xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision 69c5fa5cd1ec9b09ed88a086607a8a0993818db9)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2018 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_stack.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/proc.h>
41 #include <sys/sglist.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/refcount.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/bus.h>
47 #include <sys/eventhandler.h>
48 #include <sys/fcntl.h>
49 #include <sys/file.h>
50 #include <sys/filio.h>
51 #include <sys/rwlock.h>
52 #include <sys/mman.h>
53 #include <sys/stack.h>
54 #include <sys/user.h>
55 
56 #include <vm/vm.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_pager.h>
61 
62 #include <machine/stdarg.h>
63 
64 #if defined(__i386__) || defined(__amd64__)
65 #include <machine/md_var.h>
66 #endif
67 
68 #include <linux/kobject.h>
69 #include <linux/device.h>
70 #include <linux/slab.h>
71 #include <linux/module.h>
72 #include <linux/moduleparam.h>
73 #include <linux/cdev.h>
74 #include <linux/file.h>
75 #include <linux/sysfs.h>
76 #include <linux/mm.h>
77 #include <linux/io.h>
78 #include <linux/vmalloc.h>
79 #include <linux/netdevice.h>
80 #include <linux/timer.h>
81 #include <linux/interrupt.h>
82 #include <linux/uaccess.h>
83 #include <linux/list.h>
84 #include <linux/kthread.h>
85 #include <linux/kernel.h>
86 #include <linux/compat.h>
87 #include <linux/poll.h>
88 #include <linux/smp.h>
89 #include <linux/wait_bit.h>
90 
91 #if defined(__i386__) || defined(__amd64__)
92 #include <asm/smp.h>
93 #endif
94 
95 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
96     "LinuxKPI parameters");
97 
98 int linuxkpi_debug;
99 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
100     &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
101 
102 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
103 
104 #include <linux/rbtree.h>
105 /* Undo Linux compat changes. */
106 #undef RB_ROOT
107 #undef file
108 #undef cdev
109 #define	RB_ROOT(head)	(head)->rbh_root
110 
111 static void linux_cdev_deref(struct linux_cdev *ldev);
112 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
113 
114 struct kobject linux_class_root;
115 struct device linux_root_device;
116 struct class linux_class_misc;
117 struct list_head pci_drivers;
118 struct list_head pci_devices;
119 spinlock_t pci_lock;
120 
121 unsigned long linux_timer_hz_mask;
122 
123 wait_queue_head_t linux_bit_waitq;
124 wait_queue_head_t linux_var_waitq;
125 
126 int
127 panic_cmp(struct rb_node *one, struct rb_node *two)
128 {
129 	panic("no cmp");
130 }
131 
132 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
133 
134 int
135 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
136 {
137 	va_list tmp_va;
138 	int len;
139 	char *old;
140 	char *name;
141 	char dummy;
142 
143 	old = kobj->name;
144 
145 	if (old && fmt == NULL)
146 		return (0);
147 
148 	/* compute length of string */
149 	va_copy(tmp_va, args);
150 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
151 	va_end(tmp_va);
152 
153 	/* account for zero termination */
154 	len++;
155 
156 	/* check for error */
157 	if (len < 1)
158 		return (-EINVAL);
159 
160 	/* allocate memory for string */
161 	name = kzalloc(len, GFP_KERNEL);
162 	if (name == NULL)
163 		return (-ENOMEM);
164 	vsnprintf(name, len, fmt, args);
165 	kobj->name = name;
166 
167 	/* free old string */
168 	kfree(old);
169 
170 	/* filter new string */
171 	for (; *name != '\0'; name++)
172 		if (*name == '/')
173 			*name = '!';
174 	return (0);
175 }
176 
177 int
178 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
179 {
180 	va_list args;
181 	int error;
182 
183 	va_start(args, fmt);
184 	error = kobject_set_name_vargs(kobj, fmt, args);
185 	va_end(args);
186 
187 	return (error);
188 }
189 
190 static int
191 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
192 {
193 	const struct kobj_type *t;
194 	int error;
195 
196 	kobj->parent = parent;
197 	error = sysfs_create_dir(kobj);
198 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
199 		struct attribute **attr;
200 		t = kobj->ktype;
201 
202 		for (attr = t->default_attrs; *attr != NULL; attr++) {
203 			error = sysfs_create_file(kobj, *attr);
204 			if (error)
205 				break;
206 		}
207 		if (error)
208 			sysfs_remove_dir(kobj);
209 	}
210 	return (error);
211 }
212 
213 int
214 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
215 {
216 	va_list args;
217 	int error;
218 
219 	va_start(args, fmt);
220 	error = kobject_set_name_vargs(kobj, fmt, args);
221 	va_end(args);
222 	if (error)
223 		return (error);
224 
225 	return kobject_add_complete(kobj, parent);
226 }
227 
228 void
229 linux_kobject_release(struct kref *kref)
230 {
231 	struct kobject *kobj;
232 	char *name;
233 
234 	kobj = container_of(kref, struct kobject, kref);
235 	sysfs_remove_dir(kobj);
236 	name = kobj->name;
237 	if (kobj->ktype && kobj->ktype->release)
238 		kobj->ktype->release(kobj);
239 	kfree(name);
240 }
241 
242 static void
243 linux_kobject_kfree(struct kobject *kobj)
244 {
245 	kfree(kobj);
246 }
247 
248 static void
249 linux_kobject_kfree_name(struct kobject *kobj)
250 {
251 	if (kobj) {
252 		kfree(kobj->name);
253 	}
254 }
255 
256 const struct kobj_type linux_kfree_type = {
257 	.release = linux_kobject_kfree
258 };
259 
260 static void
261 linux_device_release(struct device *dev)
262 {
263 	pr_debug("linux_device_release: %s\n", dev_name(dev));
264 	kfree(dev);
265 }
266 
267 static ssize_t
268 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
269 {
270 	struct class_attribute *dattr;
271 	ssize_t error;
272 
273 	dattr = container_of(attr, struct class_attribute, attr);
274 	error = -EIO;
275 	if (dattr->show)
276 		error = dattr->show(container_of(kobj, struct class, kobj),
277 		    dattr, buf);
278 	return (error);
279 }
280 
281 static ssize_t
282 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
283     size_t count)
284 {
285 	struct class_attribute *dattr;
286 	ssize_t error;
287 
288 	dattr = container_of(attr, struct class_attribute, attr);
289 	error = -EIO;
290 	if (dattr->store)
291 		error = dattr->store(container_of(kobj, struct class, kobj),
292 		    dattr, buf, count);
293 	return (error);
294 }
295 
296 static void
297 linux_class_release(struct kobject *kobj)
298 {
299 	struct class *class;
300 
301 	class = container_of(kobj, struct class, kobj);
302 	if (class->class_release)
303 		class->class_release(class);
304 }
305 
306 static const struct sysfs_ops linux_class_sysfs = {
307 	.show  = linux_class_show,
308 	.store = linux_class_store,
309 };
310 
311 const struct kobj_type linux_class_ktype = {
312 	.release = linux_class_release,
313 	.sysfs_ops = &linux_class_sysfs
314 };
315 
316 static void
317 linux_dev_release(struct kobject *kobj)
318 {
319 	struct device *dev;
320 
321 	dev = container_of(kobj, struct device, kobj);
322 	/* This is the precedence defined by linux. */
323 	if (dev->release)
324 		dev->release(dev);
325 	else if (dev->class && dev->class->dev_release)
326 		dev->class->dev_release(dev);
327 }
328 
329 static ssize_t
330 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
331 {
332 	struct device_attribute *dattr;
333 	ssize_t error;
334 
335 	dattr = container_of(attr, struct device_attribute, attr);
336 	error = -EIO;
337 	if (dattr->show)
338 		error = dattr->show(container_of(kobj, struct device, kobj),
339 		    dattr, buf);
340 	return (error);
341 }
342 
343 static ssize_t
344 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
345     size_t count)
346 {
347 	struct device_attribute *dattr;
348 	ssize_t error;
349 
350 	dattr = container_of(attr, struct device_attribute, attr);
351 	error = -EIO;
352 	if (dattr->store)
353 		error = dattr->store(container_of(kobj, struct device, kobj),
354 		    dattr, buf, count);
355 	return (error);
356 }
357 
358 static const struct sysfs_ops linux_dev_sysfs = {
359 	.show  = linux_dev_show,
360 	.store = linux_dev_store,
361 };
362 
363 const struct kobj_type linux_dev_ktype = {
364 	.release = linux_dev_release,
365 	.sysfs_ops = &linux_dev_sysfs
366 };
367 
368 struct device *
369 device_create(struct class *class, struct device *parent, dev_t devt,
370     void *drvdata, const char *fmt, ...)
