xref: /freebsd/sys/compat/linuxkpi/common/include/linux/kernel.h (revision 7c20397b724a55001c2054fa133a768e9d06eb1c)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2016 Mellanox Technologies, Ltd.
6  * Copyright (c) 2014-2015 François Tigeot
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 #ifndef	_LINUXKPI_LINUX_KERNEL_H_
33 #define	_LINUXKPI_LINUX_KERNEL_H_
34 
35 #include <sys/cdefs.h>
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/param.h>
39 #include <sys/libkern.h>
40 #include <sys/stat.h>
41 #include <sys/smp.h>
42 #include <sys/stddef.h>
43 #include <sys/syslog.h>
44 #include <sys/time.h>
45 
46 #include <linux/bitops.h>
47 #include <linux/compiler.h>
48 #include <linux/stringify.h>
49 #include <linux/errno.h>
50 #include <linux/sched.h>
51 #include <linux/types.h>
52 #include <linux/jiffies.h>
53 #include <linux/log2.h>
54 
55 #include <asm/byteorder.h>
56 #include <asm/uaccess.h>
57 
58 #include <machine/stdarg.h>
59 
60 #define KERN_CONT       ""
61 #define	KERN_EMERG	"<0>"
62 #define	KERN_ALERT	"<1>"
63 #define	KERN_CRIT	"<2>"
64 #define	KERN_ERR	"<3>"
65 #define	KERN_WARNING	"<4>"
66 #define	KERN_NOTICE	"<5>"
67 #define	KERN_INFO	"<6>"
68 #define	KERN_DEBUG	"<7>"
69 
70 #define	U8_MAX		((u8)~0U)
71 #define	S8_MAX		((s8)(U8_MAX >> 1))
72 #define	S8_MIN		((s8)(-S8_MAX - 1))
73 #define	U16_MAX		((u16)~0U)
74 #define	S16_MAX		((s16)(U16_MAX >> 1))
75 #define	S16_MIN		((s16)(-S16_MAX - 1))
76 #define	U32_MAX		((u32)~0U)
77 #define	S32_MAX		((s32)(U32_MAX >> 1))
78 #define	S32_MIN		((s32)(-S32_MAX - 1))
79 #define	U64_MAX		((u64)~0ULL)
80 #define	S64_MAX		((s64)(U64_MAX >> 1))
81 #define	S64_MIN		((s64)(-S64_MAX - 1))
82 
83 #define	S8_C(x)  x
84 #define	U8_C(x)  x ## U
85 #define	S16_C(x) x
86 #define	U16_C(x) x ## U
87 #define	S32_C(x) x
88 #define	U32_C(x) x ## U
89 #define	S64_C(x) x ## LL
90 #define	U64_C(x) x ## ULL
91 
92 /*
93  * BUILD_BUG_ON() can happen inside functions where _Static_assert() does not
94  * seem to work.  Use old-schoold-ish CTASSERT from before commit
95  * a3085588a88fa58eb5b1eaae471999e1995a29cf but also make sure we do not
96  * end up with an unused typedef or variable. The compiler should optimise
97  * it away entirely.
