xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision 3fc36ee018bb836bd1796067cf4ef8683f166ebc)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2016 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/sleepqueue.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/bus.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/filio.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/stdarg.h>
53 
54 #if defined(__i386__) || defined(__amd64__)
55 #include <machine/md_var.h>
56 #endif
57 
58 #include <linux/kobject.h>
59 #include <linux/device.h>
60 #include <linux/slab.h>
61 #include <linux/module.h>
62 #include <linux/moduleparam.h>
63 #include <linux/cdev.h>
64 #include <linux/file.h>
65 #include <linux/sysfs.h>
66 #include <linux/mm.h>
67 #include <linux/io.h>
68 #include <linux/vmalloc.h>
69 #include <linux/netdevice.h>
70 #include <linux/timer.h>
71 #include <linux/workqueue.h>
72 #include <linux/rcupdate.h>
73 #include <linux/interrupt.h>
74 #include <linux/uaccess.h>
75 #include <linux/kernel.h>
76 #include <linux/list.h>
77 #include <linux/compat.h>
78 
79 #include <vm/vm_pager.h>
80 
81 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
82 
83 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
84 
85 #include <linux/rbtree.h>
86 /* Undo Linux compat changes. */
87 #undef RB_ROOT
88 #undef file
89 #undef cdev
90 #define	RB_ROOT(head)	(head)->rbh_root
91 
92 struct kobject linux_class_root;
93 struct device linux_root_device;
94 struct class linux_class_misc;
95 struct list_head pci_drivers;
96 struct list_head pci_devices;
97 struct net init_net;
98 spinlock_t pci_lock;
99 struct sx linux_global_rcu_lock;
100 
101 unsigned long linux_timer_hz_mask;
102 
103 int
104 panic_cmp(struct rb_node *one, struct rb_node *two)
105 {
106 	panic("no cmp");
107 }
108 
109 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
110 
111 int
112 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
113 {
114 	va_list tmp_va;
115 	int len;
116 	char *old;
117 	char *name;
118 	char dummy;
119 
120 	old = kobj->name;
121 
122 	if (old && fmt == NULL)
123 		return (0);
124 
125 	/* compute length of string */
126 	va_copy(tmp_va, args);
127 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
128 	va_end(tmp_va);
129 
130 	/* account for zero termination */
131 	len++;
132 
133 	/* check for error */
134 	if (len < 1)
135 		return (-EINVAL);
136 
137 	/* allocate memory for string */
138 	name = kzalloc(len, GFP_KERNEL);
139 	if (name == NULL)
140 		return (-ENOMEM);
141 	vsnprintf(name, len, fmt, args);
142 	kobj->name = name;
143 
144 	/* free old string */
145 	kfree(old);
146 
147 	/* filter new string */
148 	for (; *name != '\0'; name++)
149 		if (*name == '/')
150 			*name = '!';
151 	return (0);
152 }
153 
154 int
155 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
156 {
157 	va_list args;
158 	int error;
159 
160 	va_start(args, fmt);
161 	error = kobject_set_name_vargs(kobj, fmt, args);
162 	va_end(args);
163 
164 	return (error);
165 }
166 
167 static int
168 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
169 {
170 	const struct kobj_type *t;
171 	int error;
172 
173 	kobj->parent = parent;
174 	error = sysfs_create_dir(kobj);
175 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
176 		struct attribute **attr;
177 		t = kobj->ktype;
178 
179 		for (attr = t->default_attrs; *attr != NULL; attr++) {
180 			error = sysfs_create_file(kobj, *attr);
181 			if (error)
182 				break;
183 		}
184 		if (error)
185 			sysfs_remove_dir(kobj);
186 
187 	}
188 	return (error);
189 }
190 
191 int
192 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
193 {
194 	va_list args;
195 	int error;
196 
197 	va_start(args, fmt);
198 	error = kobject_set_name_vargs(kobj, fmt, args);
199 	va_end(args);
200 	if (error)
201 		return (error);
202 
203 	return kobject_add_complete(kobj, parent);
204 }
205 
206 void
207 linux_kobject_release(struct kref *kref)
208 {
209 	struct kobject *kobj;
210 	char *name;
211 
212 	kobj = container_of(kref, struct kobject, kref);
213 	sysfs_remove_dir(kobj);
214 	name = kobj->name;
215 	if (kobj->ktype && kobj->ktype->release)
216 		kobj->ktype->release(kobj);
217 	kfree(name);
218 }
219 
220 static void
221 linux_kobject_kfree(struct kobject *kobj)
