xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2018 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_stack.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/proc.h>
41 #include <sys/sglist.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/refcount.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/bus.h>
47 #include <sys/fcntl.h>
48 #include <sys/file.h>
49 #include <sys/filio.h>
50 #include <sys/rwlock.h>
51 #include <sys/mman.h>
52 #include <sys/stack.h>
53 #include <sys/user.h>
54 
55 #include <vm/vm.h>
56 #include <vm/pmap.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_page.h>
59 #include <vm/vm_pager.h>
60 
61 #include <machine/stdarg.h>
62 
63 #if defined(__i386__) || defined(__amd64__)
64 #include <machine/md_var.h>
65 #endif
66 
67 #include <linux/kobject.h>
68 #include <linux/device.h>
69 #include <linux/slab.h>
70 #include <linux/module.h>
71 #include <linux/moduleparam.h>
72 #include <linux/cdev.h>
73 #include <linux/file.h>
74 #include <linux/sysfs.h>
75 #include <linux/mm.h>
76 #include <linux/io.h>
77 #include <linux/vmalloc.h>
78 #include <linux/netdevice.h>
79 #include <linux/timer.h>
80 #include <linux/interrupt.h>
81 #include <linux/uaccess.h>
82 #include <linux/list.h>
83 #include <linux/kthread.h>
84 #include <linux/kernel.h>
85 #include <linux/compat.h>
86 #include <linux/poll.h>
87 #include <linux/smp.h>
88 
89 #if defined(__i386__) || defined(__amd64__)
90 #include <asm/smp.h>
91 #endif
92 
93 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
94 
95 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
96 
97 #include <linux/rbtree.h>
98 /* Undo Linux compat changes. */
99 #undef RB_ROOT
100 #undef file
101 #undef cdev
102 #define	RB_ROOT(head)	(head)->rbh_root
103 
104 static void linux_cdev_deref(struct linux_cdev *ldev);
105 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
106 
107 struct kobject linux_class_root;
108 struct device linux_root_device;
109 struct class linux_class_misc;
110 struct list_head pci_drivers;
111 struct list_head pci_devices;
112 spinlock_t pci_lock;
113 
114 unsigned long linux_timer_hz_mask;
115 
116 int
117 panic_cmp(struct rb_node *one, struct rb_node *two)
118 {
119 	panic("no cmp");
120 }
121 
122 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
123 
124 int
125 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
126 {
127 	va_list tmp_va;
128 	int len;
129 	char *old;
130 	char *name;
131 	char dummy;
132 
133 	old = kobj->name;
134 
135 	if (old && fmt == NULL)
136 		return (0);
137 
138 	/* compute length of string */
139 	va_copy(tmp_va, args);
140 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
141 	va_end(tmp_va);
142 
143 	/* account for zero termination */
144 	len++;
145 
146 	/* check for error */
147 	if (len < 1)
148 		return (-EINVAL);
149 
150 	/* allocate memory for string */
151 	name = kzalloc(len, GFP_KERNEL);
152 	if (name == NULL)
153 		return (-ENOMEM);
154 	vsnprintf(name, len, fmt, args);
155 	kobj->name = name;
156 
157 	/* free old string */
158 	kfree(old);
159 
160 	/* filter new string */
161 	for (; *name != '\0'; name++)
162 		if (*name == '/')
163 			*name = '!';
164 	return (0);
165 }
166 
167 int
168 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
169 {
170 	va_list args;
171 	int error;
172 
173 	va_start(args, fmt);
174 	error = kobject_set_name_vargs(kobj, fmt, args);
175 	va_end(args);
176 
177 	return (error);
178 }
179 
180 static int
181 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
182 {
183 	const struct kobj_type *t;
184 	int error;
185 
186 	kobj->parent = parent;
187 	error = sysfs_create_dir(kobj);
188 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
189 		struct attribute **attr;
190 		t = kobj->ktype;
191 
192 		for (attr = t->default_attrs; *attr != NULL; attr++) {
193 			error = sysfs_create_file(kobj, *attr);
194 			if (error)
195 				break;
196 		}
197 		if (error)
198 			sysfs_remove_dir(kobj);
199 
200 	}
201 	return (error);
202 }
203 
204 int
205 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
206 {
207 	va_list args;
208 	int error;
209 
210 	va_start(args, fmt);
211 	error = kobject_set_name_vargs(kobj, fmt, args);
212 	va_end(args);
213 	if (error)
214 		return (error);
215 
216 	return kobject_add_complete(kobj, parent);
217 }
218 
219 void
220 linux_kobject_release(struct kref *kref)
221 {
222 	struct kobject *kobj;
223 	char *name;
224 
225 	kobj = container_of(kref, struct kobject, kref);
226 	sysfs_remove_dir(kobj);
227 	name = kobj->name;
228 	if (kobj->ktype && kobj->ktype->release)
229 		kobj->ktype->release(kobj);
230 	kfree(name);
231 }
232 
233 static void
234 linux_kobject_kfree(struct kobject *kobj)
235 {
236 	kfree(kobj);
237 }
238 
239 static void
240 linux_kobject_kfree_name(struct kobject *kobj)
241 {
242 	if (kobj) {
243 		kfree(kobj->name);
244 	}
245 }
246 
247 const struct kobj_type linux_kfree_type = {
248 	.release = linux_kobject_kfree
249 };
250 
251 static void
252 linux_device_release(struct device *dev)
253 {
254 	pr_debug("linux_device_release: %s\n", dev_name(dev));
255 	kfree(dev);
256 }
257 
258 static ssize_t
259 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
260 {
261 	struct class_attribute *dattr;
262 	ssize_t error;
263 
264 	dattr = container_of(attr, struct class_attribute, attr);
265 	error = -EIO;
266 	if (dattr->show)
267 		error = dattr->show(container_of(kobj, struct class, kobj),
268 		    dattr, buf);
269 	return (error);
270 }
271 
272 static ssize_t
273 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
274     size_t count)
275 {
276 	struct class_attribute *dattr;
277 	ssize_t error;
278 
279 	dattr = container_of(attr, struct class_attribute, attr);
280 	error = -EIO;
281 	if (dattr->store)
282 		error = dattr->store(container_of(kobj, struct class, kobj),
283 		    dattr, buf, count);
284 	return (error);
285 }
286 
287 static void
288 linux_class_release(struct kobject *kobj)
289 {
290 	struct class *class;
291 
292 	class = container_of(kobj, struct class, kobj);
293 	if (class->class_release)
294 		class->class_release(class);
295 }
296 
297 static const struct sysfs_ops linux_class_sysfs = {
298 	.show  = linux_class_show,
299 	.store = linux_class_store,
300 };
301 
302 const struct kobj_type linux_class_ktype = {
303 	.release = linux_class_release,
304 	.sysfs_ops = &linux_class_sysfs
305 };
306 
307 static void
308 linux_dev_release(struct kobject *kobj)
309 {
310 	struct device *dev;
311 
312 	dev = container_of(kobj, struct device, kobj);
313 	/* This is the precedence defined by linux. */
314 	if (dev->release)
315 		dev->release(dev);
316 	else if (dev->class && dev->class->dev_release)
317 		dev->class->dev_release(dev);
318 }
319 
320 static ssize_t
321 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
322 {
323 	struct device_attribute *dattr;
324 	ssize_t error;
325 
326 	dattr = container_of(attr, struct device_attribute, attr);
327 	error = -EIO;
328 	if (dattr->show)
329 		error = dattr->show(container_of(kobj, struct device, kobj),
330 		    dattr, buf);
331 	return (error);
332 }
333 
334 static ssize_t
335 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
336     size_t count)
337 {
338 	struct device_attribute *dattr;
339 	ssize_t error;
340 
341 	dattr = container_of(attr, struct device_attribute, attr);
342 	error = -EIO;
343 	if (dattr->store)
344 		error = dattr->store(container_of(kobj, struct device, kobj),
345 		    dattr, buf, count);
346 	return (error);
347 }
348 
349 static const struct sysfs_ops linux_dev_sysfs = {
350 	.show  = linux_dev_show,
351 	.store = linux_dev_store,
352 };
353 
354 const struct kobj_type linux_dev_ktype = {
355 	.release = linux_dev_release,
356 	.sysfs_ops = &linux_dev_sysfs
357 };
358 
359 struct device *
360 device_create(struct class *class, struct device *parent, dev_t devt,
361     void *drvdata, const char *fmt, ...)
