xref: /freebsd/sys/compat/linux/linux_misc.c (revision bc5304a006238115291e7568583632889dffbab9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * Copyright (c) 1994-1995 Søren Schmidt
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer
13  *    in this position and unchanged.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 
37 #include <sys/param.h>
38 #include <sys/blist.h>
39 #include <sys/fcntl.h>
40 #if defined(__i386__)
41 #include <sys/imgact_aout.h>
42 #endif
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/mount.h>
50 #include <sys/msgbuf.h>
51 #include <sys/mutex.h>
52 #include <sys/namei.h>
53 #include <sys/poll.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/procctl.h>
57 #include <sys/reboot.h>
58 #include <sys/racct.h>
59 #include <sys/random.h>
60 #include <sys/resourcevar.h>
61 #include <sys/sched.h>
62 #include <sys/sdt.h>
63 #include <sys/signalvar.h>
64 #include <sys/stat.h>
65 #include <sys/syscallsubr.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysproto.h>
68 #include <sys/systm.h>
69 #include <sys/time.h>
70 #include <sys/vmmeter.h>
71 #include <sys/vnode.h>
72 #include <sys/wait.h>
73 #include <sys/cpuset.h>
74 #include <sys/uio.h>
75 
76 #include <security/mac/mac_framework.h>
77 
78 #include <vm/vm.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_extern.h>
83 #include <vm/swap_pager.h>
84 
85 #ifdef COMPAT_LINUX32
86 #include <machine/../linux32/linux.h>
87 #include <machine/../linux32/linux32_proto.h>
88 #else
89 #include <machine/../linux/linux.h>
90 #include <machine/../linux/linux_proto.h>
91 #endif
92 
93 #include <compat/linux/linux_common.h>
94 #include <compat/linux/linux_dtrace.h>
95 #include <compat/linux/linux_file.h>
96 #include <compat/linux/linux_mib.h>
97 #include <compat/linux/linux_signal.h>
98 #include <compat/linux/linux_timer.h>
99 #include <compat/linux/linux_util.h>
100 #include <compat/linux/linux_sysproto.h>
101 #include <compat/linux/linux_emul.h>
102 #include <compat/linux/linux_misc.h>
103 
104 int stclohz;				/* Statistics clock frequency */
105 
106 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
107 	RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
108 	RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
109 	RLIMIT_MEMLOCK, RLIMIT_AS
110 };
111 
112 struct l_sysinfo {
113 	l_long		uptime;		/* Seconds since boot */
114 	l_ulong		loads[3];	/* 1, 5, and 15 minute load averages */
115 #define LINUX_SYSINFO_LOADS_SCALE 65536
116 	l_ulong		totalram;	/* Total usable main memory size */
117 	l_ulong		freeram;	/* Available memory size */
118 	l_ulong		sharedram;	/* Amount of shared memory */
119 	l_ulong		bufferram;	/* Memory used by buffers */
120 	l_ulong		totalswap;	/* Total swap space size */
121 	l_ulong		freeswap;	/* swap space still available */
122 	l_ushort	procs;		/* Number of current processes */
123 	l_ushort	pads;
124 	l_ulong		totalhigh;
125 	l_ulong		freehigh;
126 	l_uint		mem_unit;
127 	char		_f[20-2*sizeof(l_long)-sizeof(l_int)];	/* padding */
128 };
129 
130 struct l_pselect6arg {
131 	l_uintptr_t	ss;
132 	l_size_t	ss_len;
133 };
134 
135 static int	linux_utimensat_lts_to_ts(struct l_timespec *,
136 			struct timespec *);
137 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
138 static int	linux_utimensat_lts64_to_ts(struct l_timespec64 *,
139 			struct timespec *);
140 #endif
141 static int	linux_common_utimensat(struct thread *, int,
142 			const char *, struct timespec *, int);
143 static int	linux_common_pselect6(struct thread *, l_int,
144 			l_fd_set *, l_fd_set *, l_fd_set *,
145 			struct timespec *, l_uintptr_t *);
146 static int	linux_common_ppoll(struct thread *, struct pollfd *,
147 			uint32_t, struct timespec *, l_sigset_t *,
148 			l_size_t);
149 static int	linux_pollin(struct thread *, struct pollfd *,
150 			struct pollfd *, u_int);
151 static int	linux_pollout(struct thread *, struct pollfd *,
152 			struct pollfd *, u_int);
153 
154 int
155 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
156 {
157 	struct l_sysinfo sysinfo;
158 	int i, j;
159 	struct timespec ts;
160 
161 	bzero(&sysinfo, sizeof(sysinfo));
162 	getnanouptime(&ts);
163 	if (ts.tv_nsec != 0)
164 		ts.tv_sec++;
165 	sysinfo.uptime = ts.tv_sec;
166 
167 	/* Use the information from the mib to get our load averages */
168 	for (i = 0; i < 3; i++)
169 		sysinfo.loads[i] = averunnable.ldavg[i] *
170 		    LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
171 
172 	sysinfo.totalram = physmem * PAGE_SIZE;
173 	sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
174 
175 	/*
176 	 * sharedram counts pages allocated to named, swap-backed objects such
177 	 * as shared memory segments and tmpfs files.  There is no cheap way to
178 	 * compute this, so just leave the field unpopulated.  Linux itself only
179 	 * started setting this field in the 3.x timeframe.
180 	 */
181 	sysinfo.sharedram = 0;
182 	sysinfo.bufferram = 0;
183 
184 	swap_pager_status(&i, &j);
185 	sysinfo.totalswap = i * PAGE_SIZE;
186 	sysinfo.freeswap = (i - j) * PAGE_SIZE;
187 
188 	sysinfo.procs = nprocs;
189 
190 	/*
191 	 * Platforms supported by the emulation layer do not have a notion of
192 	 * high memory.
193 	 */
194 	sysinfo.totalhigh = 0;
195 	sysinfo.freehigh = 0;
196 
197 	sysinfo.mem_unit = 1;
198 
199 	return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
200 }
201 
202 #ifdef LINUX_LEGACY_SYSCALLS
203 int
204 linux_alarm(struct thread *td, struct linux_alarm_args *args)
205 {
206 	struct itimerval it, old_it;
207 	u_int secs;
208 	int error;
209 
210 	secs = args->secs;
211 	/*
212 	 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
213 	 * to match kern_setitimer()'s limit to avoid error from it.
214 	 *
215 	 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
216 	 * platforms.
217 	 */
218 	if (secs > INT32_MAX / 2)
219 		secs = INT32_MAX / 2;
220 
221 	it.it_value.tv_sec = secs;
222 	it.it_value.tv_usec = 0;
223 	timevalclear(&it.it_interval);
224 	error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
225 	KASSERT(error == 0, ("kern_setitimer returns %d", error));
226 
227 	if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
228 	    old_it.it_value.tv_usec >= 500000)
229 		old_it.it_value.tv_sec++;
230 	td->td_retval[0] = old_it.it_value.tv_sec;
231 	return (0);
232 }
233 #endif
234 
235 int
236 linux_brk(struct thread *td, struct linux_brk_args *args)
237 {
238 	struct vmspace *vm = td->td_proc->p_vmspace;
239 	uintptr_t new, old;
240 
241 	old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
242 	new = (uintptr_t)args->dsend;
243 	if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
244 		td->td_retval[0] = (register_t)new;
245 	else
246 		td->td_retval[0] = (register_t)old;
247 
248 	return (0);
249 }
250 
251 #if defined(__i386__)
252 /* XXX: what about amd64/linux32? */
253 
254 int
255 linux_uselib(struct thread *td, struct linux_uselib_args *args)
256 {
257 	struct nameidata ni;
258 	struct vnode *vp;
259 	struct exec *a_out;
260 	vm_map_t map;
261 	vm_map_entry_t entry;
262 	struct vattr attr;
263 	vm_offset_t vmaddr;
264 	unsigned long file_offset;
265 	unsigned long bss_size;
266 	char *library;
267 	ssize_t aresid;
268 	int error;
269 	bool locked, opened, textset;
270 
271 	a_out = NULL;
272 	vp = NULL;
273 	locked = false;
274 	textset = false;
275 	opened = false;
276 
277 	if (!LUSECONVPATH(td)) {
278 		NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
279 		    UIO_USERSPACE, args->library, td);
280 		error = namei(&ni);
281 	} else {
282 		LCONVPATHEXIST(td, args->library, &library);
283 		NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
284 		    UIO_SYSSPACE, library, td);
285 		error = namei(&ni);
286 		LFREEPATH(library);
287 	}
288 	if (error)
289 		goto cleanup;
290 
291 	vp = ni.ni_vp;
292 	NDFREE(&ni, NDF_ONLY_PNBUF);
293 
294 	/*
295 	 * From here on down, we have a locked vnode that must be unlocked.
296 	 * XXX: The code below largely duplicates exec_check_permissions().
297 	 */
298 	locked = true;
299 
300 	/* Executable? */
301 	error = VOP_GETATTR(vp, &attr, td->td_ucred);
302 	if (error)
303 		goto cleanup;
304 
305 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
306 	    ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) {
307 		/* EACCESS is what exec(2) returns. */
308 		error = ENOEXEC;
309 		goto cleanup;
310 	}
311 
312 	/* Sensible size? */
313 	if (attr.va_size == 0) {
314 		error = ENOEXEC;
315 		goto cleanup;
316 	}
317 
318 	/* Can we access it? */
319 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
320 	if (error)
321 		goto cleanup;
322 
323 	/*
324 	 * XXX: This should use vn_open() so that it is properly authorized,
325 	 * and to reduce code redundancy all over the place here.
326 	 * XXX: Not really, it duplicates far more of exec_check_permissions()
327 	 * than vn_open().
328 	 */
329 #ifdef MAC
330 	error = mac_vnode_check_open(td->td_ucred, vp, VREAD);
331 	if (error)
332 		goto cleanup;
333 #endif
334 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
335 	if (error)
336 		goto cleanup;
337 	opened = true;
338 
339 	/* Pull in executable header into exec_map */
340 	error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE,
341 	    VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0);
342 	if (error)
343 		goto cleanup;
344 
345 	/* Is it a Linux binary ? */
346 	if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
347 		error = ENOEXEC;
348 		goto cleanup;
349 	}
350 
351 	/*
352 	 * While we are here, we should REALLY do some more checks
353 	 */
354 
355 	/* Set file/virtual offset based on a.out variant. */
356 	switch ((int)(a_out->a_magic & 0xffff)) {
357 	case 0413:			/* ZMAGIC */
358 		file_offset = 1024;
359 		break;
360 	case 0314:			/* QMAGIC */
361 		file_offset = 0;
362 		break;
363 	default:
364 		error = ENOEXEC;
365 		goto cleanup;
366 	}
367 
368 	bss_size = round_page(a_out->a_bss);
369 
370 	/* Check various fields in header for validity/bounds. */
371 	if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
372 		error = ENOEXEC;
373 		goto cleanup;
374 	}
375 
376 	/* text + data can't exceed file size */
377 	if (a_out->a_data + a_out->a_text > attr.va_size) {
378 		error = EFAULT;
379 		goto cleanup;
380 	}
381 
382 	/*
383 	 * text/data/bss must not exceed limits
384 	 * XXX - this is not complete. it should check current usage PLUS
385 	 * the resources needed by this library.