222 {
223 	kfree(kobj);
224 }
225 
226 static void
227 linux_kobject_kfree_name(struct kobject *kobj)
228 {
229 	if (kobj) {
230 		kfree(kobj->name);
231 	}
232 }
233 
234 const struct kobj_type linux_kfree_type = {
235 	.release = linux_kobject_kfree
236 };
237 
238 static void
239 linux_device_release(struct device *dev)
240 {
241 	pr_debug("linux_device_release: %s\n", dev_name(dev));
242 	kfree(dev);
243 }
244 
245 static ssize_t
246 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
247 {
248 	struct class_attribute *dattr;
249 	ssize_t error;
250 
251 	dattr = container_of(attr, struct class_attribute, attr);
252 	error = -EIO;
253 	if (dattr->show)
254 		error = dattr->show(container_of(kobj, struct class, kobj),
255 		    dattr, buf);
256 	return (error);
257 }
258 
259 static ssize_t
260 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
261     size_t count)
262 {
263 	struct class_attribute *dattr;
264 	ssize_t error;
265 
266 	dattr = container_of(attr, struct class_attribute, attr);
267 	error = -EIO;
268 	if (dattr->store)
269 		error = dattr->store(container_of(kobj, struct class, kobj),
270 		    dattr, buf, count);
271 	return (error);
272 }
273 
274 static void
275 linux_class_release(struct kobject *kobj)
276 {
277 	struct class *class;
278 
279 	class = container_of(kobj, struct class, kobj);
280 	if (class->class_release)
281 		class->class_release(class);
282 }
283 
284 static const struct sysfs_ops linux_class_sysfs = {
285 	.show  = linux_class_show,
286 	.store = linux_class_store,
287 };
288 
289 const struct kobj_type linux_class_ktype = {
290 	.release = linux_class_release,
291 	.sysfs_ops = &linux_class_sysfs
292 };
293 
294 static void
295 linux_dev_release(struct kobject *kobj)
296 {
297 	struct device *dev;
298 
299 	dev = container_of(kobj, struct device, kobj);
300 	/* This is the precedence defined by linux. */
301 	if (dev->release)
302 		dev->release(dev);
303 	else if (dev->class && dev->class->dev_release)
304 		dev->class->dev_release(dev);
305 }
306 
307 static ssize_t
308 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
309 {
310 	struct device_attribute *dattr;
311 	ssize_t error;
312 
313 	dattr = container_of(attr, struct device_attribute, attr);
314 	error = -EIO;
315 	if (dattr->show)
316 		error = dattr->show(container_of(kobj, struct device, kobj),
317 		    dattr, buf);
318 	return (error);
319 }
320 
321 static ssize_t
322 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
323     size_t count)
324 {
325 	struct device_attribute *dattr;
326 	ssize_t error;
327 
328 	dattr = container_of(attr, struct device_attribute, attr);
329 	error = -EIO;
330 	if (dattr->store)
331 		error = dattr->store(container_of(kobj, struct device, kobj),
332 		    dattr, buf, count);
333 	return (error);
334 }
335 
336 static const struct sysfs_ops linux_dev_sysfs = {
337 	.show  = linux_dev_show,
338 	.store = linux_dev_store,
339 };
340 
341 const struct kobj_type linux_dev_ktype = {
342 	.release = linux_dev_release,
343 	.sysfs_ops = &linux_dev_sysfs
344 };
345 
346 struct device *
347 device_create(struct class *class, struct device *parent, dev_t devt,
348     void *drvdata, const char *fmt, ...)
349 {
350 	struct device *dev;
351 	va_list args;
352 
353 	dev = kzalloc(sizeof(*dev), M_WAITOK);
354 	dev->parent = parent;
355 	dev->class = class;
356 	dev->devt = devt;
357 	dev->driver_data = drvdata;
358 	dev->release = linux_device_release;
359 	va_start(args, fmt);
360 	kobject_set_name_vargs(&dev->kobj, fmt, args);
361 	va_end(args);
362 	device_register(dev);
363 
364 	return (dev);
365 }
366 
367 int
368 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
369     struct kobject *parent, const char *fmt, ...)
370 {
371 	va_list args;
372 	int error;
373 
374 	kobject_init(kobj, ktype);
375 	kobj->ktype = ktype;
376 	kobj->parent = parent;
377 	kobj->name = NULL;
378 
379 	va_start(args, fmt);
380 	error = kobject_set_name_vargs(kobj, fmt, args);
381 	va_end(args);
382 	if (error)
383 		return (error);
384 	return kobject_add_complete(kobj, parent);
385 }
386 
387 void
388 linux_set_current(struct thread *td, struct task_struct *t)
389 {
390 	memset(t, 0, sizeof(*t));
391 	task_struct_fill(td, t);
392 	task_struct_set(td, t);
