1 /*- 2 * Copyright (c) 2010 Isilon Systems, Inc. 3 * Copyright (c) 2010 iX Systems, Inc. 4 * Copyright (c) 2010 Panasas, Inc. 5 * Copyright (c) 2013-2017 Mellanox Technologies, Ltd. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/kernel.h> 37 #include <sys/sysctl.h> 38 #include <sys/proc.h> 39 #include <sys/sglist.h> 40 #include <sys/sleepqueue.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/bus.h> 44 #include <sys/fcntl.h> 45 #include <sys/file.h> 46 #include <sys/filio.h> 47 #include <sys/rwlock.h> 48 49 #include <vm/vm.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_pager.h> 54 55 #include <machine/stdarg.h> 56 57 #if defined(__i386__) || defined(__amd64__) 58 #include <machine/md_var.h> 59 #endif 60 61 #include <linux/kobject.h> 62 #include <linux/device.h> 63 #include <linux/slab.h> 64 #include <linux/module.h> 65 #include <linux/moduleparam.h> 66 #include <linux/cdev.h> 67 #include <linux/file.h> 68 #include <linux/sysfs.h> 69 #include <linux/mm.h> 70 #include <linux/io.h> 71 #include <linux/vmalloc.h> 72 #include <linux/netdevice.h> 73 #include <linux/timer.h> 74 #include <linux/interrupt.h> 75 #include <linux/uaccess.h> 76 #include <linux/list.h> 77 #include <linux/kthread.h> 78 #include <linux/kernel.h> 79 #include <linux/compat.h> 80 #include <linux/poll.h> 81 #include <linux/smp.h> 82 83 #if defined(__i386__) || defined(__amd64__) 84 #include <asm/smp.h> 85 #endif 86 87 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters"); 88 89 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat"); 90 91 #include <linux/rbtree.h> 92 /* Undo Linux compat changes. */ 93 #undef RB_ROOT 94 #undef file 95 #undef cdev 96 #define RB_ROOT(head) (head)->rbh_root 97 98 static struct vm_area_struct *linux_cdev_handle_find(void *handle); 99 100 struct kobject linux_class_root; 101 struct device linux_root_device; 102 struct class linux_class_misc; 103 struct list_head pci_drivers; 104 struct list_head pci_devices; 105 spinlock_t pci_lock; 106 107 unsigned long linux_timer_hz_mask; 108 109 int 110 panic_cmp(struct rb_node *one, struct rb_node *two) 111 { 112 panic("no cmp"); 113 } 114 115 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp); 116 117 int 118 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args) 119 { 120 va_list tmp_va; 121 int len; 122 char *old; 123 char *name; 124 char dummy; 125 126 old = kobj->name; 127 128 if (old && fmt == NULL) 129 return (0); 130 131 /* compute length of string */ 132 va_copy(tmp_va, args); 133 len = vsnprintf(&dummy, 0, fmt, tmp_va); 134 va_end(tmp_va); 135 136 /* account for zero termination */ 137 len++; 138 139 /* check for error */ 140 if (len < 1) 141 return (-EINVAL); 142 143 /* allocate memory for string */ 144 name = kzalloc(len, GFP_KERNEL); 145 if (name == NULL) 146 return (-ENOMEM); 147 vsnprintf(name, len, fmt, args); 148 kobj->name = name; 149 150 /* free old string */ 151 kfree(old); 152 153 /* filter new string */ 154 for (; *name != '\0'; name++) 155 if (*name == '/') 156 *name = '!'; 157 return (0); 158 } 159 160 int 161 kobject_set_name(struct kobject *kobj, const char *fmt, ...) 162 { 163 va_list args; 164 int error; 165 166 va_start(args, fmt); 167 error = kobject_set_name_vargs(kobj, fmt, args); 168 va_end(args); 169 170 return (error); 171 } 172 173 static int 174 kobject_add_complete(struct kobject *kobj, struct kobject *parent) 175 { 176 const struct kobj_type *t; 177 int error; 178 179 kobj->parent = parent; 180 error = sysfs_create_dir(kobj); 181 if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) { 182 struct attribute **attr; 183 t = kobj->ktype; 184 185 for (attr = t->default_attrs; *attr != NULL; attr++) { 186 error = sysfs_create_file(kobj, *attr); 187 if (error) 188 break; 189 } 190 if (error) 191 sysfs_remove_dir(kobj); 192 193 } 194 return (error); 195 } 196 197 int 198 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...) 199 { 200 va_list args; 201 int error; 202 203 va_start(args, fmt); 204 error = kobject_set_name_vargs(kobj, fmt, args); 205 va_end(args); 206 if (error) 207 return (error); 208 209 return kobject_add_complete(kobj, parent); 210 } 211 212 void 213 linux_kobject_release(struct kref *kref) 214 { 215 struct kobject *kobj; 216 char *name; 217 218 kobj = container_of(kref, struct kobject, kref); 219 sysfs_remove_dir(kobj); 220 name = kobj->name; 221 if (kobj->ktype && kobj->ktype->release) 222 kobj->ktype->release(kobj); 223 kfree(name); 224 } 225 226 static void 227 linux_kobject_kfree(struct kobject *kobj) 228 { 229 kfree(kobj); 230 } 231 232 static void 233 linux_kobject_kfree_name(struct kobject *kobj) 234 { 235 if (kobj) { 236 kfree(kobj->name); 237 } 238 } 239 240 const struct kobj_type linux_kfree_type = { 241 .release = linux_kobject_kfree 242 }; 243 244 static void 245 linux_device_release(struct device *dev) 246 { 247 pr_debug("linux_device_release: %s\n", dev_name(dev)); 248 kfree(dev); 249 } 250 251 static ssize_t 252 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf) 253 { 254 struct class_attribute *dattr; 255 ssize_t error; 256 257 dattr = container_of(attr, struct class_attribute, attr); 258 error = -EIO; 259 if (dattr->show) 260 error = dattr->show(container_of(kobj, struct class, kobj), 261 dattr, buf); 262 return (error); 263 } 264 265 static ssize_t 266 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf, 267 size_t count) 268 { 269 struct class_attribute *dattr; 270 ssize_t error; 271 272 dattr = container_of(attr, struct class_attribute, attr); 273 error = -EIO; 274 if (dattr->store) 275 error = dattr->store(container_of(kobj, struct class, kobj), 276 dattr, buf, count); 277 return (error); 278 } 279 280 static void 281 linux_class_release(struct kobject *kobj) 282 { 283 struct class *class; 284 285 class = container_of(kobj, struct class, kobj); 286 if (class->class_release) 287 class->class_release(class); 288 } 289 290 static const struct sysfs_ops linux_class_sysfs = { 291 .show = linux_class_show, 292 .store = linux_class_store, 293 }; 294 295 const struct kobj_type linux_class_ktype = { 296 .release = linux_class_release, 297 .sysfs_ops = &linux_class_sysfs 298 }; 299 300 static void 301 linux_dev_release(struct kobject *kobj) 302 { 303 struct device *dev; 304 305 dev = container_of(kobj, struct device, kobj); 306 /* This is the precedence defined by linux. */ 307 if (dev->release) 308 dev->release(dev); 309 else if (dev->class && dev->class->dev_release) 310 dev->class->dev_release(dev); 311 } 312 313 static ssize_t 314 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf) 315 { 316 struct device_attribute *dattr; 317 ssize_t error; 318 319 dattr = container_of(attr, struct device_attribute, attr); 320 error = -EIO; 321 if (dattr->show) 322 error = dattr->show(container_of(kobj, struct device, kobj), 323 dattr, buf); 324 return (error); 325 } 326 327 static ssize_t 328 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf, 329 size_t count) 330 { 331 struct device_attribute *dattr; 332 ssize_t error; 333 334 dattr = container_of(attr, struct device_attribute, attr); 335 error = -EIO; 336 if (dattr->store) 337 error = dattr->store(container_of(kobj, struct device, kobj), 338 dattr, buf, count); 339 return (error); 340 } 341 342 static const struct sysfs_ops linux_dev_sysfs = { 343 .show = linux_dev_show, 344 .store = linux_dev_store, 345 }; 346 347 const struct kobj_type linux_dev_ktype = { 348 .release = linux_dev_release, 349 .sysfs_ops = &linux_dev_sysfs 350 }; 351 352 struct device * 353 device_create(struct class *class, struct device *parent, dev_t devt, 354 void *drvdata, const char *fmt, ...) 