1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * Copyright (c) 1994-1995 Søren Schmidt 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer 13 * in this position and unchanged. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/fcntl.h> 34 #include <sys/jail.h> 35 #include <sys/imgact.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/msgbuf.h> 39 #include <sys/mqueue.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/priv.h> 43 #include <sys/proc.h> 44 #include <sys/procctl.h> 45 #include <sys/reboot.h> 46 #include <sys/random.h> 47 #include <sys/resourcevar.h> 48 #include <sys/rtprio.h> 49 #include <sys/sched.h> 50 #include <sys/smp.h> 51 #include <sys/stat.h> 52 #include <sys/syscallsubr.h> 53 #include <sys/sysctl.h> 54 #include <sys/sysent.h> 55 #include <sys/sysproto.h> 56 #include <sys/time.h> 57 #include <sys/vmmeter.h> 58 #include <sys/vnode.h> 59 60 #include <security/audit/audit.h> 61 #include <security/mac/mac_framework.h> 62 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/swap_pager.h> 66 67 #ifdef COMPAT_LINUX32 68 #include <machine/../linux32/linux.h> 69 #include <machine/../linux32/linux32_proto.h> 70 #else 71 #include <machine/../linux/linux.h> 72 #include <machine/../linux/linux_proto.h> 73 #endif 74 75 #include <compat/linux/linux_common.h> 76 #include <compat/linux/linux_dtrace.h> 77 #include <compat/linux/linux_file.h> 78 #include <compat/linux/linux_mib.h> 79 #include <compat/linux/linux_mmap.h> 80 #include <compat/linux/linux_signal.h> 81 #include <compat/linux/linux_time.h> 82 #include <compat/linux/linux_util.h> 83 #include <compat/linux/linux_emul.h> 84 #include <compat/linux/linux_misc.h> 85 86 int stclohz; /* Statistics clock frequency */ 87 88 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { 89 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, 90 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, 91 RLIMIT_MEMLOCK, RLIMIT_AS 92 }; 93 94 struct l_sysinfo { 95 l_long uptime; /* Seconds since boot */ 96 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ 97 #define LINUX_SYSINFO_LOADS_SCALE 65536 98 l_ulong totalram; /* Total usable main memory size */ 99 l_ulong freeram; /* Available memory size */ 100 l_ulong sharedram; /* Amount of shared memory */ 101 l_ulong bufferram; /* Memory used by buffers */ 102 l_ulong totalswap; /* Total swap space size */ 103 l_ulong freeswap; /* swap space still available */ 104 l_ushort procs; /* Number of current processes */ 105 l_ushort pads; 106 l_ulong totalhigh; 107 l_ulong freehigh; 108 l_uint mem_unit; 109 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ 110 }; 111 112 struct l_pselect6arg { 113 l_uintptr_t ss; 114 l_size_t ss_len; 115 }; 116 117 static int linux_utimensat_lts_to_ts(struct l_timespec *, 118 struct timespec *); 119 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 120 static int linux_utimensat_lts64_to_ts(struct l_timespec64 *, 121 struct timespec *); 122 #endif 123 static int linux_common_utimensat(struct thread *, int, 124 const char *, struct timespec *, int); 125 static int linux_common_pselect6(struct thread *, l_int, 126 l_fd_set *, l_fd_set *, l_fd_set *, 127 struct timespec *, l_uintptr_t *); 128 static int linux_common_ppoll(struct thread *, struct pollfd *, 129 uint32_t, struct timespec *, l_sigset_t *, 130 l_size_t); 131 static int linux_pollin(struct thread *, struct pollfd *, 132 struct pollfd *, u_int); 133 static int linux_pollout(struct thread *, struct pollfd *, 134 struct pollfd *, u_int); 135 136 int 137 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) 138 { 139 struct l_sysinfo sysinfo; 140 int i, j; 141 struct timespec ts; 142 143 bzero(&sysinfo, sizeof(sysinfo)); 144 getnanouptime(&ts); 145 if (ts.tv_nsec != 0) 146 ts.tv_sec++; 147 sysinfo.uptime = ts.tv_sec; 148 149 /* Use the information from the mib to get our load averages */ 150 for (i = 0; i < 3; i++) 151 sysinfo.loads[i] = averunnable.ldavg[i] * 152 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; 153 154 sysinfo.totalram = physmem * PAGE_SIZE; 155 sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE; 156 157 /* 158 * sharedram counts pages allocated to named, swap-backed objects such 159 * as shared memory segments and tmpfs files. There is no cheap way to 160 * compute this, so just leave the field unpopulated. Linux itself only 161 * started setting this field in the 3.x timeframe. 