xref: /freebsd/sys/compat/linuxkpi/common/include/linux/bitops.h (revision eea7c61590ae8968b3f1f609cf0bc8633222a94f)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2017 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 #ifndef	_LINUXKPI_LINUX_BITOPS_H_
32 #define	_LINUXKPI_LINUX_BITOPS_H_
33 
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/errno.h>
38 #include <sys/libkern.h>
39 
40 #define	BIT(nr)			(1UL << (nr))
41 #define	BIT_ULL(nr)		(1ULL << (nr))
42 #ifdef __LP64__
43 #define	BITS_PER_LONG		64
44 #else
45 #define	BITS_PER_LONG		32
46 #endif
47 
48 #define	BITS_PER_LONG_LONG	64
49 
50 #define	BITMAP_FIRST_WORD_MASK(start)	(~0UL << ((start) % BITS_PER_LONG))
51 #define	BITMAP_LAST_WORD_MASK(n)	(~0UL >> (BITS_PER_LONG - (n)))
52 #define	BITS_TO_LONGS(n)	howmany((n), BITS_PER_LONG)
53 #define	BIT_MASK(nr)		(1UL << ((nr) & (BITS_PER_LONG - 1)))
54 #define	BIT_WORD(nr)		((nr) / BITS_PER_LONG)
55 #define	GENMASK(h, l)		(((~0UL) >> (BITS_PER_LONG - (h) - 1)) & ((~0UL) << (l)))
56 #define	GENMASK_ULL(h, l)	(((~0ULL) >> (BITS_PER_LONG_LONG - (h) - 1)) & ((~0ULL) << (l)))
57 #define	BITS_PER_BYTE		8
58 #define	BITS_PER_TYPE(t)	(sizeof(t) * BITS_PER_BYTE)
59 
60 #define	hweight8(x)	bitcount((uint8_t)(x))
61 #define	hweight16(x)	bitcount16(x)
62 #define	hweight32(x)	bitcount32(x)
63 #define	hweight64(x)	bitcount64(x)
64 #define	hweight_long(x)	bitcountl(x)
65 
66 #define	HWEIGHT8(x)	(bitcount8((uint8_t)(x)) + 1)
67 #define	HWEIGHT16(x)	(bitcount16(x) + 1)
68 #define	HWEIGHT32(x)	(bitcount32(x) + 1)
69 #define	HWEIGHT64(x)	(bitcount64(x) + 1)
70 
71 static inline int
72 __ffs(int mask)
73 {
74 	return (ffs(mask) - 1);
75 }
76 
77 static inline int
78 __fls(int mask)
79 {
80 	return (fls(mask) - 1);
81 }
82 
83 static inline int
84 __ffsl(long mask)
85 {
86 	return (ffsl(mask) - 1);
87 }
88 
89 static inline int
90 __flsl(long mask)
91 {
92 	return (flsl(mask) - 1);
93 }
94 
95 static inline int
96 fls64(uint64_t mask)
97 {
98 	return (flsll(mask));
99 }
100 
101 static inline uint32_t
102 ror32(uint32_t word, unsigned int shift)
103 {
104 	return ((word >> shift) | (word << (32 - shift)));
105 }
106 
107 #define	ffz(mask)	__ffs(~(mask))
108 
109 static inline int get_count_order(unsigned int count)
110 {
111         int order;
112 
113         order = fls(count) - 1;
114         if (count & (count - 1))
115                 order++;
116         return order;
117 }
118 
119 static inline unsigned long
120 find_first_bit(const unsigned long *addr, unsigned long size)
121 {
122 	long mask;
123 	int bit;
124 
125 	for (bit = 0; size >= BITS_PER_LONG;
126 	    size -= BITS_PER_LONG, bit += BITS_PER_LONG, addr++) {
127 		if (*addr == 0)
128 			continue;
129 		return (bit + __ffsl(*addr));
130 	}
131 	if (size) {
132 		mask = (*addr) & BITMAP_LAST_WORD_MASK(size);
133 		if (mask)
134 			bit += __ffsl(mask);
135 		else
136 			bit += size;
137 	}
138 	return (bit);
139 }
140 
141 static inline unsigned long
142 find_first_zero_bit(const unsigned long *addr, unsigned long size)
143 {
144 	long mask;
145 	int bit;
146 
147 	for (bit = 0; size >= BITS_PER_LONG;
148 	    size -= BITS_PER_LONG, bit += BITS_PER_LONG, addr++) {
149 		if (~(*addr) == 0)
150 			continue;
151 		return (bit + __ffsl(~(*addr)));
152 	}
153 	if (size) {
154 		mask = ~(*addr) & BITMAP_LAST_WORD_MASK(size);
155 		if (mask)
156 			bit += __ffsl(mask);
157 		else