98  */
99 #define	_O_CTASSERT(x)		_O__CTASSERT(x, __LINE__)
100 #define	_O__CTASSERT(x, y)	_O___CTASSERT(x, y)
101 #define	_O___CTASSERT(x, y)	while (0) { \
102     typedef char __assert_line_ ## y[(x) ? 1 : -1]; \
103     __assert_line_ ## y _x; \
104     _x[0] = '\0'; \
105 }
106 
107 #define	BUILD_BUG()			do { CTASSERT(0); } while (0)
108 #define	BUILD_BUG_ON(x)			do { _O_CTASSERT(!(x)) } while (0)
109 #define	BUILD_BUG_ON_MSG(x, msg)	BUILD_BUG_ON(x)
110 #define	BUILD_BUG_ON_NOT_POWER_OF_2(x)	BUILD_BUG_ON(!powerof2(x))
111 #define	BUILD_BUG_ON_INVALID(expr)	while (0) { (void)(expr); }
112 #define	BUILD_BUG_ON_ZERO(x)	((int)sizeof(struct { int:-((x) != 0); }))
113 
114 #define	BUG()			panic("BUG at %s:%d", __FILE__, __LINE__)
115 #define	BUG_ON(cond)		do {				\
116 	if (cond) {						\
117 		panic("BUG ON %s failed at %s:%d",		\
118 		    __stringify(cond), __FILE__, __LINE__);	\
119 	}							\
120 } while (0)
121 
122 extern int linuxkpi_warn_dump_stack;
123 #define	WARN_ON(cond) ({					\
124 	bool __ret = (cond);					\
125 	if (__ret) {						\
126 		printf("WARNING %s failed at %s:%d\n",		\
127 		    __stringify(cond), __FILE__, __LINE__);	\
128 		if (linuxkpi_warn_dump_stack)				\
129 			linux_dump_stack();				\
130 	}								\
131 	unlikely(__ret);						\
132 })
133 
134 #define	WARN_ON_SMP(cond)	WARN_ON(cond)
135 
136 #define	WARN_ON_ONCE(cond) ({					\
137 	static bool __warn_on_once;				\
138 	bool __ret = (cond);					\
139 	if (__ret && !__warn_on_once) {				\
140 		__warn_on_once = 1;				\
141 		printf("WARNING %s failed at %s:%d\n",		\
142 		    __stringify(cond), __FILE__, __LINE__);	\
143 		if (linuxkpi_warn_dump_stack)				\
144 			linux_dump_stack();				\
145 	}								\
146 	unlikely(__ret);						\
147 })
148 
149 #define	oops_in_progress	SCHEDULER_STOPPED()
150 
151 #undef	ALIGN
152 #define	ALIGN(x, y)		roundup2((x), (y))
153 #define	ALIGN_DOWN(x, y)	rounddown2(x, y)
154 #undef PTR_ALIGN
155 #define	PTR_ALIGN(p, a)		((__typeof(p))ALIGN((uintptr_t)(p), (a)))
156 #define	IS_ALIGNED(x, a)	(((x) & ((__typeof(x))(a) - 1)) == 0)
157 #define	DIV_ROUND_UP(x, n)	howmany(x, n)
158 #define	__KERNEL_DIV_ROUND_UP(x, n)	howmany(x, n)
159 #define	DIV_ROUND_UP_ULL(x, n)	DIV_ROUND_UP((unsigned long long)(x), (n))
160 #define	DIV_ROUND_DOWN_ULL(x, n) (((unsigned long long)(x) / (n)) * (n))
161 #define	FIELD_SIZEOF(t, f)	sizeof(((t *)0)->f)
162 
163 #define	printk(...)		printf(__VA_ARGS__)
164 #define	vprintk(f, a)		vprintf(f, a)
165 
166 #define	asm			__asm
167 
168 extern void linux_dump_stack(void);
169 #define	dump_stack()		linux_dump_stack()
170 
171 struct va_format {
172 	const char *fmt;
173 	va_list *va;
174 };
175 
176 static inline int
177 vscnprintf(char *buf, size_t size, const char *fmt, va_list args)
178 {
179 	ssize_t ssize = size;
180 	int i;
181 
182 	i = vsnprintf(buf, size, fmt, args);
183 
184 	return ((i >= ssize) ? (ssize - 1) : i);
185 }
186 
187 static inline int
188 scnprintf(char *buf, size_t size, const char *fmt, ...)
