xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision 40427cca7a9ae77b095936fb1954417c290cfb17)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2017 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/sleepqueue.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/bus.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/filio.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_pager.h>
54 
55 #include <machine/stdarg.h>
56 
57 #if defined(__i386__) || defined(__amd64__)
58 #include <machine/md_var.h>
59 #endif
60 
61 #include <linux/kobject.h>
62 #include <linux/device.h>
63 #include <linux/slab.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/cdev.h>
67 #include <linux/file.h>
68 #include <linux/sysfs.h>
69 #include <linux/mm.h>
70 #include <linux/io.h>
71 #include <linux/vmalloc.h>
72 #include <linux/netdevice.h>
73 #include <linux/timer.h>
74 #include <linux/interrupt.h>
75 #include <linux/uaccess.h>
76 #include <linux/list.h>
77 #include <linux/kthread.h>
78 #include <linux/kernel.h>
79 #include <linux/compat.h>
80 #include <linux/poll.h>
81 #include <linux/smp.h>
82 
83 #if defined(__i386__) || defined(__amd64__)
84 #include <asm/smp.h>
85 #endif
86 
87 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
88 
89 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
90 
91 #include <linux/rbtree.h>
92 /* Undo Linux compat changes. */
93 #undef RB_ROOT
94 #undef file
95 #undef cdev
96 #define	RB_ROOT(head)	(head)->rbh_root
97 
98 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
99 
100 struct kobject linux_class_root;
101 struct device linux_root_device;
102 struct class linux_class_misc;
103 struct list_head pci_drivers;
104 struct list_head pci_devices;
105 spinlock_t pci_lock;
106 
107 unsigned long linux_timer_hz_mask;
108 
109 int
110 panic_cmp(struct rb_node *one, struct rb_node *two)
111 {
112 	panic("no cmp");
113 }
114 
115 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
116 
117 int
118 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
119 {
120 	va_list tmp_va;
121 	int len;
122 	char *old;
123 	char *name;
124 	char dummy;
125 
126 	old = kobj->name;
127 
128 	if (old && fmt == NULL)
129 		return (0);
130 
131 	/* compute length of string */
132 	va_copy(tmp_va, args);
133 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
134 	va_end(tmp_va);
135 
136 	/* account for zero termination */
137 	len++;
138 
139 	/* check for error */
140 	if (len < 1)
141 		return (-EINVAL);
142 
143 	/* allocate memory for string */
144 	name = kzalloc(len, GFP_KERNEL);
145 	if (name == NULL)
146 		return (-ENOMEM);
147 	vsnprintf(name, len, fmt, args);
148 	kobj->name = name;
149 
150 	/* free old string */
151 	kfree(old);
152 
153 	/* filter new string */
154 	for (; *name != '\0'; name++)
155 		if (*name == '/')
156 			*name = '!';
157 	return (0);
158 }
159 
160 int
161 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
162 {
163 	va_list args;
164 	int error;
165 
166 	va_start(args, fmt);
167 	error = kobject_set_name_vargs(kobj, fmt, args);
168 	va_end(args);
169 
170 	return (error);
171 }
172 
173 static int
174 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
175 {
176 	const struct kobj_type *t;
177 	int error;
178 
179 	kobj->parent = parent;
180 	error = sysfs_create_dir(kobj);
181 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
182 		struct attribute **attr;
183 		t = kobj->ktype;
184 
185 		for (attr = t->default_attrs; *attr != NULL; attr++) {
186 			error = sysfs_create_file(kobj, *attr);
187 			if (error)
188 				break;
189 		}
190 		if (error)
191 			sysfs_remove_dir(kobj);
192 
193 	}
194 	return (error);
195 }
196 
197 int
198 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
199 {
200 	va_list args;
201 	int error;
202 
203 	va_start(args, fmt);
204 	error = kobject_set_name_vargs(kobj, fmt, args);
205 	va_end(args);
206 	if (error)
207 		return (error);
208 
209 	return kobject_add_complete(kobj, parent);
210 }
211 
212 void
213 linux_kobject_release(struct kref *kref)
214 {
215 	struct kobject *kobj;
216 	char *name;
217 
218 	kobj = container_of(kref, struct kobject, kref);
219 	sysfs_remove_dir(kobj);
220 	name = kobj->name;
221 	if (kobj->ktype && kobj->ktype->release)
222 		kobj->ktype->release(kobj);
223 	kfree(name);
224 }
225 
226 static void
227 linux_kobject_kfree(struct kobject *kobj)
228 {
229 	kfree(kobj);
230 }
231 
232 static void
233 linux_kobject_kfree_name(struct kobject *kobj)
234 {
235 	if (kobj) {
236 		kfree(kobj->name);
237 	}
238 }
239 
240 const struct kobj_type linux_kfree_type = {
241 	.release = linux_kobject_kfree
242 };
243 
244 static void
245 linux_device_release(struct device *dev)
246 {
247 	pr_debug("linux_device_release: %s\n", dev_name(dev));
248 	kfree(dev);
249 }
250 
251 static ssize_t
252 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
253 {
254 	struct class_attribute *dattr;
255 	ssize_t error;
256 
257 	dattr = container_of(attr, struct class_attribute, attr);
258 	error = -EIO;
259 	if (dattr->show)
260 		error = dattr->show(container_of(kobj, struct class, kobj),
261 		    dattr, buf);
262 	return (error);
263 }
264 
265 static ssize_t
266 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
267     size_t count)
268 {
269 	struct class_attribute *dattr;
270 	ssize_t error;
271 
272 	dattr = container_of(attr, struct class_attribute, attr);
273 	error = -EIO;
274 	if (dattr->store)
275 		error = dattr->store(container_of(kobj, struct class, kobj),
276 		    dattr, buf, count);
277 	return (error);
278 }
279 
280 static void
281 linux_class_release(struct kobject *kobj)
282 {
283 	struct class *class;
284 
285 	class = container_of(kobj, struct class, kobj);
286 	if (class->class_release)
287 		class->class_release(class);
288 }
289 
290 static const struct sysfs_ops linux_class_sysfs = {
291 	.show  = linux_class_show,
292 	.store = linux_class_store,
293 };
294 
295 const struct kobj_type linux_class_ktype = {
296 	.release = linux_class_release,
297 	.sysfs_ops = &linux_class_sysfs
298 };
299 
300 static void
301 linux_dev_release(struct kobject *kobj)
302 {
303 	struct device *dev;
304 
305 	dev = container_of(kobj, struct device, kobj);
306 	/* This is the precedence defined by linux. */
307 	if (dev->release)
308 		dev->release(dev);
309 	else if (dev->class && dev->class->dev_release)
310 		dev->class->dev_release(dev);
311 }
312 
313 static ssize_t
314 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
315 {
316 	struct device_attribute *dattr;
317 	ssize_t error;
318 
319 	dattr = container_of(attr, struct device_attribute, attr);
320 	error = -EIO;
321 	if (dattr->show)
322 		error = dattr->show(container_of(kobj, struct device, kobj),
323 		    dattr, buf);
324 	return (error);
325 }
326 
327 static ssize_t
328 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
329     size_t count)
330 {
331 	struct device_attribute *dattr;
332 	ssize_t error;
333 
334 	dattr = container_of(attr, struct device_attribute, attr);
335 	error = -EIO;
336 	if (dattr->store)
337 		error = dattr->store(container_of(kobj, struct device, kobj),
338 		    dattr, buf, count);
339 	return (error);
340 }
341 
342 static const struct sysfs_ops linux_dev_sysfs = {
343 	.show  = linux_dev_show,
344 	.store = linux_dev_store,
345 };
346 
347 const struct kobj_type linux_dev_ktype = {
348 	.release = linux_dev_release,
349 	.sysfs_ops = &linux_dev_sysfs
350 };
351 
352 struct device *
353 device_create(struct class *class, struct device *parent, dev_t devt,
354     void *drvdata, const char *fmt, ...)