362 {
363 	struct device *dev;
364 	va_list args;
365 
366 	dev = kzalloc(sizeof(*dev), M_WAITOK);
367 	dev->parent = parent;
368 	dev->class = class;
369 	dev->devt = devt;
370 	dev->driver_data = drvdata;
371 	dev->release = linux_device_release;
372 	va_start(args, fmt);
373 	kobject_set_name_vargs(&dev->kobj, fmt, args);
374 	va_end(args);
375 	device_register(dev);
376 
377 	return (dev);
378 }
379 
380 int
381 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
382     struct kobject *parent, const char *fmt, ...)
383 {
384 	va_list args;
385 	int error;
386 
387 	kobject_init(kobj, ktype);
388 	kobj->ktype = ktype;
389 	kobj->parent = parent;
390 	kobj->name = NULL;
391 
392 	va_start(args, fmt);
393 	error = kobject_set_name_vargs(kobj, fmt, args);
394 	va_end(args);
395 	if (error)
396 		return (error);
397 	return kobject_add_complete(kobj, parent);
398 }
399 
400 static void
401 linux_kq_lock(void *arg)
402 {
403 	spinlock_t *s = arg;
404 
405 	spin_lock(s);
406 }
407 static void
408 linux_kq_unlock(void *arg)
409 {
410 	spinlock_t *s = arg;
411 
412 	spin_unlock(s);
413 }
414 
415 static void
416 linux_kq_lock_owned(void *arg)
417 {
418 #ifdef INVARIANTS
419 	spinlock_t *s = arg;
420 
421 	mtx_assert(&s->m, MA_OWNED);
422 #endif
423 }
424 
425 static void
426 linux_kq_lock_unowned(void *arg)
427 {
428 #ifdef INVARIANTS
429 	spinlock_t *s = arg;
430 
431 	mtx_assert(&s->m, MA_NOTOWNED);
432 #endif
433 }
434 
435 static void
436 linux_file_kqfilter_poll(struct linux_file *, int);
437 
438 struct linux_file *
439 linux_file_alloc(void)
440 {
441 	struct linux_file *filp;
442 
443 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
444 
445 	/* set initial refcount */
446 	filp->f_count = 1;
447 
448 	/* setup fields needed by kqueue support */
449 	spin_lock_init(&filp->f_kqlock);
450 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
451 	    linux_kq_lock, linux_kq_unlock,
452 	    linux_kq_lock_owned, linux_kq_lock_unowned);
453 
454 	return (filp);
455 }
456 
457 void
458 linux_file_free(struct linux_file *filp)
459 {
460 	if (filp->_file == NULL) {
461 		if (filp->f_shmem != NULL)
462 			vm_object_deallocate(filp->f_shmem);
463 		kfree(filp);
464 	} else {
465 		/*
466 		 * The close method of the character device or file
467 		 * will free the linux_file structure:
468 		 */
469 		_fdrop(filp->_file, curthread);
470 	}
471 }
472 
473 static int
474 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
475     vm_page_t *mres)
476 {
477 	struct vm_area_struct *vmap;
478 
479 	vmap = linux_cdev_handle_find(vm_obj->handle);
480 
481 	MPASS(vmap != NULL);
482 	MPASS(vmap->vm_private_data == vm_obj->handle);
483 
484 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
485 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
486 		vm_page_t page;
487 
488 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
489 			/*
490 			 * If the passed in result page is a fake
491 			 * page, update it with the new physical
492 			 * address.
493 			 */
494 			page = *mres;
495 			vm_page_updatefake(page, paddr, vm_obj->memattr);
496 		} else {
497 			/*
498 			 * Replace the passed in "mres" page with our
499 			 * own fake page and free up the all of the
500 			 * original pages.
501 			 */
502 			VM_OBJECT_WUNLOCK(vm_obj);
503 			page = vm_page_getfake(paddr, vm_obj->memattr);
504 			VM_OBJECT_WLOCK(vm_obj);
505 
506 			vm_page_replace_checked(page, vm_obj,
507 			    (*mres)->pindex, *mres);
508 
509 			vm_page_lock(*mres);
510 			vm_page_free(*mres);
511 			vm_page_unlock(*mres);
512 			*mres = page;
513 		}
514 		page->valid = VM_PAGE_BITS_ALL;
515 		return (VM_PAGER_OK);
516 	}
517 	return (VM_PAGER_FAIL);
518 }
519 
520 static int
521 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
522     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
523 {
524 	struct vm_area_struct *vmap;
525 	int err;
526 
527 	linux_set_current(curthread);
528 
529 	/* get VM area structure */
530 	vmap = linux_cdev_handle_find(vm_obj->handle);
531 	MPASS(vmap != NULL);
532 	MPASS(vmap->vm_private_data == vm_obj->handle);
533 
534 	VM_OBJECT_WUNLOCK(vm_obj);
535 
536 	down_write(&vmap->vm_mm->mmap_sem);
537 	if (unlikely(vmap->vm_ops == NULL)) {
538 		err = VM_FAULT_SIGBUS;
539 	} else {
540 		struct vm_fault vmf;
541 
542 		/* fill out VM fault structure */
543 		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
544 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
545 		vmf.pgoff = 0;
546 		vmf.page = NULL;
547 		vmf.vma = vmap;
548 
549 		vmap->vm_pfn_count = 0;
550 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
551 		vmap->vm_obj = vm_obj;
552 
553 		err = vmap->vm_ops->fault(vmap, &vmf);
554 
555 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
556 			kern_yield(PRI_USER);
557 			err = vmap->vm_ops->fault(vmap, &vmf);
558 		}
559 	}
560 
561 	/* translate return code */
562 	switch (err) {
563 	case VM_FAULT_OOM:
564 		err = VM_PAGER_AGAIN;
565 		break;
566 	case VM_FAULT_SIGBUS:
567 		err = VM_PAGER_BAD;
568 		break;
569 	case VM_FAULT_NOPAGE:
570 		/*
571 		 * By contract the fault handler will return having
572 		 * busied all the pages itself. If pidx is already
573 		 * found in the object, it will simply xbusy the first
574 		 * page and return with vm_pfn_count set to 1.
575 		 */
576 		*first = vmap->vm_pfn_first;
577 		*last = *first + vmap->vm_pfn_count - 1;
578 		err = VM_PAGER_OK;
579 		break;
580 	default:
581 		err = VM_PAGER_ERROR;
582 		break;
583 	}
584 	up_write(&vmap->vm_mm->mmap_sem);
585 	VM_OBJECT_WLOCK(vm_obj);
586 	return (err);
587 }
588 
589 static struct rwlock linux_vma_lock;
590 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
591     TAILQ_HEAD_INITIALIZER(linux_vma_head);
592 
593 static void
594 linux_cdev_handle_free(struct vm_area_struct *vmap)
595 {
596 	/* Drop reference on vm_file */
597 	if (vmap->vm_file != NULL)
598 		fput(vmap->vm_file);
599 
600 	/* Drop reference on mm_struct */
601 	mmput(vmap->vm_mm);
602 
603 	kfree(vmap);
604 }
605 
606 static void
607 linux_cdev_handle_remove(struct vm_area_struct *vmap)
608 {
609 	rw_wlock(&linux_vma_lock);
610 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
611 	rw_wunlock(&linux_vma_lock);
612 }
613 
614 static struct vm_area_struct *
615 linux_cdev_handle_find(void *handle)
616 {
617 	struct vm_area_struct *vmap;
618 
619 	rw_rlock(&linux_vma_lock);
620 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
621 		if (vmap->vm_private_data == handle)
622 			break;
623 	}
624 	rw_runlock(&linux_vma_lock);
625 	return (vmap);
626 }
627 
628 static int
629 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
630 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
631 {
632 
633 	MPASS(linux_cdev_handle_find(handle) != NULL);
634 	*color = 0;
635 	return (0);
636 }
637 
638 static void
639 linux_cdev_pager_dtor(void *handle)
640 {
641 	const struct vm_operations_struct *vm_ops;
642 	struct vm_area_struct *vmap;
643 
644 	vmap = linux_cdev_handle_find(handle);
645 	MPASS(vmap != NULL);
646 
647 	/*
648 	 * Remove handle before calling close operation to prevent
649 	 * other threads from reusing the handle pointer.