393 }
394 
395 void
396 linux_clear_current(struct thread *td)
397 {
398 	task_struct_set(td, NULL);
399 }
400 
401 static void
402 linux_file_dtor(void *cdp)
403 {
404 	struct linux_file *filp;
405 	struct task_struct t;
406 	struct thread *td;
407 
408 	td = curthread;
409 	filp = cdp;
410 	linux_set_current(td, &t);
411 	filp->f_op->release(filp->f_vnode, filp);
412 	linux_clear_current(td);
413 	vdrop(filp->f_vnode);
414 	kfree(filp);
415 }
416 
417 static int
418 linux_dev_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
419 {
420 	struct linux_cdev *ldev;
421 	struct linux_file *filp;
422 	struct task_struct t;
423 	struct file *file;
424 	int error;
425 
426 	file = td->td_fpop;
427 	ldev = dev->si_drv1;
428 	if (ldev == NULL)
429 		return (ENODEV);
430 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
431 	filp->f_dentry = &filp->f_dentry_store;
432 	filp->f_op = ldev->ops;
433 	filp->f_flags = file->f_flag;
434 	vhold(file->f_vnode);
435 	filp->f_vnode = file->f_vnode;
436 	linux_set_current(td, &t);
437 	if (filp->f_op->open) {
438 		error = -filp->f_op->open(file->f_vnode, filp);
439 		if (error) {
440 			kfree(filp);
441 			goto done;
442 		}
443 	}
444 	error = devfs_set_cdevpriv(filp, linux_file_dtor);
445 	if (error) {
446 		filp->f_op->release(file->f_vnode, filp);
447 		kfree(filp);
448 	}
449 done:
450 	linux_clear_current(td);
451 	return (error);
452 }
453 
454 static int
455 linux_dev_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
456 {
457 	struct linux_cdev *ldev;
458 	struct linux_file *filp;
459 	struct file *file;
460 	int error;
461 
462 	file = td->td_fpop;
463 	ldev = dev->si_drv1;
464 	if (ldev == NULL)
465 		return (0);
466 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
467 		return (error);
468 	filp->f_flags = file->f_flag;
469         devfs_clear_cdevpriv();
470 
471 
472 	return (0);
473 }
474 
475 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
476 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
477 
478 static inline int
479 linux_remap_address(void **uaddr, size_t len)
480 {
481 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
482 
483 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
484 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
485 		struct task_struct *pts = current;
486 		if (pts == NULL) {
487 			*uaddr = NULL;
488 			return (1);
489 		}
490 
491 		/* compute data offset */
492 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
493 
494 		/* check that length is within bounds */
495 		if ((len > IOCPARM_MAX) ||
496 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
497 			*uaddr = NULL;
498 			return (1);
499 		}
500 
501 		/* re-add kernel buffer address */
502 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
503 
504 		/* update address location */
505 		*uaddr = (void *)uaddr_val;
506 		return (1);
507 	}
508 	return (0);
509 }
510 
511 int
512 linux_copyin(const void *uaddr, void *kaddr, size_t len)
513 {
514 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
515 		if (uaddr == NULL)
516 			return (-EFAULT);
517 		memcpy(kaddr, uaddr, len);
518 		return (0);
519 	}
520 	return (-copyin(uaddr, kaddr, len));
521 }
522 
523 int
524 linux_copyout(const void *kaddr, void *uaddr, size_t len)
525 {
526 	if (linux_remap_address(&uaddr, len)) {
527 		if (uaddr == NULL)
528 			return (-EFAULT);
529 		memcpy(uaddr, kaddr, len);
530 		return (0);
531 	}
532 	return (-copyout(kaddr, uaddr, len));
533 }
534 
535 static int
536 linux_dev_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
537     struct thread *td)
538 {
539 	struct linux_cdev *ldev;
540 	struct linux_file *filp;
541 	struct task_struct t;
542 	struct file *file;
543 	unsigned size;
544 	int error;
545 
546 	file = td->td_fpop;
547 	ldev = dev->si_drv1;
548 	if (ldev == NULL)
549 		return (0);
550 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
551 		return (error);
552 	filp->f_flags = file->f_flag;
553 	linux_set_current(td, &t);
554 	size = IOCPARM_LEN(cmd);
555 	/* refer to logic in sys_ioctl() */
556 	if (size > 0) {
557 		/*
558 		 * Setup hint for linux_copyin() and linux_copyout().
559 		 *
560 		 * Background: Linux code expects a user-space address
561 		 * while FreeBSD supplies a kernel-space address.