189 {
190 	va_list args;
191 	int i;
192 
193 	va_start(args, fmt);
194 	i = vscnprintf(buf, size, fmt, args);
195 	va_end(args);
196 
197 	return (i);
198 }
199 
200 /*
201  * The "pr_debug()" and "pr_devel()" macros should produce zero code
202  * unless DEBUG is defined:
203  */
204 #ifdef DEBUG
205 extern int linuxkpi_debug;
206 #define pr_debug(fmt, ...)					\
207 	do {							\
208 		if (linuxkpi_debug)				\
209 			log(LOG_DEBUG, fmt, ##__VA_ARGS__);	\
210 	} while (0)
211 #define pr_devel(fmt, ...) \
212 	log(LOG_DEBUG, pr_fmt(fmt), ##__VA_ARGS__)
213 #else
214 #define pr_debug(fmt, ...) \
215 	({ if (0) log(LOG_DEBUG, fmt, ##__VA_ARGS__); 0; })
216 #define pr_devel(fmt, ...) \
217 	({ if (0) log(LOG_DEBUG, pr_fmt(fmt), ##__VA_ARGS__); 0; })
218 #endif
219 
220 #ifndef pr_fmt
221 #define pr_fmt(fmt) fmt
222 #endif
223 
224 /*
225  * Print a one-time message (analogous to WARN_ONCE() et al):
226  */
227 #define printk_once(...) do {			\
228 	static bool __print_once;		\
229 						\
230 	if (!__print_once) {			\
231 		__print_once = true;		\
232 		printk(__VA_ARGS__);		\
233 	}					\
234 } while (0)
235 
236 /*
237  * Log a one-time message (analogous to WARN_ONCE() et al):
238  */
239 #define log_once(level,...) do {		\
240 	static bool __log_once;			\
241 						\
242 	if (unlikely(!__log_once)) {		\
243 		__log_once = true;		\
244 		log(level, __VA_ARGS__);	\
245 	}					\
246 } while (0)
247 
248 #define pr_emerg(fmt, ...) \
249 	log(LOG_EMERG, pr_fmt(fmt), ##__VA_ARGS__)
250 #define pr_alert(fmt, ...) \
251 	log(LOG_ALERT, pr_fmt(fmt), ##__VA_ARGS__)
252 #define pr_crit(fmt, ...) \
253 	log(LOG_CRIT, pr_fmt(fmt), ##__VA_ARGS__)
254 #define pr_err(fmt, ...) \
255 	log(LOG_ERR, pr_fmt(fmt), ##__VA_ARGS__)
256 #define pr_err_once(fmt, ...) \
257 	log_once(LOG_ERR, pr_fmt(fmt), ##__VA_ARGS__)
258 #define pr_warning(fmt, ...) \
259 	log(LOG_WARNING, pr_fmt(fmt), ##__VA_ARGS__)
260 #define pr_warn(...) \
261 	pr_warning(__VA_ARGS__)
262 #define pr_warn_once(fmt, ...) \
263 	log_once(LOG_WARNING, pr_fmt(fmt), ##__VA_ARGS__)
264 #define pr_notice(fmt, ...) \
265 	log(LOG_NOTICE, pr_fmt(fmt), ##__VA_ARGS__)
266 #define pr_info(fmt, ...) \
267 	log(LOG_INFO, pr_fmt(fmt), ##__VA_ARGS__)
268 #define pr_info_once(fmt, ...) \
269 	log_once(LOG_INFO, pr_fmt(fmt), ##__VA_ARGS__)
270 #define pr_cont(fmt, ...) \
271 	printk(KERN_CONT fmt, ##__VA_ARGS__)
272 #define	pr_warn_ratelimited(...) do {		\
273 	static linux_ratelimit_t __ratelimited;	\
274 	if (linux_ratelimited(&__ratelimited))	\
275 		pr_warning(__VA_ARGS__);	\
276 } while (0)
277 
278 #ifndef WARN
279 #define	WARN(condition, ...) ({			\
280 	bool __ret_warn_on = (condition);	\
281 	if (unlikely(__ret_warn_on))		\
282 		pr_warning(__VA_ARGS__);	\
283 	unlikely(__ret_warn_on);		\
284 })
285 #endif
286 
287 #ifndef WARN_ONCE
288 #define	WARN_ONCE(condition, ...) ({		\
289 	bool __ret_warn_on = (condition);	\
290 	if (unlikely(__ret_warn_on))		\
291 		pr_warn_once(__VA_ARGS__);	\
292 	unlikely(__ret_warn_on);		\
293 })
294 #endif
295 
296 #define container_of(ptr, type, member)				\
297 ({								\
298 	const __typeof(((type *)0)->member) *__p = (ptr);	\
299 	(type *)((uintptr_t)__p - offsetof(type, member));	\
300 })
301 
302 #define	ARRAY_SIZE(x)	(sizeof(x) / sizeof((x)[0]))
303 
304 #define	u64_to_user_ptr(val)	((void *)(uintptr_t)(val))
305 