158 			bit += size;
159 	}
160 	return (bit);
161 }
162 
163 static inline unsigned long
164 find_last_bit(const unsigned long *addr, unsigned long size)
165 {
166 	long mask;
167 	int offs;
168 	int bit;
169 	int pos;
170 
171 	pos = size / BITS_PER_LONG;
172 	offs = size % BITS_PER_LONG;
173 	bit = BITS_PER_LONG * pos;
174 	addr += pos;
175 	if (offs) {
176 		mask = (*addr) & BITMAP_LAST_WORD_MASK(offs);
177 		if (mask)
178 			return (bit + __flsl(mask));
179 	}
180 	while (pos--) {
181 		addr--;
182 		bit -= BITS_PER_LONG;
183 		if (*addr)
184 			return (bit + __flsl(*addr));
185 	}
186 	return (size);
187 }
188 
189 static inline unsigned long
190 find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset)
191 {
192 	long mask;
193 	int offs;
194 	int bit;
195 	int pos;
196 
197 	if (offset >= size)
198 		return (size);
199 	pos = offset / BITS_PER_LONG;
200 	offs = offset % BITS_PER_LONG;
201 	bit = BITS_PER_LONG * pos;
202 	addr += pos;
203 	if (offs) {
204 		mask = (*addr) & ~BITMAP_LAST_WORD_MASK(offs);
205 		if (mask)
206 			return (bit + __ffsl(mask));
207 		if (size - bit <= BITS_PER_LONG)
208 			return (size);
209 		bit += BITS_PER_LONG;
210 		addr++;
211 	}
212 	for (size -= bit; size >= BITS_PER_LONG;
213 	    size -= BITS_PER_LONG, bit += BITS_PER_LONG, addr++) {
214 		if (*addr == 0)
215 			continue;
216 		return (bit + __ffsl(*addr));
217 	}
218 	if (size) {
219 		mask = (*addr) & BITMAP_LAST_WORD_MASK(size);
220 		if (mask)
221 			bit += __ffsl(mask);
222 		else
223 			bit += size;
224 	}
225 	return (bit);
226 }
227 
228 static inline unsigned long
229 find_next_zero_bit(const unsigned long *addr, unsigned long size,
230     unsigned long offset)
231 {
232 	long mask;
233 	int offs;
234 	int bit;
235 	int pos;
236 
237 	if (offset >= size)
238 		return (size);
239 	pos = offset / BITS_PER_LONG;
240 	offs = offset % BITS_PER_LONG;
241 	bit = BITS_PER_LONG * pos;
242 	addr += pos;
243 	if (offs) {
244 		mask = ~(*addr) & ~BITMAP_LAST_WORD_MASK(offs);
245 		if (mask)
246 			return (bit + __ffsl(mask));
247 		if (size - bit <= BITS_PER_LONG)
248 			return (size);
249 		bit += BITS_PER_LONG;
250 		addr++;
251 	}
252 	for (size -= bit; size >= BITS_PER_LONG;
253 	    size -= BITS_PER_LONG, bit += BITS_PER_LONG, addr++) {
254 		if (~(*addr) == 0)
255 			continue;
256 		return (bit + __ffsl(~(*addr)));
257 	}
258 	if (size) {
259 		mask = ~(*addr) & BITMAP_LAST_WORD_MASK(size);
260 		if (mask)
261 			bit += __ffsl(mask);
262 		else
263 			bit += size;
264 	}
265 	return (bit);
266 }
267 
268 #define	__set_bit(i, a)							\
269     atomic_set_long(&((volatile unsigned long *)(a))[BIT_WORD(i)], BIT_MASK(i))
270 
271 #define	set_bit(i, a)							\
272     atomic_set_long(&((volatile unsigned long *)(a))[BIT_WORD(i)], BIT_MASK(i))
273 
274 #define	__clear_bit(i, a)						\
275     atomic_clear_long(&((volatile unsigned long *)(a))[BIT_WORD(i)], BIT_MASK(i))
276 
277 #define	clear_bit(i, a)							\
278     atomic_clear_long(&((volatile unsigned long *)(a))[BIT_WORD(i)], BIT_MASK(i))
279 
280 #define	clear_bit_unlock(i, a)						\
281     atomic_clear_rel_long(&((volatile unsigned long *)(a))[BIT_WORD(i)], BIT_MASK(i))
282 
283 #define	test_bit(i, a)							\
284     !!(READ_ONCE(((volatile const unsigned long *)(a))[BIT_WORD(i)]) & BIT_MASK(i))
285 
286 static inline int
287 test_and_clear_bit(long bit, volatile unsigned long *var)