386 	 */
387 	PROC_LOCK(td->td_proc);
388 	if (a_out->a_text > maxtsiz ||
389 	    a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) ||
390 	    racct_set(td->td_proc, RACCT_DATA, a_out->a_data +
391 	    bss_size) != 0) {
392 		PROC_UNLOCK(td->td_proc);
393 		error = ENOMEM;
394 		goto cleanup;
395 	}
396 	PROC_UNLOCK(td->td_proc);
397 
398 	/*
399 	 * Prevent more writers.
400 	 */
401 	error = VOP_SET_TEXT(vp);
402 	if (error != 0)
403 		goto cleanup;
404 	textset = true;
405 
406 	/*
407 	 * Lock no longer needed
408 	 */
409 	locked = false;
410 	VOP_UNLOCK(vp);
411 
412 	/*
413 	 * Check if file_offset page aligned. Currently we cannot handle
414 	 * misalinged file offsets, and so we read in the entire image
415 	 * (what a waste).
416 	 */
417 	if (file_offset & PAGE_MASK) {
418 		/* Map text+data read/write/execute */
419 
420 		/* a_entry is the load address and is page aligned */
421 		vmaddr = trunc_page(a_out->a_entry);
422 
423 		/* get anon user mapping, read+write+execute */
424 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
425 		    &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE,
426 		    VM_PROT_ALL, VM_PROT_ALL, 0);
427 		if (error)
428 			goto cleanup;
429 
430 		error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset,
431 		    a_out->a_text + a_out->a_data, UIO_USERSPACE, 0,
432 		    td->td_ucred, NOCRED, &aresid, td);
433 		if (error != 0)
434 			goto cleanup;
435 		if (aresid != 0) {
436 			error = ENOEXEC;
437 			goto cleanup;
438 		}
439 	} else {
440 		/*
441 		 * for QMAGIC, a_entry is 20 bytes beyond the load address
442 		 * to skip the executable header
443 		 */
444 		vmaddr = trunc_page(a_out->a_entry);
445 
446 		/*
447 		 * Map it all into the process's space as a single
448 		 * copy-on-write "data" segment.
449 		 */
450 		map = &td->td_proc->p_vmspace->vm_map;
451 		error = vm_mmap(map, &vmaddr,
452 		    a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL,
453 		    MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset);
454 		if (error)
455 			goto cleanup;
456 		vm_map_lock(map);
457 		if (!vm_map_lookup_entry(map, vmaddr, &entry)) {
458 			vm_map_unlock(map);
459 			error = EDOOFUS;
460 			goto cleanup;
461 		}
462 		entry->eflags |= MAP_ENTRY_VN_EXEC;
463 		vm_map_unlock(map);
464 		textset = false;
465 	}
466 
467 	if (bss_size != 0) {
468 		/* Calculate BSS start address */
469 		vmaddr = trunc_page(a_out->a_entry) + a_out->a_text +
470 		    a_out->a_data;
471 
472 		/* allocate some 'anon' space */
473 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
474 		    &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL,
475 		    VM_PROT_ALL, 0);
476 		if (error)
477 			goto cleanup;
478 	}
479 
480 cleanup:
481 	if (opened) {
482 		if (locked)
483 			VOP_UNLOCK(vp);
484 		locked = false;
485 		VOP_CLOSE(vp, FREAD, td->td_ucred, td);
486 	}
487 	if (textset) {
488 		if (!locked) {
489 			locked = true;
490 			VOP_LOCK(vp, LK_SHARED | LK_RETRY);
491 		}
492 		VOP_UNSET_TEXT_CHECKED(vp);
493 	}
494 	if (locked)
495 		VOP_UNLOCK(vp);
496 
497 	/* Release the temporary mapping. */
498 	if (a_out)
499 		kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE);
500 
501 	return (error);
502 }
503 
504 #endif	/* __i386__ */
505 
506 #ifdef LINUX_LEGACY_SYSCALLS
507 int
508 linux_select(struct thread *td, struct linux_select_args *args)
509 {
510 	l_timeval ltv;
511 	struct timeval tv0, tv1, utv, *tvp;
512 	int error;
513 
514 	/*
515 	 * Store current time for computation of the amount of
516 	 * time left.
517 	 */
518 	if (args->timeout) {
519 		if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
520 			goto select_out;
521 		utv.tv_sec = ltv.tv_sec;
522 		utv.tv_usec = ltv.tv_usec;
523 
524 		if (itimerfix(&utv)) {
525 			/*
526 			 * The timeval was invalid.  Convert it to something
527 			 * valid that will act as it does under Linux.
528 			 */
529 			utv.tv_sec += utv.tv_usec / 1000000;
530 			utv.tv_usec %= 1000000;
531 			if (utv.tv_usec < 0) {
532 				utv.tv_sec -= 1;
533 				utv.tv_usec += 1000000;
534 			}
535 			if (utv.tv_sec < 0)
536 				timevalclear(&utv);
537 		}
538 		microtime(&tv0);
539 		tvp = &utv;
540 	} else
541 		tvp = NULL;
542 
543 	error = kern_select(td, args->nfds, args->readfds, args->writefds,
544 	    args->exceptfds, tvp, LINUX_NFDBITS);
545 	if (error)
546 		goto select_out;
547 
548 	if (args->timeout) {
549 		if (td->td_retval[0]) {
550 			/*
551 			 * Compute how much time was left of the timeout,
552 			 * by subtracting the current time and the time
553 			 * before we started the call, and subtracting
554 			 * that result from the user-supplied value.
555 			 */
556 			microtime(&tv1);
557 			timevalsub(&tv1, &tv0);
558 			timevalsub(&utv, &tv1);
559 			if (utv.tv_sec < 0)
560 				timevalclear(&utv);
561 		} else
562 			timevalclear(&utv);
563 		ltv.tv_sec = utv.tv_sec;
564 		ltv.tv_usec = utv.tv_usec;
565 		if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
566 			goto select_out;
567 	}
568 
569 select_out:
570 	return (error);
571 }
572 #endif
573 
574 int
575 linux_mremap(struct thread *td, struct linux_mremap_args *args)
576 {
577 	uintptr_t addr;
578 	size_t len;
579 	int error = 0;
580 
581 	if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
582 		td->td_retval[0] = 0;
583 		return (EINVAL);
584 	}
585 
586 	/*
587 	 * Check for the page alignment.
588 	 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
589 	 */
590 	if (args->addr & PAGE_MASK) {
591 		td->td_retval[0] = 0;
592 		return (EINVAL);
593 	}
594 
595 	args->new_len = round_page(args->new_len);
596 	args->old_len = round_page(args->old_len);
597 
598 	if (args->new_len > args->old_len) {
599 		td->td_retval[0] = 0;
600 		return (ENOMEM);
601 	}
602 
603 	if (args->new_len < args->old_len) {
604 		addr = args->addr + args->new_len;
605 		len = args->old_len - args->new_len;
606 		error = kern_munmap(td, addr, len);
607 	}
608 
609 	td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
610 	return (error);
611 }
612 
613 #define LINUX_MS_ASYNC       0x0001
614 #define LINUX_MS_INVALIDATE  0x0002
615 #define LINUX_MS_SYNC        0x0004
616 
617 int
618 linux_msync(struct thread *td, struct linux_msync_args *args)
619 {
620 
621 	return (kern_msync(td, args->addr, args->len,
622 	    args->fl & ~LINUX_MS_SYNC));
623 }
624 
625 #ifdef LINUX_LEGACY_SYSCALLS
626 int
627 linux_time(struct thread *td, struct linux_time_args *args)
628 {
629 	struct timeval tv;
630 	l_time_t tm;
631 	int error;
632 
633 	microtime(&tv);
634 	tm = tv.tv_sec;
635 	if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
636 		return (error);
637 	td->td_retval[0] = tm;
638 	return (0);
639 }
640 #endif
641 
642 struct l_times_argv {
643 	l_clock_t	tms_utime;
644 	l_clock_t	tms_stime;
645 	l_clock_t	tms_cutime;
646 	l_clock_t	tms_cstime;
647 };
648 
649 /*
650  * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
651  * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
652  * auxiliary vector entry.
653  */
654 #define	CLK_TCK		100
655 
656 #define	CONVOTCK(r)	(r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
657 #define	CONVNTCK(r)	(r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
658 
659 #define	CONVTCK(r)	(linux_kernver(td) >= LINUX_KERNVER_2004000 ?		\
660 			    CONVNTCK(r) : CONVOTCK(r))
661 
662 int
663 linux_times(struct thread *td, struct linux_times_args *args)
664 {
665 	struct timeval tv, utime, stime, cutime, cstime;
666 	struct l_times_argv tms;
667 	struct proc *p;
668 	int error;
669 
670 	if (args->buf != NULL) {
671 		p = td->td_proc;
672 		PROC_LOCK(p);
673 		PROC_STATLOCK(p);
674 		calcru(p, &utime, &stime);
675 		PROC_STATUNLOCK(p);
676 		calccru(p, &cutime, &cstime);
677 		PROC_UNLOCK(p);
678 
679 		tms.tms_utime = CONVTCK(utime);
680 		tms.tms_stime = CONVTCK(stime);
681 
682 		tms.tms_cutime = CONVTCK(cutime);
683 		tms.tms_cstime = CONVTCK(cstime);
684 
685 		if ((error = copyout(&tms, args->buf, sizeof(tms))))
686 			return (error);
687 	}
688 
689 	microuptime(&tv);
690 	td->td_retval[0] = (int)CONVTCK(tv);
691 	return (0);
692 }
693 
694 int
695 linux_newuname(struct thread *td, struct linux_newuname_args *args)
696 {
697 	struct l_new_utsname utsname;
698 	char osname[LINUX_MAX_UTSNAME];
699 	char osrelease[LINUX_MAX_UTSNAME];
700 	char *p;
701 
702 	linux_get_osname(td, osname);
703 	linux_get_osrelease(td, osrelease);
704 
705 	bzero(&utsname, sizeof(utsname));
706 	strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
707 	getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
708 	getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
709 	strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
710 	strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
711 	for (p = utsname.version; *p != '\0'; ++p)
712 		if (*p == '\n') {
713 			*p = '\0';
714 			break;
715 		}
716 #if defined(__amd64__)
717 	/*
718 	 * On amd64, Linux uname(2) needs to return "x86_64"
719 	 * for both 64-bit and 32-bit applications.  On 32-bit,
720 	 * the string returned by getauxval(AT_PLATFORM) needs
721 	 * to remain "i686", though.