306 #define _RET_IP_		__builtin_return_address(0)
307 
308 static inline unsigned long long
309 simple_strtoull(const char *cp, char **endp, unsigned int base)
310 {
311 	return (strtouq(cp, endp, base));
312 }
313 
314 static inline long long
315 simple_strtoll(const char *cp, char **endp, unsigned int base)
316 {
317 	return (strtoq(cp, endp, base));
318 }
319 
320 static inline unsigned long
321 simple_strtoul(const char *cp, char **endp, unsigned int base)
322 {
323 	return (strtoul(cp, endp, base));
324 }
325 
326 static inline long
327 simple_strtol(const char *cp, char **endp, unsigned int base)
328 {
329 	return (strtol(cp, endp, base));
330 }
331 
332 static inline int
333 kstrtoul(const char *cp, unsigned int base, unsigned long *res)
334 {
335 	char *end;
336 
337 	*res = strtoul(cp, &end, base);
338 
339 	/* skip newline character, if any */
340 	if (*end == '\n')
341 		end++;
342 	if (*cp == 0 || *end != 0)
343 		return (-EINVAL);
344 	return (0);
345 }
346 
347 static inline int
348 kstrtol(const char *cp, unsigned int base, long *res)
349 {
350 	char *end;
351 
352 	*res = strtol(cp, &end, base);
353 
354 	/* skip newline character, if any */
355 	if (*end == '\n')
356 		end++;
357 	if (*cp == 0 || *end != 0)
358 		return (-EINVAL);
359 	return (0);
360 }
361 
362 static inline int
363 kstrtoint(const char *cp, unsigned int base, int *res)
364 {
365 	char *end;
366 	long temp;
367 
368 	*res = temp = strtol(cp, &end, base);
369 
370 	/* skip newline character, if any */
371 	if (*end == '\n')
372 		end++;
373 	if (*cp == 0 || *end != 0)
374 		return (-EINVAL);
375 	if (temp != (int)temp)
376 		return (-ERANGE);
377 	return (0);
378 }
379 
380 static inline int
381 kstrtouint(const char *cp, unsigned int base, unsigned int *res)
382 {
383 	char *end;
384 	unsigned long temp;
385 
386 	*res = temp = strtoul(cp, &end, base);
387 
388 	/* skip newline character, if any */
389 	if (*end == '\n')
390 		end++;
391 	if (*cp == 0 || *end != 0)
392 		return (-EINVAL);
393 	if (temp != (unsigned int)temp)
394 		return (-ERANGE);
395 	return (0);
396 }
397 
398 static inline int
399 kstrtou8(const char *cp, unsigned int base, u8 *res)
400 {
401 	char *end;
402 	unsigned long temp;
403 
404 	*res = temp = strtoul(cp, &end, base);
405 
406 	/* skip newline character, if any */
407 	if (*end == '\n')
408 		end++;
409 	if (*cp == 0 || *end != 0)
410 		return (-EINVAL);
411 	if (temp != (u8)temp)
412 		return (-ERANGE);
413 	return (0);
414 }
415 
416 static inline int
417 kstrtou16(const char *cp, unsigned int base, u16 *res)
418 {
419 	char *end;
420 	unsigned long temp;
421 
422 	*res = temp = strtoul(cp, &end, base);
423 
424 	/* skip newline character, if any */
425 	if (*end == '\n')
426 		end++;
427 	if (*cp == 0 || *end != 0)
428 		return (-EINVAL);
429 	if (temp != (u16)temp)
430 		return (-ERANGE);
431 	return (0);
432 }
433 
434 static inline int
435 kstrtou32(const char *cp, unsigned int base, u32 *res)
436 {
437 	char *end;
438 	unsigned long temp;
439 
440 	*res = temp = strtoul(cp, &end, base);
441 
442 	/* skip newline character, if any */
443 	if (*end == '\n')
444 		end++;
445 	if (*cp == 0 || *end != 0)
446 		return (-EINVAL);
447 	if (temp != (u32)temp)
448 		return (-ERANGE);
449 	return (0);
450 }
451 
452 static inline int
453 kstrtou64(const char *cp, unsigned int base, u64 *res)
454 {
455        char *end;
456 
