xref: /freebsd/sys/compat/linux/linux_misc.c (revision fa42a0bfa40342531df64873dcef74593702f4b3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * Copyright (c) 1994-1995 Søren Schmidt
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer
13  *    in this position and unchanged.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 
37 #include <sys/param.h>
38 #include <sys/blist.h>
39 #include <sys/fcntl.h>
40 #if defined(__i386__)
41 #include <sys/imgact_aout.h>
42 #endif
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/mount.h>
50 #include <sys/msgbuf.h>
51 #include <sys/mutex.h>
52 #include <sys/namei.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/procctl.h>
56 #include <sys/reboot.h>
57 #include <sys/racct.h>
58 #include <sys/random.h>
59 #include <sys/resourcevar.h>
60 #include <sys/sched.h>
61 #include <sys/sdt.h>
62 #include <sys/signalvar.h>
63 #include <sys/stat.h>
64 #include <sys/syscallsubr.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysproto.h>
67 #include <sys/systm.h>
68 #include <sys/time.h>
69 #include <sys/vmmeter.h>
70 #include <sys/vnode.h>
71 #include <sys/wait.h>
72 #include <sys/cpuset.h>
73 #include <sys/uio.h>
74 
75 #include <security/mac/mac_framework.h>
76 
77 #include <vm/vm.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_extern.h>
82 #include <vm/swap_pager.h>
83 
84 #ifdef COMPAT_LINUX32
85 #include <machine/../linux32/linux.h>
86 #include <machine/../linux32/linux32_proto.h>
87 #else
88 #include <machine/../linux/linux.h>
89 #include <machine/../linux/linux_proto.h>
90 #endif
91 
92 #include <compat/linux/linux_dtrace.h>
93 #include <compat/linux/linux_file.h>
94 #include <compat/linux/linux_mib.h>
95 #include <compat/linux/linux_signal.h>
96 #include <compat/linux/linux_timer.h>
97 #include <compat/linux/linux_util.h>
98 #include <compat/linux/linux_sysproto.h>
99 #include <compat/linux/linux_emul.h>
100 #include <compat/linux/linux_misc.h>
101 
102 /**
103  * Special DTrace provider for the linuxulator.
104  *
105  * In this file we define the provider for the entire linuxulator. All
106  * modules (= files of the linuxulator) use it.
107  *
108  * We define a different name depending on the emulated bitsize, see
109  * ../../<ARCH>/linux{,32}/linux.h, e.g.:
110  *      native bitsize          = linuxulator
111  *      amd64, 32bit emulation  = linuxulator32
112  */
113 LIN_SDT_PROVIDER_DEFINE(LINUX_DTRACE);
114 
115 int stclohz;				/* Statistics clock frequency */
116 
117 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
118 	RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
119 	RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
120 	RLIMIT_MEMLOCK, RLIMIT_AS
121 };
122 
123 struct l_sysinfo {
124 	l_long		uptime;		/* Seconds since boot */
125 	l_ulong		loads[3];	/* 1, 5, and 15 minute load averages */
126 #define LINUX_SYSINFO_LOADS_SCALE 65536
127 	l_ulong		totalram;	/* Total usable main memory size */
128 	l_ulong		freeram;	/* Available memory size */
129 	l_ulong		sharedram;	/* Amount of shared memory */
130 	l_ulong		bufferram;	/* Memory used by buffers */
131 	l_ulong		totalswap;	/* Total swap space size */
132 	l_ulong		freeswap;	/* swap space still available */
133 	l_ushort	procs;		/* Number of current processes */
134 	l_ushort	pads;
135 	l_ulong		totalhigh;
136 	l_ulong		freehigh;
137 	l_uint		mem_unit;
138 	char		_f[20-2*sizeof(l_long)-sizeof(l_int)];	/* padding */
139 };
140 
141 struct l_pselect6arg {
142 	l_uintptr_t	ss;
143 	l_size_t	ss_len;
144 };
145 
146 static int	linux_utimensat_nsec_valid(l_long);
147 
148 int
149 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
150 {
151 	struct l_sysinfo sysinfo;
152 	int i, j;
153 	struct timespec ts;
154 
155 	bzero(&sysinfo, sizeof(sysinfo));
156 	getnanouptime(&ts);
157 	if (ts.tv_nsec != 0)
158 		ts.tv_sec++;
159 	sysinfo.uptime = ts.tv_sec;
160 
161 	/* Use the information from the mib to get our load averages */
162 	for (i = 0; i < 3; i++)
163 		sysinfo.loads[i] = averunnable.ldavg[i] *
164 		    LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
165 
166 	sysinfo.totalram = physmem * PAGE_SIZE;
167 	sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
168 
169 	/*
170 	 * sharedram counts pages allocated to named, swap-backed objects such
171 	 * as shared memory segments and tmpfs files.  There is no cheap way to
172 	 * compute this, so just leave the field unpopulated.  Linux itself only
173 	 * started setting this field in the 3.x timeframe.
174 	 */
175 	sysinfo.sharedram = 0;
176 	sysinfo.bufferram = 0;
177 
178 	swap_pager_status(&i, &j);
179 	sysinfo.totalswap = i * PAGE_SIZE;
180 	sysinfo.freeswap = (i - j) * PAGE_SIZE;
181 
182 	sysinfo.procs = nprocs;
183 
184 	/*
185 	 * Platforms supported by the emulation layer do not have a notion of
186 	 * high memory.
187 	 */
188 	sysinfo.totalhigh = 0;
189 	sysinfo.freehigh = 0;
190 
191 	sysinfo.mem_unit = 1;
192 
193 	return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
194 }
195 
196 #ifdef LINUX_LEGACY_SYSCALLS
197 int
198 linux_alarm(struct thread *td, struct linux_alarm_args *args)
199 {
200 	struct itimerval it, old_it;
201 	u_int secs;
202 	int error;
203 
204 	secs = args->secs;
205 	/*
206 	 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
207 	 * to match kern_setitimer()'s limit to avoid error from it.
208 	 *
209 	 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
210 	 * platforms.
211 	 */
212 	if (secs > INT32_MAX / 2)
213 		secs = INT32_MAX / 2;
214 
215 	it.it_value.tv_sec = secs;
216 	it.it_value.tv_usec = 0;
217 	timevalclear(&it.it_interval);
218 	error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
219 	KASSERT(error == 0, ("kern_setitimer returns %d", error));
220 
221 	if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
222 	    old_it.it_value.tv_usec >= 500000)
223 		old_it.it_value.tv_sec++;
224 	td->td_retval[0] = old_it.it_value.tv_sec;
225 	return (0);
226 }
227 #endif
228 
229 int
230 linux_brk(struct thread *td, struct linux_brk_args *args)
231 {
232 	struct vmspace *vm = td->td_proc->p_vmspace;
233 	uintptr_t new, old;
234 
235 	old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
236 	new = (uintptr_t)args->dsend;
237 	if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
238 		td->td_retval[0] = (register_t)new;
239 	else
240 		td->td_retval[0] = (register_t)old;
241 
242 	return (0);
243 }
244 
245 #if defined(__i386__)
246 /* XXX: what about amd64/linux32? */
247 
248 int
249 linux_uselib(struct thread *td, struct linux_uselib_args *args)
250 {
251 	struct nameidata ni;
252 	struct vnode *vp;
253 	struct exec *a_out;
254 	vm_map_t map;
255 	vm_map_entry_t entry;
256 	struct vattr attr;
257 	vm_offset_t vmaddr;
258 	unsigned long file_offset;
259 	unsigned long bss_size;
260 	char *library;
261 	ssize_t aresid;
262 	int error;
263 	bool locked, opened, textset;
264 
265 	a_out = NULL;
266 	vp = NULL;
267 	locked = false;
268 	textset = false;
269 	opened = false;
270 
271 	if (!LUSECONVPATH(td)) {
272 		NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
273 		    UIO_USERSPACE, args->library, td);
274 		error = namei(&ni);
275 	} else {
276 		LCONVPATHEXIST(td, args->library, &library);
277 		NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
278 		    UIO_SYSSPACE, library, td);
279 		error = namei(&ni);
280 		LFREEPATH(library);
281 	}
282 	if (error)
283 		goto cleanup;
284 
285 	vp = ni.ni_vp;
286 	NDFREE(&ni, NDF_ONLY_PNBUF);
287 
288 	/*
289 	 * From here on down, we have a locked vnode that must be unlocked.
290 	 * XXX: The code below largely duplicates exec_check_permissions().
291 	 */
292 	locked = true;
293 
294 	/* Executable? */
295 	error = VOP_GETATTR(vp, &attr, td->td_ucred);
296 	if (error)
297 		goto cleanup;
298 
299 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
300 	    ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) {
301 		/* EACCESS is what exec(2) returns. */
302 		error = ENOEXEC;
303 		goto cleanup;
304 	}
305 
306 	/* Sensible size? */
307 	if (attr.va_size == 0) {
308 		error = ENOEXEC;
309 		goto cleanup;
310 	}
311 
312 	/* Can we access it? */
313 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
314 	if (error)
315 		goto cleanup;
316 
317 	/*
318 	 * XXX: This should use vn_open() so that it is properly authorized,
319 	 * and to reduce code redundancy all over the place here.
320 	 * XXX: Not really, it duplicates far more of exec_check_permissions()
321 	 * than vn_open().