355 {
356 	struct device *dev;
357 	va_list args;
358 
359 	dev = kzalloc(sizeof(*dev), M_WAITOK);
360 	dev->parent = parent;
361 	dev->class = class;
362 	dev->devt = devt;
363 	dev->driver_data = drvdata;
364 	dev->release = linux_device_release;
365 	va_start(args, fmt);
366 	kobject_set_name_vargs(&dev->kobj, fmt, args);
367 	va_end(args);
368 	device_register(dev);
369 
370 	return (dev);
371 }
372 
373 int
374 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
375     struct kobject *parent, const char *fmt, ...)
376 {
377 	va_list args;
378 	int error;
379 
380 	kobject_init(kobj, ktype);
381 	kobj->ktype = ktype;
382 	kobj->parent = parent;
383 	kobj->name = NULL;
384 
385 	va_start(args, fmt);
386 	error = kobject_set_name_vargs(kobj, fmt, args);
387 	va_end(args);
388 	if (error)
389 		return (error);
390 	return kobject_add_complete(kobj, parent);
391 }
392 
393 static void
394 linux_file_dtor(void *cdp)
395 {
396 	struct linux_file *filp;
397 
398 	linux_set_current(curthread);
399 	filp = cdp;
400 	filp->f_op->release(filp->f_vnode, filp);
401 	vdrop(filp->f_vnode);
402 	kfree(filp);
403 }
404 
405 static void
406 linux_kq_lock(void *arg)
407 {
408 	spinlock_t *s = arg;
409 
410 	spin_lock(s);
411 }
412 static void
413 linux_kq_unlock(void *arg)
414 {
415 	spinlock_t *s = arg;
416 
417 	spin_unlock(s);
418 }
419 
420 static void
421 linux_kq_lock_owned(void *arg)
422 {
423 #ifdef INVARIANTS
424 	spinlock_t *s = arg;
425 
426 	mtx_assert(&s->m, MA_OWNED);
427 #endif
428 }
429 
430 static void
431 linux_kq_lock_unowned(void *arg)
432 {
433 #ifdef INVARIANTS
434 	spinlock_t *s = arg;
435 
436 	mtx_assert(&s->m, MA_NOTOWNED);
437 #endif
438 }
439 
440 static void
441 linux_dev_kqfilter_poll(struct linux_file *, int);
442 
443 struct linux_file *
444 linux_file_alloc(void)
445 {
446 	struct linux_file *filp;
447 
448 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
449 
450 	/* set initial refcount */
451 	filp->f_count = 1;
452 
453 	/* setup fields needed by kqueue support */
454 	spin_lock_init(&filp->f_kqlock);
455 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
456 	    linux_kq_lock, linux_kq_unlock,
457 	    linux_kq_lock_owned, linux_kq_lock_unowned);
458 
459 	return (filp);
460 }
461 
462 void
463 linux_file_free(struct linux_file *filp)
464 {
465 	if (filp->_file == NULL) {
466 		if (filp->f_shmem != NULL)
467 			vm_object_deallocate(filp->f_shmem);
468 		kfree(filp);
469 	} else {
470 		/*
471 		 * The close method of the character device or file
472 		 * will free the linux_file structure:
473 		 */
474 		_fdrop(filp->_file, curthread);
475 	}
476 }
477 
478 static int
479 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
480     vm_page_t *mres)
481 {
482 	struct vm_area_struct *vmap;
483 
484 	vmap = linux_cdev_handle_find(vm_obj->handle);
485 
486 	MPASS(vmap != NULL);
487 	MPASS(vmap->vm_private_data == vm_obj->handle);
488 
489 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
490 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
491 		vm_page_t page;
492 
493 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
494 			/*
495 			 * If the passed in result page is a fake
496 			 * page, update it with the new physical
497 			 * address.
498 			 */
499 			page = *mres;
500 			vm_page_updatefake(page, paddr, vm_obj->memattr);
501 		} else {
502 			/*
503 			 * Replace the passed in "mres" page with our
504 			 * own fake page and free up the all of the
505 			 * original pages.
506 			 */
507 			VM_OBJECT_WUNLOCK(vm_obj);
508 			page = vm_page_getfake(paddr, vm_obj->memattr);
509 			VM_OBJECT_WLOCK(vm_obj);
510 
511 			vm_page_replace_checked(page, vm_obj,
512 			    (*mres)->pindex, *mres);
513 
514 			vm_page_lock(*mres);
515 			vm_page_free(*mres);
516 			vm_page_unlock(*mres);
517 			*mres = page;
518 		}
519 		page->valid = VM_PAGE_BITS_ALL;
520 		return (VM_PAGER_OK);
521 	}
522 	return (VM_PAGER_FAIL);
523 }
524 
525 static int
526 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
527     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
528 {
529 	struct vm_area_struct *vmap;
530 	int err;
531 
532 	linux_set_current(curthread);
533 
534 	/* get VM area structure */
535 	vmap = linux_cdev_handle_find(vm_obj->handle);
536 	MPASS(vmap != NULL);
537 	MPASS(vmap->vm_private_data == vm_obj->handle);
538 
539 	VM_OBJECT_WUNLOCK(vm_obj);
540 
541 	down_write(&vmap->vm_mm->mmap_sem);
542 	if (unlikely(vmap->vm_ops == NULL)) {
543 		err = VM_FAULT_SIGBUS;
544 	} else {
545 		struct vm_fault vmf;
546 
547 		/* fill out VM fault structure */
548 		vmf.virtual_address = (void *)((uintptr_t)pidx << PAGE_SHIFT);
549 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
550 		vmf.pgoff = 0;
551 		vmf.page = NULL;
552 
553 		vmap->vm_pfn_count = 0;
554 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
555 		vmap->vm_obj = vm_obj;
556 
557 		err = vmap->vm_ops->fault(vmap, &vmf);
558 
559 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
560 			kern_yield(PRI_USER);
561 			err = vmap->vm_ops->fault(vmap, &vmf);
562 		}
563 	}
564 
565 	/* translate return code */
566 	switch (err) {
567 	case VM_FAULT_OOM:
568 		err = VM_PAGER_AGAIN;
569 		break;
570 	case VM_FAULT_SIGBUS:
571 		err = VM_PAGER_BAD;
572 		break;
573 	case VM_FAULT_NOPAGE:
574 		/*
575 		 * By contract the fault handler will return having
576 		 * busied all the pages itself. If pidx is already
577 		 * found in the object, it will simply xbusy the first
578 		 * page and return with vm_pfn_count set to 1.