722 	 */
723 	strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
724 #elif defined(__aarch64__)
725 	strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
726 #elif defined(__i386__)
727 	strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
728 #endif
729 
730 	return (copyout(&utsname, args->buf, sizeof(utsname)));
731 }
732 
733 struct l_utimbuf {
734 	l_time_t l_actime;
735 	l_time_t l_modtime;
736 };
737 
738 #ifdef LINUX_LEGACY_SYSCALLS
739 int
740 linux_utime(struct thread *td, struct linux_utime_args *args)
741 {
742 	struct timeval tv[2], *tvp;
743 	struct l_utimbuf lut;
744 	char *fname;
745 	int error;
746 
747 	if (args->times) {
748 		if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
749 			return (error);
750 		tv[0].tv_sec = lut.l_actime;
751 		tv[0].tv_usec = 0;
752 		tv[1].tv_sec = lut.l_modtime;
753 		tv[1].tv_usec = 0;
754 		tvp = tv;
755 	} else
756 		tvp = NULL;
757 
758 	if (!LUSECONVPATH(td)) {
759 		error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
760 		    tvp, UIO_SYSSPACE);
761 	} else {
762 		LCONVPATHEXIST(td, args->fname, &fname);
763 		error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp,
764 		    UIO_SYSSPACE);
765 		LFREEPATH(fname);
766 	}
767 	return (error);
768 }
769 #endif
770 
771 #ifdef LINUX_LEGACY_SYSCALLS
772 int
773 linux_utimes(struct thread *td, struct linux_utimes_args *args)
774 {
775 	l_timeval ltv[2];
776 	struct timeval tv[2], *tvp = NULL;
777 	char *fname;
778 	int error;
779 
780 	if (args->tptr != NULL) {
781 		if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
782 			return (error);
783 		tv[0].tv_sec = ltv[0].tv_sec;
784 		tv[0].tv_usec = ltv[0].tv_usec;
785 		tv[1].tv_sec = ltv[1].tv_sec;
786 		tv[1].tv_usec = ltv[1].tv_usec;
787 		tvp = tv;
788 	}
789 
790 	if (!LUSECONVPATH(td)) {
791 		error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
792 		    tvp, UIO_SYSSPACE);
793 	} else {
794 		LCONVPATHEXIST(td, args->fname, &fname);
795 		error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE,
796 		    tvp, UIO_SYSSPACE);
797 		LFREEPATH(fname);
798 	}
799 	return (error);
800 }
801 #endif
802 
803 static int
804 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
805 {
806 
807 	if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
808 	    l_times->tv_nsec != LINUX_UTIME_NOW &&
809 	    (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
810 		return (EINVAL);
811 
812 	times->tv_sec = l_times->tv_sec;
813 	switch (l_times->tv_nsec)
814 	{
815 	case LINUX_UTIME_OMIT:
816 		times->tv_nsec = UTIME_OMIT;
817 		break;
818 	case LINUX_UTIME_NOW:
819 		times->tv_nsec = UTIME_NOW;
820 		break;
821 	default:
822 		times->tv_nsec = l_times->tv_nsec;
823 	}
824 
825 	return (0);
826 }
827 
828 static int
829 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
830     struct timespec *timesp, int lflags)
831 {
832 	char *path = NULL;
833 	int error, dfd, flags = 0;
834 
835 	dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
836 
837 	if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
838 		return (EINVAL);
839 
840 	if (timesp != NULL) {
841 		/* This breaks POSIX, but is what the Linux kernel does
842 		 * _on purpose_ (documented in the man page for utimensat(2)),
843 		 * so we must follow that behaviour. */
844 		if (timesp[0].tv_nsec == UTIME_OMIT &&
845 		    timesp[1].tv_nsec == UTIME_OMIT)
846 			return (0);
847 	}
848 
849 	if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
850 		flags |= AT_SYMLINK_NOFOLLOW;
851 	if (lflags & LINUX_AT_EMPTY_PATH)
852 		flags |= AT_EMPTY_PATH;
853 
854 	if (!LUSECONVPATH(td)) {
855 		if (pathname != NULL) {
856 			return (kern_utimensat(td, dfd, pathname,
857 			    UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
858 		}
859 	}
860 
861 	if (pathname != NULL)
862 		LCONVPATHEXIST_AT(td, pathname, &path, dfd);
863 	else if (lflags != 0)
864 		return (EINVAL);
865 
866 	if (path == NULL)
867 		error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE);
868 	else {
869 		error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp,
870 			UIO_SYSSPACE, flags);
871 		LFREEPATH(path);
872 	}
873 
874 	return (error);
875 }
876 
877 int
878 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
879 {
880 	struct l_timespec l_times[2];
881 	struct timespec times[2], *timesp;
882 	int error;
883 
884 	if (args->times != NULL) {
885 		error = copyin(args->times, l_times, sizeof(l_times));
886 		if (error != 0)
887 			return (error);
888 
889 		error = linux_utimensat_lts_to_ts(&l_times[0], &times[0]);
890 		if (error != 0)
891 			return (error);
892 		error = linux_utimensat_lts_to_ts(&l_times[1], &times[1]);
893 		if (error != 0)
894 			return (error);
895 		timesp = times;
896 	} else
897 		timesp = NULL;
898 
899 	return (linux_common_utimensat(td, args->dfd, args->pathname,
900 	    timesp, args->flags));
901 }
902 
903 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
904 static int
905 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
906 {
907 
908 	if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
909 	    l_times->tv_nsec != LINUX_UTIME_NOW &&
910 	    (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
911 		return (EINVAL);
912 
913 	times->tv_sec = l_times->tv_sec;
914 	switch (l_times->tv_nsec)
915 	{
916 	case LINUX_UTIME_OMIT:
917 		times->tv_nsec = UTIME_OMIT;
918 		break;
919 	case LINUX_UTIME_NOW:
920 		times->tv_nsec = UTIME_NOW;
921 		break;
922 	default:
923 		times->tv_nsec = l_times->tv_nsec;
924 	}
925 
926 	return (0);
927 }
928 
929 int
930 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
931 {
932 	struct l_timespec64 l_times[2];
933 	struct timespec times[2], *timesp;
934 	int error;
935 
936 	if (args->times64 != NULL) {
937 		error = copyin(args->times64, l_times, sizeof(l_times));
938 		if (error != 0)
939 			return (error);
940 
941 		error = linux_utimensat_lts64_to_ts(&l_times[0], &times[0]);
942 		if (error != 0)
943 			return (error);
944 		error = linux_utimensat_lts64_to_ts(&l_times[1], &times[1]);
945 		if (error != 0)
946 			return (error);
947 		timesp = times;
948 	} else
949 		timesp = NULL;
950 
951 	return (linux_common_utimensat(td, args->dfd, args->pathname,
952 	    timesp, args->flags));
953 }
954 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
955 
956 #ifdef LINUX_LEGACY_SYSCALLS
957 int
958 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
959 {
960 	l_timeval ltv[2];
961 	struct timeval tv[2], *tvp = NULL;
962 	char *fname;
963 	int error, dfd;
964 
965 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
966 
967 	if (args->utimes != NULL) {
968 		if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
969 			return (error);
970 		tv[0].tv_sec = ltv[0].tv_sec;
971 		tv[0].tv_usec = ltv[0].tv_usec;
972 		tv[1].tv_sec = ltv[1].tv_sec;
973 		tv[1].tv_usec = ltv[1].tv_usec;
974 		tvp = tv;
975 	}
976 
977 	if (!LUSECONVPATH(td)) {
978 		error = kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
979 		    tvp, UIO_SYSSPACE);
980 	} else {
981 		LCONVPATHEXIST_AT(td, args->filename, &fname, dfd);
982 		error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE,
983 		    tvp, UIO_SYSSPACE);
984 		LFREEPATH(fname);
985 	}
986 	return (error);
987 }
988 #endif
989 
990 static int
991 linux_common_wait(struct thread *td, int pid, int *statusp,
992     int options, struct __wrusage *wrup)
993 {
994 	siginfo_t siginfo;
995 	idtype_t idtype;
996 	id_t id;
997 	int error, status, tmpstat;
998 
999 	if (pid == WAIT_ANY) {
1000 		idtype = P_ALL;
1001 		id = 0;
1002 	} else if (pid < 0) {
1003 		idtype = P_PGID;
1004 		id = (id_t)-pid;
1005 	} else {
1006 		idtype = P_PID;
1007 		id = (id_t)pid;
1008 	}
1009 
1010 	/*
1011 	 * For backward compatibility we implicitly add flags WEXITED
1012 	 * and WTRAPPED here.
1013 	 */
1014 	options |= WEXITED | WTRAPPED;
1015 	error = kern_wait6(td, idtype, id, &status, options, wrup, &siginfo);
1016 	if (error)
1017 		return (error);
1018 
1019 	if (statusp) {
1020 		tmpstat = status & 0xffff;
1021 		if (WIFSIGNALED(tmpstat)) {
1022 			tmpstat = (tmpstat & 0xffffff80) |
1023 			    bsd_to_linux_signal(WTERMSIG(tmpstat));
1024 		} else if (WIFSTOPPED(tmpstat)) {
1025 			tmpstat = (tmpstat & 0xffff00ff) |
1026 			    (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
1027 #if defined(__amd64__) && !defined(COMPAT_LINUX32)
1028 			if (WSTOPSIG(status) == SIGTRAP) {
1029 				tmpstat = linux_ptrace_status(td,
1030 				    siginfo.si_pid, tmpstat);
1031 			}
1032 #endif
1033 		} else if (WIFCONTINUED(tmpstat)) {
1034 			tmpstat = 0xffff;
1035 		}
1036 		error = copyout(&tmpstat, statusp, sizeof(int));
1037 	}
1038 
1039 	return (error);
1040 }
1041 
1042 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1043 int
1044 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
1045 {
1046 	struct linux_wait4_args wait4_args;
1047 
1048 	wait4_args.pid = args->pid;
1049 	wait4_args.status = args->status;
1050 	wait4_args.options = args->options;
1051 	wait4_args.rusage = NULL;
1052 