371 {
372 	struct device *dev;
373 	va_list args;
374 
375 	dev = kzalloc(sizeof(*dev), M_WAITOK);
376 	dev->parent = parent;
377 	dev->class = class;
378 	dev->devt = devt;
379 	dev->driver_data = drvdata;
380 	dev->release = linux_device_release;
381 	va_start(args, fmt);
382 	kobject_set_name_vargs(&dev->kobj, fmt, args);
383 	va_end(args);
384 	device_register(dev);
385 
386 	return (dev);
387 }
388 
389 int
390 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
391     struct kobject *parent, const char *fmt, ...)
392 {
393 	va_list args;
394 	int error;
395 
396 	kobject_init(kobj, ktype);
397 	kobj->ktype = ktype;
398 	kobj->parent = parent;
399 	kobj->name = NULL;
400 
401 	va_start(args, fmt);
402 	error = kobject_set_name_vargs(kobj, fmt, args);
403 	va_end(args);
404 	if (error)
405 		return (error);
406 	return kobject_add_complete(kobj, parent);
407 }
408 
409 static void
410 linux_kq_lock(void *arg)
411 {
412 	spinlock_t *s = arg;
413 
414 	spin_lock(s);
415 }
416 static void
417 linux_kq_unlock(void *arg)
418 {
419 	spinlock_t *s = arg;
420 
421 	spin_unlock(s);
422 }
423 
424 static void
425 linux_kq_assert_lock(void *arg, int what)
426 {
427 #ifdef INVARIANTS
428 	spinlock_t *s = arg;
429 
430 	if (what == LA_LOCKED)
431 		mtx_assert(&s->m, MA_OWNED);
432 	else
433 		mtx_assert(&s->m, MA_NOTOWNED);
434 #endif
435 }
436 
437 static void
438 linux_file_kqfilter_poll(struct linux_file *, int);
439 
440 struct linux_file *
441 linux_file_alloc(void)
442 {
443 	struct linux_file *filp;
444 
445 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
446 
447 	/* set initial refcount */
448 	filp->f_count = 1;
449 
450 	/* setup fields needed by kqueue support */
451 	spin_lock_init(&filp->f_kqlock);
452 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
453 	    linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
454 
455 	return (filp);
456 }
457 
458 void
459 linux_file_free(struct linux_file *filp)
460 {
461 	if (filp->_file == NULL) {
462 		if (filp->f_shmem != NULL)
463 			vm_object_deallocate(filp->f_shmem);
464 		kfree(filp);
465 	} else {
466 		/*
467 		 * The close method of the character device or file
468 		 * will free the linux_file structure:
469 		 */
470 		_fdrop(filp->_file, curthread);
471 	}
472 }
473 
474 static int
475 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
476     vm_page_t *mres)
477 {
478 	struct vm_area_struct *vmap;
479 
480 	vmap = linux_cdev_handle_find(vm_obj->handle);
481 
482 	MPASS(vmap != NULL);
483 	MPASS(vmap->vm_private_data == vm_obj->handle);
484 
485 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
486 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
487 		vm_page_t page;
488 
489 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
490 			/*
491 			 * If the passed in result page is a fake
492 			 * page, update it with the new physical
493 			 * address.
494 			 */
495 			page = *mres;
496 			vm_page_updatefake(page, paddr, vm_obj->memattr);
497 		} else {
498 			/*
499 			 * Replace the passed in "mres" page with our
500 			 * own fake page and free up the all of the
501 			 * original pages.
502 			 */
503 			VM_OBJECT_WUNLOCK(vm_obj);
504 			page = vm_page_getfake(paddr, vm_obj->memattr);
505 			VM_OBJECT_WLOCK(vm_obj);
506 
507 			vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
508 			*mres = page;
509 		}
510 		vm_page_valid(page);
511 		return (VM_PAGER_OK);
512 	}
513 	return (VM_PAGER_FAIL);
514 }
515 
516 static int
517 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
518     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
519 {
520 	struct vm_area_struct *vmap;
521 	int err;
522 
523 	/* get VM area structure */
524 	vmap = linux_cdev_handle_find(vm_obj->handle);
525 	MPASS(vmap != NULL);
526 	MPASS(vmap->vm_private_data == vm_obj->handle);
527 
528 	VM_OBJECT_WUNLOCK(vm_obj);
529 
530 	linux_set_current(curthread);
531 
532 	down_write(&vmap->vm_mm->mmap_sem);
533 	if (unlikely(vmap->vm_ops == NULL)) {
534 		err = VM_FAULT_SIGBUS;
535 	} else {
536 		struct vm_fault vmf;
537 
538 		/* fill out VM fault structure */
539 		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
540 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
541 		vmf.pgoff = 0;
542 		vmf.page = NULL;
543 		vmf.vma = vmap;
544 
545 		vmap->vm_pfn_count = 0;
546 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
547 		vmap->vm_obj = vm_obj;
548 
549 		err = vmap->vm_ops->fault(vmap, &vmf);
550 
551 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
552 			kern_yield(PRI_USER);
553 			err = vmap->vm_ops->fault(vmap, &vmf);
554 		}
555 	}
556 
557 	/* translate return code */
558 	switch (err) {
559 	case VM_FAULT_OOM:
560 		err = VM_PAGER_AGAIN;
561 		break;
562 	case VM_FAULT_SIGBUS:
563 		err = VM_PAGER_BAD;
564 		break;
565 	case VM_FAULT_NOPAGE:
566 		/*
567 		 * By contract the fault handler will return having
568 		 * busied all the pages itself. If pidx is already
569 		 * found in the object, it will simply xbusy the first
570 		 * page and return with vm_pfn_count set to 1.
571 		 */
572 		*first = vmap->vm_pfn_first;
573 		*last = *first + vmap->vm_pfn_count - 1;
574 		err = VM_PAGER_OK;
575 		break;
576 	default:
577 		err = VM_PAGER_ERROR;
578 		break;
579 	}
580 	up_write(&vmap->vm_mm->mmap_sem);
581 	VM_OBJECT_WLOCK(vm_obj);
582 	return (err);
583 }
584 
585 static struct rwlock linux_vma_lock;
586 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
587     TAILQ_HEAD_INITIALIZER(linux_vma_head);
588 
589 static void
590 linux_cdev_handle_free(struct vm_area_struct *vmap)
591 {
592 	/* Drop reference on vm_file */
593 	if (vmap->vm_file != NULL)
594 		fput(vmap->vm_file);
595 
596 	/* Drop reference on mm_struct */
597 	mmput(vmap->vm_mm);
598 
599 	kfree(vmap);
600 }
601 
602 static void
603 linux_cdev_handle_remove(struct vm_area_struct *vmap)
604 {
605 	rw_wlock(&linux_vma_lock);
606 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
607 	rw_wunlock(&linux_vma_lock);
608 }
609 
610 static struct vm_area_struct *
611 linux_cdev_handle_find(void *handle)
612 {
613 	struct vm_area_struct *vmap;
614 
615 	rw_rlock(&linux_vma_lock);
616 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
617 		if (vmap->vm_private_data == handle)
618 			break;
619 	}
620 	rw_runlock(&linux_vma_lock);
621 	return (vmap);
622 }
623 
624 static int
625 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
626 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
627 {
628 
629 	MPASS(linux_cdev_handle_find(handle) != NULL);
630 	*color = 0;
631 	return (0);
632 }
633 
634 static void
635 linux_cdev_pager_dtor(void *handle)
636 {
637 	const struct vm_operations_struct *vm_ops;
638 	struct vm_area_struct *vmap;
639 
640 	vmap = linux_cdev_handle_find(handle);
641 	MPASS(vmap != NULL);
642 
643 	/*
644 	 * Remove handle before calling close operation to prevent
645 	 * other threads from reusing the handle pointer.
