1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * Copyright (c) 1994-1995 Søren Schmidt 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer 13 * in this position and unchanged. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 37 #include <sys/param.h> 38 #include <sys/blist.h> 39 #include <sys/fcntl.h> 40 #if defined(__i386__) 41 #include <sys/imgact_aout.h> 42 #endif 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mman.h> 49 #include <sys/mount.h> 50 #include <sys/mutex.h> 51 #include <sys/namei.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/procctl.h> 55 #include <sys/reboot.h> 56 #include <sys/racct.h> 57 #include <sys/random.h> 58 #include <sys/resourcevar.h> 59 #include <sys/sched.h> 60 #include <sys/sdt.h> 61 #include <sys/signalvar.h> 62 #include <sys/stat.h> 63 #include <sys/syscallsubr.h> 64 #include <sys/sysctl.h> 65 #include <sys/sysproto.h> 66 #include <sys/systm.h> 67 #include <sys/time.h> 68 #include <sys/vmmeter.h> 69 #include <sys/vnode.h> 70 #include <sys/wait.h> 71 #include <sys/cpuset.h> 72 #include <sys/uio.h> 73 74 #include <security/mac/mac_framework.h> 75 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_kern.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_extern.h> 81 #include <vm/vm_object.h> 82 #include <vm/swap_pager.h> 83 84 #ifdef COMPAT_LINUX32 85 #include <machine/../linux32/linux.h> 86 #include <machine/../linux32/linux32_proto.h> 87 #else 88 #include <machine/../linux/linux.h> 89 #include <machine/../linux/linux_proto.h> 90 #endif 91 92 #include <compat/linux/linux_dtrace.h> 93 #include <compat/linux/linux_file.h> 94 #include <compat/linux/linux_mib.h> 95 #include <compat/linux/linux_signal.h> 96 #include <compat/linux/linux_timer.h> 97 #include <compat/linux/linux_util.h> 98 #include <compat/linux/linux_sysproto.h> 99 #include <compat/linux/linux_emul.h> 100 #include <compat/linux/linux_misc.h> 101 102 /** 103 * Special DTrace provider for the linuxulator. 104 * 105 * In this file we define the provider for the entire linuxulator. All 106 * modules (= files of the linuxulator) use it. 107 * 108 * We define a different name depending on the emulated bitsize, see 109 * ../../<ARCH>/linux{,32}/linux.h, e.g.: 110 * native bitsize = linuxulator 111 * amd64, 32bit emulation = linuxulator32 112 */ 113 LIN_SDT_PROVIDER_DEFINE(LINUX_DTRACE); 114 115 int stclohz; /* Statistics clock frequency */ 116 117 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { 118 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, 119 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, 120 RLIMIT_MEMLOCK, RLIMIT_AS 121 }; 122 123 struct l_sysinfo { 124 l_long uptime; /* Seconds since boot */ 125 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ 126 #define LINUX_SYSINFO_LOADS_SCALE 65536 127 l_ulong totalram; /* Total usable main memory size */ 128 l_ulong freeram; /* Available memory size */ 129 l_ulong sharedram; /* Amount of shared memory */ 130 l_ulong bufferram; /* Memory used by buffers */ 131 l_ulong totalswap; /* Total swap space size */ 132 l_ulong freeswap; /* swap space still available */ 133 l_ushort procs; /* Number of current processes */ 134 l_ushort pads; 135 l_ulong totalbig; 136 l_ulong freebig; 137 l_uint mem_unit; 138 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ 139 }; 140 141 struct l_pselect6arg { 142 l_uintptr_t ss; 143 l_size_t ss_len; 144 }; 145 146 static int linux_utimensat_nsec_valid(l_long); 147 148 149 int 150 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) 151 { 152 struct l_sysinfo sysinfo; 153 vm_object_t object; 154 int i, j; 155 struct timespec ts; 156 157 bzero(&sysinfo, sizeof(sysinfo)); 158 getnanouptime(&ts); 159 if (ts.tv_nsec != 0) 160 ts.tv_sec++; 161 sysinfo.uptime = ts.tv_sec; 162 163 /* Use the information from the mib to get our load averages */ 164 for (i = 0; i < 3; i++) 165 sysinfo.loads[i] = averunnable.ldavg[i] * 166 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; 167 168 sysinfo.totalram = physmem * PAGE_SIZE; 169 sysinfo.freeram = sysinfo.totalram - vm_wire_count() * PAGE_SIZE; 170 171 sysinfo.sharedram = 0; 172 mtx_lock(&vm_object_list_mtx); 173 TAILQ_FOREACH(object, &vm_object_list, object_list) 174 if (object->shadow_count > 1) 175 sysinfo.sharedram += object->resident_page_count; 176 mtx_unlock(&vm_object_list_mtx); 177 178 sysinfo.sharedram *= PAGE_SIZE; 179 sysinfo.bufferram = 0; 180 181 swap_pager_status(&i, &j); 182 sysinfo.totalswap = i * PAGE_SIZE; 183 sysinfo.freeswap = (i - j) * PAGE_SIZE; 184 185 sysinfo.procs = nprocs; 186 187 /* The following are only present in newer Linux kernels. */ 188 sysinfo.totalbig = 0; 189 sysinfo.freebig = 0; 190 sysinfo.mem_unit = 1; 191 192 return (copyout(&sysinfo, args->info, sizeof(sysinfo))); 193 } 194 195 #ifdef LINUX_LEGACY_SYSCALLS 196 int 197 linux_alarm(struct thread *td, struct linux_alarm_args *args) 198 { 199 struct itimerval it, old_it; 200 u_int secs; 201 int error; 202 203 secs = args->secs; 204 /* 205 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 206 * to match kern_setitimer()'s limit to avoid error from it. 207 * 208 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit 209 * platforms. 210 */ 211 if (secs > INT32_MAX / 2) 212 secs = INT32_MAX / 2; 213 214 it.it_value.tv_sec = secs; 215 it.it_value.tv_usec = 0; 216 timevalclear(&it.it_interval); 217 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); 218 KASSERT(error == 0, ("kern_setitimer returns %d", error)); 219 220 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || 221 old_it.it_value.tv_usec >= 500000) 222 old_it.it_value.tv_sec++; 223 td->td_retval[0] = old_it.it_value.tv_sec; 224 return (0); 225 } 226 #endif 227 228 int 229 linux_brk(struct thread *td, struct linux_brk_args *args) 230 { 231 struct vmspace *vm = td->td_proc->p_vmspace; 232 uintptr_t new, old; 233 234 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); 235 new = (uintptr_t)args->dsend; 236 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) 237 td->td_retval[0] = (register_t)new; 238 else 239 td->td_retval[0] = (register_t)old; 240 241 return (0); 242 } 243 244 #if defined(__i386__) 245 /* XXX: what about amd64/linux32? */ 246 247 int 248 linux_uselib(struct thread *td, struct linux_uselib_args *args) 249 { 250 struct nameidata ni; 251 struct vnode *vp; 252 struct exec *a_out; 253 vm_map_t map; 254 vm_map_entry_t entry; 255 struct vattr attr; 256 vm_offset_t vmaddr; 257 unsigned long file_offset; 258 unsigned long bss_size; 259 char *library; 260 ssize_t aresid; 261 int error; 262 bool locked, opened, textset; 263 264 LCONVPATHEXIST(td, args->library, &library); 265 266 a_out = NULL; 267 vp = NULL; 268 locked = false; 269 textset = false; 270 opened = false; 271 272 NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, 273 UIO_SYSSPACE, library, td); 274 error = namei(&ni); 275 LFREEPATH(library); 276 if (error) 277 goto cleanup; 278 279 vp = ni.ni_vp; 280 NDFREE(&ni, NDF_ONLY_PNBUF); 281 282 /* 283 * From here on down, we have a locked vnode that must be unlocked. 284 * XXX: The code below largely duplicates exec_check_permissions(). 