1053 	return (linux_wait4(td, &wait4_args));
1054 }
1055 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1056 
1057 int
1058 linux_wait4(struct thread *td, struct linux_wait4_args *args)
1059 {
1060 	int error, options;
1061 	struct __wrusage wru, *wrup;
1062 
1063 	if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
1064 	    LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
1065 		return (EINVAL);
1066 
1067 	options = WEXITED;
1068 	linux_to_bsd_waitopts(args->options, &options);
1069 
1070 	if (args->rusage != NULL)
1071 		wrup = &wru;
1072 	else
1073 		wrup = NULL;
1074 	error = linux_common_wait(td, args->pid, args->status, options, wrup);
1075 	if (error != 0)
1076 		return (error);
1077 	if (args->rusage != NULL)
1078 		error = linux_copyout_rusage(&wru.wru_self, args->rusage);
1079 	return (error);
1080 }
1081 
1082 int
1083 linux_waitid(struct thread *td, struct linux_waitid_args *args)
1084 {
1085 	int status, options, sig;
1086 	struct __wrusage wru;
1087 	siginfo_t siginfo;
1088 	l_siginfo_t lsi;
1089 	idtype_t idtype;
1090 	struct proc *p;
1091 	int error;
1092 
1093 	options = 0;
1094 	linux_to_bsd_waitopts(args->options, &options);
1095 
1096 	if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED))
1097 		return (EINVAL);
1098 	if (!(options & (WEXITED | WUNTRACED | WCONTINUED)))
1099 		return (EINVAL);
1100 
1101 	switch (args->idtype) {
1102 	case LINUX_P_ALL:
1103 		idtype = P_ALL;
1104 		break;
1105 	case LINUX_P_PID:
1106 		if (args->id <= 0)
1107 			return (EINVAL);
1108 		idtype = P_PID;
1109 		break;
1110 	case LINUX_P_PGID:
1111 		if (args->id <= 0)
1112 			return (EINVAL);
1113 		idtype = P_PGID;
1114 		break;
1115 	default:
1116 		return (EINVAL);
1117 	}
1118 
1119 	error = kern_wait6(td, idtype, args->id, &status, options,
1120 	    &wru, &siginfo);
1121 	if (error != 0)
1122 		return (error);
1123 	if (args->rusage != NULL) {
1124 		error = linux_copyout_rusage(&wru.wru_children,
1125 		    args->rusage);
1126 		if (error != 0)
1127 			return (error);
1128 	}
1129 	if (args->info != NULL) {
1130 		p = td->td_proc;
1131 		bzero(&lsi, sizeof(lsi));
1132 		if (td->td_retval[0] != 0) {
1133 			sig = bsd_to_linux_signal(siginfo.si_signo);
1134 			siginfo_to_lsiginfo(&siginfo, &lsi, sig);
1135 		}
1136 		error = copyout(&lsi, args->info, sizeof(lsi));
1137 	}
1138 	td->td_retval[0] = 0;
1139 
1140 	return (error);
1141 }
1142 
1143 #ifdef LINUX_LEGACY_SYSCALLS
1144 int
1145 linux_mknod(struct thread *td, struct linux_mknod_args *args)
1146 {
1147 	char *path;
1148 	int error;
1149 	enum uio_seg seg;
1150 	bool convpath;
1151 
1152 	convpath = LUSECONVPATH(td);
1153 	if (!convpath) {
1154 		path = args->path;
1155 		seg = UIO_USERSPACE;
1156 	} else {
1157 		LCONVPATHCREAT(td, args->path, &path);
1158 		seg = UIO_SYSSPACE;
1159 	}
1160 
1161 	switch (args->mode & S_IFMT) {
1162 	case S_IFIFO:
1163 	case S_IFSOCK:
1164 		error = kern_mkfifoat(td, AT_FDCWD, path, seg,
1165 		    args->mode);
1166 		break;
1167 
1168 	case S_IFCHR:
1169 	case S_IFBLK:
1170 		error = kern_mknodat(td, AT_FDCWD, path, seg,
1171 		    args->mode, args->dev);
1172 		break;
1173 
1174 	case S_IFDIR:
1175 		error = EPERM;
1176 		break;
1177 
1178 	case 0:
1179 		args->mode |= S_IFREG;
1180 		/* FALLTHROUGH */
1181 	case S_IFREG:
1182 		error = kern_openat(td, AT_FDCWD, path, seg,
1183 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1184 		if (error == 0)
1185 			kern_close(td, td->td_retval[0]);
1186 		break;
1187 
1188 	default:
1189 		error = EINVAL;
1190 		break;
1191 	}
1192 	if (convpath)
1193 		LFREEPATH(path);
1194 	return (error);
1195 }
1196 #endif
1197 
1198 int
1199 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
1200 {
1201 	char *path;
1202 	int error, dfd;
1203 	enum uio_seg seg;
1204 	bool convpath;
1205 
1206 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
1207 
1208 	convpath = LUSECONVPATH(td);
1209 	if (!convpath) {
1210 		path = __DECONST(char *, args->filename);
1211 		seg = UIO_USERSPACE;
1212 	} else {
1213 		LCONVPATHCREAT_AT(td, args->filename, &path, dfd);
1214 		seg = UIO_SYSSPACE;
1215 	}
1216 
1217 	switch (args->mode & S_IFMT) {
1218 	case S_IFIFO:
1219 	case S_IFSOCK:
1220 		error = kern_mkfifoat(td, dfd, path, seg, args->mode);
1221 		break;
1222 
1223 	case S_IFCHR:
1224 	case S_IFBLK:
1225 		error = kern_mknodat(td, dfd, path, seg, args->mode,
1226 		    args->dev);
1227 		break;
1228 
1229 	case S_IFDIR:
1230 		error = EPERM;
1231 		break;
1232 
1233 	case 0:
1234 		args->mode |= S_IFREG;
1235 		/* FALLTHROUGH */
1236 	case S_IFREG:
1237 		error = kern_openat(td, dfd, path, seg,
1238 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1239 		if (error == 0)
1240 			kern_close(td, td->td_retval[0]);
1241 		break;
1242 
1243 	default:
1244 		error = EINVAL;
1245 		break;
1246 	}
1247 	if (convpath)
1248 		LFREEPATH(path);
1249 	return (error);
1250 }
1251 
1252 /*
1253  * UGH! This is just about the dumbest idea I've ever heard!!
1254  */
1255 int
1256 linux_personality(struct thread *td, struct linux_personality_args *args)
1257 {
1258 	struct linux_pemuldata *pem;
1259 	struct proc *p = td->td_proc;
1260 	uint32_t old;
1261 
1262 	PROC_LOCK(p);
1263 	pem = pem_find(p);
1264 	old = pem->persona;
1265 	if (args->per != 0xffffffff)
1266 		pem->persona = args->per;
1267 	PROC_UNLOCK(p);
1268 
1269 	td->td_retval[0] = old;
1270 	return (0);
1271 }
1272 
1273 struct l_itimerval {
1274 	l_timeval it_interval;
1275 	l_timeval it_value;
1276 };
1277 
1278 #define	B2L_ITIMERVAL(bip, lip)						\
1279 	(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec;		\
1280 	(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec;	\
1281 	(bip)->it_value.tv_sec = (lip)->it_value.tv_sec;		\
1282 	(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
1283 
1284 int
1285 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
1286 {
1287 	int error;
1288 	struct l_itimerval ls;
1289 	struct itimerval aitv, oitv;
1290 
1291 	if (uap->itv == NULL) {
1292 		uap->itv = uap->oitv;
1293 		return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
1294 	}
1295 
1296 	error = copyin(uap->itv, &ls, sizeof(ls));
1297 	if (error != 0)
1298 		return (error);
1299 	B2L_ITIMERVAL(&aitv, &ls);
1300 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
1301 	if (error != 0 || uap->oitv == NULL)
1302 		return (error);
1303 	B2L_ITIMERVAL(&ls, &oitv);
1304 
1305 	return (copyout(&ls, uap->oitv, sizeof(ls)));
1306 }
1307 
1308 int
1309 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1310 {
1311 	int error;
1312 	struct l_itimerval ls;
1313 	struct itimerval aitv;
1314 
1315 	error = kern_getitimer(td, uap->which, &aitv);
1316 	if (error != 0)
1317 		return (error);
1318 	B2L_ITIMERVAL(&ls, &aitv);
1319 	return (copyout(&ls, uap->itv, sizeof(ls)));
1320 }
1321 
1322 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1323 int
1324 linux_nice(struct thread *td, struct linux_nice_args *args)
1325 {
1326 
1327 	return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1328 }
1329 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1330 
1331 int
1332 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1333 {
1334 	struct ucred *newcred, *oldcred;
1335 	l_gid_t *linux_gidset;
1336 	gid_t *bsd_gidset;
1337 	int ngrp, error;
1338 	struct proc *p;
1339 
1340 	ngrp = args->gidsetsize;
1341 	if (ngrp < 0 || ngrp >= ngroups_max + 1)
1342 		return (EINVAL);
1343 	linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1344 	error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1345 	if (error)
1346 		goto out;
1347 	newcred = crget();
1348 	crextend(newcred, ngrp + 1);
1349 	p = td->td_proc;
1350 	PROC_LOCK(p);
1351 	oldcred = p->p_ucred;
1352 	crcopy(newcred, oldcred);
1353 
1354 	/*
1355 	 * cr_groups[0] holds egid. Setting the whole set from
1356 	 * the supplied set will cause egid to be changed too.
1357 	 * Keep cr_groups[0] unchanged to prevent that.
1358 	 */
1359 
1360 	if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1361 		PROC_UNLOCK(p);
1362 		crfree(newcred);
1363 		goto out;
1364 	}
1365 
1366 	if (ngrp > 0) {
1367 		newcred->cr_ngroups = ngrp + 1;
1368 
1369 		bsd_gidset = newcred->cr_groups;
1370 		ngrp--;
1371 		while (ngrp >= 0) {
1372 			bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
1373 			ngrp--;
1374 		}
1375 	} else
1376 		newcred->cr_ngroups = 1;
1377 
1378 	setsugid(p);
1379 	proc_set_cred(p, newcred);
1380 	PROC_UNLOCK(p);
1381 	crfree(oldcred);
1382 	error = 0;
1383 out:
1384 	free(linux_gidset, M_LINUX);
1385 	return (error);
1386 }
1387 
1388 int
1389 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1390 {
1391 	struct ucred *cred;
1392 	l_gid_t *linux_gidset;
1393 	gid_t *bsd_gidset;
1394 	int bsd_gidsetsz, ngrp, error;
1395 
1396 	cred = td->td_ucred;
1397 	bsd_gidset = cred->cr_groups;
1398 	bsd_gidsetsz = cred->cr_ngroups - 1;
1399 
1400 	/*
1401 	 * cr_groups[0] holds egid. Returning the whole set
1402 	 * here will cause a duplicate. Exclude cr_groups[0]
1403 	 * to prevent that.