355 { 356 struct device *dev; 357 va_list args; 358 359 dev = kzalloc(sizeof(*dev), M_WAITOK); 360 dev->parent = parent; 361 dev->class = class; 362 dev->devt = devt; 363 dev->driver_data = drvdata; 364 dev->release = linux_device_release; 365 va_start(args, fmt); 366 kobject_set_name_vargs(&dev->kobj, fmt, args); 367 va_end(args); 368 device_register(dev); 369 370 return (dev); 371 } 372 373 int 374 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype, 375 struct kobject *parent, const char *fmt, ...) 376 { 377 va_list args; 378 int error; 379 380 kobject_init(kobj, ktype); 381 kobj->ktype = ktype; 382 kobj->parent = parent; 383 kobj->name = NULL; 384 385 va_start(args, fmt); 386 error = kobject_set_name_vargs(kobj, fmt, args); 387 va_end(args); 388 if (error) 389 return (error); 390 return kobject_add_complete(kobj, parent); 391 } 392 393 static void 394 linux_file_dtor(void *cdp) 395 { 396 struct linux_file *filp; 397 398 linux_set_current(curthread); 399 filp = cdp; 400 filp->f_op->release(filp->f_vnode, filp); 401 vdrop(filp->f_vnode); 402 kfree(filp); 403 } 404 405 static void 406 linux_kq_lock(void *arg) 407 { 408 spinlock_t *s = arg; 409 410 spin_lock(s); 411 } 412 static void 413 linux_kq_unlock(void *arg) 414 { 415 spinlock_t *s = arg; 416 417 spin_unlock(s); 418 } 419 420 static void 421 linux_kq_lock_owned(void *arg) 422 { 423 #ifdef INVARIANTS 424 spinlock_t *s = arg; 425 426 mtx_assert(&s->m, MA_OWNED); 427 #endif 428 } 429 430 static void 431 linux_kq_lock_unowned(void *arg) 432 { 433 #ifdef INVARIANTS 434 spinlock_t *s = arg; 435 436 mtx_assert(&s->m, MA_NOTOWNED); 437 #endif 438 } 439 440 static void 441 linux_dev_kqfilter_poll(struct linux_file *, int); 442 443 struct linux_file * 444 linux_file_alloc(void) 445 { 446 struct linux_file *filp; 447 448 filp = kzalloc(sizeof(*filp), GFP_KERNEL); 449 450 /* set initial refcount */ 451 filp->f_count = 1; 452 453 /* setup fields needed by kqueue support */ 454 spin_lock_init(&filp->f_kqlock); 455 knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock, 456 linux_kq_lock, linux_kq_unlock, 457 linux_kq_lock_owned, linux_kq_lock_unowned); 458 459 return (filp); 460 } 461 462 void 463 linux_file_free(struct linux_file *filp) 464 { 465 if (filp->_file == NULL) { 466 if (filp->f_shmem != NULL) 467 vm_object_deallocate(filp->f_shmem); 468 kfree(filp); 469 } else { 470 /* 471 * The close method of the character device or file 472 * will free the linux_file structure: 473 */ 474 _fdrop(filp->_file, curthread); 475 } 476 } 477 478 static int 479 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, 480 vm_page_t *mres) 481 { 482 struct vm_area_struct *vmap; 483 484 vmap = linux_cdev_handle_find(vm_obj->handle); 485 486 MPASS(vmap != NULL); 487 MPASS(vmap->vm_private_data == vm_obj->handle); 488 489 if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) { 490 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset; 491 vm_page_t page; 492 493 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 494 /* 495 * If the passed in result page is a fake 496 * page, update it with the new physical 497 * address. 498 */ 499 page = *mres; 500 vm_page_updatefake(page, paddr, vm_obj->memattr); 501 } else { 502 /* 503 * Replace the passed in "mres" page with our 504 * own fake page and free up the all of the 505 * original pages. 506 */ 507 VM_OBJECT_WUNLOCK(vm_obj); 508 page = vm_page_getfake(paddr, vm_obj->memattr); 509 VM_OBJECT_WLOCK(vm_obj); 510 511 vm_page_replace_checked(page, vm_obj, 512 (*mres)->pindex, *mres); 513 514 vm_page_lock(*mres); 515 vm_page_free(*mres); 516 vm_page_unlock(*mres); 517 *mres = page; 518 } 519 page->valid = VM_PAGE_BITS_ALL; 520 return (VM_PAGER_OK); 521 } 522 return (VM_PAGER_FAIL); 523 } 524 525 static int 526 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type, 527 vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last) 528 { 529 struct vm_area_struct *vmap; 530 int err; 531 532 linux_set_current(curthread); 533 534 /* get VM area structure */ 535 vmap = linux_cdev_handle_find(vm_obj->handle); 536 MPASS(vmap != NULL); 537 MPASS(vmap->vm_private_data == vm_obj->handle); 538 539 VM_OBJECT_WUNLOCK(vm_obj); 540 541 down_write(&vmap->vm_mm->mmap_sem); 542 if (unlikely(vmap->vm_ops == NULL)) { 543 err = VM_FAULT_SIGBUS; 544 } else { 545 struct vm_fault vmf; 546 547 /* fill out VM fault structure */ 548 vmf.virtual_address = (void *)((uintptr_t)pidx << PAGE_SHIFT); 549 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 550 vmf.pgoff = 0; 551 vmf.page = NULL; 552 553 vmap->vm_pfn_count = 0; 554 vmap->vm_pfn_pcount = &vmap->vm_pfn_count; 555 vmap->vm_obj = vm_obj; 556 557 err = vmap->vm_ops->fault(vmap, &vmf); 558 559 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) { 560 kern_yield(PRI_USER); 561 err = vmap->vm_ops->fault(vmap, &vmf); 562 } 563 } 564 565 /* translate return code */ 566 switch (err) { 567 case VM_FAULT_OOM: 568 err = VM_PAGER_AGAIN; 569 break; 570 case VM_FAULT_SIGBUS: 571 err = VM_PAGER_BAD; 572 break; 573 case VM_FAULT_NOPAGE: 574 /* 575 * By contract the fault handler will return having 576 * busied all the pages itself. If pidx is already 577 * found in the object, it will simply xbusy the first 578 * page and return with vm_pfn_count set to 1. 