsnprintf(NULL, 0, fmt, aq); 2023 va_end(aq); 2024 2025 if (dev != NULL) 2026 p = devm_kmalloc(dev, len + 1, gfp); 2027 else 2028 p = kmalloc(len + 1, gfp); 2029 if (p != NULL) 2030 vsnprintf(p, len + 1, fmt, ap); 2031 2032 return (p); 2033 } 2034 2035 char * 2036 kvasprintf(gfp_t gfp, const char *fmt, va_list ap) 2037 { 2038 2039 return (devm_kvasprintf(NULL, gfp, fmt, ap)); 2040 } 2041 2042 char * 2043 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) 2044 { 2045 va_list ap; 2046 char *p; 2047 2048 va_start(ap, fmt); 2049 p = devm_kvasprintf(dev, gfp, fmt, ap); 2050 va_end(ap); 2051 2052 return (p); 2053 } 2054 2055 char * 2056 kasprintf(gfp_t gfp, const char *fmt, ...) 2057 { 2058 va_list ap; 2059 char *p; 2060 2061 va_start(ap, fmt); 2062 p = kvasprintf(gfp, fmt, ap); 2063 va_end(ap); 2064 2065 return (p); 2066 } 2067 2068 static void 2069 linux_timer_callback_wrapper(void *context) 2070 { 2071 struct timer_list *timer; 2072 2073 timer = context; 2074 2075 if (linux_set_current_flags(curthread, M_NOWAIT)) { 2076 /* try again later */ 2077 callout_reset(&timer->callout, 1, 2078 &linux_timer_callback_wrapper, timer); 2079 return; 2080 } 2081 2082 timer->function(timer->data); 2083 } 2084 2085 int 2086 mod_timer(struct timer_list *timer, int expires) 2087 { 2088 int ret; 2089 2090 timer->expires = expires; 2091 ret = callout_reset(&timer->callout, 2092 linux_timer_jiffies_until(expires), 2093 &linux_timer_callback_wrapper, timer); 2094 2095 MPASS(ret == 0 || ret == 1); 2096 2097 return (ret == 1); 2098 } 2099 2100 void 2101 add_timer(struct timer_list *timer) 2102 { 2103 2104 callout_reset(&timer->callout, 2105 linux_timer_jiffies_until(timer->expires), 2106 &linux_timer_callback_wrapper, timer); 2107 } 2108 2109 void 2110 add_timer_on(struct timer_list *timer, int cpu) 2111 { 2112 2113 callout_reset_on(&timer->callout, 2114 linux_timer_jiffies_until(timer->expires), 2115 &linux_timer_callback_wrapper, timer, cpu); 2116 } 2117 2118 int 2119 del_timer(struct timer_list *timer) 2120 { 2121 2122 if (callout_stop(&(timer)->callout) == -1) 2123 return (0); 2124 return (1); 2125 } 2126 2127 int 2128 del_timer_sync(struct timer_list *timer) 2129 { 2130 2131 if (callout_drain(&(timer)->callout) == -1) 2132 return (0); 2133 return (1); 2134 } 2135 2136 /* greatest common divisor, Euclid equation */ 2137 static uint64_t 2138 lkpi_gcd_64(uint64_t a, uint64_t b) 2139 { 2140 uint64_t an; 2141 uint64_t bn; 2142 2143 while (b != 0) { 2144 an = b; 2145 bn = a % b; 2146 a = an; 2147 b = bn; 2148 } 2149 return (a); 2150 } 2151 2152 uint64_t lkpi_nsec2hz_rem; 2153 uint64_t lkpi_nsec2hz_div = 1000000000ULL; 2154 uint64_t lkpi_nsec2hz_max; 2155 2156 uint64_t lkpi_usec2hz_rem; 2157 uint64_t lkpi_usec2hz_div = 1000000ULL; 2158 uint64_t lkpi_usec2hz_max; 2159 2160 uint64_t lkpi_msec2hz_rem; 2161 uint64_t lkpi_msec2hz_div = 1000ULL; 2162 uint64_t lkpi_msec2hz_max; 2163 2164 static void 2165 linux_timer_init(void *arg) 2166 { 2167 uint64_t gcd; 2168 2169 /* 2170 * Compute an internal HZ value which can divide 2**32 to 2171 * avoid timer rounding problems when the tick value wraps 2172 * around 2**32: 2173 */ 2174 linux_timer_hz_mask = 1; 2175 while (linux_timer_hz_mask < (unsigned long)hz) 2176 linux_timer_hz_mask *= 2; 2177 linux_timer_hz_mask--; 2178 2179 /* compute some internal constants */ 2180 2181 lkpi_nsec2hz_rem = hz; 2182 lkpi_usec2hz_rem = hz; 2183 lkpi_msec2hz_rem = hz; 2184 2185 gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div); 2186 lkpi_nsec2hz_rem /= gcd; 2187 lkpi_nsec2hz_div /= gcd; 2188 lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem; 2189 2190 gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div); 2191 lkpi_usec2hz_rem /= gcd; 2192 lkpi_usec2hz_div /= gcd; 2193 lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem; 2194 2195 gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div); 2196 lkpi_msec2hz_rem /= gcd; 2197 lkpi_msec2hz_div /= gcd; 2198 lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem; 2199 } 2200 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL); 2201 2202 void 2203 linux_complete_common(struct completion *c, int all) 2204 { 2205 int wakeup_swapper; 2206 2207 sleepq_lock(c); 2208 if (all) { 2209 c->done = UINT_MAX; 2210 wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0); 2211 } else { 2212 if (c->done != UINT_MAX) 2213 c->done++; 2214 wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0); 2215 } 2216 sleepq_release(c); 2217 if (wakeup_swapper) 2218 kick_proc0(); 2219 } 2220 2221 /* 2222 * Indefinite wait for done != 0 with or without signals. 2223 */ 2224 int 2225 linux_wait_for_common(struct completion *c, int flags) 2226 { 2227 struct task_struct *task; 2228 int error; 2229 2230 if (SCHEDULER_STOPPED()) 2231 return (0); 2232 2233 task = current; 2234 2235 if (flags != 0) 2236 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 2237 else 2238 flags = SLEEPQ_SLEEP; 2239 error = 0; 2240 for (;;) { 2241 sleepq_lock(c); 2242 if (c->done) 2243 break; 2244 sleepq_add(c, NULL, "completion", flags, 0); 2245 if (flags & SLEEPQ_INTERRUPTIBLE) { 2246 DROP_GIANT(); 2247 error = -sleepq_wait_sig(c, 0); 2248 PICKUP_GIANT(); 2249 if (error != 0) { 2250 linux_schedule_save_interrupt_value(task, error); 2251 error = -ERESTARTSYS; 2252 goto intr; 2253 } 2254 } else { 2255 DROP_GIANT(); 2256 sleepq_wait(c, 0); 2257 PICKUP_GIANT(); 2258 } 2259 } 2260 if (c->done != UINT_MAX) 2261 c->done--; 2262 sleepq_release(c); 2263 2264 intr: 2265 return (error); 2266 } 2267 2268 /* 2269 * Time limited wait for done != 0 with or without signals. 2270 */ 2271 int 2272 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags) 2273 { 2274 struct task_struct *task; 2275 int end = jiffies + timeout; 2276 int error; 2277 2278 if (SCHEDULER_STOPPED()) 2279 return (0); 2280 2281 task = current; 2282 2283 if (flags != 0) 2284 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 2285 else 2286 flags = SLEEPQ_SLEEP; 2287 2288 for (;;) { 2289 sleepq_lock(c); 2290 if (c->done) 2291 break; 2292 sleepq_add(c, NULL, "completion", flags, 0); 2293 sleepq_set_timeout(c, linux_timer_jiffies_until(end)); 2294 2295 DROP_GIANT(); 2296 if (flags & SLEEPQ_INTERRUPTIBLE) 2297 error = -sleepq_timedwait_sig(c, 0); 2298 else 2299 error = -sleepq_timedwait(c, 0); 2300 PICKUP_GIANT(); 2301 2302 if (error != 0) { 2303 /* check for timeout */ 2304 if (error == -EWOULDBLOCK) { 2305 error = 0; /* timeout */ 2306 } else { 2307 /* signal happened */ 2308 linux_schedule_save_interrupt_value(task, error); 2309 error = -ERESTARTSYS; 2310 } 2311 goto done; 2312 } 2313 } 2314 if (c->done != UINT_MAX) 2315 c->done--; 2316 sleepq_release(c); 