579 		 */
580 		*first = vmap->vm_pfn_first;
581 		*last = *first + vmap->vm_pfn_count - 1;
582 		err = VM_PAGER_OK;
583 		break;
584 	default:
585 		err = VM_PAGER_ERROR;
586 		break;
587 	}
588 	up_write(&vmap->vm_mm->mmap_sem);
589 	VM_OBJECT_WLOCK(vm_obj);
590 	return (err);
591 }
592 
593 static struct rwlock linux_vma_lock;
594 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
595     TAILQ_HEAD_INITIALIZER(linux_vma_head);
596 
597 static void
598 linux_cdev_handle_free(struct vm_area_struct *vmap)
599 {
600 	/* Drop reference on vm_file */
601 	if (vmap->vm_file != NULL)
602 		fput(vmap->vm_file);
603 
604 	/* Drop reference on mm_struct */
605 	mmput(vmap->vm_mm);
606 
607 	kfree(vmap);
608 }
609 
610 static struct vm_area_struct *
611 linux_cdev_handle_insert(void *handle, struct vm_area_struct *vmap)
612 {
613 	struct vm_area_struct *ptr;
614 
615 	rw_wlock(&linux_vma_lock);
616 	TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
617 		if (ptr->vm_private_data == handle) {
618 			rw_wunlock(&linux_vma_lock);
619 			linux_cdev_handle_free(vmap);
620 			return (NULL);
621 		}
622 	}
623 	TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
624 	rw_wunlock(&linux_vma_lock);
625 	return (vmap);
626 }
627 
628 static void
629 linux_cdev_handle_remove(struct vm_area_struct *vmap)
630 {
631 	rw_wlock(&linux_vma_lock);
632 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
633 	rw_wunlock(&linux_vma_lock);
634 }
635 
636 static struct vm_area_struct *
637 linux_cdev_handle_find(void *handle)
638 {
639 	struct vm_area_struct *vmap;
640 
641 	rw_rlock(&linux_vma_lock);
642 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
643 		if (vmap->vm_private_data == handle)
644 			break;
645 	}
646 	rw_runlock(&linux_vma_lock);
647 	return (vmap);
648 }
649 
650 static int
651 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
652 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
653 {
654 
655 	MPASS(linux_cdev_handle_find(handle) != NULL);
656 	*color = 0;
657 	return (0);
658 }
659 
660 static void
661 linux_cdev_pager_dtor(void *handle)
662 {
663 	const struct vm_operations_struct *vm_ops;
664 	struct vm_area_struct *vmap;
665 
666 	vmap = linux_cdev_handle_find(handle);
667 	MPASS(vmap != NULL);
668 
669 	/*
670 	 * Remove handle before calling close operation to prevent
671 	 * other threads from reusing the handle pointer.
672 	 */
673 	linux_cdev_handle_remove(vmap);
674 
675 	down_write(&vmap->vm_mm->mmap_sem);
676 	vm_ops = vmap->vm_ops;
677 	if (likely(vm_ops != NULL))
678 		vm_ops->close(vmap);
679 	up_write(&vmap->vm_mm->mmap_sem);
680 
681 	linux_cdev_handle_free(vmap);
682 }
683 
684 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
685   {
686 	/* OBJT_MGTDEVICE */
687 	.cdev_pg_populate	= linux_cdev_pager_populate,
688 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
689 	.cdev_pg_dtor	= linux_cdev_pager_dtor
690   },
691   {
692 	/* OBJT_DEVICE */
693 	.cdev_pg_fault	= linux_cdev_pager_fault,
694 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
695 	.cdev_pg_dtor	= linux_cdev_pager_dtor
696   },
697 };
698 
699 static int
700 linux_dev_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
701 {
702 	struct linux_cdev *ldev;
703 	struct linux_file *filp;
704 	struct file *file;
705 	int error;
706 
707 	file = td->td_fpop;
708 	ldev = dev->si_drv1;
709 	if (ldev == NULL)
710 		return (ENODEV);
711 
712 	filp = linux_file_alloc();
713 	filp->f_dentry = &filp->f_dentry_store;
714 	filp->f_op = ldev->ops;
715 	filp->f_flags = file->f_flag;
716 	vhold(file->f_vnode);
717 	filp->f_vnode = file->f_vnode;
718 	filp->_file = file;
719 
720 	linux_set_current(td);
721 
722 	if (filp->f_op->open) {
723 		error = -filp->f_op->open(file->f_vnode, filp);
724 		if (error) {
725 			vdrop(filp->f_vnode);
726 			kfree(filp);
727 			goto done;
728 		}
729 	}
730 	error = devfs_set_cdevpriv(filp, linux_file_dtor);
731 	if (error) {
732 		filp->f_op->release(file->f_vnode, filp);
733 		vdrop(filp->f_vnode);
734 		kfree(filp);
735 	}
736 done:
737 	return (error);
738 }
739 
740 static int
741 linux_dev_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
742 {
743 	struct linux_file *filp;
744 	struct file *file;
745 	int error;
746 
747 	file = td->td_fpop;
748 	if (dev->si_drv1 == NULL)
749 		return (0);
750 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
751 		return (error);
752 	filp->f_flags = file->f_flag;
753 	devfs_clear_cdevpriv();
754 
755 	return (0);
756 }
757 
758 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
759 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
760 
761 static inline int
762 linux_remap_address(void **uaddr, size_t len)
763 {
764 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
765 
766 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
767 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
768 		struct task_struct *pts = current;
769 		if (pts == NULL) {
770 			*uaddr = NULL;
771 			return (1);
772 		}
773 
774 		/* compute data offset */
775 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
776 
777 		/* check that length is within bounds */
778 		if ((len > IOCPARM_MAX) ||
779 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
780 			*uaddr = NULL;
781 			return (1);
782 		}
783 
784 		/* re-add kernel buffer address */
785 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
786 
787 		/* update address location */
788 		*uaddr = (void *)uaddr_val;
789 		return (1);
790 	}
791 	return (0);
792 }
793 
794 int
795 linux_copyin(const void *uaddr, void *kaddr, size_t len)
796 {
797 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
798 		if (uaddr == NULL)
799 			return (-EFAULT);
800 		memcpy(kaddr, uaddr, len);
801 		return (0);
802 	}
803 	return (-copyin(uaddr, kaddr, len));
804 }
805 
806 int
807 linux_copyout(const void *kaddr, void *uaddr, size_t len)
808 {
809 	if (linux_remap_address(&uaddr, len)) {
810 		if (uaddr == NULL)
811 			return (-EFAULT);
812 		memcpy(uaddr, kaddr, len);
813 		return (0);
814 	}
815 	return (-copyout(kaddr, uaddr, len));
816 }
817 
818 size_t
819 linux_clear_user(void *_uaddr, size_t _len)
820 {
821 	uint8_t *uaddr = _uaddr;
822 	size_t len = _len;
823 
824 	/* make sure uaddr is aligned before going into the fast loop */
825 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
826 		if (subyte(uaddr, 0))
827 			return (_len);
828 		uaddr++;
829 		len--;
830 	}
831 
832 	/* zero 8 bytes at a time */
833 	while (len > 7) {
834 #ifdef __LP64__
835 		if (suword64(uaddr, 0))
836 			return (_len);
837 #else
838 		if (suword32(uaddr, 0))
839 			return (_len);
840 		if (suword32(uaddr + 4, 0))
841 			return (_len);
842 #endif
843 		uaddr += 8;
844 		len -= 8;
845 	}
846 
847 	/* zero fill end, if any */
848 	while (len > 0) {
849 		if (subyte(uaddr, 0))
850 			return (_len);
851 		uaddr++;
852 		len--;
853 	}
854 	return (0);
855 }
856 
857 int
858 linux_access_ok(int rw, const void *uaddr, size_t len)
859 {
860 	uintptr_t saddr;
861 	uintptr_t eaddr;
862 
863 	/* get start and end address */
864 	saddr = (uintptr_t)uaddr;
865 	eaddr = (uintptr_t)uaddr + len;
866 
867 	/* verify addresses are valid for userspace */
868 	return ((saddr == eaddr) ||
869 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
870 }
871 
872 static int
873 linux_dev_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
874     struct thread *td)
875 {
876 	struct linux_file *filp;
877 	struct file *file;
878 	unsigned size;
879 	int error;
880 
881 	file = td->td_fpop;
882 	if (dev->si_drv1 == NULL)
883 		return (ENXIO);
884 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
885 		return (error);
886 	filp->f_flags = file->f_flag;
887 
888 	/* the LinuxKPI supports blocking and non-blocking I/O */
889 	if (cmd == FIONBIO || cmd == FIOASYNC)
890 		return (0);
891 
892 	linux_set_current(td);
893 	size = IOCPARM_LEN(cmd);
894 	/* refer to logic in sys_ioctl() */
895 	if (size > 0) {
896 		/*
897 		 * Setup hint for linux_copyin() and linux_copyout().