650 	 */
651 	linux_cdev_handle_remove(vmap);
652 
653 	down_write(&vmap->vm_mm->mmap_sem);
654 	vm_ops = vmap->vm_ops;
655 	if (likely(vm_ops != NULL))
656 		vm_ops->close(vmap);
657 	up_write(&vmap->vm_mm->mmap_sem);
658 
659 	linux_cdev_handle_free(vmap);
660 }
661 
662 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
663   {
664 	/* OBJT_MGTDEVICE */
665 	.cdev_pg_populate	= linux_cdev_pager_populate,
666 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
667 	.cdev_pg_dtor	= linux_cdev_pager_dtor
668   },
669   {
670 	/* OBJT_DEVICE */
671 	.cdev_pg_fault	= linux_cdev_pager_fault,
672 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
673 	.cdev_pg_dtor	= linux_cdev_pager_dtor
674   },
675 };
676 
677 int
678 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
679     unsigned long size)
680 {
681 	vm_object_t obj;
682 	vm_page_t m;
683 
684 	obj = vma->vm_obj;
685 	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
686 		return (-ENOTSUP);
687 	VM_OBJECT_RLOCK(obj);
688 	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
689 	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
690 	    m = TAILQ_NEXT(m, listq))
691 		pmap_remove_all(m);
692 	VM_OBJECT_RUNLOCK(obj);
693 	return (0);
694 }
695 
696 static struct file_operations dummy_ldev_ops = {
697 	/* XXXKIB */
698 };
699 
700 static struct linux_cdev dummy_ldev = {
701 	.ops = &dummy_ldev_ops,
702 };
703 
704 #define	LDEV_SI_DTR	0x0001
705 #define	LDEV_SI_REF	0x0002
706 
707 static void
708 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
709     struct linux_cdev **dev)
710 {
711 	struct linux_cdev *ldev;
712 	u_int siref;
713 
714 	ldev = filp->f_cdev;
715 	*fop = filp->f_op;
716 	if (ldev != NULL) {
717 		for (siref = ldev->siref;;) {
718 			if ((siref & LDEV_SI_DTR) != 0) {
719 				ldev = &dummy_ldev;
720 				siref = ldev->siref;
721 				*fop = ldev->ops;
722 				MPASS((ldev->siref & LDEV_SI_DTR) == 0);
723 			} else if (atomic_fcmpset_int(&ldev->siref, &siref,
724 			    siref + LDEV_SI_REF)) {
725 				break;
726 			}
727 		}
728 	}
729 	*dev = ldev;
730 }
731 
732 static void
733 linux_drop_fop(struct linux_cdev *ldev)
734 {
735 
736 	if (ldev == NULL)
737 		return;
738 	MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
739 	atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
740 }
741 
742 #define	OPW(fp,td,code) ({			\
743 	struct file *__fpop;			\
744 	__typeof(code) __retval;		\
745 						\
746 	__fpop = (td)->td_fpop;			\
747 	(td)->td_fpop = (fp);			\
748 	__retval = (code);			\
749 	(td)->td_fpop = __fpop;			\
750 	__retval;				\
751 })
752 
753 static int
754 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
755     struct file *file)
756 {
757 	struct linux_cdev *ldev;
758 	struct linux_file *filp;
759 	const struct file_operations *fop;
760 	int error;
761 
762 	ldev = dev->si_drv1;
763 
764 	filp = linux_file_alloc();
765 	filp->f_dentry = &filp->f_dentry_store;
766 	filp->f_op = ldev->ops;
767 	filp->f_mode = file->f_flag;
768 	filp->f_flags = file->f_flag;
769 	filp->f_vnode = file->f_vnode;
770 	filp->_file = file;
771 	refcount_acquire(&ldev->refs);
772 	filp->f_cdev = ldev;
773 
774 	linux_set_current(td);
775 	linux_get_fop(filp, &fop, &ldev);
776 
777 	if (fop->open != NULL) {
778 		error = -fop->open(file->f_vnode, filp);
779 		if (error != 0) {
780 			linux_drop_fop(ldev);
781 			linux_cdev_deref(filp->f_cdev);
782 			kfree(filp);
783 			return (error);
784 		}
785 	}
786 
787 	/* hold on to the vnode - used for fstat() */
788 	vhold(filp->f_vnode);
789 
790 	/* release the file from devfs */
791 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
792 	linux_drop_fop(ldev);
793 	return (ENXIO);
794 }
795 
796 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
797 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
798 
799 static inline int
800 linux_remap_address(void **uaddr, size_t len)
801 {
802 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
803 
804 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
805 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
806 		struct task_struct *pts = current;
807 		if (pts == NULL) {
808 			*uaddr = NULL;
809 			return (1);
810 		}
811 
812 		/* compute data offset */
813 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
814 
815 		/* check that length is within bounds */
816 		if ((len > IOCPARM_MAX) ||
817 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
818 			*uaddr = NULL;
819 			return (1);
820 		}
821 
822 		/* re-add kernel buffer address */
823 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
824 
825 		/* update address location */
826 		*uaddr = (void *)uaddr_val;
827 		return (1);
828 	}
829 	return (0);
830 }
831 
832 int
833 linux_copyin(const void *uaddr, void *kaddr, size_t len)
834 {
835 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
836 		if (uaddr == NULL)
837 			return (-EFAULT);
838 		memcpy(kaddr, uaddr, len);
839 		return (0);
840 	}
841 	return (-copyin(uaddr, kaddr, len));
842 }
843 
844 int
845 linux_copyout(const void *kaddr, void *uaddr, size_t len)
846 {
847 	if (linux_remap_address(&uaddr, len)) {
848 		if (uaddr == NULL)
849 			return (-EFAULT);
850 		memcpy(uaddr, kaddr, len);
851 		return (0);
852 	}
853 	return (-copyout(kaddr, uaddr, len));
854 }
855 
856 size_t
857 linux_clear_user(void *_uaddr, size_t _len)
858 {
859 	uint8_t *uaddr = _uaddr;
860 	size_t len = _len;
861 
862 	/* make sure uaddr is aligned before going into the fast loop */
863 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
864 		if (subyte(uaddr, 0))
865 			return (_len);
866 		uaddr++;
867 		len--;
868 	}
869 
870 	/* zero 8 bytes at a time */
871 	while (len > 7) {
872 #ifdef __LP64__
873 		if (suword64(uaddr, 0))
874 			return (_len);
875 #else
876 		if (suword32(uaddr, 0))
877 			return (_len);
878 		if (suword32(uaddr + 4, 0))
879 			return (_len);
880 #endif
881 		uaddr += 8;
882 		len -= 8;
883 	}
884 
885 	/* zero fill end, if any */
886 	while (len > 0) {
887 		if (subyte(uaddr, 0))
888 			return (_len);
889 		uaddr++;
890 		len--;
891 	}
892 	return (0);
893 }
894 
895 int
896 linux_access_ok(int rw, const void *uaddr, size_t len)
897 {
898 	uintptr_t saddr;
899 	uintptr_t eaddr;
900 
901 	/* get start and end address */
902 	saddr = (uintptr_t)uaddr;
903 	eaddr = (uintptr_t)uaddr + len;
904 
905 	/* verify addresses are valid for userspace */
906 	return ((saddr == eaddr) ||
907 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
908 }
909 
910 /*
911  * This function should return either EINTR or ERESTART depending on
912  * the signal type sent to this thread:
913  */
914 static int
915 linux_get_error(struct task_struct *task, int error)
916 {
917 	/* check for signal type interrupt code */
918 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
919 		error = -linux_schedule_get_interrupt_value(task);
920 		if (error == 0)
921 			error = EINTR;
922 	}
923 	return (error);
924 }
925 
926 static int
927 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
928     const struct file_operations *fop, u_long cmd, caddr_t data,
929     struct thread *td)
930 {
931 	struct task_struct *task = current;
932 	unsigned size;
933 	int error;
934 
935 	size = IOCPARM_LEN(cmd);
936 	/* refer to logic in sys_ioctl() */
937 	if (size > 0) {
938 		/*
939 		 * Setup hint for linux_copyin() and linux_copyout().
940 		 *
941 		 * Background: Linux code expects a user-space address
942 		 * while FreeBSD supplies a kernel-space address.