2317 2318 /* return how many jiffies are left */ 2319 error = linux_timer_jiffies_until(end); 2320 done: 2321 return (error); 2322 } 2323 2324 int 2325 linux_try_wait_for_completion(struct completion *c) 2326 { 2327 int isdone; 2328 2329 sleepq_lock(c); 2330 isdone = (c->done != 0); 2331 if (c->done != 0 && c->done != UINT_MAX) 2332 c->done--; 2333 sleepq_release(c); 2334 return (isdone); 2335 } 2336 2337 int 2338 linux_completion_done(struct completion *c) 2339 { 2340 int isdone; 2341 2342 sleepq_lock(c); 2343 isdone = (c->done != 0); 2344 sleepq_release(c); 2345 return (isdone); 2346 } 2347 2348 static void 2349 linux_cdev_deref(struct linux_cdev *ldev) 2350 { 2351 if (refcount_release(&ldev->refs) && 2352 ldev->kobj.ktype == &linux_cdev_ktype) 2353 kfree(ldev); 2354 } 2355 2356 static void 2357 linux_cdev_release(struct kobject *kobj) 2358 { 2359 struct linux_cdev *cdev; 2360 struct kobject *parent; 2361 2362 cdev = container_of(kobj, struct linux_cdev, kobj); 2363 parent = kobj->parent; 2364 linux_destroy_dev(cdev); 2365 linux_cdev_deref(cdev); 2366 kobject_put(parent); 2367 } 2368 2369 static void 2370 linux_cdev_static_release(struct kobject *kobj) 2371 { 2372 struct cdev *cdev; 2373 struct linux_cdev *ldev; 2374 2375 ldev = container_of(kobj, struct linux_cdev, kobj); 2376 cdev = ldev->cdev; 2377 if (cdev != NULL) { 2378 destroy_dev(cdev); 2379 ldev->cdev = NULL; 2380 } 2381 kobject_put(kobj->parent); 2382 } 2383 2384 int 2385 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev) 2386 { 2387 int ret; 2388 2389 if (dev->devt != 0) { 2390 /* Set parent kernel object. */ 2391 ldev->kobj.parent = &dev->kobj; 2392 2393 /* 2394 * Unlike Linux we require the kobject of the 2395 * character device structure to have a valid name 2396 * before calling this function: 2397 */ 2398 if (ldev->kobj.name == NULL) 2399 return (-EINVAL); 2400 2401 ret = cdev_add(ldev, dev->devt, 1); 2402 if (ret) 2403 return (ret); 2404 } 2405 ret = device_add(dev); 2406 if (ret != 0 && dev->devt != 0) 2407 cdev_del(ldev); 2408 return (ret); 2409 } 2410 2411 void 2412 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev) 2413 { 2414 device_del(dev); 2415 2416 if (dev->devt != 0) 2417 cdev_del(ldev); 2418 } 2419 2420 static void 2421 linux_destroy_dev(struct linux_cdev *ldev) 2422 { 2423 2424 if (ldev->cdev == NULL) 2425 return; 2426 2427 MPASS((ldev->siref & LDEV_SI_DTR) == 0); 2428 MPASS(ldev->kobj.ktype == &linux_cdev_ktype); 2429 2430 atomic_set_int(&ldev->siref, LDEV_SI_DTR); 2431 while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0) 2432 pause("ldevdtr", hz / 4); 2433 2434 destroy_dev(ldev->cdev); 2435 ldev->cdev = NULL; 2436 } 2437 2438 const struct kobj_type linux_cdev_ktype = { 2439 .release = linux_cdev_release, 2440 }; 2441 2442 const struct kobj_type linux_cdev_static_ktype = { 2443 .release = linux_cdev_static_release, 2444 }; 2445 2446 static void 2447 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate) 2448 { 2449 struct notifier_block *nb; 2450 struct netdev_notifier_info ni; 2451 2452 nb = arg; 2453 ni.ifp = ifp; 2454 ni.dev = (struct net_device *)ifp; 2455 if (linkstate == LINK_STATE_UP) 2456 nb->notifier_call(nb, NETDEV_UP, &ni); 2457 else 2458 nb->notifier_call(nb, NETDEV_DOWN, &ni); 2459 } 2460 2461 static void 2462 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp) 