1404 	 */
1405 
1406 	if ((ngrp = args->gidsetsize) == 0) {
1407 		td->td_retval[0] = bsd_gidsetsz;
1408 		return (0);
1409 	}
1410 
1411 	if (ngrp < bsd_gidsetsz)
1412 		return (EINVAL);
1413 
1414 	ngrp = 0;
1415 	linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
1416 	    M_LINUX, M_WAITOK);
1417 	while (ngrp < bsd_gidsetsz) {
1418 		linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
1419 		ngrp++;
1420 	}
1421 
1422 	error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1423 	free(linux_gidset, M_LINUX);
1424 	if (error)
1425 		return (error);
1426 
1427 	td->td_retval[0] = ngrp;
1428 	return (0);
1429 }
1430 
1431 static bool
1432 linux_get_dummy_limit(l_uint resource, struct rlimit *rlim)
1433 {
1434 
1435 	if (linux_dummy_rlimits == 0)
1436 		return (false);
1437 
1438 	switch (resource) {
1439 	case LINUX_RLIMIT_LOCKS:
1440 	case LINUX_RLIMIT_SIGPENDING:
1441 	case LINUX_RLIMIT_MSGQUEUE:
1442 	case LINUX_RLIMIT_RTTIME:
1443 		rlim->rlim_cur = LINUX_RLIM_INFINITY;
1444 		rlim->rlim_max = LINUX_RLIM_INFINITY;
1445 		return (true);
1446 	case LINUX_RLIMIT_NICE:
1447 	case LINUX_RLIMIT_RTPRIO:
1448 		rlim->rlim_cur = 0;
1449 		rlim->rlim_max = 0;
1450 		return (true);
1451 	default:
1452 		return (false);
1453 	}
1454 }
1455 
1456 int
1457 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1458 {
1459 	struct rlimit bsd_rlim;
1460 	struct l_rlimit rlim;
1461 	u_int which;
1462 	int error;
1463 
1464 	if (args->resource >= LINUX_RLIM_NLIMITS)
1465 		return (EINVAL);
1466 
1467 	which = linux_to_bsd_resource[args->resource];
1468 	if (which == -1)
1469 		return (EINVAL);
1470 
1471 	error = copyin(args->rlim, &rlim, sizeof(rlim));
1472 	if (error)
1473 		return (error);
1474 
1475 	bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1476 	bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1477 	return (kern_setrlimit(td, which, &bsd_rlim));
1478 }
1479 
1480 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1481 int
1482 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1483 {
1484 	struct l_rlimit rlim;
1485 	struct rlimit bsd_rlim;
1486 	u_int which;
1487 
1488 	if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1489 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1490 		rlim.rlim_max = bsd_rlim.rlim_max;
1491 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1492 	}
1493 
1494 	if (args->resource >= LINUX_RLIM_NLIMITS)
1495 		return (EINVAL);
1496 
1497 	which = linux_to_bsd_resource[args->resource];
1498 	if (which == -1)
1499 		return (EINVAL);
1500 
1501 	lim_rlimit(td, which, &bsd_rlim);
1502 
1503 #ifdef COMPAT_LINUX32
1504 	rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1505 	if (rlim.rlim_cur == UINT_MAX)
1506 		rlim.rlim_cur = INT_MAX;
1507 	rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1508 	if (rlim.rlim_max == UINT_MAX)
1509 		rlim.rlim_max = INT_MAX;
1510 #else
1511 	rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1512 	if (rlim.rlim_cur == ULONG_MAX)
1513 		rlim.rlim_cur = LONG_MAX;
1514 	rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1515 	if (rlim.rlim_max == ULONG_MAX)
1516 		rlim.rlim_max = LONG_MAX;
1517 #endif
1518 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1519 }
1520 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1521 
1522 int
1523 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1524 {
1525 	struct l_rlimit rlim;
1526 	struct rlimit bsd_rlim;
1527 	u_int which;
1528 
1529 	if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1530 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1531 		rlim.rlim_max = bsd_rlim.rlim_max;
1532 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1533 	}
1534 
1535 	if (args->resource >= LINUX_RLIM_NLIMITS)
1536 		return (EINVAL);
1537 
1538 	which = linux_to_bsd_resource[args->resource];
1539 	if (which == -1)
1540 		return (EINVAL);
1541 
1542 	lim_rlimit(td, which, &bsd_rlim);
1543 
1544 	rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1545 	rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1546 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1547 }
1548 
1549 int
1550 linux_sched_setscheduler(struct thread *td,
1551     struct linux_sched_setscheduler_args *args)
1552 {
1553 	struct sched_param sched_param;
1554 	struct thread *tdt;
1555 	int error, policy;
1556 
1557 	switch (args->policy) {
1558 	case LINUX_SCHED_OTHER:
1559 		policy = SCHED_OTHER;
1560 		break;
1561 	case LINUX_SCHED_FIFO:
1562 		policy = SCHED_FIFO;
1563 		break;
1564 	case LINUX_SCHED_RR:
1565 		policy = SCHED_RR;
1566 		break;
1567 	default:
1568 		return (EINVAL);
1569 	}
1570 
1571 	error = copyin(args->param, &sched_param, sizeof(sched_param));
1572 	if (error)
1573 		return (error);
1574 
1575 	if (linux_map_sched_prio) {
1576 		switch (policy) {
1577 		case SCHED_OTHER:
1578 			if (sched_param.sched_priority != 0)
1579 				return (EINVAL);
1580 
1581 			sched_param.sched_priority =
1582 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1583 			break;
1584 		case SCHED_FIFO:
1585 		case SCHED_RR:
1586 			if (sched_param.sched_priority < 1 ||
1587 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1588 				return (EINVAL);
1589 
1590 			/*
1591 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1592 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1593 			 */
1594 			sched_param.sched_priority =
1595 			    (sched_param.sched_priority - 1) *
1596 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1597 			    (LINUX_MAX_RT_PRIO - 1);
1598 			break;
1599 		}
1600 	}
1601 
1602 	tdt = linux_tdfind(td, args->pid, -1);
1603 	if (tdt == NULL)
1604 		return (ESRCH);
1605 
1606 	error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1607 	PROC_UNLOCK(tdt->td_proc);
1608 	return (error);
1609 }
1610 
1611 int
1612 linux_sched_getscheduler(struct thread *td,
1613     struct linux_sched_getscheduler_args *args)
1614 {
1615 	struct thread *tdt;
1616 	int error, policy;
1617 
1618 	tdt = linux_tdfind(td, args->pid, -1);
1619 	if (tdt == NULL)
1620 		return (ESRCH);
1621 
1622 	error = kern_sched_getscheduler(td, tdt, &policy);
1623 	PROC_UNLOCK(tdt->td_proc);
1624 
1625 	switch (policy) {
1626 	case SCHED_OTHER:
1627 		td->td_retval[0] = LINUX_SCHED_OTHER;
1628 		break;
1629 	case SCHED_FIFO:
1630 		td->td_retval[0] = LINUX_SCHED_FIFO;
1631 		break;
1632 	case SCHED_RR:
1633 		td->td_retval[0] = LINUX_SCHED_RR;
1634 		break;
1635 	}
1636 	return (error);
1637 }
1638 
1639 int
1640 linux_sched_get_priority_max(struct thread *td,
1641     struct linux_sched_get_priority_max_args *args)
1642 {
1643 	struct sched_get_priority_max_args bsd;
1644 
1645 	if (linux_map_sched_prio) {
1646 		switch (args->policy) {
1647 		case LINUX_SCHED_OTHER:
1648 			td->td_retval[0] = 0;
1649 			return (0);
1650 		case LINUX_SCHED_FIFO:
1651 		case LINUX_SCHED_RR:
1652 			td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1653 			return (0);
1654 		default:
1655 			return (EINVAL);
1656 		}
1657 	}
1658 
1659 	switch (args->policy) {
1660 	case LINUX_SCHED_OTHER:
1661 		bsd.policy = SCHED_OTHER;
1662 		break;
1663 	case LINUX_SCHED_FIFO:
1664 		bsd.policy = SCHED_FIFO;
1665 		break;
1666 	case LINUX_SCHED_RR:
1667 		bsd.policy = SCHED_RR;
1668 		break;
1669 	default:
1670 		return (EINVAL);
1671 	}
1672 	return (sys_sched_get_priority_max(td, &bsd));
1673 }
1674 
1675 int
1676 linux_sched_get_priority_min(struct thread *td,
1677     struct linux_sched_get_priority_min_args *args)
1678 {
1679 	struct sched_get_priority_min_args bsd;
1680 
1681 	if (linux_map_sched_prio) {
1682 		switch (args->policy) {
1683 		case LINUX_SCHED_OTHER:
1684 			td->td_retval[0] = 0;
1685 			return (0);
1686 		case LINUX_SCHED_FIFO:
1687 		case LINUX_SCHED_RR:
1688 			td->td_retval[0] = 1;
1689 			return (0);
1690 		default:
1691 			return (EINVAL);
1692 		}
1693 	}
1694 
1695 	switch (args->policy) {
1696 	case LINUX_SCHED_OTHER:
1697 		bsd.policy = SCHED_OTHER;
1698 		break;
1699 	case LINUX_SCHED_FIFO:
1700 		bsd.policy = SCHED_FIFO;
1701 		break;
1702 	case LINUX_SCHED_RR:
1703 		bsd.policy = SCHED_RR;
1704 		break;
1705 	default:
1706 		return (EINVAL);
1707 	}
1708 	return (sys_sched_get_priority_min(td, &bsd));
1709 }
1710 
1711 #define REBOOT_CAD_ON	0x89abcdef
1712 #define REBOOT_CAD_OFF	0
1713 #define REBOOT_HALT	0xcdef0123
1714 #define REBOOT_RESTART	0x01234567
1715 #define REBOOT_RESTART2	0xA1B2C3D4
1716 #define REBOOT_POWEROFF	0x4321FEDC
1717 #define REBOOT_MAGIC1	0xfee1dead
1718 #define REBOOT_MAGIC2	0x28121969
1719 #define REBOOT_MAGIC2A	0x05121996
1720 #define REBOOT_MAGIC2B	0x16041998
1721 
1722 int
1723 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1724 {
1725 	struct reboot_args bsd_args;
1726 
1727 	if (args->magic1 != REBOOT_MAGIC1)
1728 		return (EINVAL);
1729 
1730 	switch (args->magic2) {
1731 	case REBOOT_MAGIC2:
1732 	case REBOOT_MAGIC2A:
1733 	case REBOOT_MAGIC2B:
1734 		break;
1735 	default:
1736 		return (EINVAL);
1737 	}
1738 
1739 	switch (args->cmd) {
1740 	case REBOOT_CAD_ON:
1741 	case REBOOT_CAD_OFF:
1742 		return (priv_check(td, PRIV_REBOOT));
1743 	case REBOOT_HALT:
1744 		bsd_args.opt = RB_HALT;
1745 		break;
1746 	case REBOOT_RESTART:
1747 	case REBOOT_RESTART2:
1748 		bsd_args.opt = 0;
1749 		break;
1750 	case REBOOT_POWEROFF:
1751 		bsd_args.opt = RB_POWEROFF;
1752 		break;
1753 	default:
1754 		return (EINVAL);
1755 	}
1756 	return (sys_reboot(td, &bsd_args));
1757 }
1758 
1759 int
1760 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1761 {
1762 
1763 	td->td_retval[0] = td->td_proc->p_pid;
1764 
1765 	return (0);
1766 }
1767 
1768 int
1769 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1770 {
1771 	struct linux_emuldata *em;
1772 
1773 	em = em_find(td);
1774 	KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1775 
1776 	td->td_retval[0] = em->em_tid;
1777 
1778 	return (0);
1779 }
1780 
1781 int
1782 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1783 {
1784 
1785 	td->td_retval[0] = kern_getppid(td);
1786 	return (0);
1787 }
1788 
1789 int
1790 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1791 {
1792 
1793 	td->td_retval[0] = td->td_ucred->cr_rgid;
1794 	return (0);
1795 }
1796 
1797 int
1798 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1799 {
1800 
1801 	td->td_retval[0] = td->td_ucred->cr_ruid;
1802 	return (0);
1803 }
1804 
1805 int
1806 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1807 {
1808 
1809 	return (kern_getsid(td, args->pid));
1810 }
1811 
1812 int
1813 linux_nosys(struct thread *td, struct nosys_args *ignore)
1814 {
1815 
1816 	return (ENOSYS);
1817 }
1818 
1819 int
1820 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1821 {
1822 	int error;
1823 
1824 	error = kern_getpriority(td, args->which, args->who);
1825 	td->td_retval[0] = 20 - td->td_retval[0];
1826 	return (error);
1827 }
1828 
1829 int
1830 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1831 {
1832 	int name[2];
1833 
1834 	name[0] = CTL_KERN;
1835 	name[1] = KERN_HOSTNAME;
1836 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1837 	    args->len, 0, 0));
1838 }
1839 
1840 int
1841 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1842 {
1843 	int name[2];
1844 
1845 	name[0] = CTL_KERN;
1846 	name[1] = KERN_NISDOMAINNAME;
1847 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1848 	    args->len, 0, 0));
1849 }
1850 
1851 int
1852 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1853 {
1854 
1855 	LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1856 	    args->error_code);
1857 
1858 	/*
1859 	 * XXX: we should send a signal to the parent if
1860 	 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1861 	 * as it doesnt occur often.