646 	 */
647 	linux_cdev_handle_remove(vmap);
648 
649 	down_write(&vmap->vm_mm->mmap_sem);
650 	vm_ops = vmap->vm_ops;
651 	if (likely(vm_ops != NULL))
652 		vm_ops->close(vmap);
653 	up_write(&vmap->vm_mm->mmap_sem);
654 
655 	linux_cdev_handle_free(vmap);
656 }
657 
658 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
659   {
660 	/* OBJT_MGTDEVICE */
661 	.cdev_pg_populate	= linux_cdev_pager_populate,
662 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
663 	.cdev_pg_dtor	= linux_cdev_pager_dtor
664   },
665   {
666 	/* OBJT_DEVICE */
667 	.cdev_pg_fault	= linux_cdev_pager_fault,
668 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
669 	.cdev_pg_dtor	= linux_cdev_pager_dtor
670   },
671 };
672 
673 int
674 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
675     unsigned long size)
676 {
677 	vm_object_t obj;
678 	vm_page_t m;
679 
680 	obj = vma->vm_obj;
681 	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
682 		return (-ENOTSUP);
683 	VM_OBJECT_RLOCK(obj);
684 	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
685 	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
686 	    m = TAILQ_NEXT(m, listq))
687 		pmap_remove_all(m);
688 	VM_OBJECT_RUNLOCK(obj);
689 	return (0);
690 }
691 
692 static struct file_operations dummy_ldev_ops = {
693 	/* XXXKIB */
694 };
695 
696 static struct linux_cdev dummy_ldev = {
697 	.ops = &dummy_ldev_ops,
698 };
699 
700 #define	LDEV_SI_DTR	0x0001
701 #define	LDEV_SI_REF	0x0002
702 
703 static void
704 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
705     struct linux_cdev **dev)
706 {
707 	struct linux_cdev *ldev;
708 	u_int siref;
709 
710 	ldev = filp->f_cdev;
711 	*fop = filp->f_op;
712 	if (ldev != NULL) {
713 		for (siref = ldev->siref;;) {
714 			if ((siref & LDEV_SI_DTR) != 0) {
715 				ldev = &dummy_ldev;
716 				siref = ldev->siref;
717 				*fop = ldev->ops;
718 				MPASS((ldev->siref & LDEV_SI_DTR) == 0);
719 			} else if (atomic_fcmpset_int(&ldev->siref, &siref,
720 			    siref + LDEV_SI_REF)) {
721 				break;
722 			}
723 		}
724 	}
725 	*dev = ldev;
726 }
727 
728 static void
729 linux_drop_fop(struct linux_cdev *ldev)
730 {
731 
732 	if (ldev == NULL)
733 		return;
734 	MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
735 	atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
736 }
737 
738 #define	OPW(fp,td,code) ({			\
739 	struct file *__fpop;			\
740 	__typeof(code) __retval;		\
741 						\
742 	__fpop = (td)->td_fpop;			\
743 	(td)->td_fpop = (fp);			\
744 	__retval = (code);			\
745 	(td)->td_fpop = __fpop;			\
746 	__retval;				\
747 })
748 
749 static int
750 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
751     struct file *file)
752 {
753 	struct linux_cdev *ldev;
754 	struct linux_file *filp;
755 	const struct file_operations *fop;
756 	int error;
757 
758 	ldev = dev->si_drv1;
759 
760 	filp = linux_file_alloc();
761 	filp->f_dentry = &filp->f_dentry_store;
762 	filp->f_op = ldev->ops;
763 	filp->f_mode = file->f_flag;
764 	filp->f_flags = file->f_flag;
765 	filp->f_vnode = file->f_vnode;
766 	filp->_file = file;
767 	refcount_acquire(&ldev->refs);
768 	filp->f_cdev = ldev;
769 
770 	linux_set_current(td);
771 	linux_get_fop(filp, &fop, &ldev);
772 
773 	if (fop->open != NULL) {
774 		error = -fop->open(file->f_vnode, filp);
775 		if (error != 0) {
776 			linux_drop_fop(ldev);
777 			linux_cdev_deref(filp->f_cdev);
778 			kfree(filp);
779 			return (error);
780 		}
781 	}
782 
783 	/* hold on to the vnode - used for fstat() */
784 	vhold(filp->f_vnode);
785 
786 	/* release the file from devfs */
787 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
788 	linux_drop_fop(ldev);
789 	return (ENXIO);
790 }
791 
792 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
793 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
794 
795 static inline int
796 linux_remap_address(void **uaddr, size_t len)
797 {
798 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
799 
800 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
801 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
802 		struct task_struct *pts = current;
803 		if (pts == NULL) {
804 			*uaddr = NULL;
805 			return (1);
806 		}
807 
808 		/* compute data offset */
809 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
810 
811 		/* check that length is within bounds */
812 		if ((len > IOCPARM_MAX) ||
813 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
814 			*uaddr = NULL;
815 			return (1);
816 		}
817 
818 		/* re-add kernel buffer address */
819 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
820 
821 		/* update address location */
822 		*uaddr = (void *)uaddr_val;
823 		return (1);
824 	}
825 	return (0);
826 }
827 
828 int
829 linux_copyin(const void *uaddr, void *kaddr, size_t len)
830 {
831 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
832 		if (uaddr == NULL)
833 			return (-EFAULT);
834 		memcpy(kaddr, uaddr, len);
835 		return (0);
836 	}
837 	return (-copyin(uaddr, kaddr, len));
838 }
839 
840 int
841 linux_copyout(const void *kaddr, void *uaddr, size_t len)
842 {
843 	if (linux_remap_address(&uaddr, len)) {
844 		if (uaddr == NULL)
845 			return (-EFAULT);
846 		memcpy(uaddr, kaddr, len);
847 		return (0);
848 	}
849 	return (-copyout(kaddr, uaddr, len));
850 }
851 
852 size_t
853 linux_clear_user(void *_uaddr, size_t _len)
854 {
855 	uint8_t *uaddr = _uaddr;
856 	size_t len = _len;
857 
858 	/* make sure uaddr is aligned before going into the fast loop */
859 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
860 		if (subyte(uaddr, 0))
861 			return (_len);
862 		uaddr++;
863 		len--;
864 	}
865 
866 	/* zero 8 bytes at a time */
867 	while (len > 7) {
868 #ifdef __LP64__
869 		if (suword64(uaddr, 0))
870 			return (_len);
871 #else
872 		if (suword32(uaddr, 0))
873 			return (_len);
874 		if (suword32(uaddr + 4, 0))
875 			return (_len);
876 #endif
877 		uaddr += 8;
878 		len -= 8;
879 	}
880 
881 	/* zero fill end, if any */
882 	while (len > 0) {
883 		if (subyte(uaddr, 0))
884 			return (_len);
885 		uaddr++;
886 		len--;
887 	}
888 	return (0);
889 }
890 
891 int
892 linux_access_ok(const void *uaddr, size_t len)
893 {
894 	uintptr_t saddr;
895 	uintptr_t eaddr;
896 
897 	/* get start and end address */
898 	saddr = (uintptr_t)uaddr;
899 	eaddr = (uintptr_t)uaddr + len;
900 
901 	/* verify addresses are valid for userspace */
902 	return ((saddr == eaddr) ||
903 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
904 }
905 
906 /*
907  * This function should return either EINTR or ERESTART depending on
908  * the signal type sent to this thread:
909  */
910 static int
911 linux_get_error(struct task_struct *task, int error)
912 {
913 	/* check for signal type interrupt code */
914 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
915 		error = -linux_schedule_get_interrupt_value(task);
916 		if (error == 0)
917 			error = EINTR;
918 	}
919 	return (error);
920 }
921 
922 static int
923 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
924     const struct file_operations *fop, u_long cmd, caddr_t data,
925     struct thread *td)
926 {
927 	struct task_struct *task = current;
928 	unsigned size;
929 	int error;
930 
931 	size = IOCPARM_LEN(cmd);
932 	/* refer to logic in sys_ioctl() */
933 	if (size > 0) {
934 		/*
935 		 * Setup hint for linux_copyin() and linux_copyout().
936 		 *
937 		 * Background: Linux code expects a user-space address
938 		 * while FreeBSD supplies a kernel-space address.
939 		 */
940 		task->bsd_ioctl_data = data;
941 		task->bsd_ioctl_len = size;
942 		data = (void *)LINUX_IOCTL_MIN_PTR;
943 	} else {
944 		/* fetch user-space pointer */
945 		data = *(void **)data;
946 	}
947 #if defined(__amd64__)
948 	if (td->td_proc->p_elf_machine == EM_386) {
949 		/* try the compat IOCTL handler first */
950 		if (fop->compat_ioctl != NULL) {
951 			error = -OPW(fp, td, fop->compat_ioctl(filp,
952 			    cmd, (u_long)data));
953 		} else {
954 			error = ENOTTY;
955 		}
956 
957 		/* fallback to the regular IOCTL handler, if any */
958 		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
959 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
960 			    cmd, (u_long)data));
961 		}
962 	} else
963 #endif
964 	{
965 		if (fop->unlocked_ioctl != NULL) {
966 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
967 			    cmd, (u_long)data));
968 		} else {
969 			error = ENOTTY;
970 		}
971 	}
972 	if (size > 0) {
973 		task->bsd_ioctl_data = NULL;
974 		task->bsd_ioctl_len = 0;
975 	}
976 
977 	if (error == EWOULDBLOCK) {
978 		/* update kqfilter status, if any */
979 		linux_file_kqfilter_poll(filp,
980 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
981 	} else {
982 		error = linux_get_error(task, error);
983 	}
984 	return (error);
985 }
986 
987 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
988 
989 /*
990  * This function atomically updates the poll wakeup state and returns
991  * the previous state at the time of update.