943 		 */
944 		task->bsd_ioctl_data = data;
945 		task->bsd_ioctl_len = size;
946 		data = (void *)LINUX_IOCTL_MIN_PTR;
947 	} else {
948 		/* fetch user-space pointer */
949 		data = *(void **)data;
950 	}
951 #if defined(__amd64__)
952 	if (td->td_proc->p_elf_machine == EM_386) {
953 		/* try the compat IOCTL handler first */
954 		if (fop->compat_ioctl != NULL) {
955 			error = -OPW(fp, td, fop->compat_ioctl(filp,
956 			    cmd, (u_long)data));
957 		} else {
958 			error = ENOTTY;
959 		}
960 
961 		/* fallback to the regular IOCTL handler, if any */
962 		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
963 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
964 			    cmd, (u_long)data));
965 		}
966 	} else
967 #endif
968 	{
969 		if (fop->unlocked_ioctl != NULL) {
970 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
971 			    cmd, (u_long)data));
972 		} else {
973 			error = ENOTTY;
974 		}
975 	}
976 	if (size > 0) {
977 		task->bsd_ioctl_data = NULL;
978 		task->bsd_ioctl_len = 0;
979 	}
980 
981 	if (error == EWOULDBLOCK) {
982 		/* update kqfilter status, if any */
983 		linux_file_kqfilter_poll(filp,
984 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
985 	} else {
986 		error = linux_get_error(task, error);
987 	}
988 	return (error);
989 }
990 
991 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
992 
993 /*
994  * This function atomically updates the poll wakeup state and returns
995  * the previous state at the time of update.
996  */
997 static uint8_t
998 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
999 {
1000 	int c, old;
1001 
1002 	c = v->counter;
1003 
1004 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1005 		c = old;
1006 
1007 	return (c);
1008 }
1009 
1010 
1011 static int
1012 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1013 {
1014 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1015 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1016 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1017 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1018 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1019 	};
1020 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1021 
1022 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1023 	case LINUX_FWQ_STATE_QUEUED:
1024 		linux_poll_wakeup(filp);
1025 		return (1);
1026 	default:
1027 		return (0);
1028 	}
1029 }
1030 
1031 void
1032 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1033 {
1034 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1035 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1036 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1037 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1038 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1039 	};
1040 
1041 	/* check if we are called inside the select system call */
1042 	if (p == LINUX_POLL_TABLE_NORMAL)
1043 		selrecord(curthread, &filp->f_selinfo);
1044 
1045 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1046 	case LINUX_FWQ_STATE_INIT:
1047 		/* NOTE: file handles can only belong to one wait-queue */
1048 		filp->f_wait_queue.wqh = wqh;
1049 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1050 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1051 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1052 		break;
1053 	default:
1054 		break;
1055 	}
1056 }
1057 
1058 static void
1059 linux_poll_wait_dequeue(struct linux_file *filp)
1060 {
1061 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1062 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1063 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1064 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1065 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1066 	};
1067 
1068 	seldrain(&filp->f_selinfo);
1069 
1070 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1071 	case LINUX_FWQ_STATE_NOT_READY:
1072 	case LINUX_FWQ_STATE_QUEUED:
1073 	case LINUX_FWQ_STATE_READY:
1074 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1075 		break;
1076 	default:
1077 		break;
1078 	}
1079 }
1080 
1081 void
1082 linux_poll_wakeup(struct linux_file *filp)
1083 {
1084 	/* this function should be NULL-safe */
1085 	if (filp == NULL)
1086 		return;
1087 
1088 	selwakeup(&filp->f_selinfo);
1089 
1090 	spin_lock(&filp->f_kqlock);
1091 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1092 	    LINUX_KQ_FLAG_NEED_WRITE;
1093 
1094 	/* make sure the "knote" gets woken up */
1095 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1096 	spin_unlock(&filp->f_kqlock);
1097 }
1098 
1099 static void
1100 linux_file_kqfilter_detach(struct knote *kn)
1101 {
1102 	struct linux_file *filp = kn->kn_hook;
1103 
1104 	spin_lock(&filp->f_kqlock);
1105 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1106 	spin_unlock(&filp->f_kqlock);
1107 }
1108 
1109 static int
1110 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1111 {
1112 	struct linux_file *filp = kn->kn_hook;
1113 
1114 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1115 
1116 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1117 }
1118 
1119 static int
1120 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1121 {
1122 	struct linux_file *filp = kn->kn_hook;
1123 
1124 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1125 
1126 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1127 }
1128 
1129 static struct filterops linux_dev_kqfiltops_read = {
1130 	.f_isfd = 1,
1131 	.f_detach = linux_file_kqfilter_detach,
1132 	.f_event = linux_file_kqfilter_read_event,
1133 };
1134 
1135 static struct filterops linux_dev_kqfiltops_write = {
1136 	.f_isfd = 1,
1137 	.f_detach = linux_file_kqfilter_detach,
1138 	.f_event = linux_file_kqfilter_write_event,
1139 };
1140 
1141 static void
1142 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1143 {
1144 	struct thread *td;
1145 	const struct file_operations *fop;
1146 	struct linux_cdev *ldev;
1147 	int temp;
1148 
1149 	if ((filp->f_kqflags & kqflags) == 0)
1150 		return;
1151 
1152 	td = curthread;
1153 
1154 	linux_get_fop(filp, &fop, &ldev);
1155 	/* get the latest polling state */
1156 	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1157 	linux_drop_fop(ldev);
1158 
1159 	spin_lock(&filp->f_kqlock);
1160 	/* clear kqflags */
1161 	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1162 	    LINUX_KQ_FLAG_NEED_WRITE);
1163 	/* update kqflags */
1164 	if ((temp & (POLLIN | POLLOUT)) != 0) {
1165 		if ((temp & POLLIN) != 0)
1166 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1167 		if ((temp & POLLOUT) != 0)
1168 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1169 
1170 		/* make sure the "knote" gets woken up */
1171 		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1172 	}
1173 	spin_unlock(&filp->f_kqlock);
1174 }
1175 
1176 static int
1177 linux_file_kqfilter(struct file *file, struct knote *kn)
1178 {
1179 	struct linux_file *filp;
1180 	struct thread *td;
1181 	int error;
1182 
1183 	td = curthread;
1184 	filp = (struct linux_file *)file->f_data;
1185 	filp->f_flags = file->f_flag;
1186 	if (filp->f_op->poll == NULL)
1187 		return (EINVAL);
1188 
1189 	spin_lock(&filp->f_kqlock);
1190 	switch (kn->kn_filter) {
1191 	case EVFILT_READ:
1192 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1193 		kn->kn_fop = &linux_dev_kqfiltops_read;
1194 		kn->kn_hook = filp;
1195 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1196 		error = 0;
1197 		break;
1198 	case EVFILT_WRITE:
1199 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1200 		kn->kn_fop = &linux_dev_kqfiltops_write;
1201 		kn->kn_hook = filp;
1202 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1203 		error = 0;
1204 		break;
1205 	default:
1206 		error = EINVAL;
1207 		break;
1208 	}
1209 	spin_unlock(&filp->f_kqlock);
1210 
1211 	if (error == 0) {
1212 		linux_set_current(td);
1213 
1214 		/* update kqfilter status, if any */
1215 		linux_file_kqfilter_poll(filp,
1216 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1217 	}
1218 	return (error);
1219 }
1220 
1221 static int
1222 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1223     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1224     int nprot, struct thread *td)
1225 {
1226 	struct task_struct *task;
1227 	struct vm_area_struct *vmap;
1228 	struct mm_struct *mm;
1229 	struct linux_file *filp;
1230 	vm_memattr_t attr;
1231 	int error;
1232 
1233 	filp = (struct linux_file *)fp->f_data;
1234 	filp->f_flags = fp->f_flag;
1235 
1236 	if (fop->mmap == NULL)
1237 		return (EOPNOTSUPP);
1238 
1239 	linux_set_current(td);
1240 
1241 	/*
1242 	 * The same VM object might be shared by multiple processes
1243 	 * and the mm_struct is usually freed when a process exits.
1244 	 *
1245 	 * The atomic reference below makes sure the mm_struct is
1246 	 * available as long as the vmap is in the linux_vma_head.