285 */ 286 locked = true; 287 288 /* Executable? */ 289 error = VOP_GETATTR(vp, &attr, td->td_ucred); 290 if (error) 291 goto cleanup; 292 293 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || 294 ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) { 295 /* EACCESS is what exec(2) returns. */ 296 error = ENOEXEC; 297 goto cleanup; 298 } 299 300 /* Sensible size? */ 301 if (attr.va_size == 0) { 302 error = ENOEXEC; 303 goto cleanup; 304 } 305 306 /* Can we access it? */ 307 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); 308 if (error) 309 goto cleanup; 310 311 /* 312 * XXX: This should use vn_open() so that it is properly authorized, 313 * and to reduce code redundancy all over the place here. 314 * XXX: Not really, it duplicates far more of exec_check_permissions() 315 * than vn_open(). 316 */ 317 #ifdef MAC 318 error = mac_vnode_check_open(td->td_ucred, vp, VREAD); 319 if (error) 320 goto cleanup; 321 #endif 322 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); 323 if (error) 324 goto cleanup; 325 opened = true; 326 327 /* Pull in executable header into exec_map */ 328 error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE, 329 VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0); 330 if (error) 331 goto cleanup; 332 333 /* Is it a Linux binary ? */ 334 if (((a_out->a_magic >> 16) & 0xff) != 0x64) { 335 error = ENOEXEC; 336 goto cleanup; 337 } 338 339 /* 340 * While we are here, we should REALLY do some more checks 341 */ 342 343 /* Set file/virtual offset based on a.out variant. */ 344 switch ((int)(a_out->a_magic & 0xffff)) { 345 case 0413: /* ZMAGIC */ 346 file_offset = 1024; 347 break; 348 case 0314: /* QMAGIC */ 349 file_offset = 0; 350 break; 351 default: 352 error = ENOEXEC; 353 goto cleanup; 354 } 355 356 bss_size = round_page(a_out->a_bss); 357 358 /* Check various fields in header for validity/bounds. */ 359 if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) { 360 error = ENOEXEC; 361 goto cleanup; 362 } 363 364 /* text + data can't exceed file size */ 365 if (a_out->a_data + a_out->a_text > attr.va_size) { 366 error = EFAULT; 367 goto cleanup; 368 } 369 370 /* 371 * text/data/bss must not exceed limits 372 * XXX - this is not complete. it should check current usage PLUS 373 * the resources needed by this library. 374 */ 375 PROC_LOCK(td->td_proc); 376 if (a_out->a_text > maxtsiz || 377 a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) || 378 racct_set(td->td_proc, RACCT_DATA, a_out->a_data + 379 bss_size) != 0) { 380 PROC_UNLOCK(td->td_proc); 381 error = ENOMEM; 382 goto cleanup; 383 } 384 PROC_UNLOCK(td->td_proc); 385 386 /* 387 * Prevent more writers. 388 */ 389 error = VOP_SET_TEXT(vp); 390 if (error != 0) 391 goto cleanup; 392 textset = true; 393 394 /* 395 * Lock no longer needed 396 */ 397 locked = false; 398 VOP_UNLOCK(vp, 0); 399 400 /* 401 * Check if file_offset page aligned. Currently we cannot handle 402 * misalinged file offsets, and so we read in the entire image 403 * (what a waste). 404 */ 405 if (file_offset & PAGE_MASK) { 406 /* Map text+data read/write/execute */ 407 408 /* a_entry is the load address and is page aligned */ 409 vmaddr = trunc_page(a_out->a_entry); 410 411 /* get anon user mapping, read+write+execute */ 412 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 413 &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE, 414 VM_PROT_ALL, VM_PROT_ALL, 0); 415 if (error) 416 goto cleanup; 417 418 error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset, 419 a_out->a_text + a_out->a_data, UIO_USERSPACE, 0, 420 td->td_ucred, NOCRED, &aresid, td); 421 if (error != 0) 422 goto cleanup; 423 if (aresid != 0) { 424 error = ENOEXEC; 425 goto cleanup; 426 } 427 } else { 428 /* 429 * for QMAGIC, a_entry is 20 bytes beyond the load address 430 * to skip the executable header 431 */ 432 vmaddr = trunc_page(a_out->a_entry); 433 434 /* 435 * Map it all into the process's space as a single 436 * copy-on-write "data" segment. 437 */ 438 map = &td->td_proc->p_vmspace->vm_map; 439 error = vm_mmap(map, &vmaddr, 440 a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL, 441 MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset); 442 if (error) 443 goto cleanup; 444 vm_map_lock(map); 445 if (!vm_map_lookup_entry(map, vmaddr, &entry)) { 446 vm_map_unlock(map); 447 error = EDOOFUS; 448 goto cleanup; 449 } 450 entry->eflags |= MAP_ENTRY_VN_EXEC; 451 vm_map_unlock(map); 452 textset = false; 453 } 454 455 if (bss_size != 0) { 456 /* Calculate BSS start address */ 457 vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + 458 a_out->a_data; 459 460 /* allocate some 'anon' space */ 461 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 462 &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL, 463 VM_PROT_ALL, 0); 464 if (error) 465 goto cleanup; 466 } 467 468 cleanup: 469 if (opened) { 470 if (locked) 471 VOP_UNLOCK(vp, 0); 472 locked = false; 473 VOP_CLOSE(vp, FREAD, td->td_ucred, td); 474 } 475 if (textset) 476 VOP_UNSET_TEXT_CHECKED(vp); 477 if (locked) 478 VOP_UNLOCK(vp, 0); 479 480 /* Release the temporary mapping. */ 481 if (a_out) 482 kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE); 483 484 return (error); 485 } 486 487 #endif /* __i386__ */ 488 489 #ifdef LINUX_LEGACY_SYSCALLS 490 int 491 linux_select(struct thread *td, struct linux_select_args *args) 492 { 493 l_timeval ltv; 494 struct timeval tv0, tv1, utv, *tvp; 495 int error; 496 497 /* 498 * Store current time for computation of the amount of 499 * time left. 500 */ 501 if (args->timeout) { 502 if ((error = copyin(args->timeout, <v, sizeof(ltv)))) 503 goto select_out; 504 utv.tv_sec = ltv.tv_sec; 505 utv.tv_usec = ltv.tv_usec; 506 507 if (itimerfix(&utv)) { 508 /* 509 * The timeval was invalid. Convert it to something 510 * valid that will act as it does under Linux. 511 */ 512 utv.tv_sec += utv.tv_usec / 1000000; 513 utv.tv_usec %= 1000000; 514 if (utv.tv_usec < 0) { 515 utv.tv_sec -= 1; 516 utv.tv_usec += 1000000; 517 } 518 if (utv.tv_sec < 0) 519 timevalclear(&utv); 520 } 521 microtime(&tv0); 522 tvp = &utv; 523 } else 524 tvp = NULL; 525 526 error = kern_select(td, args->nfds, args->readfds, args->writefds, 527 args->exceptfds, tvp, LINUX_NFDBITS); 528 if (error) 529 goto select_out; 530 531 if (args->timeout) { 532 if (td->td_retval[0]) { 533 /* 534 * Compute how much time was left of the timeout, 535 * by subtracting the current time and the time 536 * before we started the call, and subtracting 537 * that result from the user-supplied value. 538 */ 539 microtime(&tv1); 540 timevalsub(&tv1, &tv0); 541 timevalsub(&utv, &tv1); 542 if (utv.tv_sec < 0) 543 timevalclear(&utv); 544 } else 545 timevalclear(&utv); 546 ltv.tv_sec = utv.tv_sec; 547 ltv.tv_usec = utv.tv_usec; 548 if ((error = copyout(<v, args->timeout, sizeof(ltv)))) 549 goto select_out; 550 } 551 552 select_out: 553 return (error); 554 } 555 #endif 556 557 int 558 linux_mremap(struct thread *td, struct linux_mremap_args *args) 559 { 560 uintptr_t addr; 561 size_t len; 562 int error = 0; 563 564 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { 565 td->td_retval[0] = 0; 566 return (EINVAL); 567 } 568 569 /* 570 * Check for the page alignment. 