322 	 */
323 #ifdef MAC
324 	error = mac_vnode_check_open(td->td_ucred, vp, VREAD);
325 	if (error)
326 		goto cleanup;
327 #endif
328 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
329 	if (error)
330 		goto cleanup;
331 	opened = true;
332 
333 	/* Pull in executable header into exec_map */
334 	error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE,
335 	    VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0);
336 	if (error)
337 		goto cleanup;
338 
339 	/* Is it a Linux binary ? */
340 	if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
341 		error = ENOEXEC;
342 		goto cleanup;
343 	}
344 
345 	/*
346 	 * While we are here, we should REALLY do some more checks
347 	 */
348 
349 	/* Set file/virtual offset based on a.out variant. */
350 	switch ((int)(a_out->a_magic & 0xffff)) {
351 	case 0413:			/* ZMAGIC */
352 		file_offset = 1024;
353 		break;
354 	case 0314:			/* QMAGIC */
355 		file_offset = 0;
356 		break;
357 	default:
358 		error = ENOEXEC;
359 		goto cleanup;
360 	}
361 
362 	bss_size = round_page(a_out->a_bss);
363 
364 	/* Check various fields in header for validity/bounds. */
365 	if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
366 		error = ENOEXEC;
367 		goto cleanup;
368 	}
369 
370 	/* text + data can't exceed file size */
371 	if (a_out->a_data + a_out->a_text > attr.va_size) {
372 		error = EFAULT;
373 		goto cleanup;
374 	}
375 
376 	/*
377 	 * text/data/bss must not exceed limits
378 	 * XXX - this is not complete. it should check current usage PLUS
379 	 * the resources needed by this library.
380 	 */
381 	PROC_LOCK(td->td_proc);
382 	if (a_out->a_text > maxtsiz ||
383 	    a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) ||
384 	    racct_set(td->td_proc, RACCT_DATA, a_out->a_data +
385 	    bss_size) != 0) {
386 		PROC_UNLOCK(td->td_proc);
387 		error = ENOMEM;
388 		goto cleanup;
389 	}
390 	PROC_UNLOCK(td->td_proc);
391 
392 	/*
393 	 * Prevent more writers.
394 	 */
395 	error = VOP_SET_TEXT(vp);
396 	if (error != 0)
397 		goto cleanup;
398 	textset = true;
399 
400 	/*
401 	 * Lock no longer needed
402 	 */
403 	locked = false;
404 	VOP_UNLOCK(vp);
405 
406 	/*
407 	 * Check if file_offset page aligned. Currently we cannot handle
408 	 * misalinged file offsets, and so we read in the entire image
409 	 * (what a waste).
410 	 */
411 	if (file_offset & PAGE_MASK) {
412 		/* Map text+data read/write/execute */
413 
414 		/* a_entry is the load address and is page aligned */
415 		vmaddr = trunc_page(a_out->a_entry);
416 
417 		/* get anon user mapping, read+write+execute */
418 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
419 		    &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE,
420 		    VM_PROT_ALL, VM_PROT_ALL, 0);
421 		if (error)
422 			goto cleanup;
423 
424 		error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset,
425 		    a_out->a_text + a_out->a_data, UIO_USERSPACE, 0,
426 		    td->td_ucred, NOCRED, &aresid, td);
427 		if (error != 0)
428 			goto cleanup;
429 		if (aresid != 0) {
430 			error = ENOEXEC;
431 			goto cleanup;
432 		}
433 	} else {
434 		/*
435 		 * for QMAGIC, a_entry is 20 bytes beyond the load address
436 		 * to skip the executable header
437 		 */
438 		vmaddr = trunc_page(a_out->a_entry);
439 
440 		/*
441 		 * Map it all into the process's space as a single
442 		 * copy-on-write "data" segment.
443 		 */
444 		map = &td->td_proc->p_vmspace->vm_map;
445 		error = vm_mmap(map, &vmaddr,
446 		    a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL,
447 		    MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset);
448 		if (error)
449 			goto cleanup;
450 		vm_map_lock(map);
451 		if (!vm_map_lookup_entry(map, vmaddr, &entry)) {
452 			vm_map_unlock(map);
453 			error = EDOOFUS;
454 			goto cleanup;
455 		}
456 		entry->eflags |= MAP_ENTRY_VN_EXEC;
457 		vm_map_unlock(map);
458 		textset = false;
459 	}
460 
461 	if (bss_size != 0) {
462 		/* Calculate BSS start address */
463 		vmaddr = trunc_page(a_out->a_entry) + a_out->a_text +
464 		    a_out->a_data;
465 
466 		/* allocate some 'anon' space */
467 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
468 		    &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL,
469 		    VM_PROT_ALL, 0);
470 		if (error)
471 			goto cleanup;
472 	}
473 
474 cleanup:
475 	if (opened) {
476 		if (locked)
477 			VOP_UNLOCK(vp);
478 		locked = false;
479 		VOP_CLOSE(vp, FREAD, td->td_ucred, td);
480 	}
481 	if (textset) {
482 		if (!locked) {
483 			locked = true;
484 			VOP_LOCK(vp, LK_SHARED | LK_RETRY);
485 		}
486 		VOP_UNSET_TEXT_CHECKED(vp);
487 	}
488 	if (locked)
489 		VOP_UNLOCK(vp);
490 
491 	/* Release the temporary mapping. */
492 	if (a_out)
493 		kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE);
494 
495 	return (error);
496 }
497 
498 #endif	/* __i386__ */
499 
500 #ifdef LINUX_LEGACY_SYSCALLS
501 int
502 linux_select(struct thread *td, struct linux_select_args *args)
503 {
504 	l_timeval ltv;
505 	struct timeval tv0, tv1, utv, *tvp;
506 	int error;
507 
508 	/*
509 	 * Store current time for computation of the amount of
510 	 * time left.
511 	 */
512 	if (args->timeout) {
513 		if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
514 			goto select_out;
515 		utv.tv_sec = ltv.tv_sec;
516 		utv.tv_usec = ltv.tv_usec;
517 
518 		if (itimerfix(&utv)) {
519 			/*
520 			 * The timeval was invalid.  Convert it to something
521 			 * valid that will act as it does under Linux.
522 			 */
523 			utv.tv_sec += utv.tv_usec / 1000000;
524 			utv.tv_usec %= 1000000;
525 			if (utv.tv_usec < 0) {
526 				utv.tv_sec -= 1;
527 				utv.tv_usec += 1000000;
528 			}
529 			if (utv.tv_sec < 0)
530 				timevalclear(&utv);
531 		}
532 		microtime(&tv0);
533 		tvp = &utv;
534 	} else
535 		tvp = NULL;
536 
537 	error = kern_select(td, args->nfds, args->readfds, args->writefds,
538 	    args->exceptfds, tvp, LINUX_NFDBITS);
539 	if (error)
540 		goto select_out;
541 
542 	if (args->timeout) {
543 		if (td->td_retval[0]) {
544 			/*
545 			 * Compute how much time was left of the timeout,
546 			 * by subtracting the current time and the time
547 			 * before we started the call, and subtracting
548 			 * that result from the user-supplied value.
549 			 */
550 			microtime(&tv1);
551 			timevalsub(&tv1, &tv0);
552 			timevalsub(&utv, &tv1);
553 			if (utv.tv_sec < 0)
554 				timevalclear(&utv);
555 		} else
556 			timevalclear(&utv);
557 		ltv.tv_sec = utv.tv_sec;
558 		ltv.tv_usec = utv.tv_usec;
559 		if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
560 			goto select_out;
561 	}
562 
563 select_out:
564 	return (error);
565 }
566 #endif
567 
568 int
569 linux_mremap(struct thread *td, struct linux_mremap_args *args)
570 {
571 	uintptr_t addr;
572 	size_t len;
573 	int error = 0;
574 
575 	if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
576 		td->td_retval[0] = 0;
577 		return (EINVAL);
578 	}
579 
580 	/*
581 	 * Check for the page alignment.
582 	 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
583 	 */
584 	if (args->addr & PAGE_MASK) {
585 		td->td_retval[0] = 0;
586 		return (EINVAL);
587 	}
588 
589 	args->new_len = round_page(args->new_len);
590 	args->old_len = round_page(args->old_len);
591 
592 	if (args->new_len > args->old_len) {
593 		td->td_retval[0] = 0;
594 		return (ENOMEM);
595 	}
596 
597 	if (args->new_len < args->old_len) {
598 		addr = args->addr + args->new_len;
599 		len = args->old_len - args->new_len;
600 		error = kern_munmap(td, addr, len);
601 	}
602 
603 	td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
604 	return (error);
605 }
606 
607 #define LINUX_MS_ASYNC       0x0001
608 #define LINUX_MS_INVALIDATE  0x0002
609 #define LINUX_MS_SYNC        0x0004
610 
611 int
612 linux_msync(struct thread *td, struct linux_msync_args *args)
613 {
614 
615 	return (kern_msync(td, args->addr, args->len,
616 	    args->fl & ~LINUX_MS_SYNC));
617 }
618 
619 #ifdef LINUX_LEGACY_SYSCALLS
620 int
621 linux_time(struct thread *td, struct linux_time_args *args)
622 {
623 	struct timeval tv;
624 	l_time_t tm;
625 	int error;
626 
627 	microtime(&tv);
628 	tm = tv.tv_sec;
629 	if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
630 		return (error);
631 	td->td_retval[0] = tm;
632 	return (0);
633 }
634 #endif
635 
636 struct l_times_argv {
637 	l_clock_t	tms_utime;
638 	l_clock_t	tms_stime;
639 	l_clock_t	tms_cutime;
640 	l_clock_t	tms_cstime;
641 };
642 
643 /*
644  * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
645  * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
646  * auxiliary vector entry.