1862 	 */
1863 	exit1(td, args->error_code, 0);
1864 		/* NOTREACHED */
1865 }
1866 
1867 #define _LINUX_CAPABILITY_VERSION_1  0x19980330
1868 #define _LINUX_CAPABILITY_VERSION_2  0x20071026
1869 #define _LINUX_CAPABILITY_VERSION_3  0x20080522
1870 
1871 struct l_user_cap_header {
1872 	l_int	version;
1873 	l_int	pid;
1874 };
1875 
1876 struct l_user_cap_data {
1877 	l_int	effective;
1878 	l_int	permitted;
1879 	l_int	inheritable;
1880 };
1881 
1882 int
1883 linux_capget(struct thread *td, struct linux_capget_args *uap)
1884 {
1885 	struct l_user_cap_header luch;
1886 	struct l_user_cap_data lucd[2];
1887 	int error, u32s;
1888 
1889 	if (uap->hdrp == NULL)
1890 		return (EFAULT);
1891 
1892 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1893 	if (error != 0)
1894 		return (error);
1895 
1896 	switch (luch.version) {
1897 	case _LINUX_CAPABILITY_VERSION_1:
1898 		u32s = 1;
1899 		break;
1900 	case _LINUX_CAPABILITY_VERSION_2:
1901 	case _LINUX_CAPABILITY_VERSION_3:
1902 		u32s = 2;
1903 		break;
1904 	default:
1905 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1906 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1907 		if (error)
1908 			return (error);
1909 		return (EINVAL);
1910 	}
1911 
1912 	if (luch.pid)
1913 		return (EPERM);
1914 
1915 	if (uap->datap) {
1916 		/*
1917 		 * The current implementation doesn't support setting
1918 		 * a capability (it's essentially a stub) so indicate
1919 		 * that no capabilities are currently set or available
1920 		 * to request.
1921 		 */
1922 		memset(&lucd, 0, u32s * sizeof(lucd[0]));
1923 		error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1924 	}
1925 
1926 	return (error);
1927 }
1928 
1929 int
1930 linux_capset(struct thread *td, struct linux_capset_args *uap)
1931 {
1932 	struct l_user_cap_header luch;
1933 	struct l_user_cap_data lucd[2];
1934 	int error, i, u32s;
1935 
1936 	if (uap->hdrp == NULL || uap->datap == NULL)
1937 		return (EFAULT);
1938 
1939 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1940 	if (error != 0)
1941 		return (error);
1942 
1943 	switch (luch.version) {
1944 	case _LINUX_CAPABILITY_VERSION_1:
1945 		u32s = 1;
1946 		break;
1947 	case _LINUX_CAPABILITY_VERSION_2:
1948 	case _LINUX_CAPABILITY_VERSION_3:
1949 		u32s = 2;
1950 		break;
1951 	default:
1952 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1953 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1954 		if (error)
1955 			return (error);
1956 		return (EINVAL);
1957 	}
1958 
1959 	if (luch.pid)
1960 		return (EPERM);
1961 
1962 	error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1963 	if (error != 0)
1964 		return (error);
1965 
1966 	/* We currently don't support setting any capabilities. */
1967 	for (i = 0; i < u32s; i++) {
1968 		if (lucd[i].effective || lucd[i].permitted ||
1969 		    lucd[i].inheritable) {
1970 			linux_msg(td,
1971 			    "capset[%d] effective=0x%x, permitted=0x%x, "
1972 			    "inheritable=0x%x is not implemented", i,
1973 			    (int)lucd[i].effective, (int)lucd[i].permitted,
1974 			    (int)lucd[i].inheritable);
1975 			return (EPERM);
1976 		}
1977 	}
1978 
1979 	return (0);
1980 }
1981 
1982 int
1983 linux_prctl(struct thread *td, struct linux_prctl_args *args)
1984 {
1985 	int error = 0, max_size, arg;
1986 	struct proc *p = td->td_proc;
1987 	char comm[LINUX_MAX_COMM_LEN];
1988 	int pdeath_signal, trace_state;
1989 
1990 	switch (args->option) {
1991 	case LINUX_PR_SET_PDEATHSIG:
1992 		if (!LINUX_SIG_VALID(args->arg2))
1993 			return (EINVAL);
1994 		pdeath_signal = linux_to_bsd_signal(args->arg2);
1995 		return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1996 		    &pdeath_signal));
1997 	case LINUX_PR_GET_PDEATHSIG:
1998 		error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1999 		    &pdeath_signal);
2000 		if (error != 0)
2001 			return (error);
2002 		pdeath_signal = bsd_to_linux_signal(pdeath_signal);
2003 		return (copyout(&pdeath_signal,
2004 		    (void *)(register_t)args->arg2,
2005 		    sizeof(pdeath_signal)));
2006 	/*
2007 	 * In Linux, this flag controls if set[gu]id processes can coredump.
2008 	 * There are additional semantics imposed on processes that cannot
2009 	 * coredump:
2010 	 * - Such processes can not be ptraced.
2011 	 * - There are some semantics around ownership of process-related files
2012 	 *   in the /proc namespace.
2013 	 *
2014 	 * In FreeBSD, we can (and by default, do) disable setuid coredump
2015 	 * system-wide with 'sugid_coredump.'  We control tracability on a
2016 	 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
2017 	 * By happy coincidence, P2_NOTRACE also prevents coredumping.  So the
2018 	 * procctl is roughly analogous to Linux's DUMPABLE.
2019 	 *
2020 	 * So, proxy these knobs to the corresponding PROC_TRACE setting.
2021 	 */
2022 	case LINUX_PR_GET_DUMPABLE:
2023 		error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
2024 		    &trace_state);
2025 		if (error != 0)
2026 			return (error);
2027 		td->td_retval[0] = (trace_state != -1);
2028 		return (0);
2029 	case LINUX_PR_SET_DUMPABLE:
2030 		/*
2031 		 * It is only valid for userspace to set one of these two
2032 		 * flags, and only one at a time.
2033 		 */
2034 		switch (args->arg2) {
2035 		case LINUX_SUID_DUMP_DISABLE:
2036 			trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
2037 			break;
2038 		case LINUX_SUID_DUMP_USER:
2039 			trace_state = PROC_TRACE_CTL_ENABLE;
2040 			break;
2041 		default:
2042 			return (EINVAL);
2043 		}
2044 		return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
2045 		    &trace_state));
2046 	case LINUX_PR_GET_KEEPCAPS:
2047 		/*
2048 		 * Indicate that we always clear the effective and
2049 		 * permitted capability sets when the user id becomes
2050 		 * non-zero (actually the capability sets are simply
2051 		 * always zero in the current implementation).
2052 		 */
2053 		td->td_retval[0] = 0;
2054 		break;
2055 	case LINUX_PR_SET_KEEPCAPS:
2056 		/*
2057 		 * Ignore requests to keep the effective and permitted
2058 		 * capability sets when the user id becomes non-zero.
2059 		 */
2060 		break;
2061 	case LINUX_PR_SET_NAME:
2062 		/*
2063 		 * To be on the safe side we need to make sure to not
2064 		 * overflow the size a Linux program expects. We already
2065 		 * do this here in the copyin, so that we don't need to
2066 		 * check on copyout.
2067 		 */
2068 		max_size = MIN(sizeof(comm), sizeof(p->p_comm));
2069 		error = copyinstr((void *)(register_t)args->arg2, comm,
2070 		    max_size, NULL);
2071 
2072 		/* Linux silently truncates the name if it is too long. */
2073 		if (error == ENAMETOOLONG) {
2074 			/*
2075 			 * XXX: copyinstr() isn't documented to populate the
2076 			 * array completely, so do a copyin() to be on the
2077 			 * safe side. This should be changed in case
2078 			 * copyinstr() is changed to guarantee this.
2079 			 */
2080 			error = copyin((void *)(register_t)args->arg2, comm,
2081 			    max_size - 1);
2082 			comm[max_size - 1] = '\0';
2083 		}
2084 		if (error)
2085 			return (error);
2086 
2087 		PROC_LOCK(p);
2088 		strlcpy(p->p_comm, comm, sizeof(p->p_comm));
2089 		PROC_UNLOCK(p);
2090 		break;
2091 	case LINUX_PR_GET_NAME:
2092 		PROC_LOCK(p);
2093 		strlcpy(comm, p->p_comm, sizeof(comm));
2094 		PROC_UNLOCK(p);
2095 		error = copyout(comm, (void *)(register_t)args->arg2,
2096 		    strlen(comm) + 1);
2097 		break;
2098 	case LINUX_PR_GET_SECCOMP:
2099 	case LINUX_PR_SET_SECCOMP:
2100 		/*
2101 		 * Same as returned by Linux without CONFIG_SECCOMP enabled.
2102 		 */
2103 		error = EINVAL;
2104 		break;
2105 	case LINUX_PR_CAPBSET_READ:
2106 #if 0
2107 		/*
2108 		 * This makes too much noise with Ubuntu Focal.
2109 		 */
2110 		linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
2111 		    (int)args->arg2);
2112 #endif
2113 		error = EINVAL;
2114 		break;
2115 	case LINUX_PR_SET_NO_NEW_PRIVS:
2116 		arg = args->arg2 == 1 ?
2117 		    PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
2118 		error = kern_procctl(td, P_PID, p->p_pid,
2119 		    PROC_NO_NEW_PRIVS_CTL, &arg);
2120 		break;
2121 	case LINUX_PR_SET_PTRACER:
2122 		linux_msg(td, "unsupported prctl PR_SET_PTRACER");
2123 		error = EINVAL;
2124 		break;
2125 	default:
2126 		linux_msg(td, "unsupported prctl option %d", args->option);
2127 		error = EINVAL;
2128 		break;
2129 	}
2130 
2131 	return (error);
2132 }
2133 
2134 int
2135 linux_sched_setparam(struct thread *td,
2136     struct linux_sched_setparam_args *uap)
2137 {
2138 	struct sched_param sched_param;
2139 	struct thread *tdt;
2140 	int error, policy;
2141 
2142 	error = copyin(uap->param, &sched_param, sizeof(sched_param));
2143 	if (error)
2144 		return (error);
2145 
2146 	tdt = linux_tdfind(td, uap->pid, -1);
2147 	if (tdt == NULL)
2148 		return (ESRCH);
2149 
2150 	if (linux_map_sched_prio) {
2151 		error = kern_sched_getscheduler(td, tdt, &policy);
2152 		if (error)
2153 			goto out;
2154 
2155 		switch (policy) {
2156 		case SCHED_OTHER:
2157 			if (sched_param.sched_priority != 0) {
2158 				error = EINVAL;
2159 				goto out;
2160 			}
2161 			sched_param.sched_priority =
2162 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
2163 			break;
2164 		case SCHED_FIFO:
2165 		case SCHED_RR:
2166 			if (sched_param.sched_priority < 1 ||
2167 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
2168 				error = EINVAL;
2169 				goto out;
2170 			}
2171 			/*
2172 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
2173 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
2174 			 */
2175 			sched_param.sched_priority =
2176 			    (sched_param.sched_priority - 1) *
2177 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
2178 			    (LINUX_MAX_RT_PRIO - 1);
2179 			break;
2180 		}
2181 	}
2182 
2183 	error = kern_sched_setparam(td, tdt, &sched_param);
2184 out:	PROC_UNLOCK(tdt->td_proc);
2185 	return (error);
2186 }
2187 
2188 int
2189 linux_sched_getparam(struct thread *td,
2190     struct linux_sched_getparam_args *uap)
2191 {
2192 	struct sched_param sched_param;
2193 	struct thread *tdt;
2194 	int error, policy;
2195 
2196 	tdt = linux_tdfind(td, uap->pid, -1);
2197 	if (tdt == NULL)
2198 		return (ESRCH);
2199 
2200 	error = kern_sched_getparam(td, tdt, &sched_param);
2201 	if (error) {
2202 		PROC_UNLOCK(tdt->td_proc);
2203 		return (error);
2204 	}
2205 
2206 	if (linux_map_sched_prio) {
2207 		error = kern_sched_getscheduler(td, tdt, &policy);
2208 		PROC_UNLOCK(tdt->td_proc);
2209 		if (error)
2210 			return (error);
2211 
2212 		switch (policy) {
2213 		case SCHED_OTHER:
2214 			sched_param.sched_priority = 0;
2215 			break;
2216 		case SCHED_FIFO:
2217 		case SCHED_RR:
2218 			/*
2219 			 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
2220 			 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
2221 			 */
2222 			sched_param.sched_priority =
2223 			    (sched_param.sched_priority *
2224 			    (LINUX_MAX_RT_PRIO - 1) +
2225 			    (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
2226 			    (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
2227 			break;
2228 		}
2229 	} else
2230 		PROC_UNLOCK(tdt->td_proc);
2231 
2232 	error = copyout(&sched_param, uap->param, sizeof(sched_param));
2233 	return (error);
2234 }
2235 
2236 /*
2237  * Get affinity of a process.