571 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. 572 */ 573 if (args->addr & PAGE_MASK) { 574 td->td_retval[0] = 0; 575 return (EINVAL); 576 } 577 578 args->new_len = round_page(args->new_len); 579 args->old_len = round_page(args->old_len); 580 581 if (args->new_len > args->old_len) { 582 td->td_retval[0] = 0; 583 return (ENOMEM); 584 } 585 586 if (args->new_len < args->old_len) { 587 addr = args->addr + args->new_len; 588 len = args->old_len - args->new_len; 589 error = kern_munmap(td, addr, len); 590 } 591 592 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; 593 return (error); 594 } 595 596 #define LINUX_MS_ASYNC 0x0001 597 #define LINUX_MS_INVALIDATE 0x0002 598 #define LINUX_MS_SYNC 0x0004 599 600 int 601 linux_msync(struct thread *td, struct linux_msync_args *args) 602 { 603 604 return (kern_msync(td, args->addr, args->len, 605 args->fl & ~LINUX_MS_SYNC)); 606 } 607 608 #ifdef LINUX_LEGACY_SYSCALLS 609 int 610 linux_time(struct thread *td, struct linux_time_args *args) 611 { 612 struct timeval tv; 613 l_time_t tm; 614 int error; 615 616 microtime(&tv); 617 tm = tv.tv_sec; 618 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) 619 return (error); 620 td->td_retval[0] = tm; 621 return (0); 622 } 623 #endif 624 625 struct l_times_argv { 626 l_clock_t tms_utime; 627 l_clock_t tms_stime; 628 l_clock_t tms_cutime; 629 l_clock_t tms_cstime; 630 }; 631 632 633 /* 634 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. 635 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK 636 * auxiliary vector entry. 637 */ 638 #define CLK_TCK 100 639 640 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) 641 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) 642 643 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \ 644 CONVNTCK(r) : CONVOTCK(r)) 645 646 int 647 linux_times(struct thread *td, struct linux_times_args *args) 648 { 649 struct timeval tv, utime, stime, cutime, cstime; 650 struct l_times_argv tms; 651 struct proc *p; 652 int error; 653 654 if (args->buf != NULL) { 655 p = td->td_proc; 656 PROC_LOCK(p); 657 PROC_STATLOCK(p); 658 calcru(p, &utime, &stime); 659 PROC_STATUNLOCK(p); 660 calccru(p, &cutime, &cstime); 661 PROC_UNLOCK(p); 662 663 tms.tms_utime = CONVTCK(utime); 664 tms.tms_stime = CONVTCK(stime); 665 666 tms.tms_cutime = CONVTCK(cutime); 667 tms.tms_cstime = CONVTCK(cstime); 668 669 if ((error = copyout(&tms, args->buf, sizeof(tms)))) 670 return (error); 671 } 672 673 microuptime(&tv); 674 td->td_retval[0] = (int)CONVTCK(tv); 675 return (0); 676 } 677 678 int 679 linux_newuname(struct thread *td, struct linux_newuname_args *args) 680 { 681 struct l_new_utsname utsname; 682 char osname[LINUX_MAX_UTSNAME]; 683 char osrelease[LINUX_MAX_UTSNAME]; 684 char *p; 685 686 linux_get_osname(td, osname); 687 linux_get_osrelease(td, osrelease); 688 689 bzero(&utsname, sizeof(utsname)); 690 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); 691 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); 692 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); 693 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); 694 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); 695 for (p = utsname.version; *p != '\0'; ++p) 696 if (*p == '\n') { 697 *p = '\0'; 698 break; 699 } 700 strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME); 701 702 return (copyout(&utsname, args->buf, sizeof(utsname))); 703 } 704 705 struct l_utimbuf { 706 l_time_t l_actime; 707 l_time_t l_modtime; 708 }; 709 710 #ifdef LINUX_LEGACY_SYSCALLS 711 int 712 linux_utime(struct thread *td, struct linux_utime_args *args) 713 { 714 struct timeval tv[2], *tvp; 715 struct l_utimbuf lut; 716 char *fname; 717 int error; 718 719 LCONVPATHEXIST(td, args->fname, &fname); 720 721 if (args->times) { 722 if ((error = copyin(args->times, &lut, sizeof lut))) { 723 LFREEPATH(fname); 724 return (error); 725 } 726 tv[0].tv_sec = lut.l_actime; 727 tv[0].tv_usec = 0; 728 tv[1].tv_sec = lut.l_modtime; 729 tv[1].tv_usec = 0; 730 tvp = tv; 731 } else 732 tvp = NULL; 733 734 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, 735 UIO_SYSSPACE); 736 LFREEPATH(fname); 737 return (error); 738 } 739 #endif 740 741 #ifdef LINUX_LEGACY_SYSCALLS 742 int 743 linux_utimes(struct thread *td, struct linux_utimes_args *args) 744 { 745 l_timeval ltv[2]; 746 struct timeval tv[2], *tvp = NULL; 747 char *fname; 748 int error; 749 750 LCONVPATHEXIST(td, args->fname, &fname); 751 752 if (args->tptr != NULL) { 753 if ((error = copyin(args->tptr, ltv, sizeof ltv))) { 754 LFREEPATH(fname); 755 return (error); 756 } 757 tv[0].tv_sec = ltv[0].tv_sec; 758 tv[0].tv_usec = ltv[0].tv_usec; 759 tv[1].tv_sec = ltv[1].tv_sec; 760 tv[1].tv_usec = ltv[1].tv_usec; 761 tvp = tv; 762 } 763 764 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, 765 tvp, UIO_SYSSPACE); 766 LFREEPATH(fname); 767 return (error); 768 } 769 #endif 770 771 static int 772 linux_utimensat_nsec_valid(l_long nsec) 773 { 774 775 if (nsec == LINUX_UTIME_OMIT || nsec == LINUX_UTIME_NOW) 776 return (0); 777 if (nsec >= 0 && nsec <= 999999999) 778 return (0); 779 return (1); 780 } 781 782 int 783 linux_utimensat(struct thread *td, struct linux_utimensat_args *args) 784 { 785 struct l_timespec l_times[2]; 786 struct timespec times[2], *timesp = NULL; 787 char *path = NULL; 788 int error, dfd, flags = 0; 789 790 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 791 792 if (args->flags & ~LINUX_AT_SYMLINK_NOFOLLOW) 793 return (EINVAL); 794 795 if (args->times != NULL) { 796 error = copyin(args->times, l_times, sizeof(l_times)); 797 if (error != 0) 798 return (error); 799 800 if (linux_utimensat_nsec_valid(l_times[0].tv_nsec) != 0 || 801 linux_utimensat_nsec_valid(l_times[1].tv_nsec) != 0) 802 return (EINVAL); 803 804 times[0].tv_sec = l_times[0].tv_sec; 805 switch (l_times[0].tv_nsec) 806 { 807 case LINUX_UTIME_OMIT: 808 times[0].tv_nsec = UTIME_OMIT; 809 break; 810 case LINUX_UTIME_NOW: 811 times[0].tv_nsec = UTIME_NOW; 812 break; 813 default: 814 times[0].tv_nsec = l_times[0].tv_nsec; 815 } 816 817 times[1].tv_sec = l_times[1].tv_sec; 818 switch (l_times[1].tv_nsec) 819 { 820 case LINUX_UTIME_OMIT: 821 times[1].tv_nsec = UTIME_OMIT; 822 break; 823 case LINUX_UTIME_NOW: 824 times[1].tv_nsec = UTIME_NOW; 825 break; 826 default: 827 times[1].tv_nsec = l_times[1].tv_nsec; 828 break; 829 } 830 timesp = times; 831 832 /* This breaks POSIX, but is what the Linux kernel does 833 * _on purpose_ (documented in the man page for utimensat(2)), 834 * so we must follow that behaviour. */ 835 if (times[0].tv_nsec == UTIME_OMIT && 836 times[1].tv_nsec == UTIME_OMIT) 837 return (0); 838 } 839 840 if (args->pathname != NULL) 841 LCONVPATHEXIST_AT(td, args->pathname, &path, dfd); 842 else if (args->flags != 0) 843 return (EINVAL); 844 845 if (args->flags & LINUX_AT_SYMLINK_NOFOLLOW) 846 flags |= AT_SYMLINK_NOFOLLOW; 847 848 if (path == NULL) 849 error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE); 850 else { 851 error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp, 852 