1247 	 */
1248 	task = current;
1249 	mm = task->mm;
1250 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1251 		return (EINVAL);
1252 
1253 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1254 	vmap->vm_start = 0;
1255 	vmap->vm_end = size;
1256 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1257 	vmap->vm_pfn = 0;
1258 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1259 	vmap->vm_ops = NULL;
1260 	vmap->vm_file = get_file(filp);
1261 	vmap->vm_mm = mm;
1262 
1263 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1264 		error = linux_get_error(task, EINTR);
1265 	} else {
1266 		error = -OPW(fp, td, fop->mmap(filp, vmap));
1267 		error = linux_get_error(task, error);
1268 		up_write(&vmap->vm_mm->mmap_sem);
1269 	}
1270 
1271 	if (error != 0) {
1272 		linux_cdev_handle_free(vmap);
1273 		return (error);
1274 	}
1275 
1276 	attr = pgprot2cachemode(vmap->vm_page_prot);
1277 
1278 	if (vmap->vm_ops != NULL) {
1279 		struct vm_area_struct *ptr;
1280 		void *vm_private_data;
1281 		bool vm_no_fault;
1282 
1283 		if (vmap->vm_ops->open == NULL ||
1284 		    vmap->vm_ops->close == NULL ||
1285 		    vmap->vm_private_data == NULL) {
1286 			/* free allocated VM area struct */
1287 			linux_cdev_handle_free(vmap);
1288 			return (EINVAL);
1289 		}
1290 
1291 		vm_private_data = vmap->vm_private_data;
1292 
1293 		rw_wlock(&linux_vma_lock);
1294 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1295 			if (ptr->vm_private_data == vm_private_data)
1296 				break;
1297 		}
1298 		/* check if there is an existing VM area struct */
1299 		if (ptr != NULL) {
1300 			/* check if the VM area structure is invalid */
1301 			if (ptr->vm_ops == NULL ||
1302 			    ptr->vm_ops->open == NULL ||
1303 			    ptr->vm_ops->close == NULL) {
1304 				error = ESTALE;
1305 				vm_no_fault = 1;
1306 			} else {
1307 				error = EEXIST;
1308 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1309 			}
1310 		} else {
1311 			/* insert VM area structure into list */
1312 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1313 			error = 0;
1314 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1315 		}
1316 		rw_wunlock(&linux_vma_lock);
1317 
1318 		if (error != 0) {
1319 			/* free allocated VM area struct */
1320 			linux_cdev_handle_free(vmap);
1321 			/* check for stale VM area struct */
1322 			if (error != EEXIST)
1323 				return (error);
1324 		}
1325 
1326 		/* check if there is no fault handler */
1327 		if (vm_no_fault) {
1328 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1329 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1330 			    td->td_ucred);
1331 		} else {
1332 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1333 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1334 			    td->td_ucred);
1335 		}
1336 
1337 		/* check if allocating the VM object failed */
1338 		if (*object == NULL) {
1339 			if (error == 0) {
1340 				/* remove VM area struct from list */
1341 				linux_cdev_handle_remove(vmap);
1342 				/* free allocated VM area struct */
1343 				linux_cdev_handle_free(vmap);
1344 			}
1345 			return (EINVAL);
1346 		}
1347 	} else {
1348 		struct sglist *sg;
1349 
1350 		sg = sglist_alloc(1, M_WAITOK);
1351 		sglist_append_phys(sg,
1352 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1353 
1354 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1355 		    nprot, 0, td->td_ucred);
1356 
1357 		linux_cdev_handle_free(vmap);
1358 
1359 		if (*object == NULL) {
1360 			sglist_free(sg);
1361 			return (EINVAL);
1362 		}
1363 	}
1364 
1365 	if (attr != VM_MEMATTR_DEFAULT) {
1366 		VM_OBJECT_WLOCK(*object);
1367 		vm_object_set_memattr(*object, attr);
1368 		VM_OBJECT_WUNLOCK(*object);
1369 	}
1370 	*offset = 0;
1371 	return (0);
1372 }
1373 
1374 struct cdevsw linuxcdevsw = {
1375 	.d_version = D_VERSION,
1376 	.d_fdopen = linux_dev_fdopen,
1377 	.d_name = "lkpidev",
1378 };
1379 
1380 static int
1381 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1382     int flags, struct thread *td)
1383 {
1384 	struct linux_file *filp;
1385 	const struct file_operations *fop;
1386 	struct linux_cdev *ldev;
1387 	ssize_t bytes;
1388 	int error;
1389 
1390 	error = 0;
1391 	filp = (struct linux_file *)file->f_data;
1392 	filp->f_flags = file->f_flag;
1393 	/* XXX no support for I/O vectors currently */
1394 	if (uio->uio_iovcnt != 1)
1395 		return (EOPNOTSUPP);
1396 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1397 		return (EINVAL);
1398 	linux_set_current(td);
1399 	linux_get_fop(filp, &fop, &ldev);
1400 	if (fop->read != NULL) {
1401 		bytes = OPW(file, td, fop->read(filp,
1402 		    uio->uio_iov->iov_base,
1403 		    uio->uio_iov->iov_len, &uio->uio_offset));
1404 		if (bytes >= 0) {
1405 			uio->uio_iov->iov_base =
1406 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1407 			uio->uio_iov->iov_len -= bytes;
1408 			uio->uio_resid -= bytes;
1409 		} else {
1410 			error = linux_get_error(current, -bytes);
1411 		}
1412 	} else
1413 		error = ENXIO;
1414 
1415 	/* update kqfilter status, if any */
1416 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1417 	linux_drop_fop(ldev);
1418 
1419 	return (error);
1420 }
1421 
1422 static int
1423 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1424     int flags, struct thread *td)
1425 {
1426 	struct linux_file *filp;
1427 	const struct file_operations *fop;
1428 	struct linux_cdev *ldev;
1429 	ssize_t bytes;
1430 	int error;
1431 
1432 	filp = (struct linux_file *)file->f_data;
1433 	filp->f_flags = file->f_flag;
1434 	/* XXX no support for I/O vectors currently */
1435 	if (uio->uio_iovcnt != 1)
1436 		return (EOPNOTSUPP);
1437 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1438 		return (EINVAL);
1439 	linux_set_current(td);
1440 	linux_get_fop(filp, &fop, &ldev);
1441 	if (fop->write != NULL) {
1442 		bytes = OPW(file, td, fop->write(filp,
1443 		    uio->uio_iov->iov_base,
1444 		    uio->uio_iov->iov_len, &uio->uio_offset));
1445 		if (bytes >= 0) {
1446 			uio->uio_iov->iov_base =
1447 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1448 			uio->uio_iov->iov_len -= bytes;
1449 			uio->uio_resid -= bytes;
1450 			error = 0;
1451 		} else {
1452 			error = linux_get_error(current, -bytes);
1453 		}
1454 	} else
1455 		error = ENXIO;
1456 
1457 	/* update kqfilter status, if any */
1458 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1459 
1460 	linux_drop_fop(ldev);
1461 
1462 	return (error);
1463 }
1464 
1465 static int
1466 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1467     struct thread *td)
1468 {
1469 	struct linux_file *filp;
1470 	const struct file_operations *fop;
1471 	struct linux_cdev *ldev;
1472 	int revents;
1473 
1474 	filp = (struct linux_file *)file->f_data;
1475 	filp->f_flags = file->f_flag;
1476 	linux_set_current(td);
1477 	linux_get_fop(filp, &fop, &ldev);
1478 	if (fop->poll != NULL) {
1479 		revents = OPW(file, td, fop->poll(filp,
1480 		    LINUX_POLL_TABLE_NORMAL)) & events;
1481 	} else {
1482 		revents = 0;
1483 	}
1484 	linux_drop_fop(ldev);
1485 	return (revents);
1486 }
1487 
1488 static int
1489 linux_file_close(struct file *file, struct thread *td)
1490 {
1491 	struct linux_file *filp;
1492 	const struct file_operations *fop;
1493 	struct linux_cdev *ldev;
1494 	int error;
1495 
1496 	filp = (struct linux_file *)file->f_data;
1497 
1498 	KASSERT(file_count(filp) == 0,
1499 	    ("File refcount(%d) is not zero", file_count(filp)));
1500 
1501 	error = 0;
1502 	filp->f_flags = file->f_flag;
1503 	linux_set_current(td);
1504 	linux_poll_wait_dequeue(filp);
1505 	linux_get_fop(filp, &fop, &ldev);
1506 	if (fop->release != NULL)
1507 		error = -OPW(file, td, fop->release(filp->f_vnode, filp));
1508 	funsetown(&filp->f_sigio);
1509 	if (filp->f_vnode != NULL)
1510 		vdrop(filp->f_vnode);
1511 	linux_drop_fop(ldev);
1512 	if (filp->f_cdev != NULL)
1513 		linux_cdev_deref(filp->f_cdev);
1514 	kfree(filp);
1515 
1516 	return (error);
1517 }
1518 
1519 static int
1520 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1521     struct thread *td)
1522 {
1523 	struct linux_file *filp;
1524 	const struct file_operations *fop;
1525 	struct linux_cdev *ldev;
1526 	int error;
1527 
1528 	error = 0;
1529 	filp = (struct linux_file *)fp->f_data;
1530 	filp->f_flags = fp->f_flag;
1531 	linux_get_fop(filp, &fop, &ldev);
1532 
1533 	linux_set_current(td);
1534 	switch (cmd) {
1535 	case FIONBIO:
1536 		break;
1537 	case FIOASYNC:
1538 		if (fop->fasync == NULL)
1539 			break;
1540 		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1541 		break;
1542 	case FIOSETOWN:
1543 		error = fsetown(*(int *)data, &filp->f_sigio);
1544 		if (error == 0) {
1545 			if (fop->fasync == NULL)
1546 				break;
1547 			error = -OPW(fp, td, fop->fasync(0, filp,
1548 			    fp->f_flag & FASYNC));
1549 		}
1550 		break;
1551 	case FIOGETOWN:
1552 		*(int *)data = fgetown(&filp->f_sigio);
1553 		break;
1554 	default:
1555 		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1556 		break;
1557 	}
1558 	linux_drop_fop(ldev);
1559 	return (error);
1560 }
1561 
1562 static int
1563 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1564     vm_prot_t *maxprotp, int *flagsp, struct file *fp,
1565     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1566 {
1567 	/*
1568 	 * Character devices do not provide private mappings
1569 	 * of any kind:
1570 	 */
1571 	if ((*maxprotp & VM_PROT_WRITE) == 0 &&
1572 	    (prot & VM_PROT_WRITE) != 0)
1573 		return (EACCES);
1574 	if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0)
1575 		return (EINVAL);
1576 
1577 	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1578 	    (int)prot, td));
1579 }
1580 
1581 static int
1582 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1583     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1584     struct thread *td)
1585 {
1586 	struct linux_file *filp;
1587 	const struct file_operations *fop;
1588 	struct linux_cdev *ldev;
1589 	struct mount *mp;
1590 	struct vnode *vp;
1591 	vm_object_t object;
1592 	vm_prot_t maxprot;
1593 	int error;
1594 
1595 	filp = (struct linux_file *)fp->f_data;
1596 
1597 	vp = filp->f_vnode;
1598 	if (vp == NULL)
1599 		return (EOPNOTSUPP);
1600 
1601 	/*
1602 	 * Ensure that file and memory protections are
1603 	 * compatible.