562 		 */
563 		t.bsd_ioctl_data = data;
564 		t.bsd_ioctl_len = size;
565 		data = (void *)LINUX_IOCTL_MIN_PTR;
566 	} else {
567 		/* fetch user-space pointer */
568 		data = *(void **)data;
569 	}
570 	if (filp->f_op->unlocked_ioctl)
571 		error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data);
572 	else
573 		error = ENOTTY;
574 	linux_clear_current(td);
575 
576 	return (error);
577 }
578 
579 static int
580 linux_dev_read(struct cdev *dev, struct uio *uio, int ioflag)
581 {
582 	struct linux_cdev *ldev;
583 	struct linux_file *filp;
584 	struct task_struct t;
585 	struct thread *td;
586 	struct file *file;
587 	ssize_t bytes;
588 	int error;
589 
590 	td = curthread;
591 	file = td->td_fpop;
592 	ldev = dev->si_drv1;
593 	if (ldev == NULL)
594 		return (0);
595 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
596 		return (error);
597 	filp->f_flags = file->f_flag;
598 	/* XXX no support for I/O vectors currently */
599 	if (uio->uio_iovcnt != 1)
600 		return (EOPNOTSUPP);
601 	linux_set_current(td, &t);
602 	if (filp->f_op->read) {
603 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
604 		    uio->uio_iov->iov_len, &uio->uio_offset);
605 		if (bytes >= 0) {
606 			uio->uio_iov->iov_base =
607 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
608 			uio->uio_iov->iov_len -= bytes;
609 			uio->uio_resid -= bytes;
610 		} else
611 			error = -bytes;
612 	} else
613 		error = ENXIO;
614 	linux_clear_current(td);
615 
616 	return (error);
617 }
618 
619 static int
620 linux_dev_write(struct cdev *dev, struct uio *uio, int ioflag)
621 {
622 	struct linux_cdev *ldev;
623 	struct linux_file *filp;
624 	struct task_struct t;
625 	struct thread *td;
626 	struct file *file;
627 	ssize_t bytes;
628 	int error;
629 
630 	td = curthread;
631 	file = td->td_fpop;
632 	ldev = dev->si_drv1;
633 	if (ldev == NULL)
634 		return (0);
635 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
636 		return (error);
637 	filp->f_flags = file->f_flag;
638 	/* XXX no support for I/O vectors currently */
639 	if (uio->uio_iovcnt != 1)
640 		return (EOPNOTSUPP);
641 	linux_set_current(td, &t);
642 	if (filp->f_op->write) {
643 		bytes = filp->f_op->write(filp, uio->uio_iov->iov_base,
644 		    uio->uio_iov->iov_len, &uio->uio_offset);
645 		if (bytes >= 0) {
646 			uio->uio_iov->iov_base =
647 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
648 			uio->uio_iov->iov_len -= bytes;
649 			uio->uio_resid -= bytes;
650 		} else
651 			error = -bytes;
652 	} else
653 		error = ENXIO;
654 	linux_clear_current(td);
655 
656 	return (error);
657 }
658 
659 static int
660 linux_dev_poll(struct cdev *dev, int events, struct thread *td)
661 {
662 	struct linux_cdev *ldev;
663 	struct linux_file *filp;
664 	struct task_struct t;
665 	struct file *file;
666 	int revents;
667 	int error;
668 
669 	file = td->td_fpop;
670 	ldev = dev->si_drv1;
671 	if (ldev == NULL)
672 		return (0);
673 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
674 		return (error);
675 	filp->f_flags = file->f_flag;
676 	linux_set_current(td, &t);
677 	if (filp->f_op->poll)
678 		revents = filp->f_op->poll(filp, NULL) & events;
679 	else
680 		revents = 0;
681 	linux_clear_current(td);
682 
683 	return (revents);
684 }
685 
686 static int
687 linux_dev_mmap_single(struct cdev *dev, vm_ooffset_t *offset,
688     vm_size_t size, struct vm_object **object, int nprot)
689 {
690 	struct linux_cdev *ldev;
691 	struct linux_file *filp;
692 	struct thread *td;
693 	struct task_struct t;
694 	struct file *file;
695 	struct vm_area_struct vma;
696 	int error;
697 
698 	td = curthread;
699 	file = td->td_fpop;
700 	ldev = dev->si_drv1;
701 	if (ldev == NULL)
702 		return (ENODEV);
703 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
704 		return (error);
705 	filp->f_flags = file->f_flag;
706 	linux_set_current(td, &t);
707 	vma.vm_start = 0;
708 	vma.vm_end = size;
709 	vma.vm_pgoff = *offset / PAGE_SIZE;
710 	vma.vm_pfn = 0;
711 	vma.vm_page_prot = VM_MEMATTR_DEFAULT;
712 	if (filp->f_op->mmap) {
713 		error = -filp->f_op->mmap(filp, &vma);
714 		if (error == 0) {
715 			struct sglist *sg;
716 
717 			sg = sglist_alloc(1, M_WAITOK);
718 			sglist_append_phys(sg,
719 			    (vm_paddr_t)vma.vm_pfn << PAGE_SHIFT, vma.vm_len);
720 			*object = vm_pager_allocate(OBJT_SG, sg, vma.vm_len,
721 			    nprot, 0, td->td_ucred);
722 		        if (*object == NULL) {
723 				sglist_free(sg);