UIO_SYSSPACE, flags); 853 LFREEPATH(path); 854 } 855 856 return (error); 857 } 858 859 #ifdef LINUX_LEGACY_SYSCALLS 860 int 861 linux_futimesat(struct thread *td, struct linux_futimesat_args *args) 862 { 863 l_timeval ltv[2]; 864 struct timeval tv[2], *tvp = NULL; 865 char *fname; 866 int error, dfd; 867 868 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 869 LCONVPATHEXIST_AT(td, args->filename, &fname, dfd); 870 871 if (args->utimes != NULL) { 872 if ((error = copyin(args->utimes, ltv, sizeof ltv))) { 873 LFREEPATH(fname); 874 return (error); 875 } 876 tv[0].tv_sec = ltv[0].tv_sec; 877 tv[0].tv_usec = ltv[0].tv_usec; 878 tv[1].tv_sec = ltv[1].tv_sec; 879 tv[1].tv_usec = ltv[1].tv_usec; 880 tvp = tv; 881 } 882 883 error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); 884 LFREEPATH(fname); 885 return (error); 886 } 887 #endif 888 889 int 890 linux_common_wait(struct thread *td, int pid, int *status, 891 int options, struct rusage *ru) 892 { 893 int error, tmpstat; 894 895 error = kern_wait(td, pid, &tmpstat, options, ru); 896 if (error) 897 return (error); 898 899 if (status) { 900 tmpstat &= 0xffff; 901 if (WIFSIGNALED(tmpstat)) 902 tmpstat = (tmpstat & 0xffffff80) | 903 bsd_to_linux_signal(WTERMSIG(tmpstat)); 904 else if (WIFSTOPPED(tmpstat)) 905 tmpstat = (tmpstat & 0xffff00ff) | 906 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); 907 else if (WIFCONTINUED(tmpstat)) 908 tmpstat = 0xffff; 909 error = copyout(&tmpstat, status, sizeof(int)); 910 } 911 912 return (error); 913 } 914 915 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 916 int 917 linux_waitpid(struct thread *td, struct linux_waitpid_args *args) 918 { 919 struct linux_wait4_args wait4_args; 920 921 wait4_args.pid = args->pid; 922 wait4_args.status = args->status; 923 wait4_args.options = args->options; 924 wait4_args.rusage = NULL; 925 926 return (linux_wait4(td, &wait4_args)); 927 } 928 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 929 930 int 931 linux_wait4(struct thread *td, struct linux_wait4_args *args) 932 { 933 int error, options; 934 struct rusage ru, *rup; 935 936 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | 937 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 938 return (EINVAL); 939 940 options = WEXITED; 941 linux_to_bsd_waitopts(args->options, &options); 942 943 if (args->rusage != NULL) 944 rup = &ru; 945 else 946 rup = NULL; 947 error = linux_common_wait(td, args->pid, args->status, options, rup); 948 if (error != 0) 949 return (error); 950 if (args->rusage != NULL) 951 error = linux_copyout_rusage(&ru, args->rusage); 952 return (error); 953 } 954 955 int 956 linux_waitid(struct thread *td, struct linux_waitid_args *args) 957 { 958 int status, options, sig; 959 struct __wrusage wru; 960 siginfo_t siginfo; 961 l_siginfo_t lsi; 962 idtype_t idtype; 963 struct proc *p; 964 int error; 965 966 options = 0; 967 linux_to_bsd_waitopts(args->options, &options); 968 969 if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED)) 970 return (EINVAL); 971 if (!(options & (WEXITED | WUNTRACED | WCONTINUED))) 972 return (EINVAL); 973 974 switch (args->idtype) { 975 case LINUX_P_ALL: 976 idtype = P_ALL; 977 break; 978 case LINUX_P_PID: 979 if (args->id <= 0) 980 return (EINVAL); 981 idtype = P_PID; 982 break; 983 case LINUX_P_PGID: 984 if (args->id <= 0) 985 return (EINVAL); 986 idtype = P_PGID; 987 break; 988 default: 989 return (EINVAL); 990 } 991 992 error = kern_wait6(td, idtype, args->id, &status, options, 993 &wru, &siginfo); 994 if (error != 0) 995 return (error); 996 if (args->rusage != NULL) { 997 error = linux_copyout_rusage(&wru.wru_children, 998 args->rusage); 999 if (error != 0) 1000 return (error); 1001 } 1002 if (args->info != NULL) { 1003 p = td->td_proc; 1004 bzero(&lsi, sizeof(lsi)); 1005 if (td->td_retval[0] != 0) { 1006 sig = bsd_to_linux_signal(siginfo.si_signo); 1007 siginfo_to_lsiginfo(&siginfo, &lsi, sig); 1008 } 1009 error = copyout(&lsi, args->info, sizeof(lsi)); 1010 } 1011 td->td_retval[0] = 0; 1012 1013 return (error); 1014 } 1015 1016 #ifdef LINUX_LEGACY_SYSCALLS 1017 int 1018 linux_mknod(struct thread *td, struct linux_mknod_args *args) 1019 { 1020 char *path; 1021 int error; 1022 1023 LCONVPATHCREAT(td, args->path, &path); 1024 1025 switch (args->mode & S_IFMT) { 1026 case S_IFIFO: 1027 case S_IFSOCK: 1028 error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE, 1029 args->mode); 1030 break; 1031 1032 case S_IFCHR: 1033 case S_IFBLK: 1034 error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE, 1035 args->mode, args->dev); 1036 break; 1037 1038 case S_IFDIR: 1039 error = EPERM; 1040 break; 1041 1042 case 0: 1043 args->mode |= S_IFREG; 1044 /* FALLTHROUGH */ 1045 case S_IFREG: 1046 error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE, 1047 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1048 if (error == 0) 1049 kern_close(td, td->td_retval[0]); 1050 break; 1051 1052 default: 1053 error = EINVAL; 1054 break; 1055 } 1056 LFREEPATH(path); 1057 return (error); 1058 } 1059 #endif 1060 1061 int 1062 linux_mknodat(struct thread *td, struct linux_mknodat_args *args) 1063 { 1064 char *path; 1065 int error, dfd; 1066 1067 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 1068 LCONVPATHCREAT_AT(td, args->filename, &path, dfd); 1069 1070 switch (args->mode & S_IFMT) { 1071 case S_IFIFO: 1072 case S_IFSOCK: 1073 error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode); 1074 break; 1075 1076 case S_IFCHR: 1077 case S_IFBLK: 1078 error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode, 1079 args->dev); 1080 break; 1081 1082 case S_IFDIR: 1083 error = EPERM; 1084 break; 1085 1086 case 0: 1087 args->mode |= S_IFREG; 1088 /* FALLTHROUGH */ 1089 case S_IFREG: 1090 error = kern_openat(td, dfd, path, UIO_SYSSPACE, 1091 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1092 if (error == 0) 1093 kern_close(td, td->td_retval[0]); 1094 break; 1095 1096 default: 1097 error = EINVAL; 1098 break; 1099 } 1100 LFREEPATH(path); 1101 return (error); 1102 } 1103 1104 /* 1105 * UGH! This is just about the dumbest idea I've ever heard!! 