992  */
993 static uint8_t
994 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
995 {
996 	int c, old;
997 
998 	c = v->counter;
999 
1000 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1001 		c = old;
1002 
1003 	return (c);
1004 }
1005 
1006 static int
1007 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1008 {
1009 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1010 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1011 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1012 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1013 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1014 	};
1015 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1016 
1017 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1018 	case LINUX_FWQ_STATE_QUEUED:
1019 		linux_poll_wakeup(filp);
1020 		return (1);
1021 	default:
1022 		return (0);
1023 	}
1024 }
1025 
1026 void
1027 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1028 {
1029 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1030 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1031 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1032 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1033 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1034 	};
1035 
1036 	/* check if we are called inside the select system call */
1037 	if (p == LINUX_POLL_TABLE_NORMAL)
1038 		selrecord(curthread, &filp->f_selinfo);
1039 
1040 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1041 	case LINUX_FWQ_STATE_INIT:
1042 		/* NOTE: file handles can only belong to one wait-queue */
1043 		filp->f_wait_queue.wqh = wqh;
1044 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1045 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1046 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1047 		break;
1048 	default:
1049 		break;
1050 	}
1051 }
1052 
1053 static void
1054 linux_poll_wait_dequeue(struct linux_file *filp)
1055 {
1056 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1057 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1058 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1059 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1060 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1061 	};
1062 
1063 	seldrain(&filp->f_selinfo);
1064 
1065 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1066 	case LINUX_FWQ_STATE_NOT_READY:
1067 	case LINUX_FWQ_STATE_QUEUED:
1068 	case LINUX_FWQ_STATE_READY:
1069 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1070 		break;
1071 	default:
1072 		break;
1073 	}
1074 }
1075 
1076 void
1077 linux_poll_wakeup(struct linux_file *filp)
1078 {
1079 	/* this function should be NULL-safe */
1080 	if (filp == NULL)
1081 		return;
1082 
1083 	selwakeup(&filp->f_selinfo);
1084 
1085 	spin_lock(&filp->f_kqlock);
1086 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1087 	    LINUX_KQ_FLAG_NEED_WRITE;
1088 
1089 	/* make sure the "knote" gets woken up */
1090 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1091 	spin_unlock(&filp->f_kqlock);
1092 }
1093 
1094 static void
1095 linux_file_kqfilter_detach(struct knote *kn)
1096 {
1097 	struct linux_file *filp = kn->kn_hook;
1098 
1099 	spin_lock(&filp->f_kqlock);
1100 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1101 	spin_unlock(&filp->f_kqlock);
1102 }
1103 
1104 static int
1105 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1106 {
1107 	struct linux_file *filp = kn->kn_hook;
1108 
1109 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1110 
1111 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1112 }
1113 
1114 static int
1115 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1116 {
1117 	struct linux_file *filp = kn->kn_hook;
1118 
1119 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1120 
1121 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1122 }
1123 
1124 static struct filterops linux_dev_kqfiltops_read = {
1125 	.f_isfd = 1,
1126 	.f_detach = linux_file_kqfilter_detach,
1127 	.f_event = linux_file_kqfilter_read_event,
1128 };
1129 
1130 static struct filterops linux_dev_kqfiltops_write = {
1131 	.f_isfd = 1,
1132 	.f_detach = linux_file_kqfilter_detach,
1133 	.f_event = linux_file_kqfilter_write_event,
1134 };
1135 
1136 static void
1137 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1138 {
1139 	struct thread *td;
1140 	const struct file_operations *fop;
1141 	struct linux_cdev *ldev;
1142 	int temp;
1143 
1144 	if ((filp->f_kqflags & kqflags) == 0)
1145 		return;
1146 
1147 	td = curthread;
1148 
1149 	linux_get_fop(filp, &fop, &ldev);
1150 	/* get the latest polling state */
1151 	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1152 	linux_drop_fop(ldev);
1153 
1154 	spin_lock(&filp->f_kqlock);
1155 	/* clear kqflags */
1156 	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1157 	    LINUX_KQ_FLAG_NEED_WRITE);
1158 	/* update kqflags */
1159 	if ((temp & (POLLIN | POLLOUT)) != 0) {
1160 		if ((temp & POLLIN) != 0)
1161 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1162 		if ((temp & POLLOUT) != 0)
1163 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1164 
1165 		/* make sure the "knote" gets woken up */
1166 		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1167 	}
1168 	spin_unlock(&filp->f_kqlock);
1169 }
1170 
1171 static int
1172 linux_file_kqfilter(struct file *file, struct knote *kn)
1173 {
1174 	struct linux_file *filp;
1175 	struct thread *td;
1176 	int error;
1177 
1178 	td = curthread;
1179 	filp = (struct linux_file *)file->f_data;
1180 	filp->f_flags = file->f_flag;
1181 	if (filp->f_op->poll == NULL)
1182 		return (EINVAL);
1183 
1184 	spin_lock(&filp->f_kqlock);
1185 	switch (kn->kn_filter) {
1186 	case EVFILT_READ:
1187 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1188 		kn->kn_fop = &linux_dev_kqfiltops_read;
1189 		kn->kn_hook = filp;
1190 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1191 		error = 0;
1192 		break;
1193 	case EVFILT_WRITE:
1194 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1195 		kn->kn_fop = &linux_dev_kqfiltops_write;
1196 		kn->kn_hook = filp;
1197 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1198 		error = 0;
1199 		break;
1200 	default:
1201 		error = EINVAL;
1202 		break;
1203 	}
1204 	spin_unlock(&filp->f_kqlock);
1205 
1206 	if (error == 0) {
1207 		linux_set_current(td);
1208 
1209 		/* update kqfilter status, if any */
1210 		linux_file_kqfilter_poll(filp,
1211 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1212 	}
1213 	return (error);
1214 }
1215 
1216 static int
1217 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1218     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1219     int nprot, struct thread *td)
1220 {
1221 	struct task_struct *task;
1222 	struct vm_area_struct *vmap;
1223 	struct mm_struct *mm;
1224 	struct linux_file *filp;
1225 	vm_memattr_t attr;
1226 	int error;
1227 
1228 	filp = (struct linux_file *)fp->f_data;
1229 	filp->f_flags = fp->f_flag;
1230 
1231 	if (fop->mmap == NULL)
1232 		return (EOPNOTSUPP);
1233 
1234 	linux_set_current(td);
1235 
1236 	/*
1237 	 * The same VM object might be shared by multiple processes
1238 	 * and the mm_struct is usually freed when a process exits.
1239 	 *
1240 	 * The atomic reference below makes sure the mm_struct is
1241 	 * available as long as the vmap is in the linux_vma_head.
1242 	 */
1243 	task = current;
1244 	mm = task->mm;
1245 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1246 		return (EINVAL);
1247 
1248 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1249 	vmap->vm_start = 0;
1250 	vmap->vm_end = size;
1251 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1252 	vmap->vm_pfn = 0;
1253 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1254 	vmap->vm_ops = NULL;
1255 	vmap->vm_file = get_file(filp);
1256 	vmap->vm_mm = mm;
1257 
1258 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1259 		error = linux_get_error(task, EINTR);
1260 	} else {
1261 		error = -OPW(fp, td, fop->mmap(filp, vmap));
1262 		error = linux_get_error(task, error);
1263 		up_write(&vmap->vm_mm->mmap_sem);
1264 	}
1265 
1266 	if (error != 0) {
1267 		linux_cdev_handle_free(vmap);
1268 		return (error);
1269 	}
1270 
1271 	attr = pgprot2cachemode(vmap->vm_page_prot);
1272 
1273 	if (vmap->vm_ops != NULL) {
1274 		struct vm_area_struct *ptr;
1275 		void *vm_private_data;
1276 		bool vm_no_fault;
1277 
1278 		if (vmap->vm_ops->open == NULL ||
1279 		    vmap->vm_ops->close == NULL ||
1280 		    vmap->vm_private_data == NULL) {
1281 			/* free allocated VM area struct */
1282 			linux_cdev_handle_free(vmap);
1283 			return (EINVAL);
1284 		}
1285 
1286 		vm_private_data = vmap->vm_private_data;
1287 
1288 		rw_wlock(&linux_vma_lock);
1289 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1290 			if (ptr->vm_private_data == vm_private_data)
1291 				break;
1292 		}
1293 		/* check if there is an existing VM area struct */
1294 		if (ptr != NULL) {
1295 			/* check if the VM area structure is invalid */
1296 			if (ptr->vm_ops == NULL ||
1297 			    ptr->vm_ops->open == NULL ||
1298 			    ptr->vm_ops->close == NULL) {
1299 				error = ESTALE;
1300 				vm_no_fault = 1;
1301 			} else {