724 				error = EINVAL;
725 				goto done;
726 			}
727 			*offset = 0;
728 			if (vma.vm_page_prot != VM_MEMATTR_DEFAULT) {
729 				VM_OBJECT_WLOCK(*object);
730 				vm_object_set_memattr(*object,
731 				    vma.vm_page_prot);
732 				VM_OBJECT_WUNLOCK(*object);
733 			}
734 		}
735 	} else
736 		error = ENODEV;
737 done:
738 	linux_clear_current(td);
739 	return (error);
740 }
741 
742 struct cdevsw linuxcdevsw = {
743 	.d_version = D_VERSION,
744 	.d_flags = D_TRACKCLOSE,
745 	.d_open = linux_dev_open,
746 	.d_close = linux_dev_close,
747 	.d_read = linux_dev_read,
748 	.d_write = linux_dev_write,
749 	.d_ioctl = linux_dev_ioctl,
750 	.d_mmap_single = linux_dev_mmap_single,
751 	.d_poll = linux_dev_poll,
752 };
753 
754 static int
755 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
756     int flags, struct thread *td)
757 {
758 	struct linux_file *filp;
759 	struct task_struct t;
760 	ssize_t bytes;
761 	int error;
762 
763 	error = 0;
764 	filp = (struct linux_file *)file->f_data;
765 	filp->f_flags = file->f_flag;
766 	/* XXX no support for I/O vectors currently */
767 	if (uio->uio_iovcnt != 1)
768 		return (EOPNOTSUPP);
769 	linux_set_current(td, &t);
770 	if (filp->f_op->read) {
771 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
772 		    uio->uio_iov->iov_len, &uio->uio_offset);
773 		if (bytes >= 0) {
774 			uio->uio_iov->iov_base =
775 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
776 			uio->uio_iov->iov_len -= bytes;
777 			uio->uio_resid -= bytes;
778 		} else
779 			error = -bytes;
780 	} else
781 		error = ENXIO;
782 	linux_clear_current(td);
783 
784 	return (error);
785 }
786 
787 static int
788 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
789     struct thread *td)
790 {
791 	struct linux_file *filp;
792 	struct task_struct t;
793 	int revents;
794 
795 	filp = (struct linux_file *)file->f_data;
796 	filp->f_flags = file->f_flag;
797 	linux_set_current(td, &t);
798 	if (filp->f_op->poll)
799 		revents = filp->f_op->poll(filp, NULL) & events;
800 	else
801 		revents = 0;
802 	linux_clear_current(td);
803 
804 	return (revents);
805 }
806 
807 static int
808 linux_file_close(struct file *file, struct thread *td)
809 {
810 	struct linux_file *filp;
811 	struct task_struct t;
812 	int error;
813 
814 	filp = (struct linux_file *)file->f_data;
815 	filp->f_flags = file->f_flag;
816 	linux_set_current(td, &t);
817 	error = -filp->f_op->release(NULL, filp);
818 	linux_clear_current(td);
819 	funsetown(&filp->f_sigio);
820 	kfree(filp);
821 
822 	return (error);
823 }
824 
825 static int
826 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
827     struct thread *td)
828 {
829 	struct linux_file *filp;
830 	struct task_struct t;
831 	int error;
832 
833 	filp = (struct linux_file *)fp->f_data;
834 	filp->f_flags = fp->f_flag;
835 	error = 0;
836 
837 	linux_set_current(td, &t);
838 	switch (cmd) {
839 	case FIONBIO:
840 		break;
841 	case FIOASYNC:
842 		if (filp->f_op->fasync == NULL)
843 			break;
844 		error = filp->f_op->fasync(0, filp, fp->f_flag & FASYNC);
845 		break;
846 	case FIOSETOWN:
847 		error = fsetown(*(int *)data, &filp->f_sigio);
848 		if (error == 0)
849 			error = filp->f_op->fasync(0, filp,
850 			    fp->f_flag & FASYNC);
851 		break;
852 	case FIOGETOWN:
853 		*(int *)data = fgetown(&filp->f_sigio);
854 		break;
855 	default:
856 		error = ENOTTY;
857 		break;
858 	}
859 	linux_clear_current(td);
860 	return (error);
861 }
862 
863 static int
864 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
865     struct thread *td)
866 {
867 
868 	return (EOPNOTSUPP);
869 }
870 
871 static int
872 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
873     struct filedesc *fdp)
874 {
875 
876 	return (0);
877 }
878 
879 struct fileops linuxfileops = {
880 	.fo_read = linux_file_read,
881 	.fo_write = invfo_rdwr,
882 	.fo_truncate = invfo_truncate,
883 	.fo_kqfilter = invfo_kqfilter,
884 	.fo_stat = linux_file_stat,
885 	.fo_fill_kinfo = linux_file_fill_kinfo,
886 	.fo_poll = linux_file_poll,
887 	.fo_close = linux_file_close,
888 	.fo_ioctl = linux_file_ioctl,
889 	.fo_chmod = invfo_chmod,
890 	.fo_chown = invfo_chown,
891 	.fo_sendfile = invfo_sendfile,
892 };
893 
894 /*
895  * Hash of vmmap addresses.  This is infrequently accessed and does not
896  * need to be particularly large.  This is done because we must store the
897  * caller's idea of the map size to properly unmap.