162 */ 163 sysinfo.sharedram = 0; 164 sysinfo.bufferram = 0; 165 166 swap_pager_status(&i, &j); 167 sysinfo.totalswap = i * PAGE_SIZE; 168 sysinfo.freeswap = (i - j) * PAGE_SIZE; 169 170 sysinfo.procs = nprocs; 171 172 /* 173 * Platforms supported by the emulation layer do not have a notion of 174 * high memory. 175 */ 176 sysinfo.totalhigh = 0; 177 sysinfo.freehigh = 0; 178 179 sysinfo.mem_unit = 1; 180 181 return (copyout(&sysinfo, args->info, sizeof(sysinfo))); 182 } 183 184 #ifdef LINUX_LEGACY_SYSCALLS 185 int 186 linux_alarm(struct thread *td, struct linux_alarm_args *args) 187 { 188 struct itimerval it, old_it; 189 u_int secs; 190 int error __diagused; 191 192 secs = args->secs; 193 /* 194 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 195 * to match kern_setitimer()'s limit to avoid error from it. 196 * 197 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit 198 * platforms. 199 */ 200 if (secs > INT32_MAX / 2) 201 secs = INT32_MAX / 2; 202 203 it.it_value.tv_sec = secs; 204 it.it_value.tv_usec = 0; 205 timevalclear(&it.it_interval); 206 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); 207 KASSERT(error == 0, ("kern_setitimer returns %d", error)); 208 209 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || 210 old_it.it_value.tv_usec >= 500000) 211 old_it.it_value.tv_sec++; 212 td->td_retval[0] = old_it.it_value.tv_sec; 213 return (0); 214 } 215 #endif 216 217 int 218 linux_brk(struct thread *td, struct linux_brk_args *args) 219 { 220 struct vmspace *vm = td->td_proc->p_vmspace; 221 uintptr_t new, old; 222 223 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); 224 new = (uintptr_t)args->dsend; 225 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) 226 td->td_retval[0] = (register_t)new; 227 else 228 td->td_retval[0] = (register_t)old; 229 230 return (0); 231 } 232 233 #ifdef LINUX_LEGACY_SYSCALLS 234 int 235 linux_select(struct thread *td, struct linux_select_args *args) 236 { 237 l_timeval ltv; 238 struct timeval tv0, tv1, utv, *tvp; 239 int error; 240 241 /* 242 * Store current time for computation of the amount of 243 * time left. 244 */ 245 if (args->timeout) { 246 if ((error = copyin(args->timeout, <v, sizeof(ltv)))) 247 goto select_out; 248 utv.tv_sec = ltv.tv_sec; 249 utv.tv_usec = ltv.tv_usec; 250 251 if (itimerfix(&utv)) { 252 /* 253 * The timeval was invalid. Convert it to something 254 * valid that will act as it does under Linux. 255 */ 256 utv.tv_sec += utv.tv_usec / 1000000; 257 utv.tv_usec %= 1000000; 258 if (utv.tv_usec < 0) { 259 utv.tv_sec -= 1; 260 utv.tv_usec += 1000000; 261 } 262 if (utv.tv_sec < 0) 263 timevalclear(&utv); 264 } 265 microtime(&tv0); 266 tvp = &utv; 267 } else 268 tvp = NULL; 269 270 error = kern_select(td, args->nfds, args->readfds, args->writefds, 271 args->exceptfds, tvp, LINUX_NFDBITS); 272 if (error) 273 goto select_out; 274 275 if (args->timeout) { 276 if (td->td_retval[0]) { 277 /* 278 * Compute how much time was left of the timeout, 279 * by subtracting the current time and the time 280 * before we started the call, and subtracting 281 * that result from the user-supplied value. 282 */ 283 microtime(&tv1); 284 timevalsub(&tv1, &tv0); 285 timevalsub(&utv, &tv1); 286 if (utv.tv_sec < 0) 287 timevalclear(&utv); 288 } else 289 timevalclear(&utv); 290 ltv.tv_sec = utv.tv_sec; 291 ltv.tv_usec = utv.tv_usec; 292 if ((error = copyout(<v, args->timeout, sizeof(ltv)))) 293 goto select_out; 294 } 295 296 select_out: 297 return (error); 298 } 299 #endif 300 301 int 302 linux_mremap(struct thread *td, struct linux_mremap_args *args) 303 { 304 uintptr_t addr; 305 size_t len; 306 int error = 0; 307 308 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { 309 td->td_retval[0] = 0; 310 return (EINVAL); 311 } 312 313 /* 314 * Check for the page alignment. 315 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. 