2463 { 2464 struct notifier_block *nb; 2465 struct netdev_notifier_info ni; 2466 2467 nb = arg; 2468 ni.ifp = ifp; 2469 ni.dev = (struct net_device *)ifp; 2470 nb->notifier_call(nb, NETDEV_REGISTER, &ni); 2471 } 2472 2473 static void 2474 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp) 2475 { 2476 struct notifier_block *nb; 2477 struct netdev_notifier_info ni; 2478 2479 nb = arg; 2480 ni.ifp = ifp; 2481 ni.dev = (struct net_device *)ifp; 2482 nb->notifier_call(nb, NETDEV_UNREGISTER, &ni); 2483 } 2484 2485 static void 2486 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp) 2487 { 2488 struct notifier_block *nb; 2489 struct netdev_notifier_info ni; 2490 2491 nb = arg; 2492 ni.ifp = ifp; 2493 ni.dev = (struct net_device *)ifp; 2494 nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni); 2495 } 2496 2497 static void 2498 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp) 2499 { 2500 struct notifier_block *nb; 2501 struct netdev_notifier_info ni; 2502 2503 nb = arg; 2504 ni.ifp = ifp; 2505 ni.dev = (struct net_device *)ifp; 2506 nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni); 2507 } 2508 2509 int 2510 register_netdevice_notifier(struct notifier_block *nb) 2511 { 2512 2513 nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER( 2514 ifnet_link_event, linux_handle_ifnet_link_event, nb, 0); 2515 nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER( 2516 ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0); 2517 nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER( 2518 ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0); 2519 nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER( 2520 iflladdr_event, linux_handle_iflladdr_event, nb, 0); 2521 2522 return (0); 2523 } 2524 2525 int 2526 register_inetaddr_notifier(struct notifier_block *nb) 2527 { 2528 2529 nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER( 2530 ifaddr_event, linux_handle_ifaddr_event, nb, 0); 2531 return (0); 2532 } 2533 2534 int 2535 unregister_netdevice_notifier(struct notifier_block *nb) 2536 { 2537 2538 EVENTHANDLER_DEREGISTER(ifnet_link_event, 2539 nb->tags[NETDEV_UP]); 2540 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 2541 nb->tags[NETDEV_REGISTER]); 2542 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 2543 nb->tags[NETDEV_UNREGISTER]); 2544 EVENTHANDLER_DEREGISTER(iflladdr_event, 2545 nb->tags[NETDEV_CHANGEADDR]); 2546 2547 return (0); 2548 } 2549 2550 int 2551 unregister_inetaddr_notifier(struct notifier_block *nb) 2552 { 2553 2554 EVENTHANDLER_DEREGISTER(ifaddr_event, 2555 nb->tags[NETDEV_CHANGEIFADDR]); 2556 2557 return (0); 2558 } 2559 2560 struct list_sort_thunk { 2561 int (*cmp)(void *, struct list_head *, struct list_head *); 2562 void *priv; 2563 }; 2564 2565 static inline int 2566 linux_le_cmp(const void *d1, const void *d2, void *priv) 2567 { 2568 struct list_head *le1, *le2; 2569 struct list_sort_thunk *thunk; 2570 2571 thunk = priv; 2572 le1 = *(__DECONST(struct list_head **, d1)); 2573 le2 = *(__DECONST(struct list_head **, d2)); 2574 return ((thunk->cmp)(thunk->priv, le1, le2)); 2575 } 2576 2577 void 2578 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv, 2579 struct list_head *a, struct list_head *b)) 2580 { 2581 struct list_sort_thunk thunk; 2582 struct list_head **ar, *le; 2583 size_t count, i; 2584 