288 {
289 	long val;
290 
291 	var += BIT_WORD(bit);
292 	bit %= BITS_PER_LONG;
293 	bit = (1UL << bit);
294 
295 	val = *var;
296 	while (!atomic_fcmpset_long(var, &val, val & ~bit))
297 		;
298 	return !!(val & bit);
299 }
300 
301 static inline int
302 __test_and_clear_bit(long bit, volatile unsigned long *var)
303 {
304 	long val;
305 
306 	var += BIT_WORD(bit);
307 	bit %= BITS_PER_LONG;
308 	bit = (1UL << bit);
309 
310 	val = *var;
311 	*var &= ~bit;
312 
313 	return !!(val & bit);
314 }
315 
316 static inline int
317 test_and_set_bit(long bit, volatile unsigned long *var)
318 {
319 	long val;
320 
321 	var += BIT_WORD(bit);
322 	bit %= BITS_PER_LONG;
323 	bit = (1UL << bit);
324 
325 	val = *var;
326 	while (!atomic_fcmpset_long(var, &val, val | bit))
327 		;
328 	return !!(val & bit);
329 }
330 
331 static inline int
332 __test_and_set_bit(long bit, volatile unsigned long *var)
333 {
334 	long val;
335 
336 	var += BIT_WORD(bit);
337 	bit %= BITS_PER_LONG;
338 	bit = (1UL << bit);
339 
340 	val = *var;
341 	*var |= bit;
342 
343 	return !!(val & bit);
344 }
345 
346 enum {
347         REG_OP_ISFREE,
348         REG_OP_ALLOC,
349         REG_OP_RELEASE,
350 };
351 
352 static inline int
353 linux_reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
354 {
355         int nbits_reg;
356         int index;
357         int offset;
358         int nlongs_reg;
359         int nbitsinlong;
360         unsigned long mask;
361         int i;
362         int ret = 0;
363 
364         nbits_reg = 1 << order;
365         index = pos / BITS_PER_LONG;
366         offset = pos - (index * BITS_PER_LONG);
367         nlongs_reg = BITS_TO_LONGS(nbits_reg);
368         nbitsinlong = MIN(nbits_reg,  BITS_PER_LONG);
369 
370         mask = (1UL << (nbitsinlong - 1));
371         mask += mask - 1;
372         mask <<= offset;
373 
374         switch (reg_op) {
375         case REG_OP_ISFREE:
376                 for (i = 0; i < nlongs_reg; i++) {
377                         if (bitmap[index + i] & mask)
378                                 goto done;
379                 }
380                 ret = 1;
381                 break;
382 
383         case REG_OP_ALLOC:
384                 for (i = 0; i < nlongs_reg; i++)
385                         bitmap[index + i] |= mask;
386                 break;
387 
388         case REG_OP_RELEASE:
389                 for (i = 0; i < nlongs_reg; i++)
390                         bitmap[index + i] &= ~mask;
391                 break;
392         }
393 done:
394         return ret;
395 }
396 
397 #define for_each_set_bit(bit, addr, size) \
398 	for ((bit) = find_first_bit((addr), (size));		\
399 	     (bit) < (size);					\
400 	     (bit) = find_next_bit((addr), (size), (bit) + 1))
401 
402 #define	for_each_clear_bit(bit, addr, size) \
403 	for ((bit) = find_first_zero_bit((addr), (size));		\
404 	     (bit) < (size);						\
405 	     (bit) = find_next_zero_bit((addr), (size), (bit) + 1))
406 
407 static inline uint64_t
408 sign_extend64(uint64_t value, int index)
409 {
410 	uint8_t shift = 63 - index;
411 
412 	return ((int64_t)(value << shift) >> shift);
413 }
414 
415 static inline uint32_t
416 sign_extend32(uint32_t value, int index)
417 {
418 	uint8_t shift = 31 - index;
419 
420 	return ((int32_t)(value << shift) >> shift);
421 }
422 
423 #endif	/* _LINUXKPI_LINUX_BITOPS_H_ */
424