316 */ 317 if (args->addr & PAGE_MASK) { 318 td->td_retval[0] = 0; 319 return (EINVAL); 320 } 321 322 args->new_len = round_page(args->new_len); 323 args->old_len = round_page(args->old_len); 324 325 if (args->new_len > args->old_len) { 326 td->td_retval[0] = 0; 327 return (ENOMEM); 328 } 329 330 if (args->new_len < args->old_len) { 331 addr = args->addr + args->new_len; 332 len = args->old_len - args->new_len; 333 error = kern_munmap(td, addr, len); 334 } 335 336 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; 337 return (error); 338 } 339 340 #define LINUX_MS_ASYNC 0x0001 341 #define LINUX_MS_INVALIDATE 0x0002 342 #define LINUX_MS_SYNC 0x0004 343 344 int 345 linux_msync(struct thread *td, struct linux_msync_args *args) 346 { 347 348 return (kern_msync(td, args->addr, args->len, 349 args->fl & ~LINUX_MS_SYNC)); 350 } 351 352 int 353 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) 354 { 355 356 return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, 357 uap->prot)); 358 } 359 360 int 361 linux_madvise(struct thread *td, struct linux_madvise_args *uap) 362 { 363 364 return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, 365 uap->behav)); 366 } 367 368 int 369 linux_mmap2(struct thread *td, struct linux_mmap2_args *uap) 370 { 371 #if defined(LINUX_ARCHWANT_MMAP2PGOFF) 372 /* 373 * For architectures with sizeof (off_t) < sizeof (loff_t) mmap is 374 * implemented with mmap2 syscall and the offset is represented in 375 * multiples of page size. 376 */ 377 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot, 378 uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE)); 379 #else 380 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot, 381 uap->flags, uap->fd, uap->pgoff)); 382 #endif 383 } 384 385 #ifdef LINUX_LEGACY_SYSCALLS 386 int 387 linux_time(struct thread *td, struct linux_time_args *args) 388 { 389 struct timeval tv; 390 l_time_t tm; 391 int error; 392 393 microtime(&tv); 394 tm = tv.tv_sec; 395 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) 396 return (error); 397 td->td_retval[0] = tm; 398 return (0); 399 } 400 #endif 401 402 struct l_times_argv { 403 l_clock_t tms_utime; 404 l_clock_t tms_stime; 405 l_clock_t tms_cutime; 406 l_clock_t tms_cstime; 407 }; 408 409 /* 410 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. 411 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK 412 * auxiliary vector entry. 413 */ 414 #define CLK_TCK 100 415 416 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) 417 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) 418 419 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \ 420 CONVNTCK(r) : CONVOTCK(r)) 421 422 int 423 linux_times(struct thread *td, struct linux_times_args *args) 424 { 425 struct timeval tv, utime, stime, cutime, cstime; 426 struct l_times_argv tms; 427 struct proc *p; 428 int error; 429 430 if (args->buf != NULL) { 431 p = td->td_proc; 432 PROC_LOCK(p); 433 PROC_STATLOCK(p); 434 calcru(p, &utime, &stime); 435 PROC_STATUNLOCK(p); 436 calccru(p, &cutime, &cstime); 437 PROC_UNLOCK(p); 438 439 tms.tms_utime = CONVTCK(utime); 440 tms.tms_stime = CONVTCK(stime); 441 442 tms.tms_cutime = CONVTCK(cutime); 443 tms.tms_cstime = CONVTCK(cstime); 444 445 if ((error = copyout(&tms, args->buf, sizeof(tms)))) 446 return (error); 447 } 448 449 microuptime(&tv); 450 td->td_retval[0] = (int)CONVTCK(tv); 451 return (0); 452 } 453 454 int 455 linux_newuname(struct thread *td, struct linux_newuname_args *args) 456 { 457 struct l_new_utsname utsname; 458 char osname[LINUX_MAX_UTSNAME]; 459 char osrelease[LINUX_MAX_UTSNAME]; 460 char *p; 461 462 linux_get_osname(td, osname); 463 linux_get_osrelease(td, osrelease); 464 465 bzero(&utsname, sizeof(utsname)); 466 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); 467 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); 468 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); 469 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); 470 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); 471 for (p = utsname.version; *p != '\0'; ++p) 472 if (*p == '\n') { 473 *p = '\0'; 474 break; 475 } 476 #if defined(__amd64__) 477 /* 478 * On amd64, Linux uname(2) needs to return "x86_64" 479 * for both 64-bit and 32-bit applications. On 32-bit, 480 * the string returned by getauxval(AT_PLATFORM) needs 481 * to remain "i686", though. 