2585 count = 0; 2586 list_for_each(le, head) 2587 count++; 2588 ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK); 2589 i = 0; 2590 list_for_each(le, head) 2591 ar[i++] = le; 2592 thunk.cmp = cmp; 2593 thunk.priv = priv; 2594 qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk); 2595 INIT_LIST_HEAD(head); 2596 for (i = 0; i < count; i++) 2597 list_add_tail(ar[i], head); 2598 free(ar, M_KMALLOC); 2599 } 2600 2601 #if defined(__i386__) || defined(__amd64__) 2602 int 2603 linux_wbinvd_on_all_cpus(void) 2604 { 2605 2606 pmap_invalidate_cache(); 2607 return (0); 2608 } 2609 #endif 2610 2611 int 2612 linux_on_each_cpu(void callback(void *), void *data) 2613 { 2614 2615 smp_rendezvous(smp_no_rendezvous_barrier, callback, 2616 smp_no_rendezvous_barrier, data); 2617 return (0); 2618 } 2619 2620 int 2621 linux_in_atomic(void) 2622 { 2623 2624 return ((curthread->td_pflags & TDP_NOFAULTING) != 0); 2625 } 2626 2627 struct linux_cdev * 2628 linux_find_cdev(const char *name, unsigned major, unsigned minor) 2629 { 2630 dev_t dev = MKDEV(major, minor); 2631 struct cdev *cdev; 2632 2633 dev_lock(); 2634 LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) { 2635 struct linux_cdev *ldev = cdev->si_drv1; 2636 if (ldev->dev == dev && 2637 strcmp(kobject_name(&ldev->kobj), name) == 0) { 2638 break; 2639 } 2640 } 2641 dev_unlock(); 2642 2643 return (cdev != NULL ? cdev->si_drv1 : NULL); 2644 } 2645 2646 int 2647 __register_chrdev(unsigned int major, unsigned int baseminor, 2648 unsigned int count, const char *name, 2649 const struct file_operations *fops) 2650 { 2651 struct linux_cdev *cdev; 2652 int ret = 0; 2653 int i; 2654 2655 for (i = baseminor; i < baseminor + count; i++) { 2656 cdev = cdev_alloc(); 2657 cdev->ops = fops; 2658 kobject_set_name(&cdev->kobj, name); 2659 2660 ret = cdev_add(cdev, makedev(major, i), 1); 2661 if (ret != 0) 2662 break; 2663 } 2664 return (ret); 2665 } 2666 2667 int 2668 __register_chrdev_p(unsigned int major, unsigned int baseminor, 2669 unsigned int count, const char *name, 2670 const struct file_operations *fops, uid_t uid, 2671 gid_t gid, int mode) 2672 { 2673 struct linux_cdev *cdev; 2674 int ret = 0; 2675 int i; 2676 2677 for (i = baseminor; i < baseminor + count; i++) { 2678 cdev = cdev_alloc(); 2679 cdev->ops = fops; 2680 kobject_set_name(&cdev->kobj, name); 2681 2682 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode); 2683 if (ret != 0) 2684 break; 2685 } 2686 return (ret); 2687 } 2688 2689 void 2690 __unregister_chrdev(unsigned int major, unsigned int baseminor, 2691 unsigned int count, const char *name) 2692 { 2693 struct linux_cdev *cdevp; 2694 int i; 2695 2696 for (i = baseminor; i < baseminor + count; i++) { 2697 cdevp = linux_find_cdev(name, major, i); 2698 if (cdevp != NULL) 2699 cdev_del(cdevp); 2700 } 2701 } 2702 2703 void 2704 linux_dump_stack(void) 2705 { 2706 #ifdef STACK 2707 struct stack st; 2708 2709 stack_save(&st); 2710 stack_print(&st); 2711 #endif 2712 } 2713 2714 int 2715 linuxkpi_net_ratelimit(void) 2716 { 2717 2718 return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps, 2719 lkpi_net_maxpps)); 2720 } 2721 2722 struct io_mapping * 2723 io_mapping_create_wc(resource_size_t base, unsigned long size) 2724 { 2725 struct io_mapping *mapping; 2726 2727 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2728 