1106 */ 1107 int 1108 linux_personality(struct thread *td, struct linux_personality_args *args) 1109 { 1110 struct linux_pemuldata *pem; 1111 struct proc *p = td->td_proc; 1112 uint32_t old; 1113 1114 PROC_LOCK(p); 1115 pem = pem_find(p); 1116 old = pem->persona; 1117 if (args->per != 0xffffffff) 1118 pem->persona = args->per; 1119 PROC_UNLOCK(p); 1120 1121 td->td_retval[0] = old; 1122 return (0); 1123 } 1124 1125 struct l_itimerval { 1126 l_timeval it_interval; 1127 l_timeval it_value; 1128 }; 1129 1130 #define B2L_ITIMERVAL(bip, lip) \ 1131 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ 1132 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ 1133 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ 1134 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; 1135 1136 int 1137 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) 1138 { 1139 int error; 1140 struct l_itimerval ls; 1141 struct itimerval aitv, oitv; 1142 1143 if (uap->itv == NULL) { 1144 uap->itv = uap->oitv; 1145 return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); 1146 } 1147 1148 error = copyin(uap->itv, &ls, sizeof(ls)); 1149 if (error != 0) 1150 return (error); 1151 B2L_ITIMERVAL(&aitv, &ls); 1152 error = kern_setitimer(td, uap->which, &aitv, &oitv); 1153 if (error != 0 || uap->oitv == NULL) 1154 return (error); 1155 B2L_ITIMERVAL(&ls, &oitv); 1156 1157 return (copyout(&ls, uap->oitv, sizeof(ls))); 1158 } 1159 1160 int 1161 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) 1162 { 1163 int error; 1164 struct l_itimerval ls; 1165 struct itimerval aitv; 1166 1167 error = kern_getitimer(td, uap->which, &aitv); 1168 if (error != 0) 1169 return (error); 1170 B2L_ITIMERVAL(&ls, &aitv); 1171 return (copyout(&ls, uap->itv, sizeof(ls))); 1172 } 1173 1174 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1175 int 1176 linux_nice(struct thread *td, struct linux_nice_args *args) 1177 { 1178 struct setpriority_args bsd_args; 1179 1180 bsd_args.which = PRIO_PROCESS; 1181 bsd_args.who = 0; /* current process */ 1182 bsd_args.prio = args->inc; 1183 return (sys_setpriority(td, &bsd_args)); 1184 } 1185 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1186 1187 int 1188 linux_setgroups(struct thread *td, struct linux_setgroups_args *args) 1189 { 1190 struct ucred *newcred, *oldcred; 1191 l_gid_t *linux_gidset; 1192 gid_t *bsd_gidset; 1193 int ngrp, error; 1194 struct proc *p; 1195 1196 ngrp = args->gidsetsize; 1197 if (ngrp < 0 || ngrp >= ngroups_max + 1) 1198 return (EINVAL); 1199 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); 1200 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); 1201 if (error) 1202 goto out; 1203 newcred = crget(); 1204 crextend(newcred, ngrp + 1); 1205 p = td->td_proc; 1206 PROC_LOCK(p); 1207 oldcred = p->p_ucred; 1208 crcopy(newcred, oldcred); 1209 1210 /* 1211 * cr_groups[0] holds egid. Setting the whole set from 1212 * the supplied set will cause egid to be changed too. 1213 * Keep cr_groups[0] unchanged to prevent that. 1214 */ 1215 1216 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) { 1217 PROC_UNLOCK(p); 1218 crfree(newcred); 1219 goto out; 1220 } 1221 1222 if (ngrp > 0) { 1223 newcred->cr_ngroups = ngrp + 1; 1224 1225 bsd_gidset = newcred->cr_groups; 1226 ngrp--; 1227 while (ngrp >= 0) { 1228 bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; 1229 ngrp--; 1230 } 1231 } else 1232 newcred->cr_ngroups = 1; 1233 1234 setsugid(p); 1235 proc_set_cred(p, newcred); 1236 PROC_UNLOCK(p); 1237 crfree(oldcred); 1238 error = 0; 1239 out: 1240 free(linux_gidset, M_LINUX); 1241 return (error); 1242 } 1243 1244 int 1245 linux_getgroups(struct thread *td, struct linux_getgroups_args *args) 1246 { 1247 struct ucred *cred; 1248 l_gid_t *linux_gidset; 1249 gid_t *bsd_gidset; 1250 int bsd_gidsetsz, ngrp, error; 1251 1252 cred = td->td_ucred; 1253 bsd_gidset = cred->cr_groups; 1254 bsd_gidsetsz = cred->cr_ngroups - 1; 1255 1256 /* 1257 * cr_groups[0] holds egid. Returning the whole set 1258 * here will cause a duplicate. Exclude cr_groups[0] 1259 * to prevent that. 1260 */ 1261 1262 if ((ngrp = args->gidsetsize) == 0) { 1263 td->td_retval[0] = bsd_gidsetsz; 1264 return (0); 1265 } 1266 1267 if (ngrp < bsd_gidsetsz) 1268 return (EINVAL); 1269 1270 ngrp = 0; 1271 linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), 1272 M_LINUX, M_WAITOK); 1273 while (ngrp < bsd_gidsetsz) { 1274 linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; 1275 ngrp++; 1276 } 1277 1278 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); 1279 free(linux_gidset, M_LINUX); 1280 if (error) 1281 return (error); 1282 1283 td->td_retval[0] = ngrp; 1284 return (0); 1285 } 1286 1287 int 1288 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) 1289 { 1290 struct rlimit bsd_rlim; 1291 struct l_rlimit rlim; 1292 u_int which; 1293 int error; 1294 1295 if (args->resource >= LINUX_RLIM_NLIMITS) 1296 return (EINVAL); 1297 1298 which = linux_to_bsd_resource[args->resource]; 1299 if (which == -1) 1300 return (EINVAL); 1301 1302 error = copyin(args->rlim, &rlim, sizeof(rlim)); 1303 if (error) 1304 return (error); 1305 1306 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; 1307 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; 1308 return (kern_setrlimit(td, which, &bsd_rlim)); 1309 } 1310 1311 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1312 int 1313 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) 1314 { 1315 struct l_rlimit rlim; 1316 struct rlimit bsd_rlim; 1317 u_int which; 1318 1319 if (args->resource >= LINUX_RLIM_NLIMITS) 1320 return (EINVAL); 1321 1322 which = linux_to_bsd_resource[args->resource]; 1323 if (which == -1) 1324 return (EINVAL); 1325 1326 lim_rlimit(td, which, &bsd_rlim); 1327 1328 #ifdef COMPAT_LINUX32 1329 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; 1330 if (rlim.rlim_cur == UINT_MAX) 1331 rlim.rlim_cur = INT_MAX; 1332 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; 1333 if (rlim.rlim_max == UINT_MAX) 1334 rlim.rlim_max = INT_MAX; 1335 #else 1336 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; 1337 if (rlim.rlim_cur == ULONG_MAX) 1338 rlim.rlim_cur = LONG_MAX; 1339 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; 1340 if (rlim.rlim_max == ULONG_MAX) 1341 rlim.rlim_max = LONG_MAX; 1342 #endif 1343 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1344 } 1345 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1346 1347 int 1348 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) 1349 { 1350 struct l_rlimit rlim; 1351 struct rlimit bsd_rlim; 1352 u_int which; 1353 1354 if (args->resource >= LINUX_RLIM_NLIMITS) 1355 return (EINVAL); 1356 1357 which = linux_to_bsd_resource[args->resource]; 1358 if (which == -1) 1359 return (EINVAL); 1360 1361 lim_rlimit(td, which, &bsd_rlim); 1362 1363 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; 1364 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; 1365 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1366 } 1367 1368 int 1369 linux_sched_setscheduler(struct thread *td, 1370 struct linux_sched_setscheduler_args *args) 1371 { 1372 struct sched_param sched_param; 1373 struct thread *tdt; 1374 int error, policy; 1375 1376 switch (args->policy) { 1377 case LINUX_SCHED_OTHER: 1378 policy = SCHED_OTHER; 1379 break; 1380 case LINUX_SCHED_FIFO: 1381 policy = SCHED_FIFO; 1382 break; 1383 case LINUX_SCHED_RR: 1384 policy = SCHED_RR; 1385 break; 1386 default: 1387 return (EINVAL); 1388 } 1389 1390 error = copyin(args->param, &sched_param, sizeof(sched_param)); 1391 if (error) 1392 return (error); 1393 1394 tdt = linux_tdfind(td, args->pid, -1); 1395 if (tdt == NULL) 1396 return (ESRCH); 1397 1398 error = kern_sched_setscheduler(td, tdt, policy, &sched_param); 1399 PROC_UNLOCK(tdt->td_proc); 1400 return (error); 1401 } 1402 1403 int 1404 linux_sched_getscheduler(struct thread *td, 1405 struct linux_sched_getscheduler_args *args) 1406 { 1407 struct thread *tdt; 1408 int error, policy; 1409 1410 tdt = linux_tdfind(td, args->pid, -1); 1411 if (tdt == NULL) 1412 return (ESRCH); 1413 1414 error = kern_sched_getscheduler(td, tdt, &policy); 1415 PROC_UNLOCK(tdt->td_proc); 1416 