482 */ 483 #if defined(COMPAT_LINUX32) 484 if (linux32_emulate_i386) 485 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); 486 else 487 #endif 488 strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME); 489 #elif defined(__aarch64__) 490 strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME); 491 #elif defined(__i386__) 492 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); 493 #endif 494 495 return (copyout(&utsname, args->buf, sizeof(utsname))); 496 } 497 498 struct l_utimbuf { 499 l_time_t l_actime; 500 l_time_t l_modtime; 501 }; 502 503 #ifdef LINUX_LEGACY_SYSCALLS 504 int 505 linux_utime(struct thread *td, struct linux_utime_args *args) 506 { 507 struct timeval tv[2], *tvp; 508 struct l_utimbuf lut; 509 int error; 510 511 if (args->times) { 512 if ((error = copyin(args->times, &lut, sizeof lut)) != 0) 513 return (error); 514 tv[0].tv_sec = lut.l_actime; 515 tv[0].tv_usec = 0; 516 tv[1].tv_sec = lut.l_modtime; 517 tv[1].tv_usec = 0; 518 tvp = tv; 519 } else 520 tvp = NULL; 521 522 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, 523 tvp, UIO_SYSSPACE)); 524 } 525 #endif 526 527 #ifdef LINUX_LEGACY_SYSCALLS 528 int 529 linux_utimes(struct thread *td, struct linux_utimes_args *args) 530 { 531 l_timeval ltv[2]; 532 struct timeval tv[2], *tvp = NULL; 533 int error; 534 535 if (args->tptr != NULL) { 536 if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0) 537 return (error); 538 tv[0].tv_sec = ltv[0].tv_sec; 539 tv[0].tv_usec = ltv[0].tv_usec; 540 tv[1].tv_sec = ltv[1].tv_sec; 541 tv[1].tv_usec = ltv[1].tv_usec; 542 tvp = tv; 543 } 544 545 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, 546 tvp, UIO_SYSSPACE)); 547 } 548 #endif 549 550 static int 551 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times) 552 { 553 554 if (l_times->tv_nsec != LINUX_UTIME_OMIT && 555 l_times->tv_nsec != LINUX_UTIME_NOW && 556 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) 557 return (EINVAL); 558 559 times->tv_sec = l_times->tv_sec; 560 switch (l_times->tv_nsec) 561 { 562 case LINUX_UTIME_OMIT: 563 times->tv_nsec = UTIME_OMIT; 564 break; 565 case LINUX_UTIME_NOW: 566 times->tv_nsec = UTIME_NOW; 567 break; 568 default: 569 times->tv_nsec = l_times->tv_nsec; 570 } 571 572 return (0); 573 } 574 575 static int 576 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname, 577 struct timespec *timesp, int lflags) 578 { 579 int dfd, flags = 0; 580 581 dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd; 582 583 if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH)) 584 return (EINVAL); 585 586 if (timesp != NULL) { 587 /* This breaks POSIX, but is what the Linux kernel does 588 * _on purpose_ (documented in the man page for utimensat(2)), 589 * so we must follow that behaviour. */ 590 if (timesp[0].tv_nsec == UTIME_OMIT && 591 timesp[1].tv_nsec == UTIME_OMIT) 592 return (0); 593 } 594 595 if (lflags & LINUX_AT_SYMLINK_NOFOLLOW) 596 flags |= AT_SYMLINK_NOFOLLOW; 597 if (lflags & LINUX_AT_EMPTY_PATH) 598 flags |= AT_EMPTY_PATH; 599 600 if (pathname != NULL) 601 return (kern_utimensat(td, dfd, pathname, 602 UIO_USERSPACE, timesp, UIO_SYSSPACE, flags)); 603 604 if (lflags != 0) 605 return (EINVAL); 606 607 return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE)); 608 } 609 610 int 611 linux_utimensat(struct thread *td, struct linux_utimensat_args *args) 612 { 613 struct l_timespec l_times[2]; 614 struct timespec times[2], *timesp; 615 int error; 616 617 if (args->times != NULL) { 618 error = copyin(args->times, l_times, sizeof(l_times)); 619 if (error != 0) 620 return (error); 621 622 error = linux_utimensat_lts_to_ts(&l_times[0], ×[0]); 623 if (error != 0) 624 return (error); 625 error = linux_utimensat_lts_to_ts(&l_times[1], ×[1]); 626 if (error != 0) 627 return (error); 628 timesp = times; 629 } else 630 timesp = NULL; 631 632 return (linux_common_utimensat(td, args->dfd, args->pathname, 633 timesp, args->flags)); 634 } 635 636 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 637 static int 638 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times) 639 { 640 641 /* Zero out the padding in compat mode. */ 642 l_times->tv_nsec &= 0xFFFFFFFFUL; 643 644 if (l_times->tv_nsec != LINUX_UTIME_OMIT && 645 l_times->tv_nsec != LINUX_UTIME_NOW && 646 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) 647 return (EINVAL); 648 649 times->tv_sec = l_times->tv_sec; 650 switch (l_times->tv_nsec) 651 { 652 case LINUX_UTIME_OMIT: 653 times->tv_nsec = UTIME_OMIT; 654 break; 655 case LINUX_UTIME_NOW: 656 times->tv_nsec = UTIME_NOW; 657 break; 658 default: 659 times->tv_nsec = l_times->tv_nsec; 660 } 661 662 return (0); 663 } 664 665 int 666 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args) 667 { 668 struct l_timespec64 l_times[2]; 669 struct timespec times[2], *timesp; 670 int error; 671 672 if (args->times64 != NULL) { 673 error = copyin(args->times64, l_times, sizeof(l_times)); 674 if (error != 0) 675 return (error); 676 677 error = linux_utimensat_lts64_to_ts(&l_times[0], ×[0]); 678 if (error != 0) 679 return (error); 680 error = linux_utimensat_lts64_to_ts(&l_times[1], ×[1]); 681 if (error != 0) 682 return (error); 683 timesp = times; 684 } else 685 timesp = NULL; 686 687 return (linux_common_utimensat(td, args->dfd, args->pathname, 688 timesp, args->flags)); 689 } 690 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 691 692 #ifdef LINUX_LEGACY_SYSCALLS 693 int 694 linux_futimesat(struct thread *td, struct linux_futimesat_args *args) 695 { 696 l_timeval ltv[2]; 697 struct timeval tv[2], *tvp = NULL; 698 int error, dfd; 699 700 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 701 702 if (args->utimes != NULL) { 703 if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0) 704 return (error); 705 tv[0].tv_sec = ltv[0].tv_sec; 706 tv[0].tv_usec = ltv[0].tv_usec; 707 tv[1].tv_sec = ltv[1].tv_sec; 708 tv[1].tv_usec = ltv[1].tv_usec; 709 tvp = tv; 710 } 711 712 return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE, 713 tvp, UIO_SYSSPACE)); 714 } 715 #endif 716 717 static int 718 linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp, 719 int options, void *rup, l_siginfo_t *infop) 720 { 721 l_siginfo_t lsi; 722 siginfo_t siginfo; 723 struct __wrusage wru; 724 int error, status, tmpstat, sig; 725 726 error = kern_wait6(td, idtype, id, &status, options, 727 rup != NULL ? &wru : NULL, &siginfo); 728 729 if (error == 0 && statusp) { 730 tmpstat = status & 0xffff; 731 if (WIFSIGNALED(tmpstat)) { 732 tmpstat = (tmpstat & 0xffffff80) | 733 bsd_to_linux_signal(WTERMSIG(tmpstat)); 734 } else if (WIFSTOPPED(tmpstat)) { 735 tmpstat = (tmpstat & 0xffff00ff) | 736 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); 737 #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32)) 738 if (WSTOPSIG(status) == SIGTRAP) { 739 tmpstat = linux_ptrace_status(td, 740 siginfo.si_pid, tmpstat); 741 } 742 #endif 743 } else if (WIFCONTINUED(tmpstat)) { 744 tmpstat = 0xffff; 745 } 746 error = copyout(&tmpstat, statusp, sizeof(int)); 747 } 748 if (error == 0 && rup != NULL) 749 error = linux_copyout_rusage(&wru.wru_self, rup); 750 if (error == 0 && infop != NULL && td->td_retval[0] != 0) { 751 sig = bsd_to_linux_signal(siginfo.si_signo); 752 siginfo_to_lsiginfo(&siginfo, &lsi, sig); 753 error = copyout(&lsi, infop, sizeof(lsi)); 754 } 755 756 return (error); 757 } 758 759 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 760 int 761 linux_waitpid(struct thread *td, struct linux_waitpid_args *args) 762 { 763 struct linux_wait4_args wait4_args = { 764 .pid = args->pid, 765 .status = args->status, 766 .options = args->options, 767 .rusage = NULL, 768 }; 769 770 return (linux_wait4(td, &wait4_args)); 771 } 772 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 773 774 int 775 linux_wait4(struct thread *td, struct linux_wait4_args *args) 776 { 777 struct proc *p; 778 int options, id, idtype; 779 780 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | 781 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 782 return (EINVAL); 783 784 /* -INT_MIN is not defined. */ 785 if (args->pid == INT_MIN) 786 return (ESRCH); 787 788 options = 0; 789 linux_to_bsd_waitopts(args->options, &options); 790 791 /* 792 * For backward compatibility we implicitly add flags WEXITED 793 * and WTRAPPED here. 794 */ 795 options |= WEXITED | WTRAPPED; 796 797 if (args->pid == WAIT_ANY) { 798 idtype = P_ALL; 799 id = 0; 800 } else if (args->pid < 0) { 801 idtype = P_PGID; 802 id = (id_t)-args->pid; 803 } else if (args->pid == 0) { 804 idtype = P_PGID; 805 p = td->td_proc; 806 PROC_LOCK(p); 807 id = p->p_pgid; 808 PROC_UNLOCK(p); 809 } else { 810 idtype = P_PID; 811 id = (id_t)args->pid; 812 } 813 814 return (linux_common_wait(td, idtype, id, args->status, options, 815 args->rusage, NULL)); 816 } 817 818 int 819 linux_waitid(struct thread *td, struct linux_waitid_args *args) 820 { 821 idtype_t idtype; 822 int error, options; 823 struct proc *p; 824 pid_t id; 825 826 if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED | 827 LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 828 return (EINVAL); 829 830 options = 0; 831 linux_to_bsd_waitopts(args->options, &options); 832 833 id = args->id; 834 switch (args->idtype) { 835 case LINUX_P_ALL: 836 idtype = P_ALL; 837 break; 838 case LINUX_P_PID: 839 if (args->id <= 0) 840 return (EINVAL); 841 idtype = P_PID; 842 break; 