647  */
648 #define	CLK_TCK		100
649 
650 #define	CONVOTCK(r)	(r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
651 #define	CONVNTCK(r)	(r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
652 
653 #define	CONVTCK(r)	(linux_kernver(td) >= LINUX_KERNVER_2004000 ?		\
654 			    CONVNTCK(r) : CONVOTCK(r))
655 
656 int
657 linux_times(struct thread *td, struct linux_times_args *args)
658 {
659 	struct timeval tv, utime, stime, cutime, cstime;
660 	struct l_times_argv tms;
661 	struct proc *p;
662 	int error;
663 
664 	if (args->buf != NULL) {
665 		p = td->td_proc;
666 		PROC_LOCK(p);
667 		PROC_STATLOCK(p);
668 		calcru(p, &utime, &stime);
669 		PROC_STATUNLOCK(p);
670 		calccru(p, &cutime, &cstime);
671 		PROC_UNLOCK(p);
672 
673 		tms.tms_utime = CONVTCK(utime);
674 		tms.tms_stime = CONVTCK(stime);
675 
676 		tms.tms_cutime = CONVTCK(cutime);
677 		tms.tms_cstime = CONVTCK(cstime);
678 
679 		if ((error = copyout(&tms, args->buf, sizeof(tms))))
680 			return (error);
681 	}
682 
683 	microuptime(&tv);
684 	td->td_retval[0] = (int)CONVTCK(tv);
685 	return (0);
686 }
687 
688 int
689 linux_newuname(struct thread *td, struct linux_newuname_args *args)
690 {
691 	struct l_new_utsname utsname;
692 	char osname[LINUX_MAX_UTSNAME];
693 	char osrelease[LINUX_MAX_UTSNAME];
694 	char *p;
695 
696 	linux_get_osname(td, osname);
697 	linux_get_osrelease(td, osrelease);
698 
699 	bzero(&utsname, sizeof(utsname));
700 	strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
701 	getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
702 	getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
703 	strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
704 	strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
705 	for (p = utsname.version; *p != '\0'; ++p)
706 		if (*p == '\n') {
707 			*p = '\0';
708 			break;
709 		}
710 #if defined(__amd64__)
711 	/*
712 	 * On amd64, Linux uname(2) needs to return "x86_64"
713 	 * for both 64-bit and 32-bit applications.  On 32-bit,
714 	 * the string returned by getauxval(AT_PLATFORM) needs
715 	 * to remain "i686", though.
716 	 */
717 	strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
718 #else
719 	strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME);
720 #endif
721 
722 	return (copyout(&utsname, args->buf, sizeof(utsname)));
723 }
724 
725 struct l_utimbuf {
726 	l_time_t l_actime;
727 	l_time_t l_modtime;
728 };
729 
730 #ifdef LINUX_LEGACY_SYSCALLS
731 int
732 linux_utime(struct thread *td, struct linux_utime_args *args)
733 {
734 	struct timeval tv[2], *tvp;
735 	struct l_utimbuf lut;
736 	char *fname;
737 	int error;
738 	bool convpath;
739 
740 	convpath = LUSECONVPATH(td);
741 	if (convpath)
742 		LCONVPATHEXIST(td, args->fname, &fname);
743 
744 	if (args->times) {
745 		if ((error = copyin(args->times, &lut, sizeof lut))) {
746 			if (convpath)
747 				LFREEPATH(fname);
748 			return (error);
749 		}
750 		tv[0].tv_sec = lut.l_actime;
751 		tv[0].tv_usec = 0;
752 		tv[1].tv_sec = lut.l_modtime;
753 		tv[1].tv_usec = 0;
754 		tvp = tv;
755 	} else
756 		tvp = NULL;
757 
758 	if (!convpath) {
759 		error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
760 		    tvp, UIO_SYSSPACE);
761 	} else {
762 		error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp,
763 		    UIO_SYSSPACE);
764 		LFREEPATH(fname);
765 	}
766 	return (error);
767 }
768 #endif
769 
770 #ifdef LINUX_LEGACY_SYSCALLS
771 int
772 linux_utimes(struct thread *td, struct linux_utimes_args *args)
773 {
774 	l_timeval ltv[2];
775 	struct timeval tv[2], *tvp = NULL;
776 	char *fname;
777 	int error;
778 	bool convpath;
779 
780 	convpath = LUSECONVPATH(td);
781 	if (convpath)
782 		LCONVPATHEXIST(td, args->fname, &fname);
783 
784 	if (args->tptr != NULL) {
785 		if ((error = copyin(args->tptr, ltv, sizeof ltv))) {
786 			LFREEPATH(fname);
787 			return (error);
788 		}
789 		tv[0].tv_sec = ltv[0].tv_sec;
790 		tv[0].tv_usec = ltv[0].tv_usec;
791 		tv[1].tv_sec = ltv[1].tv_sec;
792 		tv[1].tv_usec = ltv[1].tv_usec;
793 		tvp = tv;
794 	}
795 
796 	if (!convpath) {
797 		error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
798 		    tvp, UIO_SYSSPACE);
799 	} else {
800 		error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE,
801 		    tvp, UIO_SYSSPACE);
802 		LFREEPATH(fname);
803 	}
804 	return (error);
805 }
806 #endif
807 
808 static int
809 linux_utimensat_nsec_valid(l_long nsec)
810 {
811 
812 	if (nsec == LINUX_UTIME_OMIT || nsec == LINUX_UTIME_NOW)
813 		return (0);
814 	if (nsec >= 0 && nsec <= 999999999)
815 		return (0);
816 	return (1);
817 }
818 
819 int
820 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
821 {
822 	struct l_timespec l_times[2];
823 	struct timespec times[2], *timesp = NULL;
824 	char *path = NULL;
825 	int error, dfd, flags = 0;
826 
827 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
828 
829 	if (args->flags & ~LINUX_AT_SYMLINK_NOFOLLOW)
830 		return (EINVAL);
831 
832 	if (args->times != NULL) {
833 		error = copyin(args->times, l_times, sizeof(l_times));
834 		if (error != 0)
835 			return (error);
836 
837 		if (linux_utimensat_nsec_valid(l_times[0].tv_nsec) != 0 ||
838 		    linux_utimensat_nsec_valid(l_times[1].tv_nsec) != 0)
839 			return (EINVAL);
840 
841 		times[0].tv_sec = l_times[0].tv_sec;
842 		switch (l_times[0].tv_nsec)
843 		{
844 		case LINUX_UTIME_OMIT:
845 			times[0].tv_nsec = UTIME_OMIT;
846 			break;
847 		case LINUX_UTIME_NOW:
848 			times[0].tv_nsec = UTIME_NOW;
849 			break;
850 		default:
851 			times[0].tv_nsec = l_times[0].tv_nsec;
852 		}
853 
854 		times[1].tv_sec = l_times[1].tv_sec;
855 		switch (l_times[1].tv_nsec)
856 		{
857 		case LINUX_UTIME_OMIT:
858 			times[1].tv_nsec = UTIME_OMIT;
859 			break;
860 		case LINUX_UTIME_NOW:
861 			times[1].tv_nsec = UTIME_NOW;
862 			break;
863 		default:
864 			times[1].tv_nsec = l_times[1].tv_nsec;
865 			break;
866 		}
867 		timesp = times;
868 
869 		/* This breaks POSIX, but is what the Linux kernel does
870 		 * _on purpose_ (documented in the man page for utimensat(2)),
871 		 * so we must follow that behaviour. */
872 		if (times[0].tv_nsec == UTIME_OMIT &&
873 		    times[1].tv_nsec == UTIME_OMIT)
874 			return (0);
875 	}
876 
877 	if (args->pathname != NULL)
878 		LCONVPATHEXIST_AT(td, args->pathname, &path, dfd);
879 	else if (args->flags != 0)
880 		return (EINVAL);
881 
882 	if (args->flags & LINUX_AT_SYMLINK_NOFOLLOW)
883 		flags |= AT_SYMLINK_NOFOLLOW;
884 
885 	if (path == NULL)
886 		error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE);
887 	else {
888 		error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp,
889 			UIO_SYSSPACE, flags);
890 		LFREEPATH(path);
891 	}
892 
893 	return (error);
894 }
895 
896 #ifdef LINUX_LEGACY_SYSCALLS
897 int
898 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
899 {
900 	l_timeval ltv[2];
901 	struct timeval tv[2], *tvp = NULL;
902 	char *fname;
903 	int error, dfd;
904 	bool convpath;
905 
906 	convpath = LUSECONVPATH(td);
907 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
908 	if (convpath)
909 		LCONVPATHEXIST_AT(td, args->filename, &fname, dfd);
910 
911 	if (args->utimes != NULL) {
912 		if ((error = copyin(args->utimes, ltv, sizeof ltv))) {
913 			if (convpath)
914 				LFREEPATH(fname);
915 			return (error);
916 		}
917 		tv[0].tv_sec = ltv[0].tv_sec;
918 		tv[0].tv_usec = ltv[0].tv_usec;
919 		tv[1].tv_sec = ltv[1].tv_sec;
920 		tv[1].tv_usec = ltv[1].tv_usec;
921 		tvp = tv;
922 	}
923 
924 	if (!convpath) {
925 		error = kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
926 		    tvp, UIO_SYSSPACE);
927 	} else {
928 		error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE);
929 		LFREEPATH(fname);
930 	}
931 	return (error);
932 }
933 #endif
934 
935 static int
936 linux_common_wait(struct thread *td, int pid, int *statusp,
937     int options, struct __wrusage *wrup)
938 {
939 	siginfo_t siginfo;
940 	idtype_t idtype;
941 	id_t id;
942 	int error, status, tmpstat;
943 
944 	if (pid == WAIT_ANY) {
945 		idtype = P_ALL;
946 		id = 0;
947 	} else if (pid < 0) {
948 		idtype = P_PGID;
949 		id = (id_t)-pid;
950 	} else {
951 		idtype = P_PID;
952 		id = (id_t)pid;
953 	}
954 
955 	/*
956 	 * For backward compatibility we implicitly add flags WEXITED
957 	 * and WTRAPPED here.