898  */
899 struct vmmap {
900 	LIST_ENTRY(vmmap)	vm_next;
901 	void 			*vm_addr;
902 	unsigned long		vm_size;
903 };
904 
905 struct vmmaphd {
906 	struct vmmap *lh_first;
907 };
908 #define	VMMAP_HASH_SIZE	64
909 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
910 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
911 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
912 static struct mtx vmmaplock;
913 
914 static void
915 vmmap_add(void *addr, unsigned long size)
916 {
917 	struct vmmap *vmmap;
918 
919 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
920 	mtx_lock(&vmmaplock);
921 	vmmap->vm_size = size;
922 	vmmap->vm_addr = addr;
923 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
924 	mtx_unlock(&vmmaplock);
925 }
926 
927 static struct vmmap *
928 vmmap_remove(void *addr)
929 {
930 	struct vmmap *vmmap;
931 
932 	mtx_lock(&vmmaplock);
933 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
934 		if (vmmap->vm_addr == addr)
935 			break;
936 	if (vmmap)
937 		LIST_REMOVE(vmmap, vm_next);
938 	mtx_unlock(&vmmaplock);
939 
940 	return (vmmap);
941 }
942 
943 #if defined(__i386__) || defined(__amd64__)
944 void *
945 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
946 {
947 	void *addr;
948 
949 	addr = pmap_mapdev_attr(phys_addr, size, attr);
950 	if (addr == NULL)
951 		return (NULL);
952 	vmmap_add(addr, size);
953 
954 	return (addr);
955 }
956 #endif
957 
958 void
959 iounmap(void *addr)
960 {
961 	struct vmmap *vmmap;
962 
963 	vmmap = vmmap_remove(addr);
964 	if (vmmap == NULL)
965 		return;
966 #if defined(__i386__) || defined(__amd64__)
967 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
968 #endif
969 	kfree(vmmap);
970 }
971 
972 
973 void *
974 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
975 {
976 	vm_offset_t off;
977 	size_t size;
978 
979 	size = count * PAGE_SIZE;
980 	off = kva_alloc(size);
981 	if (off == 0)
982 		return (NULL);
983 	vmmap_add((void *)off, size);
984 	pmap_qenter(off, pages, count);
985 
986 	return ((void *)off);
987 }
988 
989 void
990 vunmap(void *addr)
991 {
992 	struct vmmap *vmmap;
993 
994 	vmmap = vmmap_remove(addr);
995 	if (vmmap == NULL)
996 		return;
997 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
998 	kva_free((vm_offset_t)addr, vmmap->vm_size);
999 	kfree(vmmap);
1000 }
1001 
1002 char *
1003 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1004 {
1005 	unsigned int len;
1006 	char *p;
1007 	va_list aq;
1008 
1009 	va_copy(aq, ap);
1010 	len = vsnprintf(NULL, 0, fmt, aq);
1011 	va_end(aq);
1012 
1013 	p = kmalloc(len + 1, gfp);
1014 	if (p != NULL)
1015 		vsnprintf(p, len + 1, fmt, ap);
1016 
1017 	return (p);
1018 }
1019 
1020 char *
1021 kasprintf(gfp_t gfp, const char *fmt, ...)
1022 {
1023 	va_list ap;
1024 	char *p;
1025 
1026 	va_start(ap, fmt);
1027 	p = kvasprintf(gfp, fmt, ap);
1028 	va_end(ap);
1029 
1030 	return (p);
1031 }
1032 
1033 static void
1034 linux_timer_callback_wrapper(void *context)
1035 {
1036 	struct timer_list *timer;
1037 
1038 	timer = context;
1039 	timer->function(timer->data);
1040 }
1041 
1042 void
1043 mod_timer(struct timer_list *timer, unsigned long expires)
1044 {
1045 
1046 	timer->expires = expires;
1047 	callout_reset(&timer->timer_callout,
1048 	    linux_timer_jiffies_until(expires),
1049 	    &linux_timer_callback_wrapper, timer);
1050 }
1051 
1052 void
1053 add_timer(struct timer_list *timer)
1054 {
1055 
1056 	callout_reset(&timer->timer_callout,
1057 	    linux_timer_jiffies_until(timer->expires),
1058 	    &linux_timer_callback_wrapper, timer);
1059 }
1060 
1061 static void
1062 linux_timer_init(void *arg)
1063 {
1064 
1065 	/*
1066 	 * Compute an internal HZ value which can divide 2**32 to
1067 	 * avoid timer rounding problems when the tick value wraps
1068 	 * around 2**32:
1069 	 */
1070 	linux_timer_hz_mask = 1;
1071 	while (linux_timer_hz_mask < (unsigned long)hz)
1072 		linux_timer_hz_mask *= 2;
1073 	linux_timer_hz_mask--;
1074 }
1075 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1076 
1077 void
1078 linux_complete_common(struct completion *c, int all)
1079 {
1080 	int wakeup_swapper;
1081 
1082 	sleepq_lock(c);
1083 	c->done++;
1084 	if (all)
1085 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1086 	else
1087 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1088 	sleepq_release(c);
1089 	if (wakeup_swapper)
1090 		kick_proc0();
1091 }
1092 
1093 /*
1094  * Indefinite wait for done != 0 with or without signals.
1095  */
1096 long
1097 linux_wait_for_common(struct completion *c, int flags)
1098 {
1099 	if (SCHEDULER_STOPPED())
1100 		return (0);
1101 
1102 	if (flags != 0)
1103 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1104 	else
1105 		flags = SLEEPQ_SLEEP;
1106 	for (;;) {
1107 		sleepq_lock(c);
1108 		if (c->done)
1109 			break;
1110 		sleepq_add(c, NULL, "completion", flags, 0);
1111 		if (flags & SLEEPQ_INTERRUPTIBLE) {
1112 			if (sleepq_wait_sig(c, 0) != 0)
1113 				return (-ERESTARTSYS);
1114 		} else
1115 			sleepq_wait(c, 0);
1116 	}
1117 	c->done--;
1118 	sleepq_release(c);
1119 
1120 	return (0);
1121 }
1122 
1123 /*
1124  * Time limited wait for done != 0 with or without signals.