843 case LINUX_P_PGID: 844 if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) { 845 p = td->td_proc; 846 PROC_LOCK(p); 847 id = p->p_pgid; 848 PROC_UNLOCK(p); 849 } else if (args->id <= 0) 850 return (EINVAL); 851 idtype = P_PGID; 852 break; 853 case LINUX_P_PIDFD: 854 LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype"); 855 return (ENOSYS); 856 default: 857 return (EINVAL); 858 } 859 860 error = linux_common_wait(td, idtype, id, NULL, options, 861 args->rusage, args->info); 862 td->td_retval[0] = 0; 863 864 return (error); 865 } 866 867 #ifdef LINUX_LEGACY_SYSCALLS 868 int 869 linux_mknod(struct thread *td, struct linux_mknod_args *args) 870 { 871 int error; 872 873 switch (args->mode & S_IFMT) { 874 case S_IFIFO: 875 case S_IFSOCK: 876 error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE, 877 args->mode); 878 break; 879 880 case S_IFCHR: 881 case S_IFBLK: 882 error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE, 883 args->mode, linux_decode_dev(args->dev)); 884 break; 885 886 case S_IFDIR: 887 error = EPERM; 888 break; 889 890 case 0: 891 args->mode |= S_IFREG; 892 /* FALLTHROUGH */ 893 case S_IFREG: 894 error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE, 895 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 896 if (error == 0) 897 kern_close(td, td->td_retval[0]); 898 break; 899 900 default: 901 error = EINVAL; 902 break; 903 } 904 return (error); 905 } 906 #endif 907 908 int 909 linux_mknodat(struct thread *td, struct linux_mknodat_args *args) 910 { 911 int error, dfd; 912 913 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 914 915 switch (args->mode & S_IFMT) { 916 case S_IFIFO: 917 case S_IFSOCK: 918 error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE, 919 args->mode); 920 break; 921 922 case S_IFCHR: 923 case S_IFBLK: 924 error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE, 925 args->mode, linux_decode_dev(args->dev)); 926 break; 927 928 case S_IFDIR: 929 error = EPERM; 930 break; 931 932 case 0: 933 args->mode |= S_IFREG; 934 /* FALLTHROUGH */ 935 case S_IFREG: 936 error = kern_openat(td, dfd, args->filename, UIO_USERSPACE, 937 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 938 if (error == 0) 939 kern_close(td, td->td_retval[0]); 940 break; 941 942 default: 943 error = EINVAL; 944 break; 945 } 946 return (error); 947 } 948 949 /* 950 * UGH! This is just about the dumbest idea I've ever heard!! 951 */ 952 int 953 linux_personality(struct thread *td, struct linux_personality_args *args) 954 { 955 struct linux_pemuldata *pem; 956 struct proc *p = td->td_proc; 957 uint32_t old; 958 959 PROC_LOCK(p); 960 pem = pem_find(p); 961 old = pem->persona; 962 if (args->per != 0xffffffff) 963 pem->persona = args->per; 964 PROC_UNLOCK(p); 965 966 td->td_retval[0] = old; 967 return (0); 968 } 969 970 struct l_itimerval { 971 l_timeval it_interval; 972 l_timeval it_value; 973 }; 974 975 #define B2L_ITIMERVAL(bip, lip) \ 976 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ 977 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ 978 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ 979 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; 980 981 int 982 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) 983 { 984 int error; 985 struct l_itimerval ls; 986 struct itimerval aitv, oitv; 987 988 if (uap->itv == NULL) { 989 uap->itv = uap->oitv; 990 return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); 991 } 992 993 error = copyin(uap->itv, &ls, sizeof(ls)); 994 if (error != 0) 995 return (error); 996 B2L_ITIMERVAL(&aitv, &ls); 997 error = kern_setitimer(td, uap->which, &aitv, &oitv); 998 if (error != 0 || uap->oitv == NULL) 999 return (error); 1000 B2L_ITIMERVAL(&ls, &oitv); 1001 1002 return (copyout(&ls, uap->oitv, sizeof(ls))); 1003 } 1004 1005 int 1006 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) 1007 { 1008 int error; 1009 struct l_itimerval ls; 1010 struct itimerval aitv; 1011 1012 error = kern_getitimer(td, uap->which, &aitv); 1013 if (error != 0) 1014 return (error); 1015 B2L_ITIMERVAL(&ls, &aitv); 1016 return (copyout(&ls, uap->itv, sizeof(ls))); 1017 } 1018 1019 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1020 int 1021 linux_nice(struct thread *td, struct linux_nice_args *args) 1022 { 1023 1024 return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc)); 1025 } 1026 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1027 