958 	 */
959 	options |= WEXITED | WTRAPPED;
960 	error = kern_wait6(td, idtype, id, &status, options, wrup, &siginfo);
961 	if (error)
962 		return (error);
963 
964 	if (statusp) {
965 		tmpstat = status & 0xffff;
966 		if (WIFSIGNALED(tmpstat)) {
967 			tmpstat = (tmpstat & 0xffffff80) |
968 			    bsd_to_linux_signal(WTERMSIG(tmpstat));
969 		} else if (WIFSTOPPED(tmpstat)) {
970 			tmpstat = (tmpstat & 0xffff00ff) |
971 			    (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
972 #if defined(__amd64__) && !defined(COMPAT_LINUX32)
973 			if (WSTOPSIG(status) == SIGTRAP) {
974 				tmpstat = linux_ptrace_status(td,
975 				    siginfo.si_pid, tmpstat);
976 			}
977 #endif
978 		} else if (WIFCONTINUED(tmpstat)) {
979 			tmpstat = 0xffff;
980 		}
981 		error = copyout(&tmpstat, statusp, sizeof(int));
982 	}
983 
984 	return (error);
985 }
986 
987 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
988 int
989 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
990 {
991 	struct linux_wait4_args wait4_args;
992 
993 	wait4_args.pid = args->pid;
994 	wait4_args.status = args->status;
995 	wait4_args.options = args->options;
996 	wait4_args.rusage = NULL;
997 
998 	return (linux_wait4(td, &wait4_args));
999 }
1000 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1001 
1002 int
1003 linux_wait4(struct thread *td, struct linux_wait4_args *args)
1004 {
1005 	int error, options;
1006 	struct __wrusage wru, *wrup;
1007 
1008 	if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
1009 	    LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
1010 		return (EINVAL);
1011 
1012 	options = WEXITED;
1013 	linux_to_bsd_waitopts(args->options, &options);
1014 
1015 	if (args->rusage != NULL)
1016 		wrup = &wru;
1017 	else
1018 		wrup = NULL;
1019 	error = linux_common_wait(td, args->pid, args->status, options, wrup);
1020 	if (error != 0)
1021 		return (error);
1022 	if (args->rusage != NULL)
1023 		error = linux_copyout_rusage(&wru.wru_self, args->rusage);
1024 	return (error);
1025 }
1026 
1027 int
1028 linux_waitid(struct thread *td, struct linux_waitid_args *args)
1029 {
1030 	int status, options, sig;
1031 	struct __wrusage wru;
1032 	siginfo_t siginfo;
1033 	l_siginfo_t lsi;
1034 	idtype_t idtype;
1035 	struct proc *p;
1036 	int error;
1037 
1038 	options = 0;
1039 	linux_to_bsd_waitopts(args->options, &options);
1040 
1041 	if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED))
1042 		return (EINVAL);
1043 	if (!(options & (WEXITED | WUNTRACED | WCONTINUED)))
1044 		return (EINVAL);
1045 
1046 	switch (args->idtype) {
1047 	case LINUX_P_ALL:
1048 		idtype = P_ALL;
1049 		break;
1050 	case LINUX_P_PID:
1051 		if (args->id <= 0)
1052 			return (EINVAL);
1053 		idtype = P_PID;
1054 		break;
1055 	case LINUX_P_PGID:
1056 		if (args->id <= 0)
1057 			return (EINVAL);
1058 		idtype = P_PGID;
1059 		break;
1060 	default:
1061 		return (EINVAL);
1062 	}
1063 
1064 	error = kern_wait6(td, idtype, args->id, &status, options,
1065 	    &wru, &siginfo);
1066 	if (error != 0)
1067 		return (error);
1068 	if (args->rusage != NULL) {
1069 		error = linux_copyout_rusage(&wru.wru_children,
1070 		    args->rusage);
1071 		if (error != 0)
1072 			return (error);
1073 	}
1074 	if (args->info != NULL) {
1075 		p = td->td_proc;
1076 		bzero(&lsi, sizeof(lsi));
1077 		if (td->td_retval[0] != 0) {
1078 			sig = bsd_to_linux_signal(siginfo.si_signo);
1079 			siginfo_to_lsiginfo(&siginfo, &lsi, sig);
1080 		}
1081 		error = copyout(&lsi, args->info, sizeof(lsi));
1082 	}
1083 	td->td_retval[0] = 0;
1084 
1085 	return (error);
1086 }
1087 
1088 #ifdef LINUX_LEGACY_SYSCALLS
1089 int
1090 linux_mknod(struct thread *td, struct linux_mknod_args *args)
1091 {
1092 	char *path;
1093 	int error;
1094 	enum uio_seg seg;
1095 	bool convpath;
1096 
1097 	convpath = LUSECONVPATH(td);
1098 	if (!convpath) {
1099 		path = args->path;
1100 		seg = UIO_USERSPACE;
1101 	} else {
1102 		LCONVPATHCREAT(td, args->path, &path);
1103 		seg = UIO_SYSSPACE;
1104 	}
1105 
1106 	switch (args->mode & S_IFMT) {
1107 	case S_IFIFO:
1108 	case S_IFSOCK:
1109 		error = kern_mkfifoat(td, AT_FDCWD, path, seg,
1110 		    args->mode);
1111 		break;
1112 
1113 	case S_IFCHR:
1114 	case S_IFBLK:
1115 		error = kern_mknodat(td, AT_FDCWD, path, seg,
1116 		    args->mode, args->dev);
1117 		break;
1118 
1119 	case S_IFDIR:
1120 		error = EPERM;
1121 		break;
1122 
1123 	case 0:
1124 		args->mode |= S_IFREG;
1125 		/* FALLTHROUGH */
1126 	case S_IFREG:
1127 		error = kern_openat(td, AT_FDCWD, path, seg,
1128 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1129 		if (error == 0)
1130 			kern_close(td, td->td_retval[0]);
1131 		break;
1132 
1133 	default:
1134 		error = EINVAL;
1135 		break;
1136 	}
1137 	if (convpath)
1138 		LFREEPATH(path);
1139 	return (error);
1140 }
1141 #endif
1142 
1143 int
1144 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
1145 {
1146 	char *path;
1147 	int error, dfd;
1148 	enum uio_seg seg;
1149 	bool convpath;
1150 
1151 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
1152 
1153 	convpath = LUSECONVPATH(td);
1154 	if (!convpath) {
1155 		path = __DECONST(char *, args->filename);
1156 		seg = UIO_USERSPACE;
1157 	} else {
1158 		LCONVPATHCREAT_AT(td, args->filename, &path, dfd);
1159 		seg = UIO_SYSSPACE;
1160 	}
1161 
1162 	switch (args->mode & S_IFMT) {
1163 	case S_IFIFO:
1164 	case S_IFSOCK:
1165 		error = kern_mkfifoat(td, dfd, path, seg, args->mode);
1166 		break;
1167 
1168 	case S_IFCHR:
1169 	case S_IFBLK:
1170 		error = kern_mknodat(td, dfd, path, seg, args->mode,
1171 		    args->dev);
1172 		break;
1173 
1174 	case S_IFDIR:
1175 		error = EPERM;
1176 		break;
1177 
1178 	case 0:
1179 		args->mode |= S_IFREG;
1180 		/* FALLTHROUGH */
1181 	case S_IFREG:
1182 		error = kern_openat(td, dfd, path, seg,
1183 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1184 		if (error == 0)
1185 			kern_close(td, td->td_retval[0]);
1186 		break;
1187 
1188 	default:
1189 		error = EINVAL;
1190 		break;
1191 	}
1192 	if (convpath)
1193 		LFREEPATH(path);
1194 	return (error);
1195 }
1196 
1197 /*
1198  * UGH! This is just about the dumbest idea I've ever heard!!
1199  */
1200 int
1201 linux_personality(struct thread *td, struct linux_personality_args *args)
1202 {
1203 	struct linux_pemuldata *pem;
1204 	struct proc *p = td->td_proc;
1205 	uint32_t old;
1206 
1207 	PROC_LOCK(p);
1208 	pem = pem_find(p);
1209 	old = pem->persona;
1210 	if (args->per != 0xffffffff)
1211 		pem->persona = args->per;
1212 	PROC_UNLOCK(p);
1213 
1214 	td->td_retval[0] = old;
1215 	return (0);
1216 }
1217 
1218 struct l_itimerval {
1219 	l_timeval it_interval;
1220 	l_timeval it_value;
1221 };
1222 
1223 #define	B2L_ITIMERVAL(bip, lip)						\
1224 	(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec;		\
1225 	(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec;	\
1226 	(bip)->it_value.tv_sec = (lip)->it_value.tv_sec;		\
1227 	(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
1228 
1229 int
1230 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
1231 {
1232 	int error;
1233 	struct l_itimerval ls;
1234 	struct itimerval aitv, oitv;
1235 
1236 	if (uap->itv == NULL) {
1237 		uap->itv = uap->oitv;
1238 		return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
1239 	}
1240 
1241 	error = copyin(uap->itv, &ls, sizeof(ls));
1242 	if (error != 0)
1243 		return (error);
1244 	B2L_ITIMERVAL(&aitv, &ls);
1245 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
1246 	if (error != 0 || uap->oitv == NULL)
1247 		return (error);
1248 	B2L_ITIMERVAL(&ls, &oitv);
1249 
1250 	return (copyout(&ls, uap->oitv, sizeof(ls)));
1251 }
1252 
1253 int
1254 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1255 {
1256 	int error;
1257 	struct l_itimerval ls;
1258 	struct itimerval aitv;
1259 
1260 	error = kern_getitimer(td, uap->which, &aitv);
1261 	if (error != 0)
1262 		return (error);
1263 	B2L_ITIMERVAL(&ls, &aitv);
1264 	return (copyout(&ls, uap->itv, sizeof(ls)));
1265 }
1266 
1267 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1268 int
1269 linux_nice(struct thread *td, struct linux_nice_args *args)
1270 {
1271 
1272 	return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1273 }
1274 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1275 
1276 int
1277 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1278 {
1279 	struct ucred *newcred, *oldcred;
1280 	l_gid_t *linux_gidset;
1281 	gid_t *bsd_gidset;
1282 	int ngrp, error;
1283 	struct proc *p;
1284 
1285 	ngrp = args->gidsetsize;
1286 	if (ngrp < 0 || ngrp >= ngroups_max + 1)
1287 		return (EINVAL);
1288 	linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1289 	error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1290 	if (error)
1291 		goto out;
1292 	newcred = crget();
1293 	crextend(newcred, ngrp + 1);
1294 	p = td->td_proc;
1295 	PROC_LOCK(p);
1296 	oldcred = p->p_ucred;
1297 	crcopy(newcred, oldcred);
1298 
1299 	/*
1300 	 * cr_groups[0] holds egid. Setting the whole set from
1301 	 * the supplied set will cause egid to be changed too.
1302 	 * Keep cr_groups[0] unchanged to prevent that.