898 		 *
899 		 * Background: Linux code expects a user-space address
900 		 * while FreeBSD supplies a kernel-space address.
901 		 */
902 		current->bsd_ioctl_data = data;
903 		current->bsd_ioctl_len = size;
904 		data = (void *)LINUX_IOCTL_MIN_PTR;
905 	} else {
906 		/* fetch user-space pointer */
907 		data = *(void **)data;
908 	}
909 	if (filp->f_op->unlocked_ioctl)
910 		error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data);
911 	else
912 		error = ENOTTY;
913 	if (size > 0) {
914 		current->bsd_ioctl_data = NULL;
915 		current->bsd_ioctl_len = 0;
916 	}
917 
918 	if (error == EWOULDBLOCK) {
919 		/* update kqfilter status, if any */
920 		linux_dev_kqfilter_poll(filp,
921 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
922 	} else if (error == ERESTARTSYS)
923 		error = ERESTART;
924 	return (error);
925 }
926 
927 static int
928 linux_dev_read(struct cdev *dev, struct uio *uio, int ioflag)
929 {
930 	struct linux_file *filp;
931 	struct thread *td;
932 	struct file *file;
933 	ssize_t bytes;
934 	int error;
935 
936 	td = curthread;
937 	file = td->td_fpop;
938 	if (dev->si_drv1 == NULL)
939 		return (ENXIO);
940 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
941 		return (error);
942 	filp->f_flags = file->f_flag;
943 	/* XXX no support for I/O vectors currently */
944 	if (uio->uio_iovcnt != 1)
945 		return (EOPNOTSUPP);
946 	linux_set_current(td);
947 	if (filp->f_op->read) {
948 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
949 		    uio->uio_iov->iov_len, &uio->uio_offset);
950 		if (bytes >= 0) {
951 			uio->uio_iov->iov_base =
952 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
953 			uio->uio_iov->iov_len -= bytes;
954 			uio->uio_resid -= bytes;
955 		} else {
956 			error = -bytes;
957 			if (error == ERESTARTSYS)
958 				error = ERESTART;
959 		}
960 	} else
961 		error = ENXIO;
962 
963 	/* update kqfilter status, if any */
964 	linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
965 
966 	return (error);
967 }
968 
969 static int
970 linux_dev_write(struct cdev *dev, struct uio *uio, int ioflag)
971 {
972 	struct linux_file *filp;
973 	struct thread *td;
974 	struct file *file;
975 	ssize_t bytes;
976 	int error;
977 
978 	td = curthread;
979 	file = td->td_fpop;
980 	if (dev->si_drv1 == NULL)
981 		return (ENXIO);
982 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
983 		return (error);
984 	filp->f_flags = file->f_flag;
985 	/* XXX no support for I/O vectors currently */
986 	if (uio->uio_iovcnt != 1)
987 		return (EOPNOTSUPP);
988 	linux_set_current(td);
989 	if (filp->f_op->write) {
990 		bytes = filp->f_op->write(filp, uio->uio_iov->iov_base,
991 		    uio->uio_iov->iov_len, &uio->uio_offset);
992 		if (bytes >= 0) {
993 			uio->uio_iov->iov_base =
994 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
995 			uio->uio_iov->iov_len -= bytes;
996 			uio->uio_resid -= bytes;
997 		} else {
998 			error = -bytes;
999 			if (error == ERESTARTSYS)
1000 				error = ERESTART;
1001 		}
1002 	} else
1003 		error = ENXIO;
1004 
1005 	/* update kqfilter status, if any */
1006 	linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1007 
1008 	return (error);
1009 }
1010 
1011 static int
1012 linux_dev_poll(struct cdev *dev, int events, struct thread *td)
1013 {
1014 	struct linux_file *filp;
1015 	struct file *file;
1016 	int revents;
1017 
1018 	if (dev->si_drv1 == NULL)
1019 		goto error;
1020 	if (devfs_get_cdevpriv((void **)&filp) != 0)
1021 		goto error;
1022 
1023 	file = td->td_fpop;
1024 	filp->f_flags = file->f_flag;
1025 	linux_set_current(td);
1026 	if (filp->f_op->poll != NULL)
1027 		revents = filp->f_op->poll(filp, NULL) & events;
1028 	else
1029 		revents = 0;
1030 
1031 	return (revents);
1032 error:
1033 	return (events & (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
1034 }
1035 
1036 /*
1037  * This function atomically updates the poll wakeup state and returns
1038  * the previous state at the time of update.
1039  */
1040 static uint8_t
1041 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1042 {
1043 	int c, old;
1044 
1045 	c = v->counter;
1046 
1047 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1048 		c = old;
1049 
1050 	return (c);
1051 }
1052 
1053 
1054 static int
1055 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1056 {
1057 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1058 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1059 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1060 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1061 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1062 	};
1063 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1064 
1065 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1066 	case LINUX_FWQ_STATE_QUEUED:
1067 		linux_poll_wakeup(filp);
1068 		return (1);
1069 	default:
1070 		return (0);
1071 	}
1072 }
1073 
1074 void
1075 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1076 {
1077 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1078 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1079 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1080 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1081 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1082 	};
1083 
1084 	selrecord(curthread, &filp->f_selinfo);
1085 
1086 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1087 	case LINUX_FWQ_STATE_INIT:
1088 		/* NOTE: file handles can only belong to one wait-queue */
1089 		filp->f_wait_queue.wqh = wqh;
1090 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1091 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1092 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1093 		break;
1094 	default:
1095 		break;
1096 	}
1097 }
1098 
1099 static void
1100 linux_poll_wait_dequeue(struct linux_file *filp)
1101 {
1102 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1103 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1104 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1105 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1106 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1107 	};
1108 
1109 	seldrain(&filp->f_selinfo);
1110 
1111 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1112 	case LINUX_FWQ_STATE_NOT_READY:
1113 	case LINUX_FWQ_STATE_QUEUED:
1114 	case LINUX_FWQ_STATE_READY:
1115 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1116 		break;
1117 	default:
1118 		break;
1119 	}
1120 }
1121 
1122 void
1123 linux_poll_wakeup(struct linux_file *filp)
1124 {
1125 	/* this function should be NULL-safe */
1126 	if (filp == NULL)
1127 		return;
1128 
1129 	selwakeup(&filp->f_selinfo);
1130 
1131 	spin_lock(&filp->f_kqlock);
1132 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1133 	    LINUX_KQ_FLAG_NEED_WRITE;
1134 
1135 	/* make sure the "knote" gets woken up */
1136 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1137 	spin_unlock(&filp->f_kqlock);
1138 }
1139 
1140 static void