1302 				error = EEXIST;
1303 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1304 			}
1305 		} else {
1306 			/* insert VM area structure into list */
1307 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1308 			error = 0;
1309 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1310 		}
1311 		rw_wunlock(&linux_vma_lock);
1312 
1313 		if (error != 0) {
1314 			/* free allocated VM area struct */
1315 			linux_cdev_handle_free(vmap);
1316 			/* check for stale VM area struct */
1317 			if (error != EEXIST)
1318 				return (error);
1319 		}
1320 
1321 		/* check if there is no fault handler */
1322 		if (vm_no_fault) {
1323 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1324 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1325 			    td->td_ucred);
1326 		} else {
1327 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1328 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1329 			    td->td_ucred);
1330 		}
1331 
1332 		/* check if allocating the VM object failed */
1333 		if (*object == NULL) {
1334 			if (error == 0) {
1335 				/* remove VM area struct from list */
1336 				linux_cdev_handle_remove(vmap);
1337 				/* free allocated VM area struct */
1338 				linux_cdev_handle_free(vmap);
1339 			}
1340 			return (EINVAL);
1341 		}
1342 	} else {
1343 		struct sglist *sg;
1344 
1345 		sg = sglist_alloc(1, M_WAITOK);
1346 		sglist_append_phys(sg,
1347 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1348 
1349 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1350 		    nprot, 0, td->td_ucred);
1351 
1352 		linux_cdev_handle_free(vmap);
1353 
1354 		if (*object == NULL) {
1355 			sglist_free(sg);
1356 			return (EINVAL);
1357 		}
1358 	}
1359 
1360 	if (attr != VM_MEMATTR_DEFAULT) {
1361 		VM_OBJECT_WLOCK(*object);
1362 		vm_object_set_memattr(*object, attr);
1363 		VM_OBJECT_WUNLOCK(*object);
1364 	}
1365 	*offset = 0;
1366 	return (0);
1367 }
1368 
1369 struct cdevsw linuxcdevsw = {
1370 	.d_version = D_VERSION,
1371 	.d_fdopen = linux_dev_fdopen,
1372 	.d_name = "lkpidev",
1373 };
1374 
1375 static int
1376 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1377     int flags, struct thread *td)
1378 {
1379 	struct linux_file *filp;
1380 	const struct file_operations *fop;
1381 	struct linux_cdev *ldev;
1382 	ssize_t bytes;
1383 	int error;
1384 
1385 	error = 0;
1386 	filp = (struct linux_file *)file->f_data;
1387 	filp->f_flags = file->f_flag;
1388 	/* XXX no support for I/O vectors currently */
1389 	if (uio->uio_iovcnt != 1)
1390 		return (EOPNOTSUPP);
1391 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1392 		return (EINVAL);
1393 	linux_set_current(td);
1394 	linux_get_fop(filp, &fop, &ldev);
1395 	if (fop->read != NULL) {
1396 		bytes = OPW(file, td, fop->read(filp,
1397 		    uio->uio_iov->iov_base,
1398 		    uio->uio_iov->iov_len, &uio->uio_offset));
1399 		if (bytes >= 0) {
1400 			uio->uio_iov->iov_base =
1401 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1402 			uio->uio_iov->iov_len -= bytes;
1403 			uio->uio_resid -= bytes;
1404 		} else {
1405 			error = linux_get_error(current, -bytes);
1406 		}
1407 	} else
1408 		error = ENXIO;
1409 
1410 	/* update kqfilter status, if any */
1411 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1412 	linux_drop_fop(ldev);
1413 
1414 	return (error);
1415 }
1416 
1417 static int
1418 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1419     int flags, struct thread *td)
1420 {
1421 	struct linux_file *filp;
1422 	const struct file_operations *fop;
1423 	struct linux_cdev *ldev;
1424 	ssize_t bytes;
1425 	int error;
1426 
1427 	filp = (struct linux_file *)file->f_data;
1428 	filp->f_flags = file->f_flag;
1429 	/* XXX no support for I/O vectors currently */
1430 	if (uio->uio_iovcnt != 1)
1431 		return (EOPNOTSUPP);
1432 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1433 		return (EINVAL);
1434 	linux_set_current(td);
1435 	linux_get_fop(filp, &fop, &ldev);
1436 	if (fop->write != NULL) {
1437 		bytes = OPW(file, td, fop->write(filp,
1438 		    uio->uio_iov->iov_base,
1439 		    uio->uio_iov->iov_len, &uio->uio_offset));
1440 		if (bytes >= 0) {
1441 			uio->uio_iov->iov_base =
1442 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1443 			uio->uio_iov->iov_len -= bytes;
1444 			uio->uio_resid -= bytes;
1445 			error = 0;
1446 		} else {
1447 			error = linux_get_error(current, -bytes);
1448 		}
1449 	} else
1450 		error = ENXIO;
1451 
1452 	/* update kqfilter status, if any */
1453 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1454 
1455 	linux_drop_fop(ldev);
1456 
1457 	return (error);
1458 }
1459 
1460 static int
1461 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1462     struct thread *td)
1463 {
1464 	struct linux_file *filp;
1465 	const struct file_operations *fop;
1466 	struct linux_cdev *ldev;
1467 	int revents;
1468 
1469 	filp = (struct linux_file *)file->f_data;
1470 	filp->f_flags = file->f_flag;
1471 	linux_set_current(td);
1472 	linux_get_fop(filp, &fop, &ldev);
1473 	if (fop->poll != NULL) {
1474 		revents = OPW(file, td, fop->poll(filp,
1475 		    LINUX_POLL_TABLE_NORMAL)) & events;
1476 	} else {
1477 		revents = 0;
1478 	}
1479 	linux_drop_fop(ldev);
1480 	return (revents);
1481 }
1482 
1483 static int
1484 linux_file_close(struct file *file, struct thread *td)
1485 {
1486 	struct linux_file *filp;
1487 	int (*release)(struct inode *, struct linux_file *);
1488 	const struct file_operations *fop;
1489 	struct linux_cdev *ldev;
1490 	int error;
1491 
1492 	filp = (struct linux_file *)file->f_data;
1493 
1494 	KASSERT(file_count(filp) == 0,
1495 	    ("File refcount(%d) is not zero", file_count(filp)));
1496 
1497 	if (td == NULL)
1498 		td = curthread;
1499 
1500 	error = 0;
1501 	filp->f_flags = file->f_flag;
1502 	linux_set_current(td);
1503 	linux_poll_wait_dequeue(filp);
1504 	linux_get_fop(filp, &fop, &ldev);
1505 	/*
1506 	 * Always use the real release function, if any, to avoid
1507 	 * leaking device resources:
1508 	 */
1509 	release = filp->f_op->release;
1510 	if (release != NULL)
1511 		error = -OPW(file, td, release(filp->f_vnode, filp));
1512 	funsetown(&filp->f_sigio);
1513 	if (filp->f_vnode != NULL)
1514 		vdrop(filp->f_vnode);
1515 	linux_drop_fop(ldev);
1516 	if (filp->f_cdev != NULL)
1517 		linux_cdev_deref(filp->f_cdev);
1518 	kfree(filp);
1519 
1520 	return (error);
1521 }
1522 
1523 static int
1524 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1525     struct thread *td)
1526 {
1527 	struct linux_file *filp;
1528 	const struct file_operations *fop;
1529 	struct linux_cdev *ldev;
1530 	struct fiodgname_arg *fgn;
1531 	const char *p;
1532 	int error, i;
1533 
1534 	error = 0;
1535 	filp = (struct linux_file *)fp->f_data;
1536 	filp->f_flags = fp->f_flag;
1537 	linux_get_fop(filp, &fop, &ldev);
1538 
1539 	linux_set_current(td);
1540 	switch (cmd) {
1541 	case FIONBIO:
1542 		break;
1543 	case FIOASYNC:
1544 		if (fop->fasync == NULL)
1545 			break;
1546 		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1547 		break;
1548 	case FIOSETOWN:
1549 		error = fsetown(*(int *)data, &filp->f_sigio);
1550 		if (error == 0) {
1551 			if (fop->fasync == NULL)
1552 				break;
1553 			error = -OPW(fp, td, fop->fasync(0, filp,
1554 			    fp->f_flag & FASYNC));
1555 		}
1556 		break;
1557 	case FIOGETOWN:
1558 		*(int *)data = fgetown(&filp->f_sigio);
1559 		break;
1560 	case FIODGNAME:
1561 #ifdef	COMPAT_FREEBSD32
1562 	case FIODGNAME_32:
1563 #endif
1564 		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1565 			error = ENXIO;
1566 			break;
1567 		}
1568 		fgn = data;
1569 		p = devtoname(filp->f_cdev->cdev);
1570 		i = strlen(p) + 1;
1571 		if (i > fgn->len) {
1572 			error = EINVAL;
1573 			break;
1574 		}
1575 		error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1576 		break;
1577 	default:
1578 		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1579 		break;
1580 	}
1581 	linux_drop_fop(ldev);
1582 	return (error);
1583 }
1584 
1585 static int
1586 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1587     vm_prot_t *maxprotp, int *flagsp, struct file *fp,
1588     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1589 {
1590 	/*
1591 	 * Character devices do not provide private mappings
1592 	 * of any kind:
1593 	 */
1594 	if ((*maxprotp & VM_PROT_WRITE) == 0 &&
1595 	    (prot & VM_PROT_WRITE) != 0)
1596 		return (EACCES);
1597 	if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0)
1598 		return (EINVAL);
1599 
1600 	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1601 	    (int)prot, td));
1602 }
1603 
1604 static int
1605 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1606     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1607     struct thread *td)
1608 {
1609 	struct linux_file *filp;
1610 	const struct file_operations *fop;
1611 	struct linux_cdev *ldev;
1612 	struct mount *mp;
1613 	struct vnode *vp;
1614 	vm_object_t object;
1615 	vm_prot_t maxprot;
1616 	int error;
1617 
1618 	filp = (struct linux_file *)fp->f_data;
1619 
1620 	vp = filp->f_vnode;
1621 	if (vp == NULL)
1622 		return (EOPNOTSUPP);
1623 
1624 	/*
1625 	 * Ensure that file and memory protections are
1626 	 * compatible.