2238  */
2239 int
2240 linux_sched_getaffinity(struct thread *td,
2241     struct linux_sched_getaffinity_args *args)
2242 {
2243 	int error;
2244 	struct thread *tdt;
2245 
2246 	if (args->len < sizeof(cpuset_t))
2247 		return (EINVAL);
2248 
2249 	tdt = linux_tdfind(td, args->pid, -1);
2250 	if (tdt == NULL)
2251 		return (ESRCH);
2252 
2253 	PROC_UNLOCK(tdt->td_proc);
2254 
2255 	error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2256 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr);
2257 	if (error == 0)
2258 		td->td_retval[0] = sizeof(cpuset_t);
2259 
2260 	return (error);
2261 }
2262 
2263 /*
2264  *  Set affinity of a process.
2265  */
2266 int
2267 linux_sched_setaffinity(struct thread *td,
2268     struct linux_sched_setaffinity_args *args)
2269 {
2270 	struct thread *tdt;
2271 
2272 	if (args->len < sizeof(cpuset_t))
2273 		return (EINVAL);
2274 
2275 	tdt = linux_tdfind(td, args->pid, -1);
2276 	if (tdt == NULL)
2277 		return (ESRCH);
2278 
2279 	PROC_UNLOCK(tdt->td_proc);
2280 
2281 	return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2282 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr));
2283 }
2284 
2285 struct linux_rlimit64 {
2286 	uint64_t	rlim_cur;
2287 	uint64_t	rlim_max;
2288 };
2289 
2290 int
2291 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2292 {
2293 	struct rlimit rlim, nrlim;
2294 	struct linux_rlimit64 lrlim;
2295 	struct proc *p;
2296 	u_int which;
2297 	int flags;
2298 	int error;
2299 
2300 	if (args->new == NULL && args->old != NULL) {
2301 		if (linux_get_dummy_limit(args->resource, &rlim)) {
2302 			lrlim.rlim_cur = rlim.rlim_cur;
2303 			lrlim.rlim_max = rlim.rlim_max;
2304 			return (copyout(&lrlim, args->old, sizeof(lrlim)));
2305 		}
2306 	}
2307 
2308 	if (args->resource >= LINUX_RLIM_NLIMITS)
2309 		return (EINVAL);
2310 
2311 	which = linux_to_bsd_resource[args->resource];
2312 	if (which == -1)
2313 		return (EINVAL);
2314 
2315 	if (args->new != NULL) {
2316 		/*
2317 		 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2318 		 * rlim is unsigned 64-bit. FreeBSD treats negative limits
2319 		 * as INFINITY so we do not need a conversion even.
2320 		 */
2321 		error = copyin(args->new, &nrlim, sizeof(nrlim));
2322 		if (error != 0)
2323 			return (error);
2324 	}
2325 
2326 	flags = PGET_HOLD | PGET_NOTWEXIT;
2327 	if (args->new != NULL)
2328 		flags |= PGET_CANDEBUG;
2329 	else
2330 		flags |= PGET_CANSEE;
2331 	if (args->pid == 0) {
2332 		p = td->td_proc;
2333 		PHOLD(p);
2334 	} else {
2335 		error = pget(args->pid, flags, &p);
2336 		if (error != 0)
2337 			return (error);
2338 	}
2339 	if (args->old != NULL) {
2340 		PROC_LOCK(p);
2341 		lim_rlimit_proc(p, which, &rlim);
2342 		PROC_UNLOCK(p);
2343 		if (rlim.rlim_cur == RLIM_INFINITY)
2344 			lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2345 		else
2346 			lrlim.rlim_cur = rlim.rlim_cur;
2347 		if (rlim.rlim_max == RLIM_INFINITY)
2348 			lrlim.rlim_max = LINUX_RLIM_INFINITY;
2349 		else
2350 			lrlim.rlim_max = rlim.rlim_max;
2351 		error = copyout(&lrlim, args->old, sizeof(lrlim));
2352 		if (error != 0)
2353 			goto out;
2354 	}
2355 
2356 	if (args->new != NULL)
2357 		error = kern_proc_setrlimit(td, p, which, &nrlim);
2358 
2359  out:
2360 	PRELE(p);
2361 	return (error);
2362 }
2363 
2364 int
2365 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2366 {
2367 	struct l_timespec lts;
2368 	struct timespec ts, *tsp;
2369 	int error;
2370 
2371 	if (args->tsp != NULL) {
2372 		error = copyin(args->tsp, &lts, sizeof(lts));
2373 		if (error != 0)
2374 			return (error);
2375 		error = linux_to_native_timespec(&ts, &lts);
2376 		if (error != 0)
2377 			return (error);
2378 		tsp = &ts;
2379 	} else
2380 		tsp = NULL;
2381 
2382 	error = linux_common_pselect6(td, args->nfds, args->readfds,
2383 	    args->writefds, args->exceptfds, tsp, args->sig);
2384 	if (error != 0)
2385 		return (error);
2386 
2387 	if (args->tsp != NULL) {
2388 		error = native_to_linux_timespec(&lts, tsp);
2389 		if (error == 0)
2390 			error = copyout(&lts, args->tsp, sizeof(lts));
2391 	}
2392 	return (error);
2393 }
2394 
2395 static int
2396 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
2397     l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
2398     l_uintptr_t *sig)
2399 {
2400 	struct timeval utv, tv0, tv1, *tvp;
2401 	struct l_pselect6arg lpse6;
2402 	l_sigset_t l_ss;
2403 	sigset_t *ssp;
2404 	sigset_t ss;
2405 	int error;
2406 
2407 	ssp = NULL;
2408 	if (sig != NULL) {
2409 		error = copyin(sig, &lpse6, sizeof(lpse6));
2410 		if (error != 0)
2411 			return (error);
2412 		if (lpse6.ss_len != sizeof(l_ss))
2413 			return (EINVAL);
2414 		if (lpse6.ss != 0) {
2415 			error = copyin(PTRIN(lpse6.ss), &l_ss,
2416 			    sizeof(l_ss));
2417 			if (error != 0)
2418 				return (error);
2419 			linux_to_bsd_sigset(&l_ss, &ss);
2420 			ssp = &ss;
2421 		}
2422 	} else
2423 		ssp = NULL;
2424 
2425 	/*
2426 	 * Currently glibc changes nanosecond number to microsecond.
2427 	 * This mean losing precision but for now it is hardly seen.
2428 	 */
2429 	if (tsp != NULL) {
2430 		TIMESPEC_TO_TIMEVAL(&utv, tsp);
2431 		if (itimerfix(&utv))
2432 			return (EINVAL);
2433 
2434 		microtime(&tv0);
2435 		tvp = &utv;
2436 	} else
2437 		tvp = NULL;
2438 
2439 	error = kern_pselect(td, nfds, readfds, writefds,
2440 	    exceptfds, tvp, ssp, LINUX_NFDBITS);
2441 
2442 	if (error == 0 && tsp != NULL) {
2443 		if (td->td_retval[0] != 0) {
2444 			/*
2445 			 * Compute how much time was left of the timeout,
2446 			 * by subtracting the current time and the time
2447 			 * before we started the call, and subtracting
2448 			 * that result from the user-supplied value.