1303 	 */
1304 
1305 	if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1306 		PROC_UNLOCK(p);
1307 		crfree(newcred);
1308 		goto out;
1309 	}
1310 
1311 	if (ngrp > 0) {
1312 		newcred->cr_ngroups = ngrp + 1;
1313 
1314 		bsd_gidset = newcred->cr_groups;
1315 		ngrp--;
1316 		while (ngrp >= 0) {
1317 			bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
1318 			ngrp--;
1319 		}
1320 	} else
1321 		newcred->cr_ngroups = 1;
1322 
1323 	setsugid(p);
1324 	proc_set_cred(p, newcred);
1325 	PROC_UNLOCK(p);
1326 	crfree(oldcred);
1327 	error = 0;
1328 out:
1329 	free(linux_gidset, M_LINUX);
1330 	return (error);
1331 }
1332 
1333 int
1334 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1335 {
1336 	struct ucred *cred;
1337 	l_gid_t *linux_gidset;
1338 	gid_t *bsd_gidset;
1339 	int bsd_gidsetsz, ngrp, error;
1340 
1341 	cred = td->td_ucred;
1342 	bsd_gidset = cred->cr_groups;
1343 	bsd_gidsetsz = cred->cr_ngroups - 1;
1344 
1345 	/*
1346 	 * cr_groups[0] holds egid. Returning the whole set
1347 	 * here will cause a duplicate. Exclude cr_groups[0]
1348 	 * to prevent that.
1349 	 */
1350 
1351 	if ((ngrp = args->gidsetsize) == 0) {
1352 		td->td_retval[0] = bsd_gidsetsz;
1353 		return (0);
1354 	}
1355 
1356 	if (ngrp < bsd_gidsetsz)
1357 		return (EINVAL);
1358 
1359 	ngrp = 0;
1360 	linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
1361 	    M_LINUX, M_WAITOK);
1362 	while (ngrp < bsd_gidsetsz) {
1363 		linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
1364 		ngrp++;
1365 	}
1366 
1367 	error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1368 	free(linux_gidset, M_LINUX);
1369 	if (error)
1370 		return (error);
1371 
1372 	td->td_retval[0] = ngrp;
1373 	return (0);
1374 }
1375 
1376 static bool
1377 linux_get_dummy_limit(l_uint resource, struct rlimit *rlim)
1378 {
1379 
1380 	switch (resource) {
1381 	case LINUX_RLIMIT_LOCKS:
1382 	case LINUX_RLIMIT_SIGPENDING:
1383 	case LINUX_RLIMIT_MSGQUEUE:
1384 	case LINUX_RLIMIT_RTTIME:
1385 		rlim->rlim_cur = LINUX_RLIM_INFINITY;
1386 		rlim->rlim_max = LINUX_RLIM_INFINITY;
1387 		return (true);
1388 	case LINUX_RLIMIT_NICE:
1389 	case LINUX_RLIMIT_RTPRIO:
1390 		rlim->rlim_cur = 0;
1391 		rlim->rlim_max = 0;
1392 		return (true);
1393 	default:
1394 		return (false);
1395 	}
1396 }
1397 
1398 int
1399 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1400 {
1401 	struct rlimit bsd_rlim;
1402 	struct l_rlimit rlim;
1403 	u_int which;
1404 	int error;
1405 
1406 	if (args->resource >= LINUX_RLIM_NLIMITS)
1407 		return (EINVAL);
1408 
1409 	which = linux_to_bsd_resource[args->resource];
1410 	if (which == -1)
1411 		return (EINVAL);
1412 
1413 	error = copyin(args->rlim, &rlim, sizeof(rlim));
1414 	if (error)
1415 		return (error);
1416 
1417 	bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1418 	bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1419 	return (kern_setrlimit(td, which, &bsd_rlim));
1420 }
1421 
1422 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1423 int
1424 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1425 {
1426 	struct l_rlimit rlim;
1427 	struct rlimit bsd_rlim;
1428 	u_int which;
1429 
1430 	if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1431 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1432 		rlim.rlim_max = bsd_rlim.rlim_max;
1433 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1434 	}
1435 
1436 	if (args->resource >= LINUX_RLIM_NLIMITS)
1437 		return (EINVAL);
1438 
1439 	which = linux_to_bsd_resource[args->resource];
1440 	if (which == -1)
1441 		return (EINVAL);
1442 
1443 	lim_rlimit(td, which, &bsd_rlim);
1444 
1445 #ifdef COMPAT_LINUX32
1446 	rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1447 	if (rlim.rlim_cur == UINT_MAX)
1448 		rlim.rlim_cur = INT_MAX;
1449 	rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1450 	if (rlim.rlim_max == UINT_MAX)
1451 		rlim.rlim_max = INT_MAX;
1452 #else
1453 	rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1454 	if (rlim.rlim_cur == ULONG_MAX)
1455 		rlim.rlim_cur = LONG_MAX;
1456 	rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1457 	if (rlim.rlim_max == ULONG_MAX)
1458 		rlim.rlim_max = LONG_MAX;
1459 #endif
1460 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1461 }
1462 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1463 
1464 int
1465 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1466 {
1467 	struct l_rlimit rlim;
1468 	struct rlimit bsd_rlim;
1469 	u_int which;
1470 
1471 	if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1472 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1473 		rlim.rlim_max = bsd_rlim.rlim_max;
1474 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1475 	}
1476 
1477 	if (args->resource >= LINUX_RLIM_NLIMITS)
1478 		return (EINVAL);
1479 
1480 	which = linux_to_bsd_resource[args->resource];
1481 	if (which == -1)
1482 		return (EINVAL);
1483 
1484 	lim_rlimit(td, which, &bsd_rlim);
1485 
1486 	rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1487 	rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1488 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1489 }
1490 
1491 int
1492 linux_sched_setscheduler(struct thread *td,
1493     struct linux_sched_setscheduler_args *args)
1494 {
1495 	struct sched_param sched_param;
1496 	struct thread *tdt;
1497 	int error, policy;
1498 
1499 	switch (args->policy) {
1500 	case LINUX_SCHED_OTHER:
1501 		policy = SCHED_OTHER;
1502 		break;
1503 	case LINUX_SCHED_FIFO:
1504 		policy = SCHED_FIFO;
1505 		break;
1506 	case LINUX_SCHED_RR:
1507 		policy = SCHED_RR;
1508 		break;
1509 	default:
1510 		return (EINVAL);
1511 	}
1512 
1513 	error = copyin(args->param, &sched_param, sizeof(sched_param));
1514 	if (error)
1515 		return (error);
1516 
1517 	if (linux_map_sched_prio) {
1518 		switch (policy) {
1519 		case SCHED_OTHER:
1520 			if (sched_param.sched_priority != 0)
1521 				return (EINVAL);
1522 
1523 			sched_param.sched_priority =
1524 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1525 			break;
1526 		case SCHED_FIFO:
1527 		case SCHED_RR:
1528 			if (sched_param.sched_priority < 1 ||
1529 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1530 				return (EINVAL);
1531 
1532 			/*
1533 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1534 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1535 			 */
1536 			sched_param.sched_priority =
1537 			    (sched_param.sched_priority - 1) *
1538 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1539 			    (LINUX_MAX_RT_PRIO - 1);
1540 			break;
1541 		}
1542 	}
1543 
1544 	tdt = linux_tdfind(td, args->pid, -1);
1545 	if (tdt == NULL)
1546 		return (ESRCH);
1547 
1548 	error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1549 	PROC_UNLOCK(tdt->td_proc);
1550 	return (error);
1551 }
1552 
1553 int
1554 linux_sched_getscheduler(struct thread *td,
1555     struct linux_sched_getscheduler_args *args)
1556 {
1557 	struct thread *tdt;
1558 	int error, policy;
1559 
1560 	tdt = linux_tdfind(td, args->pid, -1);
1561 	if (tdt == NULL)
1562 		return (ESRCH);
1563 
1564 	error = kern_sched_getscheduler(td, tdt, &policy);
1565 	PROC_UNLOCK(tdt->td_proc);
1566 
1567 	switch (policy) {
1568 	case SCHED_OTHER:
1569 		td->td_retval[0] = LINUX_SCHED_OTHER;
1570 		break;
1571 	case SCHED_FIFO:
1572 		td->td_retval[0] = LINUX_SCHED_FIFO;
1573 		break;
1574 	case SCHED_RR:
1575 		td->td_retval[0] = LINUX_SCHED_RR;
1576 		break;
1577 	}
1578 	return (error);
1579 }
1580 
1581 int
1582 linux_sched_get_priority_max(struct thread *td,
1583     struct linux_sched_get_priority_max_args *args)
1584 {
1585 	struct sched_get_priority_max_args bsd;
1586 
1587 	if (linux_map_sched_prio) {
1588 		switch (args->policy) {
1589 		case LINUX_SCHED_OTHER:
1590 			td->td_retval[0] = 0;
1591 			return (0);
1592 		case LINUX_SCHED_FIFO:
1593 		case LINUX_SCHED_RR:
1594 			td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1595 			return (0);
1596 		default:
1597 			return (EINVAL);
1598 		}
1599 	}
1600 
1601 	switch (args->policy) {
1602 	case LINUX_SCHED_OTHER:
1603 		bsd.policy = SCHED_OTHER;
1604 		break;
1605 	case LINUX_SCHED_FIFO:
1606 		bsd.policy = SCHED_FIFO;
1607 		break;
1608 	case LINUX_SCHED_RR:
1609 		bsd.policy = SCHED_RR;
1610 		break;
1611 	default:
1612 		return (EINVAL);
1613 	}
1614 	return (sys_sched_get_priority_max(td, &bsd));
1615 }
1616 
1617 int
1618 linux_sched_get_priority_min(struct thread *td,
1619     struct linux_sched_get_priority_min_args *args)
1620 {
1621 	struct sched_get_priority_min_args bsd;
1622 
1623 	if (linux_map_sched_prio) {
1624 		switch (args->policy) {
1625 		case LINUX_SCHED_OTHER:
1626 			td->td_retval[0] = 0;
1627 			return (0);
1628 		case LINUX_SCHED_FIFO:
1629 		case LINUX_SCHED_RR:
1630 			td->td_retval[0] = 1;
1631 			return (0);
1632 		default:
1633 			return (EINVAL);
1634 		}
1635 	}
1636 
1637 	switch (args->policy) {
1638 	case LINUX_SCHED_OTHER:
1639 		bsd.policy = SCHED_OTHER;
1640 		break;
1641 	case LINUX_SCHED_FIFO:
1642 		bsd.policy = SCHED_FIFO;
1643 		break;
1644 	case LINUX_SCHED_RR:
1645 		bsd.policy = SCHED_RR;
1646 		break;
1647 	default:
1648 		return (EINVAL);
1649 	}
1650 	return (sys_sched_get_priority_min(td, &bsd));
1651 }
1652 
1653 #define REBOOT_CAD_ON	0x89abcdef
1654 #define REBOOT_CAD_OFF	0
1655 #define REBOOT_HALT	0xcdef0123
1656 #define REBOOT_RESTART	0x01234567
1657 #define REBOOT_RESTART2	0xA1B2C3D4
1658 #define REBOOT_POWEROFF	0x4321FEDC
1659 #define REBOOT_MAGIC1	0xfee1dead
1660 #define REBOOT_MAGIC2	0x28121969
1661 #define REBOOT_MAGIC2A	0x05121996
1662 #define REBOOT_MAGIC2B	0x16041998
1663 
1664 int
1665 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1666 {
1667 	struct reboot_args bsd_args;
1668 
1669 	if (args->magic1 != REBOOT_MAGIC1)
1670 		return (EINVAL);
1671 
1672 	switch (args->magic2) {
1673 	case REBOOT_MAGIC2:
1674 	case REBOOT_MAGIC2A:
1675 	case REBOOT_MAGIC2B:
1676 		break;
1677 	default:
1678 		return (EINVAL);
1679 	}
1680 
1681 	switch (args->cmd) {
1682 	case REBOOT_CAD_ON:
1683 	case REBOOT_CAD_OFF:
1684 		return (priv_check(td, PRIV_REBOOT));
1685 	case REBOOT_HALT:
1686 		bsd_args.opt = RB_HALT;
1687 		break;
1688 	case REBOOT_RESTART:
1689 	case REBOOT_RESTART2:
1690 		bsd_args.opt = 0;
1691 		break;
1692 	case REBOOT_POWEROFF:
1693 		bsd_args.opt = RB_POWEROFF;
1694 		break;
1695 	default:
1696 		return (EINVAL);
1697 	}
1698 	return (sys_reboot(td, &bsd_args));
1699 }
1700 
1701 int
1702 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1703 {
1704 
1705 	td->td_retval[0] = td->td_proc->p_pid;
1706 
1707 	return (0);
1708 }
1709 
1710 int
1711 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1712 {
1713 	struct linux_emuldata *em;
1714 
1715 	em = em_find(td);
1716 	KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1717 
1718 	td->td_retval[0] = em->em_tid;
1719 
1720 	return (0);
1721 }
1722 
1723 int
1724 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1725 {
1726 
1727 	td->td_retval[0] = kern_getppid(td);
1728 	return (0);
1729 }
1730 
1731 int
1732 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1733 {
1734 
1735 	td->td_retval[0] = td->td_ucred->cr_rgid;
1736 	return (0);
1737 }
1738 
1739 int
1740 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1741 {
1742 
1743 	td->td_retval[0] = td->td_ucred->cr_ruid;
1744 	return (0);
1745 }
1746 
1747 int
1748 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1749 {
1750 
1751 	return (kern_getsid(td, args->pid));
1752 }
1753 
1754 int
1755 linux_nosys(struct thread *td, struct nosys_args *ignore)
1756 {
1757 
1758 	return (ENOSYS);
1759 }
1760 
1761 int
1762 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1763 {
1764 	int error;
1765 
1766 	error = kern_getpriority(td, args->which, args->who);
1767 	td->td_retval[0] = 20 - td->td_retval[0];
1768 	return (error);
1769 }
1770 
1771 int
1772 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1773 {
1774 	int name[2];
1775 
1776 	name[0] = CTL_KERN;
1777 	name[1] = KERN_HOSTNAME;
1778 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1779 	    args->len, 0, 0));
1780 }
1781 
1782 int
1783 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1784 {
1785 	int name[2];
1786 
1787 	name[0] = CTL_KERN;
1788 	name[1] = KERN_NISDOMAINNAME;
1789 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1790 	    args->len, 0, 0));
1791 }
1792 
1793 int
1794 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1795 {
1796 
1797 	LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1798 	    args->error_code);
1799 
1800 	/*
1801 	 * XXX: we should send a signal to the parent if
1802 	 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1803 	 * as it doesnt occur often.
1804 	 */
1805 	exit1(td, args->error_code, 0);
1806 		/* NOTREACHED */
1807 }
1808 
1809 #define _LINUX_CAPABILITY_VERSION_1  0x19980330
1810 #define _LINUX_CAPABILITY_VERSION_2  0x20071026
1811 #define _LINUX_CAPABILITY_VERSION_3  0x20080522
1812 
1813 struct l_user_cap_header {
1814 	l_int	version;
1815 	l_int	pid;
1816 };
1817 
1818 struct l_user_cap_data {
1819 	l_int	effective;
1820 	l_int	permitted;
1821 	l_int	inheritable;
1822 };
1823 
1824 int
1825 linux_capget(struct thread *td, struct linux_capget_args *uap)
1826 {
1827 	struct l_user_cap_header luch;
1828 	struct l_user_cap_data lucd[2];
1829 	int error, u32s;
1830 
1831 	if (uap->hdrp == NULL)
1832 		return (EFAULT);
1833 
1834 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1835 	if (error != 0)
1836 		return (error);
1837 
1838 	switch (luch.version) {
1839 	case _LINUX_CAPABILITY_VERSION_1:
1840 		u32s = 1;
1841 		break;
1842 	case _LINUX_CAPABILITY_VERSION_2:
1843 	case _LINUX_CAPABILITY_VERSION_3:
1844 		u32s = 2;
1845 		break;
1846 	default:
1847 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1848 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1849 		if (error)
1850 			return (error);
1851 		return (EINVAL);
1852 	}
1853 
1854 	if (luch.pid)
1855 		return (EPERM);
1856 
1857 	if (uap->datap) {
1858 		/*
1859 		 * The current implementation doesn't support setting
1860 		 * a capability (it's essentially a stub) so indicate
1861 		 * that no capabilities are currently set or available
1862 		 * to request.
1863 		 */
1864 		memset(&lucd, 0, u32s * sizeof(lucd[0]));
1865 		error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1866 	}
1867 
1868 	return (error);
1869 }
1870 
1871 int
1872 linux_capset(struct thread *td, struct linux_capset_args *uap)
1873 {
1874 	struct l_user_cap_header luch;
1875 	struct l_user_cap_data lucd[2];
1876 	int error, i, u32s;
1877 
1878 	if (uap->hdrp == NULL || uap->datap == NULL)
1879 		return (EFAULT);
1880 
1881 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1882 	if (error != 0)
1883 		return (error);
1884 
1885 	switch (luch.version) {
1886 	case _LINUX_CAPABILITY_VERSION_1:
1887 		u32s = 1;
1888 		break;
1889 	case _LINUX_CAPABILITY_VERSION_2:
1890 	case _LINUX_CAPABILITY_VERSION_3:
1891 		u32s = 2;
1892 		break;
1893 	default:
1894 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1895 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1896 		if (error)
1897 			return (error);
1898 		return (EINVAL);
1899 	}
1900 
1901 	if (luch.pid)
1902 		return (EPERM);
1903 
1904 	error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1905 	if (error != 0)
1906 		return (error);
1907 
1908 	/* We currently don't support setting any capabilities. */
1909 	for (i = 0; i < u32s; i++) {
1910 		if (lucd[i].effective || lucd[i].permitted ||
1911 		    lucd[i].inheritable) {
1912 			linux_msg(td,
1913 			    "capset[%d] effective=0x%x, permitted=0x%x, "
1914 			    "inheritable=0x%x is not implemented", i,
1915 			    (int)lucd[i].effective, (int)lucd[i].permitted,
1916 			    (int)lucd[i].inheritable);
1917 			return (EPERM);
1918 		}
1919 	}
1920 
1921 	return (0);
1922 }
1923 
1924 int
1925 linux_prctl(struct thread *td, struct linux_prctl_args *args)
1926 {
1927 	int error = 0, max_size;
1928 	struct proc *p = td->td_proc;
1929 	char comm[LINUX_MAX_COMM_LEN];
1930 	int pdeath_signal;
1931 
1932 	switch (args->option) {
1933 	case LINUX_PR_SET_PDEATHSIG:
1934 		if (!LINUX_SIG_VALID(args->arg2))
1935 			return (EINVAL);
1936 		pdeath_signal = linux_to_bsd_signal(args->arg2);
1937 		return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1938 		    &pdeath_signal));
1939 	case LINUX_PR_GET_PDEATHSIG:
1940 		error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1941 		    &pdeath_signal);
1942 		if (error != 0)
1943 			return (error);
1944 		pdeath_signal = bsd_to_linux_signal(pdeath_signal);
1945 		return (copyout(&pdeath_signal,
1946 		    (void *)(register_t)args->arg2,
1947 		    sizeof(pdeath_signal)));
1948 		break;
1949 	case LINUX_PR_GET_KEEPCAPS:
1950 		/*
1951 		 * Indicate that we always clear the effective and
1952 		 * permitted capability sets when the user id becomes
1953 		 * non-zero (actually the capability sets are simply
1954 		 * always zero in the current implementation).
1955 		 */
1956 		td->td_retval[0] = 0;
1957 		break;
1958 	case LINUX_PR_SET_KEEPCAPS:
1959 		/*
1960 		 * Ignore requests to keep the effective and permitted
1961 		 * capability sets when the user id becomes non-zero.
1962 		 */
1963 		break;
1964 	case LINUX_PR_SET_NAME:
1965 		/*
1966 		 * To be on the safe side we need to make sure to not
1967 		 * overflow the size a Linux program expects. We already
1968 		 * do this here in the copyin, so that we don't need to
1969 		 * check on copyout.