1028 int 1029 linux_setgroups(struct thread *td, struct linux_setgroups_args *args) 1030 { 1031 struct ucred *newcred, *oldcred; 1032 l_gid_t *linux_gidset; 1033 int ngrp, error; 1034 struct proc *p; 1035 1036 ngrp = args->gidsetsize; 1037 if (ngrp < 0 || ngrp >= ngroups_max) 1038 return (EINVAL); 1039 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); 1040 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); 1041 if (error) 1042 goto out; 1043 newcred = crget(); 1044 crextend(newcred, ngrp); 1045 p = td->td_proc; 1046 PROC_LOCK(p); 1047 oldcred = p->p_ucred; 1048 crcopy(newcred, oldcred); 1049 1050 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) { 1051 PROC_UNLOCK(p); 1052 crfree(newcred); 1053 goto out; 1054 } 1055 1056 newcred->cr_ngroups = ngrp; 1057 for (int i = 0; i < ngrp; i++) 1058 newcred->cr_groups[i] = linux_gidset[i]; 1059 newcred->cr_flags |= CRED_FLAG_GROUPSET; 1060 1061 setsugid(p); 1062 proc_set_cred(p, newcred); 1063 PROC_UNLOCK(p); 1064 crfree(oldcred); 1065 error = 0; 1066 out: 1067 free(linux_gidset, M_LINUX); 1068 return (error); 1069 } 1070 1071 int 1072 linux_getgroups(struct thread *td, struct linux_getgroups_args *args) 1073 { 1074 struct ucred *cred; 1075 l_gid_t *linux_gidset; 1076 gid_t *bsd_gidset; 1077 int bsd_gidsetsz, ngrp, error; 1078 1079 cred = td->td_ucred; 1080 bsd_gidset = cred->cr_groups; 1081 bsd_gidsetsz = cred->cr_ngroups; 1082 1083 if ((ngrp = args->gidsetsize) == 0) { 1084 td->td_retval[0] = bsd_gidsetsz; 1085 return (0); 1086 } 1087 1088 if (ngrp < bsd_gidsetsz) 1089 return (EINVAL); 1090 1091 ngrp = 0; 1092 linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), 1093 M_LINUX, M_WAITOK); 1094 while (ngrp < bsd_gidsetsz) { 1095 linux_gidset[ngrp] = bsd_gidset[ngrp]; 1096 ngrp++; 1097 } 1098 1099 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); 1100 free(linux_gidset, M_LINUX); 1101 if (error) 1102 return (error); 1103 1104 td->td_retval[0] = ngrp; 1105 return (0); 1106 } 1107 1108 static bool 1109 linux_get_dummy_limit(struct thread *td, l_uint resource, struct rlimit *rlim) 1110 { 1111 ssize_t size; 1112 int res, error; 1113 1114 if (linux_dummy_rlimits == 0) 1115 return (false); 1116 1117 switch (resource) { 1118 case LINUX_RLIMIT_LOCKS: 1119 case LINUX_RLIMIT_RTTIME: 1120 rlim->rlim_cur = LINUX_RLIM_INFINITY; 1121 rlim->rlim_max = LINUX_RLIM_INFINITY; 1122 return (true); 1123 case LINUX_RLIMIT_NICE: 1124 case LINUX_RLIMIT_RTPRIO: 1125 rlim->rlim_cur = 0; 1126 rlim->rlim_max = 0; 1127 return (true); 1128 case LINUX_RLIMIT_SIGPENDING: 1129 error = kernel_sysctlbyname(td, 1130 "kern.sigqueue.max_pending_per_proc", 1131 &res, &size, 0, 0, 0, 0); 1132 if (error != 0) 1133 return (false); 1134 rlim->rlim_cur = res; 1135 rlim->rlim_max = res; 1136 return (true); 1137 case LINUX_RLIMIT_MSGQUEUE: 1138 error = kernel_sysctlbyname(td, 1139 "kern.ipc.msgmnb", &res, &size, 0, 0, 0, 0); 1140 if (error != 0) 1141 return (false); 1142 rlim->rlim_cur = res; 1143 rlim->rlim_max = res; 1144 return (true); 1145 default: 1146 return (false); 1147 } 1148 } 1149 1150 int 1151 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) 1152 { 1153 struct rlimit bsd_rlim; 1154 struct l_rlimit rlim; 1155 u_int which; 1156 int error; 1157 1158 if (args->resource >= LINUX_RLIM_NLIMITS) 1159 return (EINVAL); 1160 1161 which = linux_to_bsd_resource[args->resource]; 1162 if (which == -1) 1163 return (EINVAL); 1164 1165 error = copyin(args->rlim, &rlim, sizeof(rlim)); 1166 if (error) 1167 return (error); 1168 1169 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; 1170 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; 1171 return (kern_setrlimit(td, which, &bsd_rlim)); 1172 } 1173 1174 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1175 int 1176 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) 1177 { 1178 struct l_rlimit rlim; 1179 struct rlimit bsd_rlim; 1180 u_int which; 1181 1182 if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) { 1183 rlim.rlim_cur = bsd_rlim.rlim_cur; 1184 rlim.rlim_max = bsd_rlim.rlim_max; 1185 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1186 } 1187 1188 if (args->resource >= LINUX_RLIM_NLIMITS) 1189 return (EINVAL); 1190 1191 which = linux_to_bsd_resource[args->resource]; 1192 if (which == -1) 1193 return (EINVAL); 1194 1195 lim_rlimit(td, which, &bsd_rlim); 1196 1197 #ifdef COMPAT_LINUX32 