1604 	 */
1605 	mp = vp->v_mount;
1606 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1607 		maxprot = VM_PROT_NONE;
1608 		if ((prot & VM_PROT_EXECUTE) != 0)
1609 			return (EACCES);
1610 	} else
1611 		maxprot = VM_PROT_EXECUTE;
1612 	if ((fp->f_flag & FREAD) != 0)
1613 		maxprot |= VM_PROT_READ;
1614 	else if ((prot & VM_PROT_READ) != 0)
1615 		return (EACCES);
1616 
1617 	/*
1618 	 * If we are sharing potential changes via MAP_SHARED and we
1619 	 * are trying to get write permission although we opened it
1620 	 * without asking for it, bail out.
1621 	 *
1622 	 * Note that most character devices always share mappings.
1623 	 *
1624 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1625 	 * requests rather than doing it here.
1626 	 */
1627 	if ((flags & MAP_SHARED) != 0) {
1628 		if ((fp->f_flag & FWRITE) != 0)
1629 			maxprot |= VM_PROT_WRITE;
1630 		else if ((prot & VM_PROT_WRITE) != 0)
1631 			return (EACCES);
1632 	}
1633 	maxprot &= cap_maxprot;
1634 
1635 	linux_get_fop(filp, &fop, &ldev);
1636 	error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp,
1637 	    &foff, fop, &object);
1638 	if (error != 0)
1639 		goto out;
1640 
1641 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1642 	    foff, FALSE, td);
1643 	if (error != 0)
1644 		vm_object_deallocate(object);
1645 out:
1646 	linux_drop_fop(ldev);
1647 	return (error);
1648 }
1649 
1650 static int
1651 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1652     struct thread *td)
1653 {
1654 	struct linux_file *filp;
1655 	struct vnode *vp;
1656 	int error;
1657 
1658 	filp = (struct linux_file *)fp->f_data;
1659 	if (filp->f_vnode == NULL)
1660 		return (EOPNOTSUPP);
1661 
1662 	vp = filp->f_vnode;
1663 
1664 	vn_lock(vp, LK_SHARED | LK_RETRY);
1665 	error = vn_stat(vp, sb, td->td_ucred, NOCRED, td);
1666 	VOP_UNLOCK(vp, 0);
1667 
1668 	return (error);
1669 }
1670 
1671 static int
1672 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1673     struct filedesc *fdp)
1674 {
1675 	struct linux_file *filp;
1676 	struct vnode *vp;
1677 	int error;
1678 
1679 	filp = fp->f_data;
1680 	vp = filp->f_vnode;
1681 	if (vp == NULL) {
1682 		error = 0;
1683 		kif->kf_type = KF_TYPE_DEV;
1684 	} else {
1685 		vref(vp);
1686 		FILEDESC_SUNLOCK(fdp);
1687 		error = vn_fill_kinfo_vnode(vp, kif);
1688 		vrele(vp);
1689 		kif->kf_type = KF_TYPE_VNODE;
1690 		FILEDESC_SLOCK(fdp);
1691 	}
1692 	return (error);
1693 }
1694 
1695 unsigned int
1696 linux_iminor(struct inode *inode)
1697 {
1698 	struct linux_cdev *ldev;
1699 
1700 	if (inode == NULL || inode->v_rdev == NULL ||
1701 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1702 		return (-1U);
1703 	ldev = inode->v_rdev->si_drv1;
1704 	if (ldev == NULL)
1705 		return (-1U);
1706 
1707 	return (minor(ldev->dev));
1708 }
1709 
1710 struct fileops linuxfileops = {
1711 	.fo_read = linux_file_read,
1712 	.fo_write = linux_file_write,
1713 	.fo_truncate = invfo_truncate,
1714 	.fo_kqfilter = linux_file_kqfilter,
1715 	.fo_stat = linux_file_stat,
1716 	.fo_fill_kinfo = linux_file_fill_kinfo,
1717 	.fo_poll = linux_file_poll,
1718 	.fo_close = linux_file_close,
1719 	.fo_ioctl = linux_file_ioctl,
1720 	.fo_mmap = linux_file_mmap,
1721 	.fo_chmod = invfo_chmod,
1722 	.fo_chown = invfo_chown,
1723 	.fo_sendfile = invfo_sendfile,
1724 	.fo_flags = DFLAG_PASSABLE,
1725 };
1726 
1727 /*
1728  * Hash of vmmap addresses.  This is infrequently accessed and does not
1729  * need to be particularly large.  This is done because we must store the
1730  * caller's idea of the map size to properly unmap.
1731  */
1732 struct vmmap {
1733 	LIST_ENTRY(vmmap)	vm_next;
1734 	void 			*vm_addr;
1735 	unsigned long		vm_size;
1736 };
1737 
1738 struct vmmaphd {
1739 	struct vmmap *lh_first;
1740 };
1741 #define	VMMAP_HASH_SIZE	64
1742 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1743 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1744 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1745 static struct mtx vmmaplock;
1746 
1747 static void
1748 vmmap_add(void *addr, unsigned long size)
1749 {
1750 	struct vmmap *vmmap;
1751 
1752 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1753 	mtx_lock(&vmmaplock);
1754 	vmmap->vm_size = size;
1755 	vmmap->vm_addr = addr;
1756 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1757 	mtx_unlock(&vmmaplock);
1758 }
1759 
1760 static struct vmmap *
1761 vmmap_remove(void *addr)
1762 {
1763 	struct vmmap *vmmap;
1764 
1765 	mtx_lock(&vmmaplock);
1766 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1767 		if (vmmap->vm_addr == addr)
1768 			break;
1769 	if (vmmap)
1770 		LIST_REMOVE(vmmap, vm_next);
1771 	mtx_unlock(&vmmaplock);
1772 
1773 	return (vmmap);
1774 }
1775 
1776 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1777 void *
1778 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1779 {
1780 	void *addr;
1781 
1782 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1783 	if (addr == NULL)
1784 		return (NULL);
1785 	vmmap_add(addr, size);
1786 
1787 	return (addr);
1788 }
1789 #endif
1790 
1791 void
1792 iounmap(void *addr)
1793 {
1794 	struct vmmap *vmmap;
1795 
1796 	vmmap = vmmap_remove(addr);
1797 	if (vmmap == NULL)
1798 		return;
1799 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1800 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1801 #endif
1802 	kfree(vmmap);
1803 }
1804 
1805 
1806 void *
1807 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1808 {
1809 	vm_offset_t off;
1810 	size_t size;
1811 
1812 	size = count * PAGE_SIZE;
1813 	off = kva_alloc(size);
1814 	if (off == 0)
1815 		return (NULL);
1816 	vmmap_add((void *)off, size);
1817 	pmap_qenter(off, pages, count);
1818 
1819 	return ((void *)off);
1820 }
1821 
1822 void
1823 vunmap(void *addr)
1824 {
1825 	struct vmmap *vmmap;
1826 
1827 	vmmap = vmmap_remove(addr);
1828 	if (vmmap == NULL)
1829 		return;
1830 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1831 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1832 	kfree(vmmap);
1833 }
1834 
1835 char *
1836 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1837 {
1838 	unsigned int len;
1839 	char *p;
1840 	va_list aq;
1841 
1842 	va_copy(aq, ap);
1843 	len = vsnprintf(NULL, 0, fmt, aq);
1844 	va_end(aq);
1845 
1846 	p = kmalloc(len + 1, gfp);
1847 	if (p != NULL)
1848 		vsnprintf(p, len + 1, fmt, ap);
1849 
1850 	return (p);
1851 }
1852 
1853 char *
1854 kasprintf(gfp_t gfp, const char *fmt, ...)