579 */ 580 *first = vmap->vm_pfn_first; 581 *last = *first + vmap->vm_pfn_count - 1; 582 err = VM_PAGER_OK; 583 break; 584 default: 585 err = VM_PAGER_ERROR; 586 break; 587 } 588 up_write(&vmap->vm_mm->mmap_sem); 589 VM_OBJECT_WLOCK(vm_obj); 590 return (err); 591 } 592 593 static struct rwlock linux_vma_lock; 594 static TAILQ_HEAD(, vm_area_struct) linux_vma_head = 595 TAILQ_HEAD_INITIALIZER(linux_vma_head); 596 597 static void 598 linux_cdev_handle_free(struct vm_area_struct *vmap) 599 { 600 /* Drop reference on vm_file */ 601 if (vmap->vm_file != NULL) 602 fput(vmap->vm_file); 603 604 /* Drop reference on mm_struct */ 605 mmput(vmap->vm_mm); 606 607 kfree(vmap); 608 } 609 610 static struct vm_area_struct * 611 linux_cdev_handle_insert(void *handle, struct vm_area_struct *vmap) 612 { 613 struct vm_area_struct *ptr; 614 615 rw_wlock(&linux_vma_lock); 616 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) { 617 if (ptr->vm_private_data == handle) { 618 rw_wunlock(&linux_vma_lock); 619 linux_cdev_handle_free(vmap); 620 return (NULL); 621 } 622 } 623 TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry); 624 rw_wunlock(&linux_vma_lock); 625 return (vmap); 626 } 627 628 static void 629 linux_cdev_handle_remove(struct vm_area_struct *vmap) 630 { 631 rw_wlock(&linux_vma_lock); 632 TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry); 633 rw_wunlock(&linux_vma_lock); 634 } 635 636 static struct vm_area_struct * 637 linux_cdev_handle_find(void *handle) 638 { 639 struct vm_area_struct *vmap; 640 641 rw_rlock(&linux_vma_lock); 642 TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) { 643 if (vmap->vm_private_data == handle) 644 break; 645 } 646 rw_runlock(&linux_vma_lock); 647 return (vmap); 648 } 649 650 static int 651 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 652 vm_ooffset_t foff, struct ucred *cred, u_short *color) 653 { 654 655 MPASS(linux_cdev_handle_find(handle) != NULL); 656 *color = 0; 657 return (0); 658 } 659 660 static void 661 linux_cdev_pager_dtor(void *handle) 662 { 663 const struct vm_operations_struct *vm_ops; 664 struct vm_area_struct *vmap; 665 666 vmap = linux_cdev_handle_find(handle); 667 MPASS(vmap != NULL); 668 669 /* 670 * Remove handle before calling close operation to prevent 671 * other threads from reusing the handle pointer. 672 */ 673 linux_cdev_handle_remove(vmap); 674 675 down_write(&vmap->vm_mm->mmap_sem); 676 vm_ops = vmap->vm_ops; 677 if (likely(vm_ops != NULL)) 678 vm_ops->close(vmap); 679 up_write(&vmap->vm_mm->mmap_sem); 680 681 linux_cdev_handle_free(vmap); 682 } 683 684 static struct cdev_pager_ops linux_cdev_pager_ops[2] = { 685 { 686 /* OBJT_MGTDEVICE */ 687 .cdev_pg_populate = linux_cdev_pager_populate, 688 .cdev_pg_ctor = linux_cdev_pager_ctor, 689 .cdev_pg_dtor = linux_cdev_pager_dtor 690 }, 691 { 692 /* OBJT_DEVICE */ 693 .cdev_pg_fault = linux_cdev_pager_fault, 694 .cdev_pg_ctor = linux_cdev_pager_ctor, 695 .cdev_pg_dtor = linux_cdev_pager_dtor 696 }, 697 }; 698 699 static int 700 linux_dev_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 701 { 702 struct linux_cdev *ldev; 703 struct linux_file *filp; 704 struct file *file; 705 int error; 706 707 file = td->td_fpop; 708 ldev = dev->si_drv1; 709 if (ldev == NULL) 710 return (ENODEV); 711 712 filp = linux_file_alloc(); 713 filp->f_dentry = &filp->f_dentry_store; 714 filp->f_op = ldev->ops; 715 filp->f_flags = file->f_flag; 716 vhold(file->f_vnode); 717 filp->f_vnode = file->f_vnode; 718 filp->_file = file; 719 720 linux_set_current(td); 721 722 if (filp->f_op->open) { 723 error = -filp->f_op->open(file->f_vnode, filp); 724 if (error) { 725 vdrop(filp->f_vnode); 726 kfree(filp); 727 goto done; 728 } 729 } 730 error = devfs_set_cdevpriv(filp, linux_file_dtor); 731 if (error) { 732 filp->f_op->release(file->f_vnode, filp); 733 vdrop(filp->f_vnode); 734 kfree(filp); 735 } 736 done: 737 return (error); 738 } 739 740 static int 741 linux_dev_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 742 { 743 struct linux_file *filp; 744 struct file *file; 745 int error; 746 747 file = td->td_fpop; 748 if (dev->si_drv1 == NULL) 749 return (0); 750 if ((error = devfs_get_cdevpriv((void **)&filp)) != 0) 751 return (error); 752 filp->f_flags = file->f_flag; 753 devfs_clear_cdevpriv(); 754 755 return (0); 756 } 757 758 #define LINUX_IOCTL_MIN_PTR 0x10000UL 759 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX) 760 761 static inline int 762 linux_remap_address(void **uaddr, size_t len) 763 { 764 uintptr_t uaddr_val = (uintptr_t)(*uaddr); 765 766 if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR && 767 uaddr_val < LINUX_IOCTL_MAX_PTR)) { 768 struct task_struct *pts = current; 769 if (pts == NULL) { 770 *uaddr = NULL; 771 return (1); 772 } 773 774 /* compute data offset */ 775 uaddr_val -= LINUX_IOCTL_MIN_PTR; 776 777 /* check that length is within bounds */ 778 if ((len > IOCPARM_MAX) || 779 (uaddr_val + len) > pts->bsd_ioctl_len) { 780 *uaddr = NULL; 781 return (1); 782 } 783 784 /* re-add kernel buffer address */ 785 uaddr_val += (uintptr_t)pts->bsd_ioctl_data; 786 787 /* update address location */ 788 *uaddr = (void *)uaddr_val; 789 return (1); 790 } 791 return (0); 792 } 793 794 int 795 linux_copyin(const void *uaddr, void *kaddr, size_t len) 796 { 797 if (linux_remap_address(__DECONST(void **, &uaddr), len)) { 798 if (uaddr == NULL) 799 return (-EFAULT); 800 memcpy(kaddr, uaddr, len); 801 return (0); 802 } 803 return (-copyin(uaddr, kaddr, len)); 804 } 805 806 int 807 linux_copyout(const void *kaddr, void *uaddr, size_t len) 808 { 809 if (linux_remap_address(&uaddr, len)) { 810 if (uaddr == NULL) 811 return (-EFAULT); 812 memcpy(uaddr, kaddr, len); 813 return (0); 814 } 815 return (-copyout(kaddr, uaddr, len)); 816 } 817 818 size_t 819 linux_clear_user(void *_uaddr, size_t _len) 820 { 821 uint8_t *uaddr = _uaddr; 822 size_t len = _len; 823 824 /* make sure uaddr is aligned before going into the fast loop */ 825 while (((uintptr_t)uaddr & 7) != 0 && len > 7) { 826 if (subyte(uaddr, 0)) 827 return (_len); 828 uaddr++; 829 len--; 830 } 831 832 /* zero 8 bytes at a time */ 833 while (len > 7) { 834 #ifdef __LP64__ 835 if (suword64(uaddr, 0)) 836 return (_len); 837 #else 838 if (suword32(uaddr, 0)) 839 return (_len); 840 if (suword32(uaddr + 4, 0)) 841 return (_len); 842 #endif 843 uaddr += 8; 844 len -= 8; 845 } 846 847 /* zero fill end, if any */ 848 while (len > 0) { 849 if (subyte(uaddr, 0)) 850 return (_len); 851 uaddr++; 852 len--; 853 } 854 return (0); 855 } 856 857 int 858 linux_access_ok(int rw, const void *uaddr, size_t len) 859 { 860 uintptr_t saddr; 861 uintptr_t eaddr; 862 863 /* get start and end address */ 864 saddr = (uintptr_t)uaddr; 865 eaddr = (uintptr_t)uaddr + len; 866 867 /* verify addresses are valid for userspace */ 868 return ((saddr == eaddr) || 869 (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS)); 870 } 871 872 static int 873 linux_dev_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 874 struct thread *td) 875 { 876 struct linux_file *filp; 877 struct file *file; 878 unsigned size; 879 int error; 880 881 file = td->td_fpop; 882 if (dev->si_drv1 == NULL) 883 return (ENXIO); 884 if ((error = devfs_get_cdevpriv((void **)&filp)) != 0) 885 return (error); 886 filp->f_flags = file->f_flag; 887 888 /* the LinuxKPI supports blocking and non-blocking I/O */ 889 if (cmd == FIONBIO || cmd == FIOASYNC) 890 return (0); 891 892 linux_set_current(td); 893 size = IOCPARM_LEN(cmd); 894 /* refer to logic in sys_ioctl() */ 895 if (size > 0) { 896 /* 897 * Setup hint for linux_copyin() and linux_copyout(). 898 * 899 * Background: Linux code expects a user-space address 900 * while FreeBSD supplies a kernel-space address. 