1417 switch (policy) { 1418 case SCHED_OTHER: 1419 td->td_retval[0] = LINUX_SCHED_OTHER; 1420 break; 1421 case SCHED_FIFO: 1422 td->td_retval[0] = LINUX_SCHED_FIFO; 1423 break; 1424 case SCHED_RR: 1425 td->td_retval[0] = LINUX_SCHED_RR; 1426 break; 1427 } 1428 return (error); 1429 } 1430 1431 int 1432 linux_sched_get_priority_max(struct thread *td, 1433 struct linux_sched_get_priority_max_args *args) 1434 { 1435 struct sched_get_priority_max_args bsd; 1436 1437 switch (args->policy) { 1438 case LINUX_SCHED_OTHER: 1439 bsd.policy = SCHED_OTHER; 1440 break; 1441 case LINUX_SCHED_FIFO: 1442 bsd.policy = SCHED_FIFO; 1443 break; 1444 case LINUX_SCHED_RR: 1445 bsd.policy = SCHED_RR; 1446 break; 1447 default: 1448 return (EINVAL); 1449 } 1450 return (sys_sched_get_priority_max(td, &bsd)); 1451 } 1452 1453 int 1454 linux_sched_get_priority_min(struct thread *td, 1455 struct linux_sched_get_priority_min_args *args) 1456 { 1457 struct sched_get_priority_min_args bsd; 1458 1459 switch (args->policy) { 1460 case LINUX_SCHED_OTHER: 1461 bsd.policy = SCHED_OTHER; 1462 break; 1463 case LINUX_SCHED_FIFO: 1464 bsd.policy = SCHED_FIFO; 1465 break; 1466 case LINUX_SCHED_RR: 1467 bsd.policy = SCHED_RR; 1468 break; 1469 default: 1470 return (EINVAL); 1471 } 1472 return (sys_sched_get_priority_min(td, &bsd)); 1473 } 1474 1475 #define REBOOT_CAD_ON 0x89abcdef 1476 #define REBOOT_CAD_OFF 0 1477 #define REBOOT_HALT 0xcdef0123 1478 #define REBOOT_RESTART 0x01234567 1479 #define REBOOT_RESTART2 0xA1B2C3D4 1480 #define REBOOT_POWEROFF 0x4321FEDC 1481 #define REBOOT_MAGIC1 0xfee1dead 1482 #define REBOOT_MAGIC2 0x28121969 1483 #define REBOOT_MAGIC2A 0x05121996 1484 #define REBOOT_MAGIC2B 0x16041998 1485 1486 int 1487 linux_reboot(struct thread *td, struct linux_reboot_args *args) 1488 { 1489 struct reboot_args bsd_args; 1490 1491 if (args->magic1 != REBOOT_MAGIC1) 1492 return (EINVAL); 1493 1494 switch (args->magic2) { 1495 case REBOOT_MAGIC2: 1496 case REBOOT_MAGIC2A: 1497 case REBOOT_MAGIC2B: 1498 break; 1499 default: 1500 return (EINVAL); 1501 } 1502 1503 switch (args->cmd) { 1504 case REBOOT_CAD_ON: 1505 case REBOOT_CAD_OFF: 1506 return (priv_check(td, PRIV_REBOOT)); 1507 case REBOOT_HALT: 1508 bsd_args.opt = RB_HALT; 1509 break; 1510 case REBOOT_RESTART: 1511 case REBOOT_RESTART2: 1512 bsd_args.opt = 0; 1513 break; 1514 case REBOOT_POWEROFF: 1515 bsd_args.opt = RB_POWEROFF; 1516 break; 1517 default: 1518 return (EINVAL); 1519 } 1520 return (sys_reboot(td, &bsd_args)); 1521 } 1522 1523 1524 /* 1525 * The FreeBSD native getpid(2), getgid(2) and getuid(2) also modify 1526 * td->td_retval[1] when COMPAT_43 is defined. This clobbers registers that 1527 * are assumed to be preserved. The following lightweight syscalls fixes 1528 * this. See also linux_getgid16() and linux_getuid16() in linux_uid16.c 1529 * 1530 * linux_getpid() - MP SAFE 1531 * linux_getgid() - MP SAFE 1532 * linux_getuid() - MP SAFE 1533 */ 1534 1535 int 1536 linux_getpid(struct thread *td, struct linux_getpid_args *args) 1537 { 1538 1539 td->td_retval[0] = td->td_proc->p_pid; 1540 1541 return (0); 1542 } 1543 1544 int 1545 linux_gettid(struct thread *td, struct linux_gettid_args *args) 1546 { 1547 struct linux_emuldata *em; 1548 1549 em = em_find(td); 1550 KASSERT(em != NULL, ("gettid: emuldata not found.\n")); 1551 1552 td->td_retval[0] = em->em_tid; 1553 1554 return (0); 1555 } 1556 1557 1558 int 1559 linux_getppid(struct thread *td, struct linux_getppid_args *args) 1560 { 1561 1562 td->td_retval[0] = kern_getppid(td); 1563 return (0); 1564 } 1565 1566 int 1567 linux_getgid(struct thread *td, struct linux_getgid_args *args) 1568 { 1569 1570 td->td_retval[0] = td->td_ucred->cr_rgid; 1571 return (0); 1572 } 1573 1574 int 1575 linux_getuid(struct thread *td, struct linux_getuid_args *args) 1576 { 1577 1578 td->td_retval[0] = td->td_ucred->cr_ruid; 1579 return (0); 1580 } 1581 1582 1583 int 1584 linux_getsid(struct thread *td, struct linux_getsid_args *args) 1585 { 1586 struct getsid_args bsd; 1587 1588 bsd.pid = args->pid; 1589 return (sys_getsid(td, &bsd)); 1590 } 1591 1592 int 1593 linux_nosys(struct thread *td, struct nosys_args *ignore) 1594 { 1595 1596 return (ENOSYS); 1597 } 1598 1599 int 1600 linux_getpriority(struct thread *td, struct linux_getpriority_args *args) 1601 { 1602 struct getpriority_args bsd_args; 1603 int error; 1604 1605 bsd_args.which = args->which; 1606 bsd_args.who = args->who; 1607 error = sys_getpriority(td, &bsd_args); 1608 td->td_retval[0] = 20 - td->td_retval[0]; 1609 return (error); 1610 } 1611 1612 int 1613 linux_sethostname(struct thread *td, struct linux_sethostname_args *args) 1614 { 1615 int name[2]; 1616 1617 name[0] = CTL_KERN; 1618 name[1] = KERN_HOSTNAME; 1619 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, 1620 args->len, 0, 0)); 1621 } 1622 1623 int 1624 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) 1625 { 1626 int name[2]; 1627 1628 name[0] = CTL_KERN; 1629 name[1] = KERN_NISDOMAINNAME; 1630 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, 1631 args->len, 0, 0)); 1632 } 1633 1634 int 1635 linux_exit_group(struct thread *td, struct linux_exit_group_args *args) 1636 { 1637 1638 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, 1639 args->error_code); 1640 1641 /* 1642 * XXX: we should send a signal to the parent if 1643 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) 1644 * as it doesnt occur often. 1645 */ 1646 exit1(td, args->error_code, 0); 1647 /* NOTREACHED */ 1648 } 1649 1650 #define _LINUX_CAPABILITY_VERSION_1 0x19980330 1651 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 1652 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 1653 1654 struct l_user_cap_header { 1655 l_int version; 1656 l_int pid; 1657 }; 1658 1659 struct l_user_cap_data { 1660 l_int effective; 1661 l_int permitted; 1662 l_int inheritable; 1663 }; 1664 1665 int 1666 linux_capget(struct thread *td, struct linux_capget_args *uap) 1667 { 1668 struct l_user_cap_header luch; 1669 struct l_user_cap_data lucd[2]; 1670 int error, u32s; 1671 1672 if (uap->hdrp == NULL) 1673 return (EFAULT); 1674 1675 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1676 if (error != 0) 1677 return (error); 1678 1679 switch (luch.version) { 1680 case _LINUX_CAPABILITY_VERSION_1: 1681 u32s = 1; 1682 break; 1683 case _LINUX_CAPABILITY_VERSION_2: 1684 case _LINUX_CAPABILITY_VERSION_3: 1685 u32s = 2; 1686 break; 1687 default: 1688 luch.version = _LINUX_CAPABILITY_VERSION_1; 1689 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1690 if (error) 1691 return (error); 1692 return (EINVAL); 1693 } 1694 1695 if (luch.pid) 1696 return (EPERM); 1697 1698 if (uap->datap) { 1699 /* 1700 * The current implementation doesn't support setting 1701 * a capability (it's essentially a stub) so indicate 1702 * that no capabilities are currently set or available 1703 * to request. 