1627 	 */
1628 	mp = vp->v_mount;
1629 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1630 		maxprot = VM_PROT_NONE;
1631 		if ((prot & VM_PROT_EXECUTE) != 0)
1632 			return (EACCES);
1633 	} else
1634 		maxprot = VM_PROT_EXECUTE;
1635 	if ((fp->f_flag & FREAD) != 0)
1636 		maxprot |= VM_PROT_READ;
1637 	else if ((prot & VM_PROT_READ) != 0)
1638 		return (EACCES);
1639 
1640 	/*
1641 	 * If we are sharing potential changes via MAP_SHARED and we
1642 	 * are trying to get write permission although we opened it
1643 	 * without asking for it, bail out.
1644 	 *
1645 	 * Note that most character devices always share mappings.
1646 	 *
1647 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1648 	 * requests rather than doing it here.
1649 	 */
1650 	if ((flags & MAP_SHARED) != 0) {
1651 		if ((fp->f_flag & FWRITE) != 0)
1652 			maxprot |= VM_PROT_WRITE;
1653 		else if ((prot & VM_PROT_WRITE) != 0)
1654 			return (EACCES);
1655 	}
1656 	maxprot &= cap_maxprot;
1657 
1658 	linux_get_fop(filp, &fop, &ldev);
1659 	error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp,
1660 	    &foff, fop, &object);
1661 	if (error != 0)
1662 		goto out;
1663 
1664 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1665 	    foff, FALSE, td);
1666 	if (error != 0)
1667 		vm_object_deallocate(object);
1668 out:
1669 	linux_drop_fop(ldev);
1670 	return (error);
1671 }
1672 
1673 static int
1674 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1675     struct thread *td)
1676 {
1677 	struct linux_file *filp;
1678 	struct vnode *vp;
1679 	int error;
1680 
1681 	filp = (struct linux_file *)fp->f_data;
1682 	if (filp->f_vnode == NULL)
1683 		return (EOPNOTSUPP);
1684 
1685 	vp = filp->f_vnode;
1686 
1687 	vn_lock(vp, LK_SHARED | LK_RETRY);
1688 	error = VOP_STAT(vp, sb, td->td_ucred, NOCRED, td);
1689 	VOP_UNLOCK(vp);
1690 
1691 	return (error);
1692 }
1693 
1694 static int
1695 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1696     struct filedesc *fdp)
1697 {
1698 	struct linux_file *filp;
1699 	struct vnode *vp;
1700 	int error;
1701 
1702 	filp = fp->f_data;
1703 	vp = filp->f_vnode;
1704 	if (vp == NULL) {
1705 		error = 0;
1706 		kif->kf_type = KF_TYPE_DEV;
1707 	} else {
1708 		vref(vp);
1709 		FILEDESC_SUNLOCK(fdp);
1710 		error = vn_fill_kinfo_vnode(vp, kif);
1711 		vrele(vp);
1712 		kif->kf_type = KF_TYPE_VNODE;
1713 		FILEDESC_SLOCK(fdp);
1714 	}
1715 	return (error);
1716 }
1717 
1718 unsigned int
1719 linux_iminor(struct inode *inode)
1720 {
1721 	struct linux_cdev *ldev;
1722 
1723 	if (inode == NULL || inode->v_rdev == NULL ||
1724 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1725 		return (-1U);
1726 	ldev = inode->v_rdev->si_drv1;
1727 	if (ldev == NULL)
1728 		return (-1U);
1729 
1730 	return (minor(ldev->dev));
1731 }
1732 
1733 struct fileops linuxfileops = {
1734 	.fo_read = linux_file_read,
1735 	.fo_write = linux_file_write,
1736 	.fo_truncate = invfo_truncate,
1737 	.fo_kqfilter = linux_file_kqfilter,
1738 	.fo_stat = linux_file_stat,
1739 	.fo_fill_kinfo = linux_file_fill_kinfo,
1740 	.fo_poll = linux_file_poll,
1741 	.fo_close = linux_file_close,
1742 	.fo_ioctl = linux_file_ioctl,
1743 	.fo_mmap = linux_file_mmap,
1744 	.fo_chmod = invfo_chmod,
1745 	.fo_chown = invfo_chown,
1746 	.fo_sendfile = invfo_sendfile,
1747 	.fo_flags = DFLAG_PASSABLE,
1748 };
1749 
1750 /*
1751  * Hash of vmmap addresses.  This is infrequently accessed and does not
1752  * need to be particularly large.  This is done because we must store the
1753  * caller's idea of the map size to properly unmap.
1754  */
1755 struct vmmap {
1756 	LIST_ENTRY(vmmap)	vm_next;
1757 	void 			*vm_addr;
1758 	unsigned long		vm_size;
1759 };
1760 
1761 struct vmmaphd {
1762 	struct vmmap *lh_first;
1763 };
1764 #define	VMMAP_HASH_SIZE	64
1765 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1766 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1767 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1768 static struct mtx vmmaplock;
1769 
1770 static void
1771 vmmap_add(void *addr, unsigned long size)
1772 {
1773 	struct vmmap *vmmap;
1774 
1775 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1776 	mtx_lock(&vmmaplock);
1777 	vmmap->vm_size = size;
1778 	vmmap->vm_addr = addr;
1779 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1780 	mtx_unlock(&vmmaplock);
1781 }
1782 
1783 static struct vmmap *
1784 vmmap_remove(void *addr)
1785 {
1786 	struct vmmap *vmmap;
1787 
1788 	mtx_lock(&vmmaplock);
1789 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1790 		if (vmmap->vm_addr == addr)
1791 			break;
1792 	if (vmmap)
1793 		LIST_REMOVE(vmmap, vm_next);
1794 	mtx_unlock(&vmmaplock);
1795 
1796 	return (vmmap);
1797 }
1798 
1799 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__)
1800 void *
1801 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1802 {
1803 	void *addr;
1804 
1805 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1806 	if (addr == NULL)
1807 		return (NULL);
1808 	vmmap_add(addr, size);
1809 
1810 	return (addr);
1811 }
1812 #endif
1813 
1814 void
1815 iounmap(void *addr)
1816 {
1817 	struct vmmap *vmmap;
1818 
1819 	vmmap = vmmap_remove(addr);
1820 	if (vmmap == NULL)
1821 		return;
1822 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__)
1823 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1824 #endif
1825 	kfree(vmmap);
1826 }
1827 
1828 void *
1829 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1830 {
1831 	vm_offset_t off;
1832 	size_t size;
1833 
1834 	size = count * PAGE_SIZE;
1835 	off = kva_alloc(size);
1836 	if (off == 0)
1837 		return (NULL);
1838 	vmmap_add((void *)off, size);
1839 	pmap_qenter(off, pages, count);
1840 
1841 	return ((void *)off);
1842 }
1843 
1844 void
1845 vunmap(void *addr)
1846 {
1847 	struct vmmap *vmmap;
1848 
1849 	vmmap = vmmap_remove(addr);
1850 	if (vmmap == NULL)
1851 		return;
1852 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1853 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1854 	kfree(vmmap);
1855 }
1856 
1857 static char *
1858 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1859 {
1860 	unsigned int len;
1861 	char *p;
1862 	va_list aq;
1863 
1864 	va_copy(aq, ap);
1865 	len = vsnprintf(NULL, 0, fmt, aq);
1866 	va_end(aq);
1867 
1868 	if (dev != NULL)
1869 		p = devm_kmalloc(dev, len + 1, gfp);
1870 	else
1871 		p = kmalloc(len + 1, gfp);
1872 	if (p != NULL)
1873 		vsnprintf(p, len + 1, fmt, ap);
1874 
1875 	return (p);
1876 }
1877 
1878 char *
1879 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1880 {
1881 
1882 	return (devm_kvasprintf(NULL, gfp, fmt, ap));
1883 }
1884 
1885 char *
1886 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1887 {
1888 	va_list ap;
1889 	char *p;
1890 
1891 	va_start(ap, fmt);
1892 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1893 	va_end(ap);
1894 
1895 	return (p);
1896 }
1897 
1898 char *
1899 kasprintf(gfp_t gfp, const char *fmt, ...)