901 */ 902 current->bsd_ioctl_data = data; 903 current->bsd_ioctl_len = size; 904 data = (void *)LINUX_IOCTL_MIN_PTR; 905 } else { 906 /* fetch user-space pointer */ 907 data = *(void **)data; 908 } 909 #if defined(__amd64__) 910 if (td->td_proc->p_elf_machine == EM_386) { 911 /* try the compat IOCTL handler first */ 912 if (filp->f_op->compat_ioctl != NULL) 913 error = -filp->f_op->compat_ioctl(filp, cmd, (u_long)data); 914 else 915 error = ENOTTY; 916 917 /* fallback to the regular IOCTL handler, if any */ 918 if (error == ENOTTY && filp->f_op->unlocked_ioctl != NULL) 919 error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data); 920 } else 921 #endif 922 if (filp->f_op->unlocked_ioctl != NULL) 923 error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data); 924 else 925 error = ENOTTY; 926 if (size > 0) { 927 current->bsd_ioctl_data = NULL; 928 current->bsd_ioctl_len = 0; 929 } 930 931 if (error == EWOULDBLOCK) { 932 /* update kqfilter status, if any */ 933 linux_dev_kqfilter_poll(filp, 934 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 935 } else if (error == ERESTARTSYS) 936 error = ERESTART; 937 return (error); 938 } 939 940 static int 941 linux_dev_read(struct cdev *dev, struct uio *uio, int ioflag) 942 { 943 struct linux_file *filp; 944 struct thread *td; 945 struct file *file; 946 ssize_t bytes; 947 int error; 948 949 td = curthread; 950 file = td->td_fpop; 951 if (dev->si_drv1 == NULL) 952 return (ENXIO); 953 if ((error = devfs_get_cdevpriv((void **)&filp)) != 0) 954 return (error); 955 filp->f_flags = file->f_flag; 956 /* XXX no support for I/O vectors currently */ 957 if (uio->uio_iovcnt != 1) 958 return (EOPNOTSUPP); 959 linux_set_current(td); 960 if (filp->f_op->read) { 961 bytes = filp->f_op->read(filp, uio->uio_iov->iov_base, 962 uio->uio_iov->iov_len, &uio->uio_offset); 963 if (bytes >= 0) { 964 uio->uio_iov->iov_base = 965 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 966 uio->uio_iov->iov_len -= bytes; 967 uio->uio_resid -= bytes; 968 } else { 969 error = -bytes; 970 if (error == ERESTARTSYS) 971 error = ERESTART; 972 } 973 } else 974 error = ENXIO; 975 976 /* update kqfilter status, if any */ 977 linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ); 978 979 return (error); 980 } 981 982 static int 983 linux_dev_write(struct cdev *dev, struct uio *uio, int ioflag) 984 { 985 struct linux_file *filp; 986 struct thread *td; 987 struct file *file; 988 ssize_t bytes; 989 int error; 990 991 td = curthread; 992 file = td->td_fpop; 993 if (dev->si_drv1 == NULL) 994 return (ENXIO); 995 if ((error = devfs_get_cdevpriv((void **)&filp)) != 0) 996 return (error); 997 filp->f_flags = file->f_flag; 998 /* XXX no support for I/O vectors currently */ 999 if (uio->uio_iovcnt != 1) 1000 return (EOPNOTSUPP); 1001 linux_set_current(td); 1002 if (filp->f_op->write) { 1003 bytes = filp->f_op->write(filp, uio->uio_iov->iov_base, 1004 uio->uio_iov->iov_len, &uio->uio_offset); 1005 if (bytes >= 0) { 1006 uio->uio_iov->iov_base = 1007 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1008 uio->uio_iov->iov_len -= bytes; 1009 uio->uio_resid -= bytes; 1010 } else { 1011 error = -bytes; 1012 if (error == ERESTARTSYS) 1013 error = ERESTART; 1014 } 1015 } else 1016 error = ENXIO; 1017 1018 /* update kqfilter status, if any */ 1019 linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE); 1020 1021 return (error); 1022 } 1023 1024 static int 1025 linux_dev_poll(struct cdev *dev, int events, struct thread *td) 1026 { 1027 struct linux_file *filp; 1028 struct file *file; 1029 int revents; 1030 1031 if (dev->si_drv1 == NULL) 1032 goto error; 1033 if (devfs_get_cdevpriv((void **)&filp) != 0) 1034 goto error; 1035 1036 file = td->td_fpop; 1037 filp->f_flags = file->f_flag; 1038 linux_set_current(td); 1039 if (filp->f_op->poll != NULL) 1040 revents = filp->f_op->poll(filp, NULL) & events; 1041 else 1042 revents = 0; 1043 1044 return (revents); 1045 error: 1046 return (events & (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM)); 1047 } 1048 1049 /* 1050 * This function atomically updates the poll wakeup state and returns 1051 * the previous state at the time of update. 1052 */ 1053 static uint8_t 1054 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate) 1055 { 1056 int c, old; 1057 1058 c = v->counter; 1059 1060 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c) 1061 c = old; 1062 1063 return (c); 1064 } 1065 1066 1067 static int 1068 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key) 1069 { 1070 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1071 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1072 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1073 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY, 1074 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */ 1075 }; 1076 struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq); 1077 1078 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1079 case LINUX_FWQ_STATE_QUEUED: 1080 linux_poll_wakeup(filp); 1081 return (1); 1082 default: 1083 return (0); 1084 } 1085 } 1086 1087 void 1088 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p) 1089 { 1090 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1091 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY, 1092 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */ 1093 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */ 1094 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED, 1095 }; 1096 1097 selrecord(curthread, &filp->f_selinfo); 1098 1099 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1100 case LINUX_FWQ_STATE_INIT: 1101 /* NOTE: file handles can only belong to one wait-queue */ 1102 filp->f_wait_queue.wqh = wqh; 1103 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback; 1104 add_wait_queue(wqh, &filp->f_wait_queue.wq); 1105 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED); 1106 break; 1107 default: 1108 break; 1109 } 1110 } 1111 1112 static void 1113 linux_poll_wait_dequeue(struct linux_file *filp) 1114 { 1115 static const uint8_t state[LINUX_FWQ_STATE_MAX] = { 1116 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */ 1117 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT, 1118 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT, 1119 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT, 1120 }; 1121 1122 seldrain(&filp->f_selinfo); 1123 1124 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) { 1125 case LINUX_FWQ_STATE_NOT_READY: 1126 case LINUX_FWQ_STATE_QUEUED: 1127 case LINUX_FWQ_STATE_READY: 1128 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq); 1129 break; 1130 default: 1131 break; 1132 } 1133 } 1134 1135 void 1136 linux_poll_wakeup(struct linux_file *filp) 1137 { 1138 /* this function should be NULL-safe */ 1139 if (filp == NULL) 1140 return; 1141 1142 