1125  */
1126 long
1127 linux_wait_for_timeout_common(struct completion *c, long timeout, int flags)
1128 {
1129 	long end = jiffies + timeout;
1130 
1131 	if (SCHEDULER_STOPPED())
1132 		return (0);
1133 
1134 	if (flags != 0)
1135 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1136 	else
1137 		flags = SLEEPQ_SLEEP;
1138 	for (;;) {
1139 		int ret;
1140 
1141 		sleepq_lock(c);
1142 		if (c->done)
1143 			break;
1144 		sleepq_add(c, NULL, "completion", flags, 0);
1145 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
1146 		if (flags & SLEEPQ_INTERRUPTIBLE)
1147 			ret = sleepq_timedwait_sig(c, 0);
1148 		else
1149 			ret = sleepq_timedwait(c, 0);
1150 		if (ret != 0) {
1151 			/* check for timeout or signal */
1152 			if (ret == EWOULDBLOCK)
1153 				return (0);
1154 			else
1155 				return (-ERESTARTSYS);
1156 		}
1157 	}
1158 	c->done--;
1159 	sleepq_release(c);
1160 
1161 	/* return how many jiffies are left */
1162 	return (linux_timer_jiffies_until(end));
1163 }
1164 
1165 int
1166 linux_try_wait_for_completion(struct completion *c)
1167 {
1168 	int isdone;
1169 
1170 	isdone = 1;
1171 	sleepq_lock(c);
1172 	if (c->done)
1173 		c->done--;
1174 	else
1175 		isdone = 0;
1176 	sleepq_release(c);
1177 	return (isdone);
1178 }
1179 
1180 int
1181 linux_completion_done(struct completion *c)
1182 {
1183 	int isdone;
1184 
1185 	isdone = 1;
1186 	sleepq_lock(c);
1187 	if (c->done == 0)
1188 		isdone = 0;
1189 	sleepq_release(c);
1190 	return (isdone);
1191 }
1192 
1193 void
1194 linux_delayed_work_fn(void *arg)
1195 {
1196 	struct delayed_work *work;
1197 
1198 	work = arg;
1199 	taskqueue_enqueue(work->work.taskqueue, &work->work.work_task);
1200 }
1201 
1202 void
1203 linux_work_fn(void *context, int pending)
1204 {
1205 	struct work_struct *work;
1206 
1207 	work = context;
1208 	work->fn(work);
1209 }
1210 
1211 void
1212 linux_flush_fn(void *context, int pending)
1213 {
1214 }
1215 
1216 struct workqueue_struct *
1217 linux_create_workqueue_common(const char *name, int cpus)
1218 {
1219 	struct workqueue_struct *wq;
1220 
1221 	wq = kmalloc(sizeof(*wq), M_WAITOK);
1222 	wq->taskqueue = taskqueue_create(name, M_WAITOK,
1223 	    taskqueue_thread_enqueue,  &wq->taskqueue);
1224 	atomic_set(&wq->draining, 0);
1225 	taskqueue_start_threads(&wq->taskqueue, cpus, PWAIT, "%s", name);
1226 
1227 	return (wq);
1228 }
1229 
1230 void
1231 destroy_workqueue(struct workqueue_struct *wq)
1232 {
1233 	taskqueue_free(wq->taskqueue);
1234 	kfree(wq);
1235 }
1236 
1237 static void
1238 linux_cdev_release(struct kobject *kobj)
1239 {
1240 	struct linux_cdev *cdev;
1241 	struct kobject *parent;
1242 
1243 	cdev = container_of(kobj, struct linux_cdev, kobj);
1244 	parent = kobj->parent;
1245 	if (cdev->cdev)
1246 		destroy_dev(cdev->cdev);
1247 	kfree(cdev);
1248 	kobject_put(parent);
1249 }
1250 
1251 static void
1252 linux_cdev_static_release(struct kobject *kobj)
1253 {
1254 	struct linux_cdev *cdev;
1255 	struct kobject *parent;
1256 
1257 	cdev = container_of(kobj, struct linux_cdev, kobj);
1258 	parent = kobj->parent;
1259 	if (cdev->cdev)
1260 		destroy_dev(cdev->cdev);
1261 	kobject_put(parent);
1262 }
1263 
1264 const struct kobj_type linux_cdev_ktype = {
1265 	.release = linux_cdev_release,
1266 };
1267 
1268 const struct kobj_type linux_cdev_static_ktype = {
1269 	.release = linux_cdev_static_release,
1270 };
1271 
1272 static void
1273 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
1274 {
1275 	struct notifier_block *nb;
1276 
1277 	nb = arg;
1278 	if (linkstate == LINK_STATE_UP)
1279 		nb->notifier_call(nb, NETDEV_UP, ifp);
1280 	else
1281 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
1282 }
1283 
1284 static void
1285 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
1286 {
1287 	struct notifier_block *nb;
1288 
1289 	nb = arg;
1290 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
1291 }
1292 
1293 static void
1294 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
1295 {
1296 	struct notifier_block *nb;
1297 
1298 	nb = arg;
1299 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
1300 }
1301 
1302 static void
1303 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
1304 {
1305 	struct notifier_block *nb;
1306 
1307 	nb = arg;
1308 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
1309 }
1310 
1311 static void
1312 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
1313 {
1314 	struct notifier_block *nb;
1315 
1316 	nb = arg;
1317 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
1318 }
1319 
1320 int
1321 register_netdevice_notifier(struct notifier_block *nb)
1322 {
1323 
1324 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
1325 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
1326 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