1900 {
1901 	va_list ap;
1902 	char *p;
1903 
1904 	va_start(ap, fmt);
1905 	p = kvasprintf(gfp, fmt, ap);
1906 	va_end(ap);
1907 
1908 	return (p);
1909 }
1910 
1911 static void
1912 linux_timer_callback_wrapper(void *context)
1913 {
1914 	struct timer_list *timer;
1915 
1916 	linux_set_current(curthread);
1917 
1918 	timer = context;
1919 	timer->function(timer->data);
1920 }
1921 
1922 int
1923 mod_timer(struct timer_list *timer, int expires)
1924 {
1925 	int ret;
1926 
1927 	timer->expires = expires;
1928 	ret = callout_reset(&timer->callout,
1929 	    linux_timer_jiffies_until(expires),
1930 	    &linux_timer_callback_wrapper, timer);
1931 
1932 	MPASS(ret == 0 || ret == 1);
1933 
1934 	return (ret == 1);
1935 }
1936 
1937 void
1938 add_timer(struct timer_list *timer)
1939 {
1940 
1941 	callout_reset(&timer->callout,
1942 	    linux_timer_jiffies_until(timer->expires),
1943 	    &linux_timer_callback_wrapper, timer);
1944 }
1945 
1946 void
1947 add_timer_on(struct timer_list *timer, int cpu)
1948 {
1949 
1950 	callout_reset_on(&timer->callout,
1951 	    linux_timer_jiffies_until(timer->expires),
1952 	    &linux_timer_callback_wrapper, timer, cpu);
1953 }
1954 
1955 int
1956 del_timer(struct timer_list *timer)
1957 {
1958 
1959 	if (callout_stop(&(timer)->callout) == -1)
1960 		return (0);
1961 	return (1);
1962 }
1963 
1964 int
1965 del_timer_sync(struct timer_list *timer)
1966 {
1967 
1968 	if (callout_drain(&(timer)->callout) == -1)
1969 		return (0);
1970 	return (1);
1971 }
1972 
1973 /* greatest common divisor, Euclid equation */
1974 static uint64_t
1975 lkpi_gcd_64(uint64_t a, uint64_t b)
1976 {
1977 	uint64_t an;
1978 	uint64_t bn;
1979 
1980 	while (b != 0) {
1981 		an = b;
1982 		bn = a % b;
1983 		a = an;
1984 		b = bn;
1985 	}
1986 	return (a);
1987 }
1988 
1989 uint64_t lkpi_nsec2hz_rem;
1990 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
1991 uint64_t lkpi_nsec2hz_max;
1992 
1993 uint64_t lkpi_usec2hz_rem;
1994 uint64_t lkpi_usec2hz_div = 1000000ULL;
1995 uint64_t lkpi_usec2hz_max;
1996 
1997 uint64_t lkpi_msec2hz_rem;
1998 uint64_t lkpi_msec2hz_div = 1000ULL;
1999 uint64_t lkpi_msec2hz_max;
2000 
2001 static void
2002 linux_timer_init(void *arg)
2003 {
2004 	uint64_t gcd;
2005 
2006 	/*
2007 	 * Compute an internal HZ value which can divide 2**32 to
2008 	 * avoid timer rounding problems when the tick value wraps
2009 	 * around 2**32:
2010 	 */
2011 	linux_timer_hz_mask = 1;
2012 	while (linux_timer_hz_mask < (unsigned long)hz)
2013 		linux_timer_hz_mask *= 2;
2014 	linux_timer_hz_mask--;
2015 
2016 	/* compute some internal constants */
2017 
2018 	lkpi_nsec2hz_rem = hz;
2019 	lkpi_usec2hz_rem = hz;
2020 	lkpi_msec2hz_rem = hz;
2021 
2022 	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2023 	lkpi_nsec2hz_rem /= gcd;
2024 	lkpi_nsec2hz_div /= gcd;
2025 	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2026 
2027 	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2028 	lkpi_usec2hz_rem /= gcd;
2029 	lkpi_usec2hz_div /= gcd;
2030 	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2031 
2032 	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2033 	lkpi_msec2hz_rem /= gcd;
2034 	lkpi_msec2hz_div /= gcd;
2035 	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2036 }
2037 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2038 
2039 void
2040 linux_complete_common(struct completion *c, int all)
2041 {
2042 	int wakeup_swapper;
2043 
2044 	sleepq_lock(c);
2045 	if (all) {
2046 		c->done = UINT_MAX;
2047 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2048 	} else {
2049 		if (c->done != UINT_MAX)
2050 			c->done++;
2051 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2052 	}
2053 	sleepq_release(c);
2054 	if (wakeup_swapper)
2055 		kick_proc0();
2056 }
2057 
2058 /*
2059  * Indefinite wait for done != 0 with or without signals.
2060  */
2061 int
2062 linux_wait_for_common(struct completion *c, int flags)
2063 {
2064 	struct task_struct *task;
2065 	int error;
2066 
2067 	if (SCHEDULER_STOPPED())
2068 		return (0);
2069 
2070 	task = current;
2071 
2072 	if (flags != 0)
2073 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2074 	else
2075 		flags = SLEEPQ_SLEEP;
2076 	error = 0;
2077 	for (;;) {
2078 		sleepq_lock(c);
2079 		if (c->done)
2080 			break;
2081 		sleepq_add(c, NULL, "completion", flags, 0);
2082 		if (flags & SLEEPQ_INTERRUPTIBLE) {
2083 			DROP_GIANT();
2084 			error = -sleepq_wait_sig(c, 0);
2085 			PICKUP_GIANT();
2086 			if (error != 0) {
2087 				linux_schedule_save_interrupt_value(task, error);
2088 				error = -ERESTARTSYS;
2089 				goto intr;
2090 			}
2091 		} else {
2092 			DROP_GIANT();
2093 			sleepq_wait(c, 0);
2094 			PICKUP_GIANT();
2095 		}
2096 	}
2097 	if (c->done != UINT_MAX)
2098 		c->done--;
2099 	sleepq_release(c);
2100 
2101 intr:
2102 	return (error);
2103 }
2104 
2105 /*
2106  * Time limited wait for done != 0 with or without signals.
2107  */
2108 int
2109 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2110 {
2111 	struct task_struct *task;
2112 	int end = jiffies + timeout;
2113 	int error;
2114 
2115 	if (SCHEDULER_STOPPED())
2116 		return (0);
2117 
2118 	task = current;
2119 
2120 	if (flags != 0)
2121 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2122 	else
2123 		flags = SLEEPQ_SLEEP;
2124 
2125 	for (;;) {
2126 		sleepq_lock(c);
2127 		if (c->done)
2128 			break;
2129 		sleepq_add(c, NULL, "completion", flags, 0);
2130 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2131 
2132 		DROP_GIANT();
2133 		if (flags & SLEEPQ_INTERRUPTIBLE)
2134 			error = -sleepq_timedwait_sig(c, 0);
2135 		else
2136 			error = -sleepq_timedwait(c, 0);
2137 		PICKUP_GIANT();
2138 
2139 		if (error != 0) {
2140 			/* check for timeout */
2141 			if (error == -EWOULDBLOCK) {
2142 				error = 0;	/* timeout */
2143 			} else {
2144 				/* signal happened */
2145 				linux_schedule_save_interrupt_value(task, error);
2146 				error = -ERESTARTSYS;
2147 			}
2148 			goto done;
2149 		}
2150 	}
2151 	if (c->done != UINT_MAX)
2152 		c->done--;
2153 	sleepq_release(c);
2154 
2155 	/* return how many jiffies are left */
2156 	error = linux_timer_jiffies_until(end);
2157 done:
2158 	return (error);
2159 }
2160 
2161 int
2162 linux_try_wait_for_completion(struct completion *c)
2163 {
2164 	int isdone;
2165 
2166 	sleepq_lock(c);
2167 	isdone = (c->done != 0);
2168 	if (c->done != 0 && c->done != UINT_MAX)
2169 		c->done--;
2170 	sleepq_release(c);
2171 	return (isdone);
2172 }
2173 
2174 int
2175 linux_completion_done(struct completion *c)
2176 {
2177 	int isdone;
2178 
2179 	sleepq_lock(c);
2180 	isdone = (c->done != 0);
2181 	sleepq_release(c);
2182 	return (isdone);
2183 }
2184 
2185 static void
2186 linux_cdev_deref(struct linux_cdev *ldev)
2187 {
2188 
2189 	if (refcount_release(&ldev->refs))
2190 		kfree(ldev);
2191 }
2192 
2193 static void
2194 linux_cdev_release(struct kobject *kobj)
2195 {
2196 	struct linux_cdev *cdev;
2197 	struct kobject *parent;
2198 
2199 	cdev = container_of(kobj, struct linux_cdev, kobj);
2200 	parent = kobj->parent;
2201 	linux_destroy_dev(cdev);
2202 	linux_cdev_deref(cdev);
2203 	kobject_put(parent);
2204 }
2205 
2206 static void
2207 linux_cdev_static_release(struct kobject *kobj)
2208 {
2209 	struct linux_cdev *cdev;
2210 	struct kobject *parent;
2211 
2212 	cdev = container_of(kobj, struct linux_cdev, kobj);
2213 	parent = kobj->parent;
2214 	linux_destroy_dev(cdev);
2215 	kobject_put(parent);
2216 }
2217 
2218 void
2219 linux_destroy_dev(struct linux_cdev *ldev)
2220 {
2221 
2222 	if (ldev->cdev == NULL)
2223 		return;
2224 
2225 	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2226 	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2227 	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2228 		pause("ldevdtr", hz / 4);
2229 
2230 	destroy_dev(ldev->cdev);
2231 	ldev->cdev = NULL;
2232 }
2233 
2234 const struct kobj_type linux_cdev_ktype = {
2235 	.release = linux_cdev_release,
2236 };
2237 
2238 const struct kobj_type linux_cdev_static_ktype = {
2239 	.release = linux_cdev_static_release,
2240 };
2241 
2242 static void
2243 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2244 {
2245 	struct notifier_block *nb;
2246 
2247 	nb = arg;
2248 	if (linkstate == LINK_STATE_UP)
2249 		nb->notifier_call(nb, NETDEV_UP, ifp);
2250 	else
2251 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
2252 }
2253 
2254 static void
2255 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2256 {
2257 	struct notifier_block *nb;
2258 