457        *res = strtouq(cp, &end, base);
458 
459        /* skip newline character, if any */
460        if (*end == '\n')
461                end++;
462        if (*cp == 0 || *end != 0)
463                return (-EINVAL);
464        return (0);
465 }
466 
467 static inline int
468 kstrtoull(const char *cp, unsigned int base, unsigned long long *res)
469 {
470 	return (kstrtou64(cp, base, (u64 *)res));
471 }
472 
473 static inline int
474 kstrtobool(const char *s, bool *res)
475 {
476 	int len;
477 
478 	if (s == NULL || (len = strlen(s)) == 0 || res == NULL)
479 		return (-EINVAL);
480 
481 	/* skip newline character, if any */
482 	if (s[len - 1] == '\n')
483 		len--;
484 
485 	if (len == 1 && strchr("yY1", s[0]) != NULL)
486 		*res = true;
487 	else if (len == 1 && strchr("nN0", s[0]) != NULL)
488 		*res = false;
489 	else if (strncasecmp("on", s, len) == 0)
490 		*res = true;
491 	else if (strncasecmp("off", s, len) == 0)
492 		*res = false;
493 	else
494 		return (-EINVAL);
495 
496 	return (0);
497 }
498 
499 static inline int
500 kstrtobool_from_user(const char __user *s, size_t count, bool *res)
501 {
502 	char buf[8] = {};
503 
504 	if (count > (sizeof(buf) - 1))
505 		count = (sizeof(buf) - 1);
506 
507 	if (copy_from_user(buf, s, count))
508 		return (-EFAULT);
509 
510 	return (kstrtobool(buf, res));
511 }
512 
513 static inline int
514 kstrtoint_from_user(const char __user *s, size_t count, unsigned int base,
515     int *p)
516 {
517 	char buf[36] = {};
518 
519 	if (count > (sizeof(buf) - 1))
520 		count = (sizeof(buf) - 1);
521 
522 	if (copy_from_user(buf, s, count))
523 		return (-EFAULT);
524 
525 	return (kstrtoint(buf, base, p));
526 }
527 
528 static inline int
529 kstrtouint_from_user(const char __user *s, size_t count, unsigned int base,
530     int *p)
531 {
532 	char buf[36] = {};
533 
534 	if (count > (sizeof(buf) - 1))
535 		count = (sizeof(buf) - 1);
536 
537 	if (copy_from_user(buf, s, count))
538 		return (-EFAULT);
539 
540 	return (kstrtouint(buf, base, p));
541 }
542 
543 static inline int
544 kstrtou8_from_user(const char __user *s, size_t count, unsigned int base,
545     u8 *p)
546 {
547 	char buf[8] = {};
548 
549 	if (count > (sizeof(buf) - 1))
550 		count = (sizeof(buf) - 1);
551 
552 	if (copy_from_user(buf, s, count))
553 		return (-EFAULT);
554 
555 	return (kstrtou8(buf, base, p));
556 }
557 
558 #define min(x, y)	((x) < (y) ? (x) : (y))
559 #define max(x, y)	((x) > (y) ? (x) : (y))
560 
561 #define min3(a, b, c)	min(a, min(b,c))
562 #define max3(a, b, c)	max(a, max(b,c))
563 
564 #define	min_t(type, x, y) ({			\
565 	type __min1 = (x);			\
566 	type __min2 = (y);			\
567 	__min1 < __min2 ? __min1 : __min2; })
568 
569 #define	max_t(type, x, y) ({			\
570 	type __max1 = (x);			\
571 	type __max2 = (y);			\
572 	__max1 > __max2 ? __max1 : __max2; })
573 
574 #define offsetofend(t, m)	\
575         (offsetof(t, m) + sizeof((((t *)0)->m)))
576 
577 #define clamp_t(type, _x, min, max)	min_t(type, max_t(type, _x, min), max)
578 #define clamp(x, lo, hi)		min( max(x,lo), hi)
579 #define	clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
580 
581 /*
582  * This looks more complex than it should be. But we need to
583  * get the type for the ~ right in round_down (it needs to be
584  * as wide as the result!), and we want to evaluate the macro
585  * arguments just once each.