1198 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; 1199 if (rlim.rlim_cur == UINT_MAX) 1200 rlim.rlim_cur = INT_MAX; 1201 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; 1202 if (rlim.rlim_max == UINT_MAX) 1203 rlim.rlim_max = INT_MAX; 1204 #else 1205 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; 1206 if (rlim.rlim_cur == ULONG_MAX) 1207 rlim.rlim_cur = LONG_MAX; 1208 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; 1209 if (rlim.rlim_max == ULONG_MAX) 1210 rlim.rlim_max = LONG_MAX; 1211 #endif 1212 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1213 } 1214 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1215 1216 int 1217 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) 1218 { 1219 struct l_rlimit rlim; 1220 struct rlimit bsd_rlim; 1221 u_int which; 1222 1223 if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) { 1224 rlim.rlim_cur = bsd_rlim.rlim_cur; 1225 rlim.rlim_max = bsd_rlim.rlim_max; 1226 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1227 } 1228 1229 if (args->resource >= LINUX_RLIM_NLIMITS) 1230 return (EINVAL); 1231 1232 which = linux_to_bsd_resource[args->resource]; 1233 if (which == -1) 1234 return (EINVAL); 1235 1236 lim_rlimit(td, which, &bsd_rlim); 1237 1238 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; 1239 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; 1240 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1241 } 1242 1243 int 1244 linux_sched_setscheduler(struct thread *td, 1245 struct linux_sched_setscheduler_args *args) 1246 { 1247 struct sched_param sched_param; 1248 struct thread *tdt; 1249 int error, policy; 1250 1251 switch (args->policy) { 1252 case LINUX_SCHED_OTHER: 1253 policy = SCHED_OTHER; 1254 break; 1255 case LINUX_SCHED_FIFO: 1256 policy = SCHED_FIFO; 1257 break; 1258 case LINUX_SCHED_RR: 1259 policy = SCHED_RR; 1260 break; 1261 default: 1262 return (EINVAL); 1263 } 1264 1265 error = copyin(args->param, &sched_param, sizeof(sched_param)); 1266 if (error) 1267 return (error); 1268 1269 if (linux_map_sched_prio) { 1270 switch (policy) { 1271 case SCHED_OTHER: 1272 if (sched_param.sched_priority != 0) 1273 return (EINVAL); 1274 1275 sched_param.sched_priority = 1276 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 1277 break; 1278 case SCHED_FIFO: 1279 case SCHED_RR: 1280 if (sched_param.sched_priority < 1 || 1281 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) 1282 return (EINVAL); 1283 1284 /* 1285 * Map [1, LINUX_MAX_RT_PRIO - 1] to 1286 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 1287 */ 1288 sched_param.sched_priority = 1289 (sched_param.sched_priority - 1) * 1290 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 1291 (LINUX_MAX_RT_PRIO - 1); 1292 break; 1293 } 1294 } 1295 1296 tdt = linux_tdfind(td, args->pid, -1); 1297 if (tdt == NULL) 1298 return (ESRCH); 1299 1300 error = kern_sched_setscheduler(td, tdt, policy, &sched_param); 1301 PROC_UNLOCK(tdt->td_proc); 1302 return (error); 1303 } 1304 1305 int 1306 linux_sched_getscheduler(struct thread *td, 1307 struct linux_sched_getscheduler_args *args) 1308 { 1309 struct thread *tdt; 1310 int error, policy; 1311 1312 tdt = linux_tdfind(td, args->pid, -1); 1313 if (tdt == NULL) 1314 return (ESRCH); 1315 1316 error = kern_sched_getscheduler(td, tdt, &policy); 1317 PROC_UNLOCK(tdt->td_proc); 1318 1319 switch (policy) { 1320 case SCHED_OTHER: 1321 td->td_retval[0] = LINUX_SCHED_OTHER; 1322 break; 1323 case SCHED_FIFO: 1324 td->td_retval[0] = LINUX_SCHED_FIFO; 1325 break; 1326 case SCHED_RR: 1327 td->td_retval[0] = LINUX_SCHED_RR; 1328 break; 1329 } 1330 return (error); 1331 } 1332 1333 int 1334 linux_sched_get_priority_max(struct thread *td, 1335 struct linux_sched_get_priority_max_args *args) 1336 { 1337 struct sched_get_priority_max_args bsd; 1338 1339 if (linux_map_sched_prio) { 1340 switch (args->policy) { 1341 case LINUX_SCHED_OTHER: 1342 td->td_retval[0] = 0; 1343 return (0); 1344 case LINUX_SCHED_FIFO: 1345 case LINUX_SCHED_RR: 1346 td->td_retval[0] = LINUX_MAX_RT_PRIO - 1; 1347 return (0); 1348 default: 1349 return (EINVAL); 1350 } 1351 } 1352 1353 switch (args->policy) { 1354 case LINUX_SCHED_OTHER: 1355 bsd.policy = SCHED_OTHER; 1356 break; 1357 case LINUX_SCHED_FIFO: 1358 bsd.policy = SCHED_FIFO; 1359 break; 1360 case LINUX_SCHED_RR: 1361 bsd.policy = SCHED_RR; 1362 break; 1363 default: 1364 return (EINVAL); 1365 } 1