1970 		 */
1971 		max_size = MIN(sizeof(comm), sizeof(p->p_comm));
1972 		error = copyinstr((void *)(register_t)args->arg2, comm,
1973 		    max_size, NULL);
1974 
1975 		/* Linux silently truncates the name if it is too long. */
1976 		if (error == ENAMETOOLONG) {
1977 			/*
1978 			 * XXX: copyinstr() isn't documented to populate the
1979 			 * array completely, so do a copyin() to be on the
1980 			 * safe side. This should be changed in case
1981 			 * copyinstr() is changed to guarantee this.
1982 			 */
1983 			error = copyin((void *)(register_t)args->arg2, comm,
1984 			    max_size - 1);
1985 			comm[max_size - 1] = '\0';
1986 		}
1987 		if (error)
1988 			return (error);
1989 
1990 		PROC_LOCK(p);
1991 		strlcpy(p->p_comm, comm, sizeof(p->p_comm));
1992 		PROC_UNLOCK(p);
1993 		break;
1994 	case LINUX_PR_GET_NAME:
1995 		PROC_LOCK(p);
1996 		strlcpy(comm, p->p_comm, sizeof(comm));
1997 		PROC_UNLOCK(p);
1998 		error = copyout(comm, (void *)(register_t)args->arg2,
1999 		    strlen(comm) + 1);
2000 		break;
2001 	default:
2002 		error = EINVAL;
2003 		break;
2004 	}
2005 
2006 	return (error);
2007 }
2008 
2009 int
2010 linux_sched_setparam(struct thread *td,
2011     struct linux_sched_setparam_args *uap)
2012 {
2013 	struct sched_param sched_param;
2014 	struct thread *tdt;
2015 	int error, policy;
2016 
2017 	error = copyin(uap->param, &sched_param, sizeof(sched_param));
2018 	if (error)
2019 		return (error);
2020 
2021 	tdt = linux_tdfind(td, uap->pid, -1);
2022 	if (tdt == NULL)
2023 		return (ESRCH);
2024 
2025 	if (linux_map_sched_prio) {
2026 		error = kern_sched_getscheduler(td, tdt, &policy);
2027 		if (error)
2028 			goto out;
2029 
2030 		switch (policy) {
2031 		case SCHED_OTHER:
2032 			if (sched_param.sched_priority != 0) {
2033 				error = EINVAL;
2034 				goto out;
2035 			}
2036 			sched_param.sched_priority =
2037 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
2038 			break;
2039 		case SCHED_FIFO:
2040 		case SCHED_RR:
2041 			if (sched_param.sched_priority < 1 ||
2042 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
2043 				error = EINVAL;
2044 				goto out;
2045 			}
2046 			/*
2047 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
2048 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
2049 			 */
2050 			sched_param.sched_priority =
2051 			    (sched_param.sched_priority - 1) *
2052 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
2053 			    (LINUX_MAX_RT_PRIO - 1);
2054 			break;
2055 		}
2056 	}
2057 
2058 	error = kern_sched_setparam(td, tdt, &sched_param);
2059 out:	PROC_UNLOCK(tdt->td_proc);
2060 	return (error);
2061 }
2062 
2063 int
2064 linux_sched_getparam(struct thread *td,
2065     struct linux_sched_getparam_args *uap)
2066 {
2067 	struct sched_param sched_param;
2068 	struct thread *tdt;
2069 	int error, policy;
2070 
2071 	tdt = linux_tdfind(td, uap->pid, -1);
2072 	if (tdt == NULL)
2073 		return (ESRCH);
2074 
2075 	error = kern_sched_getparam(td, tdt, &sched_param);
2076 	if (error) {
2077 		PROC_UNLOCK(tdt->td_proc);
2078 		return (error);
2079 	}
2080 
2081 	if (linux_map_sched_prio) {
2082 		error = kern_sched_getscheduler(td, tdt, &policy);
2083 		PROC_UNLOCK(tdt->td_proc);
2084 		if (error)
2085 			return (error);
2086 
2087 		switch (policy) {
2088 		case SCHED_OTHER:
2089 			sched_param.sched_priority = 0;
2090 			break;
2091 		case SCHED_FIFO:
2092 		case SCHED_RR:
2093 			/*
2094 			 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
2095 			 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
2096 			 */
2097 			sched_param.sched_priority =
2098 			    (sched_param.sched_priority *
2099 			    (LINUX_MAX_RT_PRIO - 1) +
2100 			    (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
2101 			    (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
2102 			break;
2103 		}
2104 	} else
2105 		PROC_UNLOCK(tdt->td_proc);
2106 
2107 	error = copyout(&sched_param, uap->param, sizeof(sched_param));
2108 	return (error);
2109 }
2110 
2111 /*
2112  * Get affinity of a process.
2113  */
2114 int
2115 linux_sched_getaffinity(struct thread *td,
2116     struct linux_sched_getaffinity_args *args)
2117 {
2118 	int error;
2119 	struct thread *tdt;
2120 
2121 	if (args->len < sizeof(cpuset_t))
2122 		return (EINVAL);
2123 
2124 	tdt = linux_tdfind(td, args->pid, -1);
2125 	if (tdt == NULL)
2126 		return (ESRCH);
2127 
2128 	PROC_UNLOCK(tdt->td_proc);
2129 
2130 	error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2131 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr);
2132 	if (error == 0)
2133 		td->td_retval[0] = sizeof(cpuset_t);
2134 
2135 	return (error);
2136 }
2137 
2138 /*
2139  *  Set affinity of a process.
2140  */
2141 int
2142 linux_sched_setaffinity(struct thread *td,
2143     struct linux_sched_setaffinity_args *args)
2144 {
2145 	struct thread *tdt;
2146 
2147 	if (args->len < sizeof(cpuset_t))
2148 		return (EINVAL);
2149 
2150 	tdt = linux_tdfind(td, args->pid, -1);
2151 	if (tdt == NULL)
2152 		return (ESRCH);
2153 
2154 	PROC_UNLOCK(tdt->td_proc);
2155 
2156 	return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2157 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr));
2158 }
2159 
2160 struct linux_rlimit64 {
2161 	uint64_t	rlim_cur;
2162 	uint64_t	rlim_max;
2163 };
2164 
2165 int
2166 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2167 {
2168 	struct rlimit rlim, nrlim;
2169 	struct linux_rlimit64 lrlim;
2170 	struct proc *p;
2171 	u_int which;
2172 	int flags;
2173 	int error;
2174 
2175 	if (args->new == NULL && args->old != NULL) {
2176 		if (linux_get_dummy_limit(args->resource, &rlim)) {
2177 			lrlim.rlim_cur = rlim.rlim_cur;
2178 			lrlim.rlim_max = rlim.rlim_max;
2179 			return (copyout(&lrlim, args->old, sizeof(lrlim)));
2180 		}
2181 	}
2182 
2183 	if (args->resource >= LINUX_RLIM_NLIMITS)
2184 		return (EINVAL);
2185 
2186 	which = linux_to_bsd_resource[args->resource];
2187 	if (which == -1)
2188 		return (EINVAL);
2189 
2190 	if (args->new != NULL) {
2191 		/*
2192 		 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2193 		 * rlim is unsigned 64-bit. FreeBSD treats negative limits
2194 		 * as INFINITY so we do not need a conversion even.
2195 		 */
2196 		error = copyin(args->new, &nrlim, sizeof(nrlim));
2197 		if (error != 0)
2198 			return (error);
2199 	}
2200 
2201 	flags = PGET_HOLD | PGET_NOTWEXIT;
2202 	if (args->new != NULL)
2203 		flags |= PGET_CANDEBUG;
2204 	else
2205 		flags |= PGET_CANSEE;
2206 	if (args->pid == 0) {
2207 		p = td->td_proc;
2208 		PHOLD(p);
2209 	} else {
2210 		error = pget(args->pid, flags, &p);
2211 		if (error != 0)
2212 			return (error);
2213 	}
2214 	if (args->old != NULL) {
2215 		PROC_LOCK(p);
2216 		lim_rlimit_proc(p, which, &rlim);
2217 		PROC_UNLOCK(p);
2218 		if (rlim.rlim_cur == RLIM_INFINITY)
2219 			lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2220 		else
2221 			lrlim.rlim_cur = rlim.rlim_cur;
2222 		if (rlim.rlim_max == RLIM_INFINITY)
2223 			lrlim.rlim_max = LINUX_RLIM_INFINITY;
2224 		else
2225 			lrlim.rlim_max = rlim.rlim_max;
2226 		error = copyout(&lrlim, args->old, sizeof(lrlim));
2227 		if (error != 0)
2228 			goto out;
2229 	}
2230 
2231 	if (args->new != NULL)
2232 		error = kern_proc_setrlimit(td, p, which, &nrlim);
2233 
2234  out:
2235 	PRELE(p);
2236 	return (error);
2237 }
2238 
2239 int
2240 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2241 {
2242 	struct timeval utv, tv0, tv1, *tvp;
2243 	struct l_pselect6arg lpse6;
2244 	struct l_timespec lts;
2245 	struct timespec uts;
2246 	l_sigset_t l_ss;
2247 	sigset_t *ssp;
2248 	sigset_t ss;
2249 	int error;
2250 
2251 	ssp = NULL;
2252 	if (args->sig != NULL) {
2253 		error = copyin(args->sig, &lpse6, sizeof(lpse6));
2254 		if (error != 0)
2255 			return (error);
2256 		if (lpse6.ss_len != sizeof(l_ss))
2257 			return (EINVAL);
2258 		if (lpse6.ss != 0) {
2259 			error = copyin(PTRIN(lpse6.ss), &l_ss,
2260 			    sizeof(l_ss));
2261 			if (error != 0)
2262 				return (error);
2263 			linux_to_bsd_sigset(&l_ss, &ss);
2264 			ssp = &ss;
2265 		}
2266 	}
2267 
2268 	/*
2269 	 * Currently glibc changes nanosecond number to microsecond.
2270 	 * This mean losing precision but for now it is hardly seen.