1855 {
1856 	va_list ap;
1857 	char *p;
1858 
1859 	va_start(ap, fmt);
1860 	p = kvasprintf(gfp, fmt, ap);
1861 	va_end(ap);
1862 
1863 	return (p);
1864 }
1865 
1866 static void
1867 linux_timer_callback_wrapper(void *context)
1868 {
1869 	struct timer_list *timer;
1870 
1871 	linux_set_current(curthread);
1872 
1873 	timer = context;
1874 	timer->function(timer->data);
1875 }
1876 
1877 void
1878 mod_timer(struct timer_list *timer, int expires)
1879 {
1880 
1881 	timer->expires = expires;
1882 	callout_reset(&timer->callout,
1883 	    linux_timer_jiffies_until(expires),
1884 	    &linux_timer_callback_wrapper, timer);
1885 }
1886 
1887 void
1888 add_timer(struct timer_list *timer)
1889 {
1890 
1891 	callout_reset(&timer->callout,
1892 	    linux_timer_jiffies_until(timer->expires),
1893 	    &linux_timer_callback_wrapper, timer);
1894 }
1895 
1896 void
1897 add_timer_on(struct timer_list *timer, int cpu)
1898 {
1899 
1900 	callout_reset_on(&timer->callout,
1901 	    linux_timer_jiffies_until(timer->expires),
1902 	    &linux_timer_callback_wrapper, timer, cpu);
1903 }
1904 
1905 static void
1906 linux_timer_init(void *arg)
1907 {
1908 
1909 	/*
1910 	 * Compute an internal HZ value which can divide 2**32 to
1911 	 * avoid timer rounding problems when the tick value wraps
1912 	 * around 2**32:
1913 	 */
1914 	linux_timer_hz_mask = 1;
1915 	while (linux_timer_hz_mask < (unsigned long)hz)
1916 		linux_timer_hz_mask *= 2;
1917 	linux_timer_hz_mask--;
1918 }
1919 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1920 
1921 void
1922 linux_complete_common(struct completion *c, int all)
1923 {
1924 	int wakeup_swapper;
1925 
1926 	sleepq_lock(c);
1927 	if (all) {
1928 		c->done = UINT_MAX;
1929 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1930 	} else {
1931 		if (c->done != UINT_MAX)
1932 			c->done++;
1933 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1934 	}
1935 	sleepq_release(c);
1936 	if (wakeup_swapper)
1937 		kick_proc0();
1938 }
1939 
1940 /*
1941  * Indefinite wait for done != 0 with or without signals.
1942  */
1943 int
1944 linux_wait_for_common(struct completion *c, int flags)
1945 {
1946 	struct task_struct *task;
1947 	int error;
1948 
1949 	if (SCHEDULER_STOPPED())
1950 		return (0);
1951 
1952 	task = current;
1953 
1954 	if (flags != 0)
1955 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1956 	else
1957 		flags = SLEEPQ_SLEEP;
1958 	error = 0;
1959 	for (;;) {
1960 		sleepq_lock(c);
1961 		if (c->done)
1962 			break;
1963 		sleepq_add(c, NULL, "completion", flags, 0);
1964 		if (flags & SLEEPQ_INTERRUPTIBLE) {
1965 			DROP_GIANT();
1966 			error = -sleepq_wait_sig(c, 0);
1967 			PICKUP_GIANT();
1968 			if (error != 0) {
1969 				linux_schedule_save_interrupt_value(task, error);
1970 				error = -ERESTARTSYS;
1971 				goto intr;
1972 			}
1973 		} else {
1974 			DROP_GIANT();
1975 			sleepq_wait(c, 0);
1976 			PICKUP_GIANT();
1977 		}
1978 	}
1979 	if (c->done != UINT_MAX)
1980 		c->done--;
1981 	sleepq_release(c);
1982 
1983 intr:
1984 	return (error);
1985 }
1986 
1987 /*
1988  * Time limited wait for done != 0 with or without signals.
1989  */
1990 int
1991 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
1992 {
1993 	struct task_struct *task;
1994 	int end = jiffies + timeout;
1995 	int error;
1996 
1997 	if (SCHEDULER_STOPPED())
1998 		return (0);
1999 
2000 	task = current;
2001 
2002 	if (flags != 0)
2003 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2004 	else
2005 		flags = SLEEPQ_SLEEP;
2006 
2007 	for (;;) {
2008 		sleepq_lock(c);
2009 		if (c->done)
2010 			break;
2011 		sleepq_add(c, NULL, "completion", flags, 0);
2012 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2013 
2014 		DROP_GIANT();
2015 		if (flags & SLEEPQ_INTERRUPTIBLE)
2016 			error = -sleepq_timedwait_sig(c, 0);
2017 		else
2018 			error = -sleepq_timedwait(c, 0);
2019 		PICKUP_GIANT();
2020 
2021 		if (error != 0) {
2022 			/* check for timeout */
2023 			if (error == -EWOULDBLOCK) {
2024 				error = 0;	/* timeout */
2025 			} else {
2026 				/* signal happened */
2027 				linux_schedule_save_interrupt_value(task, error);
2028 				error = -ERESTARTSYS;
2029 			}
2030 			goto done;
2031 		}
2032 	}
2033 	if (c->done != UINT_MAX)
2034 		c->done--;
2035 	sleepq_release(c);
2036 
2037 	/* return how many jiffies are left */
2038 	error = linux_timer_jiffies_until(end);
2039 done:
2040 	return (error);
2041 }
2042 
2043 int
2044 linux_try_wait_for_completion(struct completion *c)
2045 {
2046 	int isdone;
2047 
2048 	sleepq_lock(c);
2049 	isdone = (c->done != 0);
2050 	if (c->done != 0 && c->done != UINT_MAX)
2051 		c->done--;
2052 	sleepq_release(c);
2053 	return (isdone);
2054 }
2055 
2056 int
2057 linux_completion_done(struct completion *c)
2058 {
2059 	int isdone;
2060 
2061 	sleepq_lock(c);
2062 	isdone = (c->done != 0);
2063 	sleepq_release(c);
2064 	return (isdone);
2065 }
2066 
2067 static void
2068 linux_cdev_deref(struct linux_cdev *ldev)
2069 {
2070 
2071 	if (refcount_release(&ldev->refs))
2072 		kfree(ldev);
2073 }
2074 
2075 static void
2076 linux_cdev_release(struct kobject *kobj)
2077 {
2078 	struct linux_cdev *cdev;
2079 	struct kobject *parent;
2080 
2081 	cdev = container_of(kobj, struct linux_cdev, kobj);
2082 	parent = kobj->parent;
2083 	linux_destroy_dev(cdev);
2084 	linux_cdev_deref(cdev);
2085 	kobject_put(parent);
2086 }
2087 
2088 static void
2089 linux_cdev_static_release(struct kobject *kobj)
2090 {
2091 	struct linux_cdev *cdev;
2092 	struct kobject *parent;
2093 
2094 	cdev = container_of(kobj, struct linux_cdev, kobj);
2095 	parent = kobj->parent;
2096 	linux_destroy_dev(cdev);
2097 	kobject_put(parent);
2098 }
2099 
2100 void
2101 linux_destroy_dev(struct linux_cdev *ldev)
2102 {
2103 
2104 	if (ldev->cdev == NULL)
2105 		return;
2106 
2107 	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2108 	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2109 	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2110 		pause("ldevdtr", hz / 4);
2111 
2112 	destroy_dev(ldev->cdev);
2113 	ldev->cdev = NULL;
2114 }
2115 
2116 const struct kobj_type linux_cdev_ktype = {
2117 	.release = linux_cdev_release,
2118 };
2119 
2120 const struct kobj_type linux_cdev_static_ktype = {
2121 	.release = linux_cdev_static_release,
2122 };
2123 
2124 static void
2125 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2126 {
2127 	struct notifier_block *nb;
2128 
2129 	nb = arg;
2130 	if (linkstate == LINK_STATE_UP)
2131 		nb->notifier_call(nb, NETDEV_UP, ifp);
2132 	else
2133 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
2134 }
2135 
2136 static void
2137 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2138 {
2139 	struct notifier_block *nb;
2140 
2141 	nb = arg;
2142 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
2143 }
2144 
2145 static void
2146 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2147 {
2148 	struct notifier_block *nb;
2149 
2150 	nb = arg;
2151 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
2152 }
2153 
2154 static void
2155 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2156 {
2157 	struct notifier_block *nb;
2158 
2159 	nb = arg;
2160 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
2161 }
2162 
2163 static void
2164 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2165 {
2166 	struct notifier_block *nb;
2167 
2168 	nb = arg;
2169 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
2170 }
2171 
2172 int
2173 register_netdevice_notifier(struct notifier_block *nb)
2174 {
2175 