2259 	nb = arg;
2260 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
2261 }
2262 
2263 static void
2264 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2265 {
2266 	struct notifier_block *nb;
2267 
2268 	nb = arg;
2269 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
2270 }
2271 
2272 static void
2273 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2274 {
2275 	struct notifier_block *nb;
2276 
2277 	nb = arg;
2278 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
2279 }
2280 
2281 static void
2282 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2283 {
2284 	struct notifier_block *nb;
2285 
2286 	nb = arg;
2287 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
2288 }
2289 
2290 int
2291 register_netdevice_notifier(struct notifier_block *nb)
2292 {
2293 
2294 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2295 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2296 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2297 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2298 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2299 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2300 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2301 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2302 
2303 	return (0);
2304 }
2305 
2306 int
2307 register_inetaddr_notifier(struct notifier_block *nb)
2308 {
2309 
2310 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2311 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2312 	return (0);
2313 }
2314 
2315 int
2316 unregister_netdevice_notifier(struct notifier_block *nb)
2317 {
2318 
2319 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2320 	    nb->tags[NETDEV_UP]);
2321 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2322 	    nb->tags[NETDEV_REGISTER]);
2323 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2324 	    nb->tags[NETDEV_UNREGISTER]);
2325 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2326 	    nb->tags[NETDEV_CHANGEADDR]);
2327 
2328 	return (0);
2329 }
2330 
2331 int
2332 unregister_inetaddr_notifier(struct notifier_block *nb)
2333 {
2334 
2335 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2336 	    nb->tags[NETDEV_CHANGEIFADDR]);
2337 
2338 	return (0);
2339 }
2340 
2341 struct list_sort_thunk {
2342 	int (*cmp)(void *, struct list_head *, struct list_head *);
2343 	void *priv;
2344 };
2345 
2346 static inline int
2347 linux_le_cmp(void *priv, const void *d1, const void *d2)
2348 {
2349 	struct list_head *le1, *le2;
2350 	struct list_sort_thunk *thunk;
2351 
2352 	thunk = priv;
2353 	le1 = *(__DECONST(struct list_head **, d1));
2354 	le2 = *(__DECONST(struct list_head **, d2));
2355 	return ((thunk->cmp)(thunk->priv, le1, le2));
2356 }
2357 
2358 void
2359 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2360     struct list_head *a, struct list_head *b))
2361 {
2362 	struct list_sort_thunk thunk;
2363 	struct list_head **ar, *le;
2364 	size_t count, i;
2365 
2366 	count = 0;
2367 	list_for_each(le, head)
2368 		count++;
2369 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2370 	i = 0;
2371 	list_for_each(le, head)
2372 		ar[i++] = le;
2373 	thunk.cmp = cmp;
2374 	thunk.priv = priv;
2375 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2376 	INIT_LIST_HEAD(head);
2377 	for (i = 0; i < count; i++)
2378 		list_add_tail(ar[i], head);
2379 	free(ar, M_KMALLOC);
2380 }
2381 
2382 void
2383 linux_irq_handler(void *ent)
2384 {
2385 	struct irq_ent *irqe;
2386 
2387 	linux_set_current(curthread);
2388 
2389 	irqe = ent;
2390 	irqe->handler(irqe->irq, irqe->arg);
2391 }
2392 
2393 #if defined(__i386__) || defined(__amd64__)
2394 int
2395 linux_wbinvd_on_all_cpus(void)
2396 {
2397 
2398 	pmap_invalidate_cache();
2399 	return (0);
2400 }
2401 #endif
2402 
2403 int
2404 linux_on_each_cpu(void callback(void *), void *data)
2405 {
2406 
2407 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2408 	    smp_no_rendezvous_barrier, data);
2409 	return (0);
2410 }
2411 
2412 int
2413 linux_in_atomic(void)
2414 {
2415 
2416 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2417 }
2418 
2419 struct linux_cdev *
2420 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2421 {
2422 	dev_t dev = MKDEV(major, minor);
2423 	struct cdev *cdev;
2424 
2425 	dev_lock();
2426 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2427 		struct linux_cdev *ldev = cdev->si_drv1;
2428 		if (ldev->dev == dev &&
2429 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2430 			break;
2431 		}
2432 	}
2433 	dev_unlock();
2434 
2435 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2436 }
2437 
2438 int
2439 __register_chrdev(unsigned int major, unsigned int baseminor,
2440     unsigned int count, const char *name,
2441     const struct file_operations *fops)
2442 {
2443 	struct linux_cdev *cdev;
2444 	int ret = 0;
2445 	int i;
2446 
2447 	for (i = baseminor; i < baseminor + count; i++) {
2448 		cdev = cdev_alloc();
2449 		cdev->ops = fops;
2450 		kobject_set_name(&cdev->kobj, name);
2451 
2452 		ret = cdev_add(cdev, makedev(major, i), 1);
2453 		if (ret != 0)
2454 			break;
2455 	}
2456 	return (ret);
2457 }
2458 
2459 int
2460 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2461     unsigned int count, const char *name,
2462     const struct file_operations *fops, uid_t uid,
2463     gid_t gid, int mode)
2464 {
2465 	struct linux_cdev *cdev;
2466 	int ret = 0;
2467 	int i;
2468 
2469 	for (i = baseminor; i < baseminor + count; i++) {
2470 		cdev = cdev_alloc();
2471 		cdev->ops = fops;
2472 		kobject_set_name(&cdev->kobj, name);
2473 
2474 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2475 		if (ret != 0)
2476 			break;
2477 	}
2478 	return (ret);
2479 }
2480 
2481 void
2482 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2483     unsigned int count, const char *name)
2484 {
2485 	struct linux_cdev *cdevp;
2486 	int i;
2487 
2488 	for (i = baseminor; i < baseminor + count; i++) {
2489 		cdevp = linux_find_cdev(name, major, i);
2490 		if (cdevp != NULL)
2491 			cdev_del(cdevp);
2492 	}
2493 }
2494 
2495 void
2496 linux_dump_stack(void)
2497 {
2498 #ifdef STACK
2499 	struct stack st;
2500 
2501 	stack_zero(&st);
2502 	stack_save(&st);
2503 	stack_print(&st);
2504 #endif
2505 }
2506 
2507 #if defined(__i386__) || defined(__amd64__)
2508 bool linux_cpu_has_clflush;
2509 #endif
2510 
2511 static void
2512 linux_compat_init(void *arg)
2513 {
2514 	struct sysctl_oid *rootoid;
2515 	int i;
2516 
2517 #if defined(__i386__) || defined(__amd64__)
2518 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2519 #endif
2520 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2521 
2522 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2523 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2524 	kobject_init(&linux_class_root, &linux_class_ktype);
2525 	kobject_set_name(&linux_class_root, "class");
2526 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2527 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2528 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2529 	kobject_set_name(&linux_root_device.kobj, "device");
2530 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2531 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2532 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2533 	linux_root_device.bsddev = root_bus;
2534 	linux_class_misc.name = "misc";
2535 	class_register(&linux_class_misc);
2536 	INIT_LIST_HEAD(&pci_drivers);
2537 	INIT_LIST_HEAD(&pci_devices);
2538 	spin_lock_init(&pci_lock);
2539 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2540 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2541 		LIST_INIT(&vmmaphead[i]);
2542 	init_waitqueue_head(&linux_bit_waitq);
2543 	init_waitqueue_head(&linux_var_waitq);
2544 }
2545 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2546 
2547 static void
2548 linux_compat_uninit(void *arg)
2549 {
2550 	linux_kobject_kfree_name(&linux_class_root);
2551 	linux_kobject_kfree_name(&linux_root_device.kobj);
2552 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2553 
2554 	mtx_destroy(&vmmaplock);
2555 	spin_lock_destroy(&pci_lock);
2556 	rw_destroy(&linux_vma_lock);
2557 }
2558 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2559 
2560 /*
2561  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2562  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2563  * used. Assert these types have the same size, else some parts of the
2564  * LinuxKPI may not work like expected:
2565  */
2566 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2567