selwakeup(&filp->f_selinfo); 1143 1144 spin_lock(&filp->f_kqlock); 1145 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ | 1146 LINUX_KQ_FLAG_NEED_WRITE; 1147 1148 /* make sure the "knote" gets woken up */ 1149 KNOTE_LOCKED(&filp->f_selinfo.si_note, 1); 1150 spin_unlock(&filp->f_kqlock); 1151 } 1152 1153 static void 1154 linux_dev_kqfilter_detach(struct knote *kn) 1155 { 1156 struct linux_file *filp = kn->kn_hook; 1157 1158 spin_lock(&filp->f_kqlock); 1159 knlist_remove(&filp->f_selinfo.si_note, kn, 1); 1160 spin_unlock(&filp->f_kqlock); 1161 } 1162 1163 static int 1164 linux_dev_kqfilter_read_event(struct knote *kn, long hint) 1165 { 1166 struct linux_file *filp = kn->kn_hook; 1167 1168 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1169 1170 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0); 1171 } 1172 1173 static int 1174 linux_dev_kqfilter_write_event(struct knote *kn, long hint) 1175 { 1176 struct linux_file *filp = kn->kn_hook; 1177 1178 mtx_assert(&filp->f_kqlock.m, MA_OWNED); 1179 1180 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0); 1181 } 1182 1183 static struct filterops linux_dev_kqfiltops_read = { 1184 .f_isfd = 1, 1185 .f_detach = linux_dev_kqfilter_detach, 1186 .f_event = linux_dev_kqfilter_read_event, 1187 }; 1188 1189 static struct filterops linux_dev_kqfiltops_write = { 1190 .f_isfd = 1, 1191 .f_detach = linux_dev_kqfilter_detach, 1192 .f_event = linux_dev_kqfilter_write_event, 1193 }; 1194 1195 static void 1196 linux_dev_kqfilter_poll(struct linux_file *filp, int kqflags) 1197 { 1198 int temp; 1199 1200 if (filp->f_kqflags & kqflags) { 1201 /* get the latest polling state */ 1202 temp = filp->f_op->poll(filp, NULL); 1203 1204 spin_lock(&filp->f_kqlock); 1205 /* clear kqflags */ 1206 filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ | 1207 LINUX_KQ_FLAG_NEED_WRITE); 1208 /* update kqflags */ 1209 if (temp & (POLLIN | POLLOUT)) { 1210 if (temp & POLLIN) 1211 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ; 1212 if (temp & POLLOUT) 1213 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE; 1214 1215 /* make sure the "knote" gets woken up */ 1216 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0); 1217 } 1218 spin_unlock(&filp->f_kqlock); 1219 } 1220 } 1221 1222 static int 1223 linux_dev_kqfilter(struct cdev *dev, struct knote *kn) 1224 { 1225 struct linux_file *filp; 1226 struct file *file; 1227 struct thread *td; 1228 int error; 1229 1230 td = curthread; 1231 file = td->td_fpop; 1232 if (dev->si_drv1 == NULL) 1233 return (ENXIO); 1234 if ((error = devfs_get_cdevpriv((void **)&filp)) != 0) 1235 return (error); 1236 filp->f_flags = file->f_flag; 1237 if (filp->f_op->poll == NULL) 1238 return (EINVAL); 1239 1240 spin_lock(&filp->f_kqlock); 1241 switch (kn->kn_filter) { 1242 case EVFILT_READ: 1243 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ; 1244 kn->kn_fop = &linux_dev_kqfiltops_read; 1245 kn->kn_hook = filp; 1246 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1247 break; 1248 case EVFILT_WRITE: 1249 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE; 1250 kn->kn_fop = &linux_dev_kqfiltops_write; 1251 kn->kn_hook = filp; 1252 knlist_add(&filp->f_selinfo.si_note, kn, 1); 1253 break; 1254 default: 1255 error = EINVAL; 1256 break; 1257 } 1258 spin_unlock(&filp->f_kqlock); 1259 1260 if (error == 0) { 1261 linux_set_current(td); 1262 1263 /* update kqfilter status, if any */ 1264 linux_dev_kqfilter_poll(filp, 1265 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE); 1266 } 1267 return (error); 1268 } 1269 1270 static int 1271 linux_dev_mmap_single(struct cdev *dev, vm_ooffset_t *offset, 1272 vm_size_t size, struct vm_object **object, int nprot) 1273 { 1274 struct vm_area_struct *vmap; 1275 struct mm_struct *mm; 1276 struct linux_file *filp; 1277 struct thread *td; 1278 struct file *file; 1279 vm_memattr_t attr; 1280 int error; 1281 1282 td = curthread; 1283 file = td->td_fpop; 1284 if (dev->si_drv1 == NULL) 1285 return (ENODEV); 1286 if ((error = devfs_get_cdevpriv((void **)&filp)) != 0) 1287 return (error); 1288 filp->f_flags = file->f_flag; 1289 1290 if (filp->f_op->mmap == NULL) 1291 return (ENODEV); 1292 1293 linux_set_current(td); 1294 1295 /* 1296 * The same VM object might be shared by multiple processes 1297 * and the mm_struct is usually freed when a process exits. 1298 * 1299 * The atomic reference below makes sure the mm_struct is 1300 * available as long as the vmap is in the linux_vma_head. 1301 */ 1302 mm = current->mm; 1303 if (atomic_inc_not_zero(&mm->mm_users) == 0) 1304 return (EINVAL); 1305 1306 vmap = kzalloc(sizeof(*vmap), GFP_KERNEL); 1307 vmap->vm_start = 0; 1308 vmap->vm_end = size; 1309 vmap->vm_pgoff = *offset / PAGE_SIZE; 1310 vmap->vm_pfn = 0; 1311 vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL); 1312 vmap->vm_ops = NULL; 1313 vmap->vm_file = get_file(filp); 1314 vmap->vm_mm = mm; 1315 1316 if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) { 1317 error = EINTR; 1318 } else { 1319 error = -filp->f_op->mmap(filp, vmap); 1320 up_write(&vmap->vm_mm->mmap_sem); 1321 } 1322 1323 if (error != 0) { 1324 linux_cdev_handle_free(vmap); 1325 return (error); 1326 } 1327 1328 attr = pgprot2cachemode(vmap->vm_page_prot); 1329 1330 if (vmap->vm_ops != NULL) { 1331 void *vm_private_data; 1332 1333 if (vmap->vm_ops->open == NULL || 1334 vmap->vm_ops->close == NULL || 1335 vmap->vm_private_data == NULL) { 1336 linux_cdev_handle_free(vmap); 1337 return (EINVAL); 1338 } 1339 1340 vm_private_data = vmap->vm_private_data; 1341 1342 vmap = linux_cdev_handle_insert(vm_private_data, vmap); 1343 1344 if (vmap->vm_ops->fault == NULL) { 1345 *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE, 1346 &linux_cdev_pager_ops[1], size, nprot, *offset, 1347 curthread->td_ucred); 1348 } else { 1349 *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE, 1350 &linux_cdev_pager_ops[0], size, nprot, *offset, 1351 curthread->td_ucred); 1352 } 1353 1354 if (*object == NULL) { 1355 linux_cdev_handle_remove(vmap); 1356 linux_cdev_handle_free(vmap); 1357 return (EINVAL); 1358 } 1359 } else { 1360 struct sglist *sg; 1361 1362 sg = sglist_alloc(1, M_WAITOK); 1363 sglist_append_phys(sg, 1364 (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len); 1365 1366 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len, 1367 nprot, 0, curthread->td_ucred); 1368 1369 linux_cdev_handle_free(vmap); 1370 1371 if (*object == NULL) { 1372 sglist_free(sg); 1373 return (EINVAL); 1374 } 1375 } 1376 1377 if (attr != VM_MEMATTR_DEFAULT) { 1378 VM_OBJECT_WLOCK(*object); 1379 vm_object_set_memattr(*object, attr); 1380 VM_OBJECT_WUNLOCK(*object); 1381 } 1382 *offset = 0; 1383 return (0); 1384 } 1385 1386 struct cdevsw linuxcdevsw = { 1387 .d_version = D_VERSION, 1388 .d_flags = D_TRACKCLOSE, 1389 .d_open = linux_dev_open, 1390 .d_close = linux_dev_close, 1391 .d_read = linux_dev_read, 1392 .d_write = linux_dev_write, 1393 .d_ioctl = linux_dev_ioctl, 1394 .d_mmap_single = linux_dev_mmap_single, 1395 .d_poll = linux_dev_poll, 1396 .d_kqfilter = linux_dev_kqfilter, 1397 .d_name = "lkpidev", 1398 }; 1399 1400 static int 1401 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred, 1402 int flags, struct thread *td) 1403 { 1404 struct linux_file *filp; 1405 ssize_t bytes; 1406 int error; 1407 1408 error = 0; 1409 filp = (struct linux_file *)file->f_data; 1410 filp->f_flags = file->f_flag; 1411 /* XXX no support for I/O vectors currently */ 1412 if (uio->uio_iovcnt != 1) 1413 return (EOPNOTSUPP); 1414 linux_set_current(td); 1415 if (filp->f_op->read) { 1416 bytes = filp->f_op->read(filp, uio->uio_iov->iov_base, 1417 uio->uio_iov->iov_len, &uio->uio_offset); 1418 if (bytes >= 0) { 1419 uio->uio_iov->iov_base = 1420 ((uint8_t *)uio->uio_iov->iov_base) + bytes; 1421 uio->uio_iov->iov_len -= bytes; 1422 uio->uio_resid -= bytes; 1423 } else 1424 error = -bytes; 1425 } else 1426 error = ENXIO; 1427 1428 return (error); 1429 } 1430 1431 static int 1432 linux_file_poll(struct file *file, int events, struct ucred *active_cred, 1433 struct thread *td) 1434 { 1435 struct linux_file *filp; 1436 int revents; 1437 1438 filp = (struct linux_file *)file->f_data; 1439 filp->f_flags = file->f_flag; 1440 linux_set_current(td); 1441 if (filp->f_op->poll != NULL) { 1442 selrecord(td, &filp->f_selinfo); 1443 revents = filp->f_op->poll(filp, NULL) & events; 1444 } else 1445 revents = 0; 1446 1447 return (revents); 1448 } 1449 1450 static int 1451 linux_file_close(struct file *file, struct thread *td) 1452 { 1453 struct linux_file *filp; 1454 int error; 1455 1456 filp = (struct linux_file *)file->f_data; 1457 filp->f_flags = file->f_flag; 1458 linux_set_current(td); 1459 linux_poll_wait_dequeue(filp); 1460 error = -filp->f_op->release(NULL, filp); 1461 funsetown(&filp->f_sigio); 1462 kfree(filp); 1463 1464 return (error); 1465 } 1466 1467 static int 1468 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred, 1469 struct thread *td) 1470 { 1471 struct linux_file *filp; 1472 int error; 1473 1474 filp = (struct linux_file *)fp->f_data; 1475 filp->f_flags = fp->f_flag; 1476 error = 0; 1477 1478 linux_set_current(td); 1479 switch (cmd) { 1480 case FIONBIO: 1481 break; 1482 case FIOASYNC: 1483 if (filp->f_op->fasync == NULL) 1484 break; 1485 error = filp->f_op->fasync(0, filp, fp->f_flag & FASYNC); 1486 break; 1487 case FIOSETOWN: 1488 error = fsetown(*(int *)data, &filp->f_sigio); 1489 if (error == 0) 1490 error = filp->f_op->fasync(0, filp, 1491 fp->f_flag & FASYNC); 1492 break; 1493 case FIOGETOWN: 1494 *(int *)data = fgetown(&filp->f_sigio); 1495 break; 1496 default: 1497 error = ENOTTY; 1498 break; 1499 } 1500 return (error); 1501 } 1502 1503 static int 1504 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred, 1505 struct thread *td) 1506 { 1507 1508 return (EOPNOTSUPP); 1509 } 1510 1511 static int 1512 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif, 1513 struct filedesc *fdp) 1514 { 1515 1516 return (0); 1517 } 1518 1519 unsigned int 1520 linux_iminor(struct inode *inode) 1521 { 1522 struct linux_cdev *ldev; 1523 1524 if (inode == NULL || inode->v_rdev == NULL || 1525 inode->v_rdev->si_devsw != &linuxcdevsw) 1526 return (-1U); 1527 ldev = inode->v_rdev->si_drv1; 1528 if (ldev == NULL) 1529 return (-1U); 1530 1531 return (minor(ldev->dev)); 1532 } 1533 1534 struct fileops linuxfileops = { 1535 .fo_read = linux_file_read, 1536 .fo_write = invfo_rdwr, 1537 .fo_truncate = invfo_truncate, 1538 .fo_kqfilter = invfo_kqfilter, 1539 .fo_stat = linux_file_stat, 1540 .fo_fill_kinfo = linux_file_fill_kinfo, 1541 .fo_poll = linux_file_poll, 1542 .fo_close = linux_file_close, 1543 .fo_ioctl = linux_file_ioctl, 1544 .fo_chmod = invfo_chmod, 1545 .fo_chown = invfo_chown, 1546 .fo_sendfile = invfo_sendfile, 1547 }; 1548 1549 /* 1550 * Hash of vmmap addresses. This is infrequently accessed and does not 1551 * need to be particularly large. This is done because we must store the 1552 * caller's idea of the map size to properly unmap. 1553 */ 1554 struct vmmap { 1555 LIST_ENTRY(vmmap) vm_next; 1556 void *vm_addr; 1557 unsigned long vm_size; 1558 }; 1559 1560 struct vmmaphd { 1561 struct vmmap *lh_first; 1562 }; 1563 #define VMMAP_HASH_SIZE 64 1564 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1) 1565 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK 1566 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE]; 1567 static struct mtx vmmaplock; 1568 1569 static void 1570 vmmap_add(void *addr, unsigned long size) 1571 { 1572 struct vmmap *vmmap; 1573 1574 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL); 1575 mtx_lock(&vmmaplock); 1576 vmmap->vm_size = size; 1577 vmmap->vm_addr = addr; 1578 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next); 1579 mtx_unlock(&vmmaplock); 1580 } 1581 1582 static struct vmmap * 1583 vmmap_remove(void *addr) 1584 { 1585 struct vmmap *vmmap; 1586 1587 mtx_lock(&vmmaplock); 1588 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next) 1589 if (vmmap->vm_addr == addr) 1590 break; 1591 if (vmmap) 1592 LIST_REMOVE(vmmap, vm_next); 1593 mtx_unlock(&vmmaplock); 1594 1595 return (vmmap); 1596 } 1597 1598 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 1599 void * 1600 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr) 1601 { 1602 void *addr; 1603 1604 addr = pmap_mapdev_attr(phys_addr, size, attr); 1605 if (addr == NULL) 1606 return (NULL); 1607 vmmap_add(addr, size); 1608 1609 return (addr); 1610 } 1611 #endif 1612 1613 void 1614 iounmap(void *addr) 1615 { 1616 struct vmmap *vmmap; 1617 1618 vmmap = vmmap_remove(addr); 1619 if (vmmap == NULL) 1620 return; 1621 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 1622 pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size); 1623 #endif 1624 kfree(vmmap); 1625 } 1626 1627 1628 void * 1629 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot) 1630 { 1631 vm_offset_t off; 1632 size_t size; 1633 1634 size = count * PAGE_SIZE; 1635 off = kva_alloc(size); 1636 if (off == 0) 1637 return (NULL); 1638 vmmap_add((void *)off, size); 1639 pmap_qenter(off, pages, count); 1640 1641 return ((void *)off); 1642 } 1643 1644 void 1645 vunmap(void *addr) 1646 { 1647 struct vmmap *vmmap; 1648 1649 vmmap = vmmap_remove(addr); 1650 if (vmmap == NULL) 1651 return; 1652 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE); 1653 kva_free((vm_offset_t)addr, vmmap->vm_size); 1654 kfree(vmmap); 1655 } 1656 1657 char * 1658 kvasprintf(gfp_t gfp, const char *fmt, va_list ap) 1659 { 1660 unsigned int len; 1661 char *p; 1662 va_list aq; 1663 1664 va_copy(aq, ap); 1665 len = vsnprintf(NULL, 0, fmt, aq); 1666 va_end(aq); 1667 1668 p = kmalloc(len + 1, gfp); 1669 if (p != NULL) 1670 vsnprintf(p, len + 1, fmt, ap); 1671 1672 return (p); 1673 } 1674 1675 char * 1676 kasprintf(gfp_t gfp, const char *fmt, ...) 