2271 	 */
2272 	if (args->tsp != NULL) {
2273 		error = copyin(args->tsp, &lts, sizeof(lts));
2274 		if (error != 0)
2275 			return (error);
2276 		error = linux_to_native_timespec(&uts, &lts);
2277 		if (error != 0)
2278 			return (error);
2279 
2280 		TIMESPEC_TO_TIMEVAL(&utv, &uts);
2281 		if (itimerfix(&utv))
2282 			return (EINVAL);
2283 
2284 		microtime(&tv0);
2285 		tvp = &utv;
2286 	} else
2287 		tvp = NULL;
2288 
2289 	error = kern_pselect(td, args->nfds, args->readfds, args->writefds,
2290 	    args->exceptfds, tvp, ssp, LINUX_NFDBITS);
2291 
2292 	if (error == 0 && args->tsp != NULL) {
2293 		if (td->td_retval[0] != 0) {
2294 			/*
2295 			 * Compute how much time was left of the timeout,
2296 			 * by subtracting the current time and the time
2297 			 * before we started the call, and subtracting
2298 			 * that result from the user-supplied value.
2299 			 */
2300 
2301 			microtime(&tv1);
2302 			timevalsub(&tv1, &tv0);
2303 			timevalsub(&utv, &tv1);
2304 			if (utv.tv_sec < 0)
2305 				timevalclear(&utv);
2306 		} else
2307 			timevalclear(&utv);
2308 
2309 		TIMEVAL_TO_TIMESPEC(&utv, &uts);
2310 
2311 		error = native_to_linux_timespec(&lts, &uts);
2312 		if (error == 0)
2313 			error = copyout(&lts, args->tsp, sizeof(lts));
2314 	}
2315 
2316 	return (error);
2317 }
2318 
2319 int
2320 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2321 {
2322 	struct timespec ts0, ts1;
2323 	struct l_timespec lts;
2324 	struct timespec uts, *tsp;
2325 	l_sigset_t l_ss;
2326 	sigset_t *ssp;
2327 	sigset_t ss;
2328 	int error;
2329 
2330 	if (args->sset != NULL) {
2331 		if (args->ssize != sizeof(l_ss))
2332 			return (EINVAL);
2333 		error = copyin(args->sset, &l_ss, sizeof(l_ss));
2334 		if (error)
2335 			return (error);
2336 		linux_to_bsd_sigset(&l_ss, &ss);
2337 		ssp = &ss;
2338 	} else
2339 		ssp = NULL;
2340 	if (args->tsp != NULL) {
2341 		error = copyin(args->tsp, &lts, sizeof(lts));
2342 		if (error)
2343 			return (error);
2344 		error = linux_to_native_timespec(&uts, &lts);
2345 		if (error != 0)
2346 			return (error);
2347 
2348 		nanotime(&ts0);
2349 		tsp = &uts;
2350 	} else
2351 		tsp = NULL;
2352 
2353 	error = kern_poll(td, args->fds, args->nfds, tsp, ssp);
2354 
2355 	if (error == 0 && args->tsp != NULL) {
2356 		if (td->td_retval[0]) {
2357 			nanotime(&ts1);
2358 			timespecsub(&ts1, &ts0, &ts1);
2359 			timespecsub(&uts, &ts1, &uts);
2360 			if (uts.tv_sec < 0)
2361 				timespecclear(&uts);
2362 		} else
2363 			timespecclear(&uts);
2364 
2365 		error = native_to_linux_timespec(&lts, &uts);
2366 		if (error == 0)
2367 			error = copyout(&lts, args->tsp, sizeof(lts));
2368 	}
2369 
2370 	return (error);
2371 }
2372 
2373 int
2374 linux_sched_rr_get_interval(struct thread *td,
2375     struct linux_sched_rr_get_interval_args *uap)
2376 {
2377 	struct timespec ts;
2378 	struct l_timespec lts;
2379 	struct thread *tdt;
2380 	int error;
2381 
2382 	/*
2383 	 * According to man in case the invalid pid specified
2384 	 * EINVAL should be returned.
2385 	 */
2386 	if (uap->pid < 0)
2387 		return (EINVAL);
2388 
2389 	tdt = linux_tdfind(td, uap->pid, -1);
2390 	if (tdt == NULL)
2391 		return (ESRCH);
2392 
2393 	error = kern_sched_rr_get_interval_td(td, tdt, &ts);
2394 	PROC_UNLOCK(tdt->td_proc);
2395 	if (error != 0)
2396 		return (error);
2397 	error = native_to_linux_timespec(&lts, &ts);
2398 	if (error != 0)
2399 		return (error);
2400 	return (copyout(&lts, uap->interval, sizeof(lts)));
2401 }
2402 
2403 /*
2404  * In case when the Linux thread is the initial thread in
2405  * the thread group thread id is equal to the process id.
2406  * Glibc depends on this magic (assert in pthread_getattr_np.c).
2407  */
2408 struct thread *
2409 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2410 {
2411 	struct linux_emuldata *em;
2412 	struct thread *tdt;
2413 	struct proc *p;
2414 
2415 	tdt = NULL;
2416 	if (tid == 0 || tid == td->td_tid) {
2417 		tdt = td;
2418 		PROC_LOCK(tdt->td_proc);
2419 	} else if (tid > PID_MAX)
2420 		tdt = tdfind(tid, pid);
2421 	else {
2422 		/*
2423 		 * Initial thread where the tid equal to the pid.
2424 		 */
2425 		p = pfind(tid);
2426 		if (p != NULL) {
2427 			if (SV_PROC_ABI(p) != SV_ABI_LINUX) {
2428 				/*
2429 				 * p is not a Linuxulator process.
2430 				 */
2431 				PROC_UNLOCK(p);
2432 				return (NULL);
2433 			}
2434 			FOREACH_THREAD_IN_PROC(p, tdt) {
2435 				em = em_find(tdt);
2436 				if (tid == em->em_tid)
2437 					return (tdt);
2438 			}
2439 			PROC_UNLOCK(p);
2440 		}
2441 		return (NULL);
2442 	}
2443 
2444 	return (tdt);
2445 }
2446 
2447 void
2448 linux_to_bsd_waitopts(int options, int *bsdopts)
2449 {
2450 
2451 	if (options & LINUX_WNOHANG)
2452 		*bsdopts |= WNOHANG;
2453 	if (options & LINUX_WUNTRACED)
2454 		*bsdopts |= WUNTRACED;
2455 	if (options & LINUX_WEXITED)
2456 		*bsdopts |= WEXITED;
2457 	if (options & LINUX_WCONTINUED)
2458 		*bsdopts |= WCONTINUED;
2459 	if (options & LINUX_WNOWAIT)
2460 		*bsdopts |= WNOWAIT;
2461 
2462 	if (options & __WCLONE)
2463 		*bsdopts |= WLINUXCLONE;
2464 }
2465 
2466 int
2467 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2468 {
2469 	struct uio uio;
2470 	struct iovec iov;
2471 	int error;
2472 
2473 	if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2474 		return (EINVAL);
2475 	if (args->count > INT_MAX)
2476 		args->count = INT_MAX;
2477 
2478 	iov.iov_base = args->buf;
2479 	iov.iov_len = args->count;
2480 
2481 	uio.uio_iov = &iov;
2482 	uio.uio_iovcnt = 1;
2483 	uio.uio_resid = iov.iov_len;
2484 	uio.uio_segflg = UIO_USERSPACE;
2485 	uio.uio_rw = UIO_READ;
2486 	uio.uio_td = td;
2487 
2488 	error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2489 	if (error == 0)
2490 		td->td_retval[0] = args->count - uio.uio_resid;
2491 	return (error);
2492 }
2493 
2494 int
2495 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2496 {
2497 
2498 	/* Needs to be page-aligned */
2499 	if (args->start & PAGE_MASK)
2500 		return (EINVAL);
2501 	return (kern_mincore(td, args->start, args->len, args->vec));
2502 }
2503 
2504 #define	SYSLOG_TAG	"<6>"
2505 
2506 int
2507 linux_syslog(struct thread *td, struct linux_syslog_args *args)
2508 {
2509 	char buf[128], *src, *dst;
2510 	u_int seq;
2511 	int buflen, error;
2512 
2513 	if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2514 		linux_msg(td, "syslog unsupported type 0x%x", args->type);
2515 		return (EINVAL);
2516 	}
2517 
2518 	if (args->len < 6) {
2519 		td->td_retval[0] = 0;
2520 		return (0);
2521 	}
2522 
2523 	error = priv_check(td, PRIV_MSGBUF);
2524 	if (error)
2525 		return (error);
2526 
2527 	mtx_lock(&msgbuf_lock);
2528 	msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2529 	mtx_unlock(&msgbuf_lock);
2530 
2531 	dst = args->buf;
2532 	error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2533 	/* The -1 is to skip the trailing '\0'. */
2534 	dst += sizeof(SYSLOG_TAG) - 1;
2535 
2536 	while (error == 0) {
2537 		mtx_lock(&msgbuf_lock);
2538 		buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2539 		mtx_unlock(&msgbuf_lock);
2540 
2541 		if (buflen == 0)
2542 			break;
2543 
2544 		for (src = buf; src < buf + buflen && error == 0; src++) {
2545 			if (*src == '\0')
2546 				continue;
2547 
2548 			if (dst >= args->buf + args->len)
2549 				goto out;
2550 
2551 			error = copyout(src, dst, 1);
2552 			dst++;
2553 
2554 			if (*src == '\n' && *(src + 1) != '<' &&
2555 			    dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2556 				error = copyout(&SYSLOG_TAG,
2557 				    dst, sizeof(SYSLOG_TAG));
2558 				dst += sizeof(SYSLOG_TAG) - 1;
2559 			}
2560 		}
2561 	}
2562 out:
2563 	td->td_retval[0] = dst - args->buf;
2564 	return (error);
2565 }
2566 
2567 int
2568 linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2569 {
2570 	int cpu, error, node;
2571 
2572 	cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2573 	error = 0;
2574 	node = cpuid_to_pcpu[cpu]->pc_domain;
2575 
2576 	if (args->cpu != NULL)
2577 		error = copyout(&cpu, args->cpu, sizeof(l_int));
2578 	if (args->node != NULL)
2579 		error = copyout(&node, args->node, sizeof(l_int));
2580 	return (error);
2581 }
2582