2176 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2177 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2178 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2179 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2180 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2181 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2182 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2183 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2184 
2185 	return (0);
2186 }
2187 
2188 int
2189 register_inetaddr_notifier(struct notifier_block *nb)
2190 {
2191 
2192 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2193 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2194 	return (0);
2195 }
2196 
2197 int
2198 unregister_netdevice_notifier(struct notifier_block *nb)
2199 {
2200 
2201 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2202 	    nb->tags[NETDEV_UP]);
2203 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2204 	    nb->tags[NETDEV_REGISTER]);
2205 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2206 	    nb->tags[NETDEV_UNREGISTER]);
2207 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2208 	    nb->tags[NETDEV_CHANGEADDR]);
2209 
2210 	return (0);
2211 }
2212 
2213 int
2214 unregister_inetaddr_notifier(struct notifier_block *nb)
2215 {
2216 
2217 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2218 	    nb->tags[NETDEV_CHANGEIFADDR]);
2219 
2220 	return (0);
2221 }
2222 
2223 struct list_sort_thunk {
2224 	int (*cmp)(void *, struct list_head *, struct list_head *);
2225 	void *priv;
2226 };
2227 
2228 static inline int
2229 linux_le_cmp(void *priv, const void *d1, const void *d2)
2230 {
2231 	struct list_head *le1, *le2;
2232 	struct list_sort_thunk *thunk;
2233 
2234 	thunk = priv;
2235 	le1 = *(__DECONST(struct list_head **, d1));
2236 	le2 = *(__DECONST(struct list_head **, d2));
2237 	return ((thunk->cmp)(thunk->priv, le1, le2));
2238 }
2239 
2240 void
2241 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2242     struct list_head *a, struct list_head *b))
2243 {
2244 	struct list_sort_thunk thunk;
2245 	struct list_head **ar, *le;
2246 	size_t count, i;
2247 
2248 	count = 0;
2249 	list_for_each(le, head)
2250 		count++;
2251 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2252 	i = 0;
2253 	list_for_each(le, head)
2254 		ar[i++] = le;
2255 	thunk.cmp = cmp;
2256 	thunk.priv = priv;
2257 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2258 	INIT_LIST_HEAD(head);
2259 	for (i = 0; i < count; i++)
2260 		list_add_tail(ar[i], head);
2261 	free(ar, M_KMALLOC);
2262 }
2263 
2264 void
2265 linux_irq_handler(void *ent)
2266 {
2267 	struct irq_ent *irqe;
2268 
2269 	linux_set_current(curthread);
2270 
2271 	irqe = ent;
2272 	irqe->handler(irqe->irq, irqe->arg);
2273 }
2274 
2275 #if defined(__i386__) || defined(__amd64__)
2276 int
2277 linux_wbinvd_on_all_cpus(void)
2278 {
2279 
2280 	pmap_invalidate_cache();
2281 	return (0);
2282 }
2283 #endif
2284 
2285 int
2286 linux_on_each_cpu(void callback(void *), void *data)
2287 {
2288 
2289 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2290 	    smp_no_rendezvous_barrier, data);
2291 	return (0);
2292 }
2293 
2294 int
2295 linux_in_atomic(void)
2296 {
2297 
2298 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2299 }
2300 
2301 struct linux_cdev *
2302 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2303 {
2304 	dev_t dev = MKDEV(major, minor);
2305 	struct cdev *cdev;
2306 
2307 	dev_lock();
2308 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2309 		struct linux_cdev *ldev = cdev->si_drv1;
2310 		if (ldev->dev == dev &&
2311 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2312 			break;
2313 		}
2314 	}
2315 	dev_unlock();
2316 
2317 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2318 }
2319 
2320 int
2321 __register_chrdev(unsigned int major, unsigned int baseminor,
2322     unsigned int count, const char *name,
2323     const struct file_operations *fops)
2324 {
2325 	struct linux_cdev *cdev;
2326 	int ret = 0;
2327 	int i;
2328 
2329 	for (i = baseminor; i < baseminor + count; i++) {
2330 		cdev = cdev_alloc();
2331 		cdev_init(cdev, fops);
2332 		kobject_set_name(&cdev->kobj, name);
2333 
2334 		ret = cdev_add(cdev, makedev(major, i), 1);
2335 		if (ret != 0)
2336 			break;
2337 	}
2338 	return (ret);
2339 }
2340 
2341 int
2342 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2343     unsigned int count, const char *name,
2344     const struct file_operations *fops, uid_t uid,
2345     gid_t gid, int mode)
2346 {
2347 	struct linux_cdev *cdev;
2348 	int ret = 0;
2349 	int i;
2350 
2351 	for (i = baseminor; i < baseminor + count; i++) {
2352 		cdev = cdev_alloc();
2353 		cdev_init(cdev, fops);
2354 		kobject_set_name(&cdev->kobj, name);
2355 
2356 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2357 		if (ret != 0)
2358 			break;
2359 	}
2360 	return (ret);
2361 }
2362 
2363 void
2364 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2365     unsigned int count, const char *name)
2366 {
2367 	struct linux_cdev *cdevp;
2368 	int i;
2369 
2370 	for (i = baseminor; i < baseminor + count; i++) {
2371 		cdevp = linux_find_cdev(name, major, i);
2372 		if (cdevp != NULL)
2373 			cdev_del(cdevp);
2374 	}
2375 }
2376 
2377 void
2378 linux_dump_stack(void)
2379 {
2380 #ifdef STACK
2381 	struct stack st;
2382 
2383 	stack_zero(&st);
2384 	stack_save(&st);
2385 	stack_print(&st);
2386 #endif
2387 }
2388 
2389 #if defined(__i386__) || defined(__amd64__)
2390 bool linux_cpu_has_clflush;
2391 #endif
2392 
2393 static void
2394 linux_compat_init(void *arg)
2395 {
2396 	struct sysctl_oid *rootoid;
2397 	int i;
2398 
2399 #if defined(__i386__) || defined(__amd64__)
2400 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2401 #endif
2402 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2403 
2404 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2405 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2406 	kobject_init(&linux_class_root, &linux_class_ktype);
2407 	kobject_set_name(&linux_class_root, "class");
2408 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2409 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2410 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2411 	kobject_set_name(&linux_root_device.kobj, "device");
2412 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2413 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2414 	    "device");
2415 	linux_root_device.bsddev = root_bus;
2416 	linux_class_misc.name = "misc";
2417 	class_register(&linux_class_misc);
2418 	INIT_LIST_HEAD(&pci_drivers);
2419 	INIT_LIST_HEAD(&pci_devices);
2420 	spin_lock_init(&pci_lock);
2421 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2422 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2423 		LIST_INIT(&vmmaphead[i]);
2424 }
2425 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2426 
2427 static void
2428 linux_compat_uninit(void *arg)
2429 {
2430 	linux_kobject_kfree_name(&linux_class_root);
2431 	linux_kobject_kfree_name(&linux_root_device.kobj);
2432 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2433 
2434 	mtx_destroy(&vmmaplock);
2435 	spin_lock_destroy(&pci_lock);
2436 	rw_destroy(&linux_vma_lock);
2437 }
2438 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2439 
2440 /*
2441  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2442  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2443  * used. Assert these types have the same size, else some parts of the
2444  * LinuxKPI may not work like expected:
2445  */
2446 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2447