1677 { 1678 va_list ap; 1679 char *p; 1680 1681 va_start(ap, fmt); 1682 p = kvasprintf(gfp, fmt, ap); 1683 va_end(ap); 1684 1685 return (p); 1686 } 1687 1688 static void 1689 linux_timer_callback_wrapper(void *context) 1690 { 1691 struct timer_list *timer; 1692 1693 linux_set_current(curthread); 1694 1695 timer = context; 1696 timer->function(timer->data); 1697 } 1698 1699 void 1700 mod_timer(struct timer_list *timer, int expires) 1701 { 1702 1703 timer->expires = expires; 1704 callout_reset(&timer->timer_callout, 1705 linux_timer_jiffies_until(expires), 1706 &linux_timer_callback_wrapper, timer); 1707 } 1708 1709 void 1710 add_timer(struct timer_list *timer) 1711 { 1712 1713 callout_reset(&timer->timer_callout, 1714 linux_timer_jiffies_until(timer->expires), 1715 &linux_timer_callback_wrapper, timer); 1716 } 1717 1718 void 1719 add_timer_on(struct timer_list *timer, int cpu) 1720 { 1721 1722 callout_reset_on(&timer->timer_callout, 1723 linux_timer_jiffies_until(timer->expires), 1724 &linux_timer_callback_wrapper, timer, cpu); 1725 } 1726 1727 static void 1728 linux_timer_init(void *arg) 1729 { 1730 1731 /* 1732 * Compute an internal HZ value which can divide 2**32 to 1733 * avoid timer rounding problems when the tick value wraps 1734 * around 2**32: 1735 */ 1736 linux_timer_hz_mask = 1; 1737 while (linux_timer_hz_mask < (unsigned long)hz) 1738 linux_timer_hz_mask *= 2; 1739 linux_timer_hz_mask--; 1740 } 1741 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL); 1742 1743 void 1744 linux_complete_common(struct completion *c, int all) 1745 { 1746 int wakeup_swapper; 1747 1748 sleepq_lock(c); 1749 c->done++; 1750 if (all) 1751 wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0); 1752 else 1753 wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0); 1754 sleepq_release(c); 1755 if (wakeup_swapper) 1756 kick_proc0(); 1757 } 1758 1759 /* 1760 * Indefinite wait for done != 0 with or without signals. 1761 */ 1762 int 1763 linux_wait_for_common(struct completion *c, int flags) 1764 { 1765 int error; 1766 1767 if (SCHEDULER_STOPPED()) 1768 return (0); 1769 1770 DROP_GIANT(); 1771 1772 if (flags != 0) 1773 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 1774 else 1775 flags = SLEEPQ_SLEEP; 1776 error = 0; 1777 for (;;) { 1778 sleepq_lock(c); 1779 if (c->done) 1780 break; 1781 sleepq_add(c, NULL, "completion", flags, 0); 1782 if (flags & SLEEPQ_INTERRUPTIBLE) { 1783 if (sleepq_wait_sig(c, 0) != 0) { 1784 error = -ERESTARTSYS; 1785 goto intr; 1786 } 1787 } else 1788 sleepq_wait(c, 0); 1789 } 1790 c->done--; 1791 sleepq_release(c); 1792 1793 intr: 1794 PICKUP_GIANT(); 1795 1796 return (error); 1797 } 1798 1799 /* 1800 * Time limited wait for done != 0 with or without signals. 1801 */ 1802 int 1803 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags) 1804 { 1805 int end = jiffies + timeout; 1806 int error; 1807 int ret; 1808 1809 if (SCHEDULER_STOPPED()) 1810 return (0); 1811 1812 DROP_GIANT(); 1813 1814 if (flags != 0) 1815 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP; 1816 else 1817 flags = SLEEPQ_SLEEP; 1818 1819 error = 0; 1820 ret = 0; 1821 for (;;) { 1822 sleepq_lock(c); 1823 if (c->done) 1824 break; 1825 sleepq_add(c, NULL, "completion", flags, 0); 1826 sleepq_set_timeout(c, linux_timer_jiffies_until(end)); 1827 if (flags & SLEEPQ_INTERRUPTIBLE) 1828 ret = sleepq_timedwait_sig(c, 0); 1829 else 1830 ret = sleepq_timedwait(c, 0); 1831 if (ret != 0) { 1832 /* check for timeout or signal */ 1833 if (ret == EWOULDBLOCK) 1834 error = 0; 1835 else 1836 error = -ERESTARTSYS; 1837 goto intr; 1838 } 1839 } 1840 c->done--; 1841 sleepq_release(c); 1842 1843 intr: 1844 PICKUP_GIANT(); 1845 1846 /* return how many jiffies are left */ 1847 return (ret != 0 ? error : linux_timer_jiffies_until(end)); 1848 } 1849 1850 int 1851 linux_try_wait_for_completion(struct completion *c) 1852 { 1853 int isdone; 1854 1855 isdone = 1; 1856 sleepq_lock(c); 1857 if (c->done) 1858 c->done--; 1859 else 1860 isdone = 0; 1861 sleepq_release(c); 1862 return (isdone); 1863 } 1864 1865 int 1866 linux_completion_done(struct completion *c) 1867 { 1868 int isdone; 1869 1870 isdone = 1; 1871 sleepq_lock(c); 1872 if (c->done == 0) 1873 isdone = 0; 1874 sleepq_release(c); 1875 return (isdone); 1876 } 1877 1878 static void 1879 linux_cdev_release(struct kobject *kobj) 1880 { 1881 struct linux_cdev *cdev; 1882 struct kobject *parent; 1883 1884 cdev = container_of(kobj, struct linux_cdev, kobj); 1885 parent = kobj->parent; 1886 if (cdev->cdev) 1887 destroy_dev(cdev->cdev); 1888 kfree(cdev); 1889 kobject_put(parent); 1890 } 1891 1892 static void 1893 linux_cdev_static_release(struct kobject *kobj) 1894 { 1895 struct linux_cdev *cdev; 1896 struct kobject *parent; 1897 1898 cdev = container_of(kobj, struct linux_cdev, kobj); 1899 parent = kobj->parent; 1900 if (cdev->cdev) 1901 destroy_dev(cdev->cdev); 1902 kobject_put(parent); 1903 } 1904 1905 const struct kobj_type linux_cdev_ktype = { 1906 .release = linux_cdev_release, 1907 }; 1908 1909 const struct kobj_type linux_cdev_static_ktype = { 1910 .release = linux_cdev_static_release, 1911 }; 1912 1913 static void 1914 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate) 1915 { 1916 struct notifier_block *nb; 1917 1918 nb = arg; 1919 if (linkstate == LINK_STATE_UP) 1920 nb->notifier_call(nb, NETDEV_UP, ifp); 1921 else 1922 nb->notifier_call(nb, NETDEV_DOWN, ifp); 1923 } 1924 1925 static void 1926 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp) 1927 { 1928 struct notifier_block *nb; 1929 1930 nb = arg; 1931 nb->notifier_call(nb, NETDEV_REGISTER, ifp); 1932 } 1933 1934 static void 1935 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp) 1936 { 1937 struct notifier_block *nb; 1938 1939 nb = arg; 1940 nb->notifier_call(nb, NETDEV_UNREGISTER, ifp); 1941 } 1942 1943 static void 1944 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp) 1945 { 1946 struct notifier_block *nb; 1947 1948 nb = arg; 1949 nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp); 1950 } 1951 1952 static void 1953 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp) 1954 { 1955 struct notifier_block *nb; 1956 1957 nb = arg; 1958 nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp); 1959 } 1960 1961 int 1962 register_netdevice_notifier(struct notifier_block *nb) 1963 { 1964 1965 nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER( 1966 ifnet_link_event, linux_handle_ifnet_link_event, nb, 0); 1967 nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER( 1968 ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0); 1969 nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER( 1970 ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0); 1971 nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER( 1972 