586  */
587 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
588 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
589 #define round_down(x, y) ((x) & ~__round_mask(x, y))
590 
591 #define	smp_processor_id()	PCPU_GET(cpuid)
592 #define	num_possible_cpus()	mp_ncpus
593 #define	num_online_cpus()	mp_ncpus
594 
595 #if defined(__i386__) || defined(__amd64__)
596 extern bool linux_cpu_has_clflush;
597 #define	cpu_has_clflush		linux_cpu_has_clflush
598 #endif
599 
600 /* Swap values of a and b */
601 #define swap(a, b) do {			\
602 	typeof(a) _swap_tmp = a;	\
603 	a = b;				\
604 	b = _swap_tmp;			\
605 } while (0)
606 
607 #define	DIV_ROUND_CLOSEST(x, divisor)	(((x) + ((divisor) / 2)) / (divisor))
608 
609 #define	DIV_ROUND_CLOSEST_ULL(x, divisor) ({		\
610 	__typeof(divisor) __d = (divisor);		\
611 	unsigned long long __ret = (x) + (__d) / 2;	\
612 	__ret /= __d;					\
613 	__ret;						\
614 })
615 
616 static inline uintmax_t
617 mult_frac(uintmax_t x, uintmax_t multiplier, uintmax_t divisor)
618 {
619 	uintmax_t q = (x / divisor);
620 	uintmax_t r = (x % divisor);
621 
622 	return ((q * multiplier) + ((r * multiplier) / divisor));
623 }
624 
625 static inline int64_t
626 abs64(int64_t x)
627 {
628 	return (x < 0 ? -x : x);
629 }
630 
631 typedef struct linux_ratelimit {
632 	struct timeval lasttime;
633 	int counter;
634 } linux_ratelimit_t;
635 
636 static inline bool
637 linux_ratelimited(linux_ratelimit_t *rl)
638 {
639 	return (ppsratecheck(&rl->lasttime, &rl->counter, 1));
640 }
641 
642 #define	struct_size(ptr, field, num) ({ \
643 	const size_t __size = offsetof(__typeof(*(ptr)), field); \
644 	const size_t __max = (SIZE_MAX - __size) / sizeof((ptr)->field[0]); \
645 	((num) > __max) ? SIZE_MAX : (__size + sizeof((ptr)->field[0]) * (num)); \
646 })
647 
648 #define	__is_constexpr(x) \
649 	__builtin_constant_p(x)
650 
651 /*
652  * The is_signed() macro below returns true if the passed data type is
653  * signed. Else false is returned.
654  */
655 #define	is_signed(datatype) (((datatype)-1 / (datatype)2) == (datatype)0)
656 
657 /*
658  * The type_max() macro below returns the maxium positive value the
659  * passed data type can hold.
660  */
661 #define	type_max(datatype) ( \
662   (sizeof(datatype) >= 8) ? (is_signed(datatype) ? INT64_MAX : UINT64_MAX) : \
663   (sizeof(datatype) >= 4) ? (is_signed(datatype) ? INT32_MAX : UINT32_MAX) : \
664   (sizeof(datatype) >= 2) ? (is_signed(datatype) ? INT16_MAX : UINT16_MAX) : \
665 			    (is_signed(datatype) ? INT8_MAX : UINT8_MAX) \
666 )
667 
668 /*
669  * The type_min() macro below returns the minimum value the passed
670  * data type can hold. For unsigned types the minimum value is always
671  * zero. For signed types it may vary.