2449 			 */
2450 
2451 			microtime(&tv1);
2452 			timevalsub(&tv1, &tv0);
2453 			timevalsub(&utv, &tv1);
2454 			if (utv.tv_sec < 0)
2455 				timevalclear(&utv);
2456 		} else
2457 			timevalclear(&utv);
2458 		TIMEVAL_TO_TIMESPEC(&utv, tsp);
2459 	}
2460 	return (error);
2461 }
2462 
2463 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2464 int
2465 linux_pselect6_time64(struct thread *td,
2466     struct linux_pselect6_time64_args *args)
2467 {
2468 	struct l_timespec64 lts;
2469 	struct timespec ts, *tsp;
2470 	int error;
2471 
2472 	if (args->tsp != NULL) {
2473 		error = copyin(args->tsp, &lts, sizeof(lts));
2474 		if (error != 0)
2475 			return (error);
2476 		error = linux_to_native_timespec64(&ts, &lts);
2477 		if (error != 0)
2478 			return (error);
2479 		tsp = &ts;
2480 	} else
2481 		tsp = NULL;
2482 
2483 	error = linux_common_pselect6(td, args->nfds, args->readfds,
2484 	    args->writefds, args->exceptfds, tsp, args->sig);
2485 	if (error != 0)
2486 		return (error);
2487 
2488 	if (args->tsp != NULL) {
2489 		error = native_to_linux_timespec64(&lts, tsp);
2490 		if (error == 0)
2491 			error = copyout(&lts, args->tsp, sizeof(lts));
2492 	}
2493 	return (error);
2494 }
2495 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2496 
2497 int
2498 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2499 {
2500 	struct timespec uts, *tsp;
2501 	struct l_timespec lts;
2502 	int error;
2503 
2504 	if (args->tsp != NULL) {
2505 		error = copyin(args->tsp, &lts, sizeof(lts));
2506 		if (error)
2507 			return (error);
2508 		error = linux_to_native_timespec(&uts, &lts);
2509 		if (error != 0)
2510 			return (error);
2511 		tsp = &uts;
2512 	} else
2513 		tsp = NULL;
2514 
2515 	error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2516 	    args->sset, args->ssize);
2517 	if (error != 0)
2518 		return (error);
2519 	if (tsp != NULL) {
2520 		error = native_to_linux_timespec(&lts, tsp);
2521 		if (error == 0)
2522 			error = copyout(&lts, args->tsp, sizeof(lts));
2523 	}
2524 	return (error);
2525 }
2526 
2527 static int
2528 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
2529     struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
2530 {
2531 	struct timespec ts0, ts1;
2532 	struct pollfd stackfds[32];
2533 	struct pollfd *kfds;
2534  	l_sigset_t l_ss;
2535  	sigset_t *ssp;
2536  	sigset_t ss;
2537  	int error;
2538 
2539 	if (kern_poll_maxfds(nfds))
2540 		return (EINVAL);
2541 	if (sset != NULL) {
2542 		if (ssize != sizeof(l_ss))
2543 			return (EINVAL);
2544 		error = copyin(sset, &l_ss, sizeof(l_ss));
2545 		if (error)
2546 			return (error);
2547 		linux_to_bsd_sigset(&l_ss, &ss);
2548 		ssp = &ss;
2549 	} else
2550 		ssp = NULL;
2551 	if (tsp != NULL)
2552 		nanotime(&ts0);
2553 
2554 	if (nfds > nitems(stackfds))
2555 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
2556 	else
2557 		kfds = stackfds;
2558 	error = linux_pollin(td, kfds, fds, nfds);
2559 	if (error != 0)
2560 		goto out;
2561 
2562 	error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
2563 	if (error == 0)
2564 		error = linux_pollout(td, kfds, fds, nfds);
2565 
2566 	if (error == 0 && tsp != NULL) {
2567 		if (td->td_retval[0]) {
2568 			nanotime(&ts1);
2569 			timespecsub(&ts1, &ts0, &ts1);
2570 			timespecsub(tsp, &ts1, tsp);
2571 			if (tsp->tv_sec < 0)
2572 				timespecclear(tsp);
2573 		} else
2574 			timespecclear(tsp);
2575 	}
2576 
2577 out:
2578 	if (nfds > nitems(stackfds))
2579 		free(kfds, M_TEMP);
2580 	return (error);
2581 }
2582 
2583 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2584 int
2585 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
2586 {
2587 	struct timespec uts, *tsp;
2588 	struct l_timespec64 lts;
2589 	int error;
2590 
2591 	if (args->tsp != NULL) {
2592 		error = copyin(args->tsp, &lts, sizeof(lts));
2593 		if (error != 0)
2594 			return (error);
2595 		error = linux_to_native_timespec64(&uts, &lts);
2596 		if (error != 0)
2597 			return (error);
2598 		tsp = &uts;
2599 	} else
2600  		tsp = NULL;
2601 	error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2602 	    args->sset, args->ssize);
2603 	if (error != 0)
2604 		return (error);
2605 	if (tsp != NULL) {
2606 		error = native_to_linux_timespec64(&lts, tsp);
2607 		if (error == 0)
2608 			error = copyout(&lts, args->tsp, sizeof(lts));
2609 	}
2610 	return (error);
2611 }
2612 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2613 
2614 static int
2615 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2616 {
2617 	int error;
2618 	u_int i;
2619 
2620 	error = copyin(ufds, fds, nfd * sizeof(*fds));
2621 	if (error != 0)
2622 		return (error);
2623 
2624 	for (i = 0; i < nfd; i++) {
2625 		if (fds->events != 0)
2626 			linux_to_bsd_poll_events(td, fds->fd,
2627 			    fds->events, &fds->events);
2628 		fds++;
2629 	}
2630 	return (0);
2631 }
2632 
2633 static int
2634 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2635 {
2636 	int error = 0;
2637 	u_int i, n = 0;
2638 
2639 	for (i = 0; i < nfd; i++) {
2640 		if (fds->revents != 0) {
2641 			bsd_to_linux_poll_events(fds->revents,
2642 			    &fds->revents);
2643 			n++;
2644 		}
2645 		error = copyout(&fds->revents, &ufds->revents,
2646 		    sizeof(ufds->revents));
2647 		if (error)
2648 			return (error);
2649 		fds++;
2650 		ufds++;
2651 	}
2652 	td->td_retval[0] = n;
2653 	return (0);
2654 }
2655 
2656 int
2657 linux_sched_rr_get_interval(struct thread *td,
2658     struct linux_sched_rr_get_interval_args *uap)
2659 {
2660 	struct timespec ts;
2661 	struct l_timespec lts;
2662 	struct thread *tdt;
2663 	int error;
2664 
2665 	/*
2666 	 * According to man in case the invalid pid specified
2667 	 * EINVAL should be returned.
2668 	 */
2669 	if (uap->pid < 0)
2670 		return (EINVAL);
2671 
2672 	tdt = linux_tdfind(td, uap->pid, -1);
2673 	if (tdt == NULL)
2674 		return (ESRCH);
2675 
2676 	error = kern_sched_rr_get_interval_td(td, tdt, &ts);
2677 	PROC_UNLOCK(tdt->td_proc);
2678 	if (error != 0)
2679 		return (error);
2680 	error = native_to_linux_timespec(&lts, &ts);
2681 	if (error != 0)
2682 		return (error);
2683 	return (copyout(&lts, uap->interval, sizeof(lts)));
2684 }
2685 
2686 /*
2687  * In case when the Linux thread is the initial thread in
2688  * the thread group thread id is equal to the process id.
2689  * Glibc depends on this magic (assert in pthread_getattr_np.c).
2690  */
2691 struct thread *
2692 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2693 {
2694 	struct linux_emuldata *em;
2695 	struct thread *tdt;
2696 	struct proc *p;
2697 
2698 	tdt = NULL;
2699 	if (tid == 0 || tid == td->td_tid) {
2700 		tdt = td;
2701 		PROC_LOCK(tdt->td_proc);
2702 	} else if (tid > PID_MAX)
2703 		tdt = tdfind(tid, pid);
2704 	else {
2705 		/*
2706 		 * Initial thread where the tid equal to the pid.
2707 		 */
2708 		p = pfind(tid);
2709 		if (p != NULL) {
2710 			if (SV_PROC_ABI(p) != SV_ABI_LINUX) {
2711 				/*
2712 				 * p is not a Linuxulator process.
2713 				 */
2714 				PROC_UNLOCK(p);
2715 				return (NULL);
2716 			}
2717 			FOREACH_THREAD_IN_PROC(p, tdt) {
2718 				em = em_find(tdt);
2719 				if (tid == em->em_tid)
2720 					return (tdt);
2721 			}
2722 			PROC_UNLOCK(p);
2723 		}
2724 		return (NULL);
2725 	}
2726 
2727 	return (tdt);
2728 }
2729 
2730 void
2731 linux_to_bsd_waitopts(int options, int *bsdopts)
2732 {
2733 
2734 	if (options & LINUX_WNOHANG)
2735 		*bsdopts |= WNOHANG;
2736 	if (options & LINUX_WUNTRACED)
2737 		*bsdopts |= WUNTRACED;
2738 	if (options & LINUX_WEXITED)
2739 		*bsdopts |= WEXITED;
2740 	if (options & LINUX_WCONTINUED)
2741 		*bsdopts |= WCONTINUED;
2742 	if (options & LINUX_WNOWAIT)
2743 		*bsdopts |= WNOWAIT;
2744 
2745 	if (options & __WCLONE)
2746 		*bsdopts |= WLINUXCLONE;
2747 }
2748 
2749 int
2750 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2751 {
2752 	struct uio uio;
2753 	struct iovec iov;
2754 	int error;
2755 
2756 	if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2757 		return (EINVAL);
2758 	if (args->count > INT_MAX)
2759 		args->count = INT_MAX;
2760 
2761 	iov.iov_base = args->buf;
2762 	iov.iov_len = args->count;
2763 
2764 	uio.uio_iov = &iov;
2765 	uio.uio_iovcnt = 1;
2766 	uio.uio_resid = iov.iov_len;
2767 	uio.uio_segflg = UIO_USERSPACE;
2768 	uio.uio_rw = UIO_READ;
2769 	uio.uio_td = td;
2770 
2771 	error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2772 	if (error == 0)
2773 		td->td_retval[0] = args->count - uio.uio_resid;
2774 	return (error);
2775 }
2776 
2777 int
2778 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2779 {
2780 
2781 	/* Needs to be page-aligned */
2782 	if (args->start & PAGE_MASK)
2783 		return (EINVAL);
2784 	return (kern_mincore(td, args->start, args->len, args->vec));
2785 }
2786 
2787 #define	SYSLOG_TAG	"<6>"
2788 
2789 int
2790 linux_syslog(struct thread *td, struct linux_syslog_args *args)
2791 {
2792 	char buf[128], *src, *dst;
2793 	u_int seq;
2794 	int buflen, error;
2795 
2796 	if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2797 		linux_msg(td, "syslog unsupported type 0x%x", args->type);
2798 		return (EINVAL);
2799 	}
2800 
2801 	if (args->len < 6) {
2802 		td->td_retval[0] = 0;
2803 		return (0);
2804 	}
2805 
2806 	error = priv_check(td, PRIV_MSGBUF);
2807 	if (error)
2808 		return (error);
2809 
2810 	mtx_lock(&msgbuf_lock);
2811 	msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2812 	mtx_unlock(&msgbuf_lock);
2813 
2814 	dst = args->buf;
2815 	error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2816 	/* The -1 is to skip the trailing '\0'. */
2817 	dst += sizeof(SYSLOG_TAG) - 1;
2818 
2819 	while (error == 0) {
2820 		mtx_lock(&msgbuf_lock);
2821 		buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2822 		mtx_unlock(&msgbuf_lock);
2823 
2824 		if (buflen == 0)
2825 			break;
2826 
2827 		for (src = buf; src < buf + buflen && error == 0; src++) {
2828 			if (*src == '\0')
2829 				continue;
2830 
2831 			if (dst >= args->buf + args->len)
2832 				goto out;
2833 
2834 			error = copyout(src, dst, 1);
2835 			dst++;
2836 
2837 			if (*src == '\n' && *(src + 1) != '<' &&
2838 			    dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2839 				error = copyout(&SYSLOG_TAG,
2840 				    dst, sizeof(SYSLOG_TAG));
2841 				dst += sizeof(SYSLOG_TAG) - 1;
2842 			}
2843 		}
2844 	}
2845 out:
2846 	td->td_retval[0] = dst - args->buf;
2847 	return (error);
2848 }
2849 
2850 int
2851 linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2852 {
2853 	int cpu, error, node;
2854 
2855 	cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2856 	error = 0;
2857 	node = cpuid_to_pcpu[cpu]->pc_domain;
2858 
2859 	if (args->cpu != NULL)
2860 		error = copyout(&cpu, args->cpu, sizeof(l_int));
2861 	if (args->node != NULL)
2862 		error = copyout(&node, args->node, sizeof(l_int));
2863 	return (error);
2864 }
2865 
2866 #if defined(__i386__) || defined(__amd64__)
2867 int
2868 linux_poll(struct thread *td, struct linux_poll_args *args)
2869 {
2870 	struct timespec ts, *tsp;
2871 
2872 	if (args->timeout != INFTIM) {
2873 		if (args->timeout < 0)
2874 			return (EINVAL);
2875 		ts.tv_sec = args->timeout / 1000;
2876 		ts.tv_nsec = (args->timeout % 1000) * 1000000;
2877 		tsp = &ts;
2878 	} else
2879 		tsp = NULL;
2880 
2881 	return (linux_common_ppoll(td, args->fds, args->nfds,
2882 	    tsp, NULL, 0));
2883 }
2884 #endif /* __i386__ || __amd64__ */
2885