1704 */ 1705 memset(&lucd, 0, u32s * sizeof(lucd[0])); 1706 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); 1707 } 1708 1709 return (error); 1710 } 1711 1712 int 1713 linux_capset(struct thread *td, struct linux_capset_args *uap) 1714 { 1715 struct l_user_cap_header luch; 1716 struct l_user_cap_data lucd[2]; 1717 int error, i, u32s; 1718 1719 if (uap->hdrp == NULL || uap->datap == NULL) 1720 return (EFAULT); 1721 1722 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1723 if (error != 0) 1724 return (error); 1725 1726 switch (luch.version) { 1727 case _LINUX_CAPABILITY_VERSION_1: 1728 u32s = 1; 1729 break; 1730 case _LINUX_CAPABILITY_VERSION_2: 1731 case _LINUX_CAPABILITY_VERSION_3: 1732 u32s = 2; 1733 break; 1734 default: 1735 luch.version = _LINUX_CAPABILITY_VERSION_1; 1736 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1737 if (error) 1738 return (error); 1739 return (EINVAL); 1740 } 1741 1742 if (luch.pid) 1743 return (EPERM); 1744 1745 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); 1746 if (error != 0) 1747 return (error); 1748 1749 /* We currently don't support setting any capabilities. */ 1750 for (i = 0; i < u32s; i++) { 1751 if (lucd[i].effective || lucd[i].permitted || 1752 lucd[i].inheritable) { 1753 linux_msg(td, 1754 "capset[%d] effective=0x%x, permitted=0x%x, " 1755 "inheritable=0x%x is not implemented", i, 1756 (int)lucd[i].effective, (int)lucd[i].permitted, 1757 (int)lucd[i].inheritable); 1758 return (EPERM); 1759 } 1760 } 1761 1762 return (0); 1763 } 1764 1765 int 1766 linux_prctl(struct thread *td, struct linux_prctl_args *args) 1767 { 1768 int error = 0, max_size; 1769 struct proc *p = td->td_proc; 1770 char comm[LINUX_MAX_COMM_LEN]; 1771 int pdeath_signal; 1772 1773 switch (args->option) { 1774 case LINUX_PR_SET_PDEATHSIG: 1775 if (!LINUX_SIG_VALID(args->arg2)) 1776 return (EINVAL); 1777 pdeath_signal = linux_to_bsd_signal(args->arg2); 1778 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL, 1779 &pdeath_signal)); 1780 case LINUX_PR_GET_PDEATHSIG: 1781 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS, 1782 &pdeath_signal); 1783 if (error != 0) 1784 return (error); 1785 pdeath_signal = bsd_to_linux_signal(pdeath_signal); 1786 return (copyout(&pdeath_signal, 1787 (void *)(register_t)args->arg2, 1788 sizeof(pdeath_signal))); 1789 break; 1790 case LINUX_PR_GET_KEEPCAPS: 1791 /* 1792 * Indicate that we always clear the effective and 1793 * permitted capability sets when the user id becomes 1794 * non-zero (actually the capability sets are simply 1795 * always zero in the current implementation). 1796 */ 1797 td->td_retval[0] = 0; 1798 break; 1799 case LINUX_PR_SET_KEEPCAPS: 1800 /* 1801 * Ignore requests to keep the effective and permitted 1802 * capability sets when the user id becomes non-zero. 1803 */ 1804 break; 1805 case LINUX_PR_SET_NAME: 1806 /* 1807 * To be on the safe side we need to make sure to not 1808 * overflow the size a Linux program expects. We already 1809 * do this here in the copyin, so that we don't need to 1810 * check on copyout. 1811 */ 1812 max_size = MIN(sizeof(comm), sizeof(p->p_comm)); 1813 error = copyinstr((void *)(register_t)args->arg2, comm, 1814 max_size, NULL); 1815 1816 /* Linux silently truncates the name if it is too long. */ 1817 if (error == ENAMETOOLONG) { 1818 /* 1819 * XXX: copyinstr() isn't documented to populate the 1820 * array completely, so do a copyin() to be on the 1821 * safe side. This should be changed in case 1822 * copyinstr() is changed to guarantee this. 1823 */ 1824 error = copyin((void *)(register_t)args->arg2, comm, 1825 max_size - 1); 1826 comm[max_size - 1] = '\0'; 1827 } 1828 if (error) 1829 return (error); 1830 1831 PROC_LOCK(p); 1832 strlcpy(p->p_comm, comm, sizeof(p->p_comm)); 1833 PROC_UNLOCK(p); 1834 break; 1835 case LINUX_PR_GET_NAME: 1836 PROC_LOCK(p); 1837 strlcpy(comm, p->p_comm, sizeof(comm)); 1838 PROC_UNLOCK(p); 1839 error = copyout(comm, (void *)(register_t)args->arg2, 1840 strlen(comm) + 1); 1841 break; 1842 default: 1843 error = EINVAL; 1844 break; 1845 } 1846 1847 return (error); 1848 } 1849 1850 int 1851 linux_sched_setparam(struct thread *td, 1852 struct linux_sched_setparam_args *uap) 1853 { 1854 struct sched_param sched_param; 1855 struct thread *tdt; 1856 int error; 1857 1858 error = copyin(uap->param, &sched_param, sizeof(sched_param)); 1859 if (error) 1860 return (error); 1861 1862 tdt = linux_tdfind(td, uap->pid, -1); 1863 if (tdt == NULL) 1864 return (ESRCH); 1865 1866 error = kern_sched_setparam(td, tdt, &sched_param); 1867 PROC_UNLOCK(tdt->td_proc); 1868 return (error); 1869 } 1870 1871 int 1872 linux_sched_getparam(struct thread *td, 1873 struct linux_sched_getparam_args *uap) 1874 { 1875 struct sched_param sched_param; 1876 struct thread *tdt; 1877 int error; 1878 1879 tdt = linux_tdfind(td, uap->pid, -1); 1880 if (tdt == NULL) 1881 return (ESRCH); 1882 1883 error = kern_sched_getparam(td, tdt, &sched_param); 1884 PROC_UNLOCK(tdt->td_proc); 1885 if (error == 0) 1886 error = copyout(&sched_param, uap->param, 1887 sizeof(sched_param)); 1888 return (error); 1889 } 1890 1891 /* 1892 * Get affinity of a process. 1893 */ 1894 int 1895 linux_sched_getaffinity(struct thread *td, 1896 struct linux_sched_getaffinity_args *args) 1897 { 1898 int error; 1899 struct thread *tdt; 1900 1901 if (args->len < sizeof(cpuset_t)) 1902 return (EINVAL); 1903 1904 tdt = linux_tdfind(td, args->pid, -1); 1905 if (tdt == NULL) 1906 return (ESRCH); 1907 1908 PROC_UNLOCK(tdt->td_proc); 1909 1910 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1911 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr); 1912 if (error == 0) 1913 td->td_retval[0] = sizeof(cpuset_t); 1914 1915 return (error); 1916 } 1917 1918 /* 1919 * Set affinity of a process. 1920 */ 1921 int 1922 linux_sched_setaffinity(struct thread *td, 1923 struct linux_sched_setaffinity_args *args) 1924 { 1925 struct thread *tdt; 1926 1927 if (args->len < sizeof(cpuset_t)) 1928 return (EINVAL); 1929 1930 tdt = linux_tdfind(td, args->pid, -1); 1931 if (tdt == NULL) 1932 return (ESRCH); 1933 1934 PROC_UNLOCK(tdt->td_proc); 1935 1936 return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1937 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr)); 1938 } 1939 1940 struct linux_rlimit64 { 1941 uint64_t rlim_cur; 1942 uint64_t rlim_max; 1943 }; 1944 1945 int 1946 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) 1947 { 1948 struct rlimit rlim, nrlim; 1949 struct linux_rlimit64 lrlim; 1950 struct proc *p; 1951 u_int which; 1952 int flags; 1953 int error; 1954 1955 if (args->resource >= LINUX_RLIM_NLIMITS) 1956 return (EINVAL); 1957 1958 which = linux_to_bsd_resource[args->resource]; 1959 if (which == -1) 1960 return (EINVAL); 1961 1962 if (args->new != NULL) { 1963 /* 1964 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux 1965 * rlim is unsigned 64-bit. FreeBSD treats negative limits 1966 * as INFINITY so we do not need a conversion even. 1967 */ 1968 error = copyin(args->new, &nrlim, sizeof(nrlim)); 1969 if (error != 0) 1970 return (error); 1971 } 1972 1973 flags = PGET_HOLD | PGET_NOTWEXIT; 1974 if (args->new != NULL) 1975 flags |= PGET_CANDEBUG; 1976 else 1977 flags |= PGET_CANSEE; 1978 error = pget(args->pid, flags, &p); 1979 if (error != 0) 1980 return (error); 1981 1982 if (args->old != NULL) { 1983 PROC_LOCK(p); 1984 