1141 linux_dev_kqfilter_detach(struct knote *kn)
1142 {
1143 	struct linux_file *filp = kn->kn_hook;
1144 
1145 	spin_lock(&filp->f_kqlock);
1146 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1147 	spin_unlock(&filp->f_kqlock);
1148 }
1149 
1150 static int
1151 linux_dev_kqfilter_read_event(struct knote *kn, long hint)
1152 {
1153 	struct linux_file *filp = kn->kn_hook;
1154 
1155 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1156 
1157 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1158 }
1159 
1160 static int
1161 linux_dev_kqfilter_write_event(struct knote *kn, long hint)
1162 {
1163 	struct linux_file *filp = kn->kn_hook;
1164 
1165 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1166 
1167 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1168 }
1169 
1170 static struct filterops linux_dev_kqfiltops_read = {
1171 	.f_isfd = 1,
1172 	.f_detach = linux_dev_kqfilter_detach,
1173 	.f_event = linux_dev_kqfilter_read_event,
1174 };
1175 
1176 static struct filterops linux_dev_kqfiltops_write = {
1177 	.f_isfd = 1,
1178 	.f_detach = linux_dev_kqfilter_detach,
1179 	.f_event = linux_dev_kqfilter_write_event,
1180 };
1181 
1182 static void
1183 linux_dev_kqfilter_poll(struct linux_file *filp, int kqflags)
1184 {
1185 	int temp;
1186 
1187 	if (filp->f_kqflags & kqflags) {
1188 		/* get the latest polling state */
1189 		temp = filp->f_op->poll(filp, NULL);
1190 
1191 		spin_lock(&filp->f_kqlock);
1192 		/* clear kqflags */
1193 		filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1194 		    LINUX_KQ_FLAG_NEED_WRITE);
1195 		/* update kqflags */
1196 		if (temp & (POLLIN | POLLOUT)) {
1197 			if (temp & POLLIN)
1198 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1199 			if (temp & POLLOUT)
1200 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1201 
1202 			/* make sure the "knote" gets woken up */
1203 			KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1204 		}
1205 		spin_unlock(&filp->f_kqlock);
1206 	}
1207 }
1208 
1209 static int
1210 linux_dev_kqfilter(struct cdev *dev, struct knote *kn)
1211 {
1212 	struct linux_file *filp;
1213 	struct file *file;
1214 	struct thread *td;
1215 	int error;
1216 
1217 	td = curthread;
1218 	file = td->td_fpop;
1219 	if (dev->si_drv1 == NULL)
1220 		return (ENXIO);
1221 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
1222 		return (error);
1223 	filp->f_flags = file->f_flag;
1224 	if (filp->f_op->poll == NULL)
1225 		return (EINVAL);
1226 
1227 	spin_lock(&filp->f_kqlock);
1228 	switch (kn->kn_filter) {
1229 	case EVFILT_READ:
1230 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1231 		kn->kn_fop = &linux_dev_kqfiltops_read;
1232 		kn->kn_hook = filp;
1233 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1234 		break;
1235 	case EVFILT_WRITE:
1236 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1237 		kn->kn_fop = &linux_dev_kqfiltops_write;
1238 		kn->kn_hook = filp;
1239 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1240 		break;
1241 	default:
1242 		error = EINVAL;
1243 		break;
1244 	}
1245 	spin_unlock(&filp->f_kqlock);
1246 
1247 	if (error == 0) {
1248 		linux_set_current(td);
1249 
1250 		/* update kqfilter status, if any */
1251 		linux_dev_kqfilter_poll(filp,
1252 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1253 	}
1254 	return (error);
1255 }
1256 
1257 static int
1258 linux_dev_mmap_single(struct cdev *dev, vm_ooffset_t *offset,
1259     vm_size_t size, struct vm_object **object, int nprot)
1260 {
1261 	struct vm_area_struct *vmap;
1262 	struct mm_struct *mm;
1263 	struct linux_file *filp;
1264 	struct thread *td;
1265 	struct file *file;
1266 	vm_memattr_t attr;
1267 	int error;
1268 
1269 	td = curthread;
1270 	file = td->td_fpop;
1271 	if (dev->si_drv1 == NULL)
1272 		return (ENODEV);
1273 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
1274 		return (error);
1275 	filp->f_flags = file->f_flag;
1276 
1277 	if (filp->f_op->mmap == NULL)
1278 		return (ENODEV);
1279 
1280 	linux_set_current(td);
1281 
1282 	/*
1283 	 * The same VM object might be shared by multiple processes
1284 	 * and the mm_struct is usually freed when a process exits.
1285 	 *
1286 	 * The atomic reference below makes sure the mm_struct is
1287 	 * available as long as the vmap is in the linux_vma_head.
1288 	 */
1289 	mm = current->mm;
1290 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1291 		return (EINVAL);
1292 
1293 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1294 	vmap->vm_start = 0;
1295 	vmap->vm_end = size;
1296 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1297 	vmap->vm_pfn = 0;
1298 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1299 	vmap->vm_ops = NULL;
1300 	vmap->vm_file = get_file(filp);
1301 	vmap->vm_mm = mm;
1302 
1303 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1304 		error = EINTR;
1305 	} else {
1306 		error = -filp->f_op->mmap(filp, vmap);
1307 		up_write(&vmap->vm_mm->mmap_sem);
1308 	}
1309 
1310 	if (error != 0) {
1311 		linux_cdev_handle_free(vmap);
1312 		return (error);
1313 	}
1314 
1315 	attr = pgprot2cachemode(vmap->vm_page_prot);
1316 
1317 	if (vmap->vm_ops != NULL) {
1318 		void *vm_private_data;
1319 
1320 		if (vmap->vm_ops->open == NULL ||
1321 		    vmap->vm_ops->close == NULL ||
1322 		    vmap->vm_private_data == NULL) {
1323 			linux_cdev_handle_free(vmap);
1324 			return (EINVAL);
1325 		}
1326 
1327 		vm_private_data = vmap->vm_private_data;
1328 
1329 		vmap = linux_cdev_handle_insert(vm_private_data, vmap);
1330 
1331 		if (vmap->vm_ops->fault == NULL) {
1332 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1333 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1334 			    curthread->td_ucred);
1335 		} else {
1336 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1337 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1338 			    curthread->td_ucred);
1339 		}
1340 
1341 		if (*object == NULL) {
1342 			linux_cdev_handle_remove(vmap);
1343 			linux_cdev_handle_free(vmap);
1344 			return (EINVAL);
1345 		}
1346 	} else {
1347 		struct sglist *sg;
1348 
1349 		sg = sglist_alloc(1, M_WAITOK);
1350 		sglist_append_phys(sg,
1351 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1352 
1353 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1354 		    nprot, 0, curthread->td_ucred);
1355 
1356 		linux_cdev_handle_free(vmap);
1357 
1358 		if (*object == NULL) {
1359 			sglist_free(sg);
1360 			return (EINVAL);
1361 		}
1362 	}
1363 
1364 	if (attr != VM_MEMATTR_DEFAULT) {
1365 		VM_OBJECT_WLOCK(*object);
1366 		vm_object_set_memattr(*object, attr);
1367 		VM_OBJECT_WUNLOCK(*object);
1368 	}
1369 	*offset = 0;
1370 	return (0);
1371 }
1372 
1373 struct cdevsw linuxcdevsw = {
1374 	.d_version = D_VERSION,
1375 	.d_flags = D_TRACKCLOSE,
1376 	.d_open = linux_dev_open,
1377 	.d_close = linux_dev_close,
1378 	.d_read = linux_dev_read,
1379 	.d_write = linux_dev_write,
1380 	.d_ioctl = linux_dev_ioctl,
1381 	.d_mmap_single = linux_dev_mmap_single,
1382 	.d_poll = linux_dev_poll,