if (mapping == NULL) 2729 return (NULL); 2730 return (io_mapping_init_wc(mapping, base, size)); 2731 } 2732 2733 #if defined(__i386__) || defined(__amd64__) 2734 bool linux_cpu_has_clflush; 2735 struct cpuinfo_x86 boot_cpu_data; 2736 #endif 2737 2738 cpumask_t * 2739 lkpi_get_static_single_cpu_mask(int cpuid) 2740 { 2741 2742 KASSERT((cpuid >= 0 && cpuid < MAXCPU), ("%s: invalid cpuid %d\n", 2743 __func__, cpuid)); 2744 2745 return (&static_single_cpu_mask[cpuid]); 2746 } 2747 2748 static void 2749 linux_compat_init(void *arg) 2750 { 2751 struct sysctl_oid *rootoid; 2752 int i; 2753 2754 #if defined(__i386__) || defined(__amd64__) 2755 linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH); 2756 boot_cpu_data.x86_clflush_size = cpu_clflush_line_size; 2757 boot_cpu_data.x86 = ((cpu_id & 0xf0000) >> 12) | ((cpu_id & 0xf0) >> 4); 2758 #endif 2759 rw_init(&linux_vma_lock, "lkpi-vma-lock"); 2760 2761 rootoid = SYSCTL_ADD_ROOT_NODE(NULL, 2762 OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys"); 2763 kobject_init(&linux_class_root, &linux_class_ktype); 2764 kobject_set_name(&linux_class_root, "class"); 2765 linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid), 2766 OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class"); 2767 kobject_init(&linux_root_device.kobj, &linux_dev_ktype); 2768 kobject_set_name(&linux_root_device.kobj, "device"); 2769 linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL, 2770 SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", 2771 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device"); 2772 linux_root_device.bsddev = root_bus; 2773 linux_class_misc.name = "misc"; 2774 class_register(&linux_class_misc); 2775 INIT_LIST_HEAD(&pci_drivers); 2776 INIT_LIST_HEAD(&pci_devices); 2777 spin_lock_init(&pci_lock); 2778 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF); 2779 for (i = 0; i < VMMAP_HASH_SIZE; i++) 2780 LIST_INIT(&vmmaphead[i]); 2781 init_waitqueue_head(&linux_bit_waitq); 2782 init_waitqueue_head(&linux_var_waitq); 2783 2784 CPU_COPY(&all_cpus, &cpu_online_mask); 2785 /* 2786 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system. 2787 * CPUs are indexed from 0..(MAXCPU-1). The entry for cpuid 0 will only 2788 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on. 2789 * This is used by cpumask_of() (and possibly others in the future) for, 2790 * e.g., drivers to pass hints to irq_set_affinity_hint(). 2791 */ 2792 for (i = 0; i < MAXCPU; i++) 2793 CPU_SET(i, &static_single_cpu_mask[i]); 2794 } 2795 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL); 2796 2797 static void 2798 linux_compat_uninit(void *arg) 2799 { 2800 linux_kobject_kfree_name(&linux_class_root); 2801 linux_kobject_kfree_name(&linux_root_device.kobj); 2802 linux_kobject_kfree_name(&linux_class_misc.kobj); 2803 2804 mtx_destroy(&vmmaplock); 2805 spin_lock_destroy(&pci_lock); 2806 rw_destroy(&linux_vma_lock); 2807 } 2808 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL); 2809 2810 /* 2811 * NOTE: Linux frequently uses "unsigned long" for pointer to integer 2812 * conversion and vice versa, where in FreeBSD "uintptr_t" would be 2813 * used. Assert these types have the same size, else some parts of the 2814 * LinuxKPI may not work like expected: 2815 */ 2816 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t)); 2817