lim_rlimit_proc(p, which, &rlim); 1985 PROC_UNLOCK(p); 1986 if (rlim.rlim_cur == RLIM_INFINITY) 1987 lrlim.rlim_cur = LINUX_RLIM_INFINITY; 1988 else 1989 lrlim.rlim_cur = rlim.rlim_cur; 1990 if (rlim.rlim_max == RLIM_INFINITY) 1991 lrlim.rlim_max = LINUX_RLIM_INFINITY; 1992 else 1993 lrlim.rlim_max = rlim.rlim_max; 1994 error = copyout(&lrlim, args->old, sizeof(lrlim)); 1995 if (error != 0) 1996 goto out; 1997 } 1998 1999 if (args->new != NULL) 2000 error = kern_proc_setrlimit(td, p, which, &nrlim); 2001 2002 out: 2003 PRELE(p); 2004 return (error); 2005 } 2006 2007 int 2008 linux_pselect6(struct thread *td, struct linux_pselect6_args *args) 2009 { 2010 struct timeval utv, tv0, tv1, *tvp; 2011 struct l_pselect6arg lpse6; 2012 struct l_timespec lts; 2013 struct timespec uts; 2014 l_sigset_t l_ss; 2015 sigset_t *ssp; 2016 sigset_t ss; 2017 int error; 2018 2019 ssp = NULL; 2020 if (args->sig != NULL) { 2021 error = copyin(args->sig, &lpse6, sizeof(lpse6)); 2022 if (error != 0) 2023 return (error); 2024 if (lpse6.ss_len != sizeof(l_ss)) 2025 return (EINVAL); 2026 if (lpse6.ss != 0) { 2027 error = copyin(PTRIN(lpse6.ss), &l_ss, 2028 sizeof(l_ss)); 2029 if (error != 0) 2030 return (error); 2031 linux_to_bsd_sigset(&l_ss, &ss); 2032 ssp = &ss; 2033 } 2034 } 2035 2036 /* 2037 * Currently glibc changes nanosecond number to microsecond. 2038 * This mean losing precision but for now it is hardly seen. 2039 */ 2040 if (args->tsp != NULL) { 2041 error = copyin(args->tsp, <s, sizeof(lts)); 2042 if (error != 0) 2043 return (error); 2044 error = linux_to_native_timespec(&uts, <s); 2045 if (error != 0) 2046 return (error); 2047 2048 TIMESPEC_TO_TIMEVAL(&utv, &uts); 2049 if (itimerfix(&utv)) 2050 return (EINVAL); 2051 2052 microtime(&tv0); 2053 tvp = &utv; 2054 } else 2055 tvp = NULL; 2056 2057 error = kern_pselect(td, args->nfds, args->readfds, args->writefds, 2058 args->exceptfds, tvp, ssp, LINUX_NFDBITS); 2059 2060 if (error == 0 && args->tsp != NULL) { 2061 if (td->td_retval[0] != 0) { 2062 /* 2063 * Compute how much time was left of the timeout, 2064 * by subtracting the current time and the time 2065 * before we started the call, and subtracting 2066 * that result from the user-supplied value. 2067 */ 2068 2069 microtime(&tv1); 2070 timevalsub(&tv1, &tv0); 2071 timevalsub(&utv, &tv1); 2072 if (utv.tv_sec < 0) 2073 timevalclear(&utv); 2074 } else 2075 timevalclear(&utv); 2076 2077 TIMEVAL_TO_TIMESPEC(&utv, &uts); 2078 2079 error = native_to_linux_timespec(<s, &uts); 2080 if (error == 0) 2081 error = copyout(<s, args->tsp, sizeof(lts)); 2082 } 2083 2084 return (error); 2085 } 2086 2087 int 2088 linux_ppoll(struct thread *td, struct linux_ppoll_args *args) 2089 { 2090 struct timespec ts0, ts1; 2091 struct l_timespec lts; 2092 struct timespec uts, *tsp; 2093 l_sigset_t l_ss; 2094 sigset_t *ssp; 2095 sigset_t ss; 2096 int error; 2097 2098 if (args->sset != NULL) { 2099 if (args->ssize != sizeof(l_ss)) 2100 return (EINVAL); 2101 error = copyin(args->sset, &l_ss, sizeof(l_ss)); 2102 if (error) 2103 return (error); 2104 linux_to_bsd_sigset(&l_ss, &ss); 2105 ssp = &ss; 2106 } else 2107 ssp = NULL; 2108 if (args->tsp != NULL) { 2109 error = copyin(args->tsp, <s, sizeof(lts)); 2110 if (error) 2111 return (error); 2112 error = linux_to_native_timespec(&uts, <s); 2113 if (error != 0) 2114 return (error); 2115 2116 nanotime(&ts0); 2117 tsp = &uts; 2118 } else 2119 tsp = NULL; 2120 2121 error = kern_poll(td, args->fds, args->nfds, tsp, ssp); 2122 2123 if (error == 0 && args->tsp != NULL) { 2124 if (td->td_retval[0]) { 2125 nanotime(&ts1); 2126 timespecsub(&ts1, &ts0, &ts1); 2127 timespecsub(&uts, &ts1, &uts); 2128 if (uts.tv_sec < 0) 2129 timespecclear(&uts); 2130 } else 2131 timespecclear(&uts); 2132 2133 error = native_to_linux_timespec(<s, &uts); 2134 if (error == 0) 2135 error = copyout(<s, args->tsp, sizeof(lts)); 2136 } 2137 2138 return (error); 2139 } 2140 2141 int 2142 linux_sched_rr_get_interval(struct thread *td, 2143 struct linux_sched_rr_get_interval_args *uap) 2144 { 2145 struct timespec ts; 2146 struct l_timespec lts; 2147 struct thread *tdt; 2148 int error; 2149 2150 /* 2151 * According to man in case the invalid pid specified 2152 * EINVAL should be returned. 2153 */ 2154 if (uap->pid < 0) 2155 return (EINVAL); 2156 2157 tdt = linux_tdfind(td, uap->pid, -1); 2158 if (tdt == NULL) 2159 return (ESRCH); 2160 2161 error = kern_sched_rr_get_interval_td(td, tdt, &ts); 2162 PROC_UNLOCK(tdt->td_proc); 2163 if (error != 0) 2164 return (error); 2165 error = native_to_linux_timespec(<s, &ts); 2166 if (error != 0) 2167 return (error); 2168 return (copyout(<s, uap->interval, sizeof(lts))); 2169 } 2170 2171 /* 2172 * In case when the Linux thread is the initial thread in 2173 * the thread group thread id is equal to the process id. 2174 * Glibc depends on this magic (assert in pthread_getattr_np.c). 2175 */ 2176 struct thread * 2177 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) 2178 { 2179 struct linux_emuldata *em; 2180 struct thread *tdt; 2181 struct proc *p; 2182 2183 tdt = NULL; 2184 if (tid == 0 || tid == td->td_tid) { 2185 tdt = td; 2186 PROC_LOCK(tdt->td_proc); 2187 } else if (tid > PID_MAX) 2188 tdt = tdfind(tid, pid); 2189 else { 2190 /* 2191 * Initial thread where the tid equal to the pid. 2192 */ 2193 p = pfind(tid); 2194 if (p != NULL) { 2195 if (SV_PROC_ABI(p) != SV_ABI_LINUX) { 2196 /* 2197 * p is not a Linuxulator process. 2198 */ 2199 PROC_UNLOCK(p); 2200 return (NULL); 2201 } 2202 FOREACH_THREAD_IN_PROC(p, tdt) { 2203 em = em_find(tdt); 2204 if (tid == em->em_tid) 2205 return (tdt); 2206 } 2207 PROC_UNLOCK(p); 2208 } 2209 return (NULL); 2210 } 2211 2212 return (tdt); 2213 } 2214 2215 void 2216 linux_to_bsd_waitopts(int options, int *bsdopts) 2217 { 2218 2219 if (options & LINUX_WNOHANG) 2220 *bsdopts |= WNOHANG; 2221 if (options & LINUX_WUNTRACED) 2222 *bsdopts |= WUNTRACED; 2223 if (options & LINUX_WEXITED) 2224 *bsdopts |= WEXITED; 2225 if (options & LINUX_WCONTINUED) 2226 *bsdopts |= WCONTINUED; 2227 if (options & LINUX_WNOWAIT) 2228 *bsdopts |= WNOWAIT; 2229 2230 if (options & __WCLONE) 2231 *bsdopts |= WLINUXCLONE; 2232 } 2233 2234 int 2235 linux_getrandom(struct thread *td, struct linux_getrandom_args *args) 2236 { 2237 struct uio uio; 2238 struct iovec iov; 2239 int error; 2240 2241 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) 2242 return (EINVAL); 2243 if (args->count > INT_MAX) 2244 args->count = INT_MAX; 2245 2246 iov.iov_base = args->buf; 2247 iov.iov_len = args->count; 2248 2249 uio.uio_iov = &iov; 2250 uio.uio_iovcnt = 1; 2251 uio.uio_resid = iov.iov_len; 2252 uio.uio_segflg = UIO_USERSPACE; 2253 uio.uio_rw = UIO_READ; 2254 uio.uio_td = td; 2255 2256 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); 2257 if (error == 0) 2258 td->td_retval[0] = args->count - uio.uio_resid; 2259 return (error); 2260 } 2261 2262 int 2263 linux_mincore(struct thread *td, struct linux_mincore_args *args) 2264 { 2265 2266 /* Needs to be page-aligned */ 2267 if (args->start & PAGE_MASK) 2268 return (EINVAL); 2269 return (kern_mincore(td, args->start, args->len, args->vec)); 2270 } 2271