1327 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
1328 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
1329 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
1330 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
1331 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
1332 
1333 	return (0);
1334 }
1335 
1336 int
1337 register_inetaddr_notifier(struct notifier_block *nb)
1338 {
1339 
1340         nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
1341             ifaddr_event, linux_handle_ifaddr_event, nb, 0);
1342         return (0);
1343 }
1344 
1345 int
1346 unregister_netdevice_notifier(struct notifier_block *nb)
1347 {
1348 
1349         EVENTHANDLER_DEREGISTER(ifnet_link_event,
1350 	    nb->tags[NETDEV_UP]);
1351         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
1352 	    nb->tags[NETDEV_REGISTER]);
1353         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
1354 	    nb->tags[NETDEV_UNREGISTER]);
1355         EVENTHANDLER_DEREGISTER(iflladdr_event,
1356 	    nb->tags[NETDEV_CHANGEADDR]);
1357 
1358 	return (0);
1359 }
1360 
1361 int
1362 unregister_inetaddr_notifier(struct notifier_block *nb)
1363 {
1364 
1365         EVENTHANDLER_DEREGISTER(ifaddr_event,
1366             nb->tags[NETDEV_CHANGEIFADDR]);
1367 
1368         return (0);
1369 }
1370 
1371 struct list_sort_thunk {
1372 	int (*cmp)(void *, struct list_head *, struct list_head *);
1373 	void *priv;
1374 };
1375 
1376 static inline int
1377 linux_le_cmp(void *priv, const void *d1, const void *d2)
1378 {
1379 	struct list_head *le1, *le2;
1380 	struct list_sort_thunk *thunk;
1381 
1382 	thunk = priv;
1383 	le1 = *(__DECONST(struct list_head **, d1));
1384 	le2 = *(__DECONST(struct list_head **, d2));
1385 	return ((thunk->cmp)(thunk->priv, le1, le2));
1386 }
1387 
1388 void
1389 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
1390     struct list_head *a, struct list_head *b))
1391 {
1392 	struct list_sort_thunk thunk;
1393 	struct list_head **ar, *le;
1394 	size_t count, i;
1395 
1396 	count = 0;
1397 	list_for_each(le, head)
1398 		count++;
1399 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
1400 	i = 0;
1401 	list_for_each(le, head)
1402 		ar[i++] = le;
1403 	thunk.cmp = cmp;
1404 	thunk.priv = priv;
1405 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
1406 	INIT_LIST_HEAD(head);
1407 	for (i = 0; i < count; i++)
1408 		list_add_tail(ar[i], head);
1409 	free(ar, M_KMALLOC);
1410 }
1411 
1412 void
1413 linux_irq_handler(void *ent)
1414 {
1415 	struct irq_ent *irqe;
1416 
1417 	irqe = ent;
1418 	irqe->handler(irqe->irq, irqe->arg);
1419 }
1420 
1421 #if defined(__i386__) || defined(__amd64__)
1422 bool linux_cpu_has_clflush;
1423 #endif
1424 
1425 static void
1426 linux_compat_init(void *arg)
1427 {
1428 	struct sysctl_oid *rootoid;
1429 	int i;
1430 
1431 #if defined(__i386__) || defined(__amd64__)
1432 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
1433 #endif
1434 	sx_init(&linux_global_rcu_lock, "LinuxGlobalRCU");
1435 
1436 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
1437 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
1438 	kobject_init(&linux_class_root, &linux_class_ktype);
1439 	kobject_set_name(&linux_class_root, "class");
1440 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
1441 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
1442 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
1443 	kobject_set_name(&linux_root_device.kobj, "device");
1444 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
1445 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
1446 	    "device");
1447 	linux_root_device.bsddev = root_bus;
1448 	linux_class_misc.name = "misc";
1449 	class_register(&linux_class_misc);
1450 	INIT_LIST_HEAD(&pci_drivers);
1451 	INIT_LIST_HEAD(&pci_devices);
1452 	spin_lock_init(&pci_lock);
1453 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
1454 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
1455 		LIST_INIT(&vmmaphead[i]);
1456 }
1457 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
1458 
1459 static void
1460 linux_compat_uninit(void *arg)
1461 {
1462 	linux_kobject_kfree_name(&linux_class_root);
1463 	linux_kobject_kfree_name(&linux_root_device.kobj);
1464 	linux_kobject_kfree_name(&linux_class_misc.kobj);
1465 
1466 	synchronize_rcu();
1467 	sx_destroy(&linux_global_rcu_lock);
1468 }
1469 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
1470 
1471 /*
1472  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
1473  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
1474  * used. Assert these types have the same size, else some parts of the
1475  * LinuxKPI may not work like expected:
1476  */
1477 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
1478