1383 	.d_kqfilter = linux_dev_kqfilter,
1384 	.d_name = "lkpidev",
1385 };
1386 
1387 static int
1388 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1389     int flags, struct thread *td)
1390 {
1391 	struct linux_file *filp;
1392 	ssize_t bytes;
1393 	int error;
1394 
1395 	error = 0;
1396 	filp = (struct linux_file *)file->f_data;
1397 	filp->f_flags = file->f_flag;
1398 	/* XXX no support for I/O vectors currently */
1399 	if (uio->uio_iovcnt != 1)
1400 		return (EOPNOTSUPP);
1401 	linux_set_current(td);
1402 	if (filp->f_op->read) {
1403 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
1404 		    uio->uio_iov->iov_len, &uio->uio_offset);
1405 		if (bytes >= 0) {
1406 			uio->uio_iov->iov_base =
1407 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1408 			uio->uio_iov->iov_len -= bytes;
1409 			uio->uio_resid -= bytes;
1410 		} else
1411 			error = -bytes;
1412 	} else
1413 		error = ENXIO;
1414 
1415 	return (error);
1416 }
1417 
1418 static int
1419 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1420     struct thread *td)
1421 {
1422 	struct linux_file *filp;
1423 	int revents;
1424 
1425 	filp = (struct linux_file *)file->f_data;
1426 	filp->f_flags = file->f_flag;
1427 	linux_set_current(td);
1428 	if (filp->f_op->poll != NULL) {
1429 		selrecord(td, &filp->f_selinfo);
1430 		revents = filp->f_op->poll(filp, NULL) & events;
1431 	} else
1432 		revents = 0;
1433 
1434 	return (revents);
1435 }
1436 
1437 static int
1438 linux_file_close(struct file *file, struct thread *td)
1439 {
1440 	struct linux_file *filp;
1441 	int error;
1442 
1443 	filp = (struct linux_file *)file->f_data;
1444 	filp->f_flags = file->f_flag;
1445 	linux_set_current(td);
1446 	linux_poll_wait_dequeue(filp);
1447 	error = -filp->f_op->release(NULL, filp);
1448 	funsetown(&filp->f_sigio);
1449 	kfree(filp);
1450 
1451 	return (error);
1452 }
1453 
1454 static int
1455 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1456     struct thread *td)
1457 {
1458 	struct linux_file *filp;
1459 	int error;
1460 
1461 	filp = (struct linux_file *)fp->f_data;
1462 	filp->f_flags = fp->f_flag;
1463 	error = 0;
1464 
1465 	linux_set_current(td);
1466 	switch (cmd) {
1467 	case FIONBIO:
1468 		break;
1469 	case FIOASYNC:
1470 		if (filp->f_op->fasync == NULL)
1471 			break;
1472 		error = filp->f_op->fasync(0, filp, fp->f_flag & FASYNC);
1473 		break;
1474 	case FIOSETOWN:
1475 		error = fsetown(*(int *)data, &filp->f_sigio);
1476 		if (error == 0)
1477 			error = filp->f_op->fasync(0, filp,
1478 			    fp->f_flag & FASYNC);
1479 		break;
1480 	case FIOGETOWN:
1481 		*(int *)data = fgetown(&filp->f_sigio);
1482 		break;
1483 	default:
1484 		error = ENOTTY;
1485 		break;
1486 	}
1487 	return (error);
1488 }
1489 
1490 static int
1491 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1492     struct thread *td)
1493 {
1494 
1495 	return (EOPNOTSUPP);
1496 }
1497 
1498 static int
1499 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1500     struct filedesc *fdp)
1501 {
1502 
1503 	return (0);
1504 }
1505 
1506 unsigned int
1507 linux_iminor(struct inode *inode)
1508 {
1509 	struct linux_cdev *ldev;
1510 
1511 	if (inode == NULL || inode->v_rdev == NULL ||
1512 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1513 		return (-1U);
1514 	ldev = inode->v_rdev->si_drv1;
1515 	if (ldev == NULL)
1516 		return (-1U);
1517 
1518 	return (minor(ldev->dev));
1519 }
1520 
1521 struct fileops linuxfileops = {
1522 	.fo_read = linux_file_read,
1523 	.fo_write = invfo_rdwr,
1524 	.fo_truncate = invfo_truncate,
1525 	.fo_kqfilter = invfo_kqfilter,
1526 	.fo_stat = linux_file_stat,
1527 	.fo_fill_kinfo = linux_file_fill_kinfo,
1528 	.fo_poll = linux_file_poll,
1529 	.fo_close = linux_file_close,
1530 	.fo_ioctl = linux_file_ioctl,
1531 	.fo_chmod = invfo_chmod,
1532 	.fo_chown = invfo_chown,
1533 	.fo_sendfile = invfo_sendfile,
1534 };
1535 
1536 /*
1537  * Hash of vmmap addresses.  This is infrequently accessed and does not
1538  * need to be particularly large.  This is done because we must store the
1539  * caller's idea of the map size to properly unmap.
1540  */
1541 struct vmmap {
1542 	LIST_ENTRY(vmmap)	vm_next;
1543 	void 			*vm_addr;
1544 	unsigned long		vm_size;
1545 };
1546 
1547 struct vmmaphd {
1548 	struct vmmap *lh_first;
1549 };
1550 #define	VMMAP_HASH_SIZE	64
1551 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1552 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1553 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1554 static struct mtx vmmaplock;
1555 
1556 static void
1557 vmmap_add(void *addr, unsigned long size)
1558 {
1559 	struct vmmap *vmmap;
1560 
1561 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1562 	mtx_lock(&vmmaplock);
1563 	vmmap->vm_size = size;
1564 	vmmap->vm_addr = addr;
1565 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1566 	mtx_unlock(&vmmaplock);
1567 }
1568 
1569 static struct vmmap *
1570 vmmap_remove(void *addr)
1571 {
1572 	struct vmmap *vmmap;
1573 
1574 	mtx_lock(&vmmaplock);
1575 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1576 		if (vmmap->vm_addr == addr)
1577 			break;
1578 	if (vmmap)
1579 		LIST_REMOVE(vmmap, vm_next);
1580 	mtx_unlock(&vmmaplock);
1581 
1582 	return (vmmap);
1583 }
1584 
1585 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1586 void *
1587 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1588 {
1589 	void *addr;
1590 
1591 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1592 	if (addr == NULL)
1593 		return (NULL);
1594 	vmmap_add(addr, size);
1595 
1596 	return (addr);
1597 }
1598 #endif
1599 
1600 void
1601 iounmap(void *addr)
1602 {
1603 	struct vmmap *vmmap;
1604 
1605 	vmmap = vmmap_remove(addr);
1606 	if (vmmap == NULL)
1607 		return;
1608 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1609 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1610 #endif
1611 	kfree(vmmap);
1612 }
1613 
1614 
1615 void *
1616 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1617 {
1618 	vm_offset_t off;
1619 	size_t size;
1620 
1621 	size = count * PAGE_SIZE;
1622 	off = kva_alloc(size);
1623 	if (off == 0)
1624 		return (NULL);
1625 	vmmap_add((void *)off, size);
1626 	pmap_qenter(off, pages, count);
1627 
1628 	return ((void *)off);
1629 }
1630 
1631 void
1632 vunmap(void *addr)
1633 {
1634 	struct vmmap *vmmap;
1635 
1636 	vmmap = vmmap_remove(addr);
1637 	if (vmmap == NULL)
1638 		return;
1639 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1640 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1641 	kfree(vmmap);
1642 }
1643 
1644 char *
1645 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1646 {
1647 	unsigned int len;
1648 	char *p;
1649 	va_list aq;
1650 
1651 	va_copy(aq, ap);
1652 	len = vsnprintf(NULL, 0, fmt, aq);
1653 	va_end(aq);
1654 
1655 	p = kmalloc(len + 1, gfp);
1656 	if (p != NULL)
1657 		vsnprintf(p, len + 1, fmt, ap);
1658 
1659 	return (p);
1660 }
1661 
1662 char *
1663 kasprintf(gfp_t gfp, const char *fmt, ...)