iflladdr_event, linux_handle_iflladdr_event, nb, 0); 1973 1974 return (0); 1975 } 1976 1977 int 1978 register_inetaddr_notifier(struct notifier_block *nb) 1979 { 1980 1981 nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER( 1982 ifaddr_event, linux_handle_ifaddr_event, nb, 0); 1983 return (0); 1984 } 1985 1986 int 1987 unregister_netdevice_notifier(struct notifier_block *nb) 1988 { 1989 1990 EVENTHANDLER_DEREGISTER(ifnet_link_event, 1991 nb->tags[NETDEV_UP]); 1992 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 1993 nb->tags[NETDEV_REGISTER]); 1994 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 1995 nb->tags[NETDEV_UNREGISTER]); 1996 EVENTHANDLER_DEREGISTER(iflladdr_event, 1997 nb->tags[NETDEV_CHANGEADDR]); 1998 1999 return (0); 2000 } 2001 2002 int 2003 unregister_inetaddr_notifier(struct notifier_block *nb) 2004 { 2005 2006 EVENTHANDLER_DEREGISTER(ifaddr_event, 2007 nb->tags[NETDEV_CHANGEIFADDR]); 2008 2009 return (0); 2010 } 2011 2012 struct list_sort_thunk { 2013 int (*cmp)(void *, struct list_head *, struct list_head *); 2014 void *priv; 2015 }; 2016 2017 static inline int 2018 linux_le_cmp(void *priv, const void *d1, const void *d2) 2019 { 2020 struct list_head *le1, *le2; 2021 struct list_sort_thunk *thunk; 2022 2023 thunk = priv; 2024 le1 = *(__DECONST(struct list_head **, d1)); 2025 le2 = *(__DECONST(struct list_head **, d2)); 2026 return ((thunk->cmp)(thunk->priv, le1, le2)); 2027 } 2028 2029 void 2030 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv, 2031 struct list_head *a, struct list_head *b)) 2032 { 2033 struct list_sort_thunk thunk; 2034 struct list_head **ar, *le; 2035 size_t count, i; 2036 2037 count = 0; 2038 list_for_each(le, head) 2039 count++; 2040 ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK); 2041 i = 0; 2042 list_for_each(le, head) 2043 ar[i++] = le; 2044 thunk.cmp = cmp; 2045 thunk.priv = priv; 2046 qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp); 2047 INIT_LIST_HEAD(head); 2048 for (i = 0; i < count; i++) 2049 list_add_tail(ar[i], head); 2050 free(ar, M_KMALLOC); 2051 } 2052 2053 void 2054 linux_irq_handler(void *ent) 2055 { 2056 struct irq_ent *irqe; 2057 2058 linux_set_current(curthread); 2059 2060 irqe = ent; 2061 irqe->handler(irqe->irq, irqe->arg); 2062 } 2063 2064 #if defined(__i386__) || defined(__amd64__) 2065 int 2066 linux_wbinvd_on_all_cpus(void) 2067 { 2068 2069 pmap_invalidate_cache(); 2070 return (0); 2071 } 2072 #endif 2073 2074 int 2075 linux_on_each_cpu(void callback(void *), void *data) 2076 { 2077 2078 smp_rendezvous(smp_no_rendezvous_barrier, callback, 2079 smp_no_rendezvous_barrier, data); 2080 return (0); 2081 } 2082 2083 int 2084 linux_in_atomic(void) 2085 { 2086 2087 return ((curthread->td_pflags & TDP_NOFAULTING) != 0); 2088 } 2089 2090 struct linux_cdev * 2091 linux_find_cdev(const char *name, unsigned major, unsigned minor) 2092 { 2093 dev_t dev = MKDEV(major, minor); 2094 struct cdev *cdev; 2095 2096 dev_lock(); 2097 LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) { 2098 struct linux_cdev *ldev = cdev->si_drv1; 2099 if (ldev->dev == dev && 2100 strcmp(kobject_name(&ldev->kobj), name) == 0) { 2101 break; 2102 } 2103 } 2104 dev_unlock(); 2105 2106 return (cdev != NULL ? cdev->si_drv1 : NULL); 2107 } 2108 2109 int 2110 __register_chrdev(unsigned int major, unsigned int baseminor, 2111 unsigned int count, const char *name, 2112 const struct file_operations *fops) 2113 { 2114 struct linux_cdev *cdev; 2115 int ret = 0; 2116 int i; 2117 2118 for (i = baseminor; i < baseminor + count; i++) { 2119 cdev = cdev_alloc(); 2120 cdev_init(cdev, fops); 2121 kobject_set_name(&cdev->kobj, name); 2122 2123 ret = cdev_add(cdev, makedev(major, i), 1); 2124 if (ret != 0) 2125 break; 2126 } 2127 return (ret); 2128 } 2129 2130 int 2131 __register_chrdev_p(unsigned int major, unsigned int baseminor, 2132 unsigned int count, const char *name, 2133 const struct file_operations *fops, uid_t uid, 2134 gid_t gid, int mode) 2135 { 2136 struct linux_cdev *cdev; 2137 int ret = 0; 2138 int i; 2139 2140 for (i = baseminor; i < baseminor + count; i++) { 2141 cdev = cdev_alloc(); 2142 cdev_init(cdev, fops); 2143 kobject_set_name(&cdev->kobj, name); 2144 2145 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode); 2146 if (ret != 0) 2147 break; 2148 } 2149 return (ret); 2150 } 2151 2152 void 2153 __unregister_chrdev(unsigned int major, unsigned int baseminor, 2154 unsigned int count, const char *name) 2155 { 2156 struct linux_cdev *cdevp; 2157 int i; 2158 2159 for (i = baseminor; i < baseminor + count; i++) { 2160 cdevp = linux_find_cdev(name, major, i); 2161 if (cdevp != NULL) 2162 cdev_del(cdevp); 2163 } 2164 } 2165 2166 #if defined(__i386__) || defined(__amd64__) 2167 bool linux_cpu_has_clflush; 2168 #endif 2169 2170 static void 2171 linux_compat_init(void *arg) 2172 { 2173 struct sysctl_oid *rootoid; 2174 int i; 2175 2176 #if defined(__i386__) || defined(__amd64__) 2177 linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH); 2178 #endif 2179 rw_init(&linux_vma_lock, "lkpi-vma-lock"); 2180 2181 rootoid = SYSCTL_ADD_ROOT_NODE(NULL, 2182 OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys"); 2183 kobject_init(&linux_class_root, &linux_class_ktype); 2184 kobject_set_name(&linux_class_root, "class"); 2185 linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid), 2186 OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class"); 2187 kobject_init(&linux_root_device.kobj, &linux_dev_ktype); 2188 kobject_set_name(&linux_root_device.kobj, "device"); 2189 linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL, 2190 SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL, 2191 "device"); 2192 linux_root_device.bsddev = root_bus; 2193 linux_class_misc.name = "misc"; 2194 class_register(&linux_class_misc); 2195 INIT_LIST_HEAD(&pci_drivers); 2196 INIT_LIST_HEAD(&pci_devices); 2197 spin_lock_init(&pci_lock); 2198 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF); 2199 for (i = 0; i < VMMAP_HASH_SIZE; i++) 2200 LIST_INIT(&vmmaphead[i]); 2201 } 2202 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL); 2203 2204 static void 2205 linux_compat_uninit(void *arg) 2206 { 2207 linux_kobject_kfree_name(&linux_class_root); 2208 linux_kobject_kfree_name(&linux_root_device.kobj); 2209 linux_kobject_kfree_name(&linux_class_misc.kobj); 2210 2211 mtx_destroy(&vmmaplock); 2212 spin_lock_destroy(&pci_lock); 2213 rw_destroy(&linux_vma_lock); 2214 } 2215 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL); 2216 2217 /* 2218 * NOTE: Linux frequently uses "unsigned long" for pointer to integer 2219 * conversion and vice versa, where in FreeBSD "uintptr_t" would be 2220 * used. Assert these types have the same size, else some parts of the 2221 * LinuxKPI may not work like expected: 2222 */ 2223 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t)); 2224