672  */
673 #define	type_min(datatype) ( \
674   (sizeof(datatype) >= 8) ? (is_signed(datatype) ? INT64_MIN : 0) : \
675   (sizeof(datatype) >= 4) ? (is_signed(datatype) ? INT32_MIN : 0) : \
676   (sizeof(datatype) >= 2) ? (is_signed(datatype) ? INT16_MIN : 0) : \
677 			    (is_signed(datatype) ? INT8_MIN : 0) \
678 )
679 
680 #define	TAINT_WARN	0
681 #define	test_taint(x)	(0)
682 
683 static inline int
684 _h2b(const char c)
685 {
686 
687 	if (c >= '0' && c <= '9')
688 		return (c - '0');
689 	if (c >= 'a' && c <= 'f')
690 		return (10 + c - 'a');
691 	if (c >= 'A' && c <= 'F')
692 		return (10 + c - 'A');
693 	return (-EINVAL);
694 }
695 
696 static inline int
697 hex2bin(uint8_t *bindst, const char *hexsrc, size_t binlen)
698 {
699 	int hi4, lo4;
700 
701 	while (binlen > 0) {
702 		hi4 = _h2b(*hexsrc++);
703 		lo4 = _h2b(*hexsrc++);
704 		if (hi4 < 0 || lo4 < 0)
705 			return (-EINVAL);
706 
707 		*bindst++ = (hi4 << 4) | lo4;
708 		binlen--;
709 	}
710 
711 	return (0);
712 }
713 
714 #define	DECLARE_FLEX_ARRAY(_t, _n)					\
715     struct { struct { } __dummy_ ## _n; _t _n[0]; }
716 
717 /*
718  * Checking if an option is defined would be easy if we could do CPP inside CPP.
719  * The defined case whether -Dxxx or -Dxxx=1 are easy to deal with.  In either
720  * case the defined value is "1". A more general -Dxxx=<c> case will require
721  * more effort to deal with all possible "true" values. Hope we do not have
722  * to do this as well.
723  * The real problem is the undefined case.  To avoid this problem we do the
724  * concat/varargs trick: "yyy" ## xxx can make two arguments if xxx is "1"
725  * by having a #define for yyy_1 which is "ignore,".
726  * Otherwise we will just get "yyy".
727  * Need to be careful about variable substitutions in macros though.
728  * This way we make a (true, false) problem a (don't care, true, false) or a
729  * (don't care true, false).  Then we can use a variadic macro to only select
730  * the always well known and defined argument #2.  And that seems to be
731  * exactly what we need.  Use 1 for true and 0 for false to also allow
732  * #if IS_*() checks pre-compiler checks which do not like #if true.
733  */
734 #define ___XAB_1		dontcare,
735 #define ___IS_XAB(_ignore, _x, ...)	(_x)
736 #define	__IS_XAB(_x)		___IS_XAB(_x 1, 0)
737 #define	_IS_XAB(_x)		__IS_XAB(__CONCAT(___XAB_, _x))
738 
739 /* This is if CONFIG_ccc=y. */
740 #define	IS_BUILTIN(_x)		_IS_XAB(_x)
741 /* This is if CONFIG_ccc=m. */
742 #define	IS_MODULE(_x)		_IS_XAB(_x ## _MODULE)
743 /* This is if CONFIG_ccc is compiled in(=y) or a module(=m). */
744 #define	IS_ENABLED(_x)		(IS_BUILTIN(_x) || IS_MODULE(_x))
745 /*
746  * This is weird case.  If the CONFIG_ccc is builtin (=y) this returns true;
747  * or if the CONFIG_ccc is a module (=m) and the caller is built as a module
748  * (-DMODULE defined) this returns true, but if the callers is not a module
749  * (-DMODULE not defined, which means caller is BUILTIN) then it returns
750  * false.  In other words, a module can reach the kernel, a module can reach
751  * a module, but the kernel cannot reach a module, and code never compiled
752  * cannot be reached either.
753  * XXX -- I'd hope the module-to-module case would be handled by a proper
754  * module dependency definition (MODULE_DEPEND() in FreeBSD).
755  */
756 #define	IS_REACHABLE(_x)	(IS_BUILTIN(_x) || \
757 				    (IS_MODULE(_x) && IS_BUILTIN(MODULE)))
758 
759 #endif	/* _LINUXKPI_LINUX_KERNEL_H_ */
760