1664 {
1665 	va_list ap;
1666 	char *p;
1667 
1668 	va_start(ap, fmt);
1669 	p = kvasprintf(gfp, fmt, ap);
1670 	va_end(ap);
1671 
1672 	return (p);
1673 }
1674 
1675 static void
1676 linux_timer_callback_wrapper(void *context)
1677 {
1678 	struct timer_list *timer;
1679 
1680 	linux_set_current(curthread);
1681 
1682 	timer = context;
1683 	timer->function(timer->data);
1684 }
1685 
1686 void
1687 mod_timer(struct timer_list *timer, int expires)
1688 {
1689 
1690 	timer->expires = expires;
1691 	callout_reset(&timer->timer_callout,
1692 	    linux_timer_jiffies_until(expires),
1693 	    &linux_timer_callback_wrapper, timer);
1694 }
1695 
1696 void
1697 add_timer(struct timer_list *timer)
1698 {
1699 
1700 	callout_reset(&timer->timer_callout,
1701 	    linux_timer_jiffies_until(timer->expires),
1702 	    &linux_timer_callback_wrapper, timer);
1703 }
1704 
1705 void
1706 add_timer_on(struct timer_list *timer, int cpu)
1707 {
1708 
1709 	callout_reset_on(&timer->timer_callout,
1710 	    linux_timer_jiffies_until(timer->expires),
1711 	    &linux_timer_callback_wrapper, timer, cpu);
1712 }
1713 
1714 static void
1715 linux_timer_init(void *arg)
1716 {
1717 
1718 	/*
1719 	 * Compute an internal HZ value which can divide 2**32 to
1720 	 * avoid timer rounding problems when the tick value wraps
1721 	 * around 2**32:
1722 	 */
1723 	linux_timer_hz_mask = 1;
1724 	while (linux_timer_hz_mask < (unsigned long)hz)
1725 		linux_timer_hz_mask *= 2;
1726 	linux_timer_hz_mask--;
1727 }
1728 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1729 
1730 void
1731 linux_complete_common(struct completion *c, int all)
1732 {
1733 	int wakeup_swapper;
1734 
1735 	sleepq_lock(c);
1736 	c->done++;
1737 	if (all)
1738 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1739 	else
1740 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1741 	sleepq_release(c);
1742 	if (wakeup_swapper)
1743 		kick_proc0();
1744 }
1745 
1746 /*
1747  * Indefinite wait for done != 0 with or without signals.
1748  */
1749 int
1750 linux_wait_for_common(struct completion *c, int flags)
1751 {
1752 	int error;
1753 
1754 	if (SCHEDULER_STOPPED())
1755 		return (0);
1756 
1757 	DROP_GIANT();
1758 
1759 	if (flags != 0)
1760 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1761 	else
1762 		flags = SLEEPQ_SLEEP;
1763 	error = 0;
1764 	for (;;) {
1765 		sleepq_lock(c);
1766 		if (c->done)
1767 			break;
1768 		sleepq_add(c, NULL, "completion", flags, 0);
1769 		if (flags & SLEEPQ_INTERRUPTIBLE) {
1770 			if (sleepq_wait_sig(c, 0) != 0) {
1771 				error = -ERESTARTSYS;
1772 				goto intr;
1773 			}
1774 		} else
1775 			sleepq_wait(c, 0);
1776 	}
1777 	c->done--;
1778 	sleepq_release(c);
1779 
1780 intr:
1781 	PICKUP_GIANT();
1782 
1783 	return (error);
1784 }
1785 
1786 /*
1787  * Time limited wait for done != 0 with or without signals.
1788  */
1789 int
1790 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
1791 {
1792 	int end = jiffies + timeout;
1793 	int error;
1794 	int ret;
1795 
1796 	if (SCHEDULER_STOPPED())
1797 		return (0);
1798 
1799 	DROP_GIANT();
1800 
1801 	if (flags != 0)
1802 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1803 	else
1804 		flags = SLEEPQ_SLEEP;
1805 
1806 	error = 0;
1807 	ret = 0;
1808 	for (;;) {
1809 		sleepq_lock(c);
1810 		if (c->done)
1811 			break;
1812 		sleepq_add(c, NULL, "completion", flags, 0);
1813 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
1814 		if (flags & SLEEPQ_INTERRUPTIBLE)
1815 			ret = sleepq_timedwait_sig(c, 0);
1816 		else
1817 			ret = sleepq_timedwait(c, 0);
1818 		if (ret != 0) {
1819 			/* check for timeout or signal */
1820 			if (ret == EWOULDBLOCK)
1821 				error = 0;
1822 			else
1823 				error = -ERESTARTSYS;
1824 			goto intr;
1825 		}
1826 	}
1827 	c->done--;
1828 	sleepq_release(c);
1829 
1830 intr:
1831 	PICKUP_GIANT();
1832 
1833 	/* return how many jiffies are left */
1834 	return (ret != 0 ? error : linux_timer_jiffies_until(end));
1835 }
1836 
1837 int
1838 linux_try_wait_for_completion(struct completion *c)
1839 {
1840 	int isdone;
1841 
1842 	isdone = 1;
1843 	sleepq_lock(c);
1844 	if (c->done)
1845 		c->done--;
1846 	else
1847 		isdone = 0;
1848 	sleepq_release(c);
1849 	return (isdone);
1850 }
1851 
1852 int
1853 linux_completion_done(struct completion *c)
1854 {
1855 	int isdone;
1856 
1857 	isdone = 1;
1858 	sleepq_lock(c);
1859 	if (c->done == 0)
1860 		isdone = 0;
1861 	sleepq_release(c);
1862 	return (isdone);
1863 }
1864 
1865 static void
1866 linux_cdev_release(struct kobject *kobj)
1867 {
1868 	struct linux_cdev *cdev;
1869 	struct kobject *parent;
1870 
1871 	cdev = container_of(kobj, struct linux_cdev, kobj);
1872 	parent = kobj->parent;
1873 	if (cdev->cdev)
1874 		destroy_dev(cdev->cdev);
1875 	kfree(cdev);
1876 	kobject_put(parent);
1877 }
1878 
1879 static void
1880 linux_cdev_static_release(struct kobject *kobj)
1881 {
1882 	struct linux_cdev *cdev;
1883 	struct kobject *parent;
1884 
1885 	cdev = container_of(kobj, struct linux_cdev, kobj);
1886 	parent = kobj->parent;
1887 	if (cdev->cdev)
1888 		destroy_dev(cdev->cdev);
1889 	kobject_put(parent);
1890 }
1891 
1892 const struct kobj_type linux_cdev_ktype = {
1893 	.release = linux_cdev_release,
1894 };
1895 
1896 const struct kobj_type linux_cdev_static_ktype = {
1897 	.release = linux_cdev_static_release,
1898 };
1899 
1900 static void
1901 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
1902 {
1903 	struct notifier_block *nb;
1904 
1905 	nb = arg;
1906 	if (linkstate == LINK_STATE_UP)
1907 		nb->notifier_call(nb, NETDEV_UP, ifp);
1908 	else
1909 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
1910 }
1911 
1912 static void
1913 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
1914 {
1915 	struct notifier_block *nb;
1916 
1917 	nb = arg;
1918 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
1919 }
1920 
1921 static void
1922 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
1923 {
1924 	struct notifier_block *nb;
1925 
1926 	nb = arg;
1927 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
1928 }
1929 
1930 static void
1931 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
1932 {
1933 	struct notifier_block *nb;
1934 
1935 	nb = arg;
1936 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
1937 }
1938 
1939 static void
1940 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
1941 {
1942 	struct notifier_block *nb;
1943 
1944 	nb = arg;
1945 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
1946 }
1947 
1948 int
1949 register_netdevice_notifier(struct notifier_block *nb)
1950 {
1951 
1952 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
1953 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
1954 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
1955 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
1956 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
1957 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
1958 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
1959 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
1960 
1961 	return (0);
1962 }
1963 
1964 int
1965 register_inetaddr_notifier(struct notifier_block *nb)
1966 {
1967 
1968         nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
1969             ifaddr_event, linux_handle_ifaddr_event, nb, 0);
1970         return (0);
1971 }
1972 
1973 int
1974 unregister_netdevice_notifier(struct notifier_block *nb)
1975 {
1976 
1977         EVENTHANDLER_DEREGISTER(ifnet_link_event,
1978 	    nb->tags[NETDEV_UP]);
1979         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
1980 	    nb->tags[NETDEV_REGISTER]);
1981         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
1982 	    nb->tags[NETDEV_UNREGISTER]);
1983         EVENTHANDLER_DEREGISTER(iflladdr_event,
1984 	    nb->tags[NETDEV_CHANGEADDR]);
1985 
1986 	return (0);
1987 }
1988 
1989 int
1990 unregister_inetaddr_notifier(struct notifier_block *nb)
1991 {
1992 
1993         EVENTHANDLER_DEREGISTER(ifaddr_event,
1994             nb->tags[NETDEV_CHANGEIFADDR]);
1995 
1996         return (0);
1997 }
1998 
1999 struct list_sort_thunk {
2000 	int (*cmp)(void *, struct list_head *, struct list_head *);
2001 	void *priv;
2002 };
2003 
2004 static inline int
2005 linux_le_cmp(void *priv, const void *d1, const void *d2)
2006 {
2007 	struct list_head *le1, *le2;
2008 	struct list_sort_thunk *thunk;
2009 
2010 	thunk = priv;
2011 	le1 = *(__DECONST(struct list_head **, d1));
2012 	le2 = *(__DECONST(struct list_head **, d2));
2013 	return ((thunk->cmp)(thunk->priv, le1, le2));
2014 }
2015 
2016 void
2017 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2018     struct list_head *a, struct list_head *b))
2019 {
2020 	struct list_sort_thunk thunk;
2021 	struct list_head **ar, *le;
2022 	size_t count, i;
2023 
2024 	count = 0;
2025 	list_for_each(le, head)
2026 		count++;
2027 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2028 	i = 0;
2029 	list_for_each(le, head)
2030 		ar[i++] = le;
2031 	thunk.cmp = cmp;
2032 	thunk.priv = priv;
2033 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2034 	INIT_LIST_HEAD(head);
2035 	for (i = 0; i < count; i++)
2036 		list_add_tail(ar[i], head);
2037 	free(ar, M_KMALLOC);
2038 }
2039 
2040 void
2041 linux_irq_handler(void *ent)
2042 {
2043 	struct irq_ent *irqe;
2044 
2045 	linux_set_current(curthread);
2046 
2047 	irqe = ent;
2048 	irqe->handler(irqe->irq, irqe->arg);
2049 }
2050 
2051 #if defined(__i386__) || defined(__amd64__)
2052 int
2053 linux_wbinvd_on_all_cpus(void)
2054 {
2055 
2056 	pmap_invalidate_cache();
2057 	return (0);
2058 }
2059 #endif
2060 
2061 int
2062 linux_on_each_cpu(void callback(void *), void *data)
2063 {
2064 
2065 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2066 	    smp_no_rendezvous_barrier, data);
2067 	return (0);
2068 }
2069 
2070 int
2071 linux_in_atomic(void)
2072 {
2073 
2074 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2075 }
2076 
2077 struct linux_cdev *
2078 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2079 {
2080 	dev_t dev = MKDEV(major, minor);
2081 	struct cdev *cdev;
2082 
2083 	dev_lock();
2084 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2085 		struct linux_cdev *ldev = cdev->si_drv1;
2086 		if (ldev->dev == dev &&
2087 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2088 			break;
2089 		}
2090 	}
2091 	dev_unlock();
2092 
2093 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2094 }
2095 
2096 int
2097 __register_chrdev(unsigned int major, unsigned int baseminor,
2098     unsigned int count, const char *name,
2099     const struct file_operations *fops)
2100 {
2101 	struct linux_cdev *cdev;
2102 	int ret = 0;
2103 	int i;
2104 
2105 	for (i = baseminor; i < baseminor + count; i++) {
2106 		cdev = cdev_alloc();
2107 		cdev_init(cdev, fops);
2108 		kobject_set_name(&cdev->kobj, name);
2109 
2110 		ret = cdev_add(cdev, makedev(major, i), 1);
2111 		if (ret != 0)
2112 			break;
2113 	}
2114 	return (ret);
2115 }
2116 
2117 int
2118 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2119     unsigned int count, const char *name,
2120     const struct file_operations *fops, uid_t uid,
2121     gid_t gid, int mode)
2122 {
2123 	struct linux_cdev *cdev;
2124 	int ret = 0;
2125 	int i;
2126 
2127 	for (i = baseminor; i < baseminor + count; i++) {
2128 		cdev = cdev_alloc();
2129 		cdev_init(cdev, fops);
2130 		kobject_set_name(&cdev->kobj, name);
2131 
2132 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2133 		if (ret != 0)
2134 			break;
2135 	}
2136 	return (ret);
2137 }
2138 
2139 void
2140 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2141     unsigned int count, const char *name)
2142 {
2143 	struct linux_cdev *cdevp;
2144 	int i;
2145 
2146 	for (i = baseminor; i < baseminor + count; i++) {
2147 		cdevp = linux_find_cdev(name, major, i);
2148 		if (cdevp != NULL)
2149 			cdev_del(cdevp);
2150 	}
2151 }
2152 
2153 #if defined(__i386__) || defined(__amd64__)
2154 bool linux_cpu_has_clflush;
2155 #endif
2156 
2157 static void
2158 linux_compat_init(void *arg)
2159 {
2160 	struct sysctl_oid *rootoid;
2161 	int i;
2162 
2163 #if defined(__i386__) || defined(__amd64__)
2164 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2165 #endif
2166 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2167 
2168 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2169 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2170 	kobject_init(&linux_class_root, &linux_class_ktype);
2171 	kobject_set_name(&linux_class_root, "class");
2172 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2173 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2174 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2175 	kobject_set_name(&linux_root_device.kobj, "device");
2176 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2177 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2178 	    "device");
2179 	linux_root_device.bsddev = root_bus;
2180 	linux_class_misc.name = "misc";
2181 	class_register(&linux_class_misc);
2182 	INIT_LIST_HEAD(&pci_drivers);
2183 	INIT_LIST_HEAD(&pci_devices);
2184 	spin_lock_init(&pci_lock);
2185 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2186 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2187 		LIST_INIT(&vmmaphead[i]);
2188 }
2189 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2190 
2191 static void
2192 linux_compat_uninit(void *arg)
2193 {
2194 	linux_kobject_kfree_name(&linux_class_root);
2195 	linux_kobject_kfree_name(&linux_root_device.kobj);
2196 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2197 
2198 	mtx_destroy(&vmmaplock);
2199 	spin_lock_destroy(&pci_lock);
2200 	rw_destroy(&linux_vma_lock);
2201 }
2202 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2203 
2204 /*
2205  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2206  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2207  * used. Assert these types have the same size, else some parts of the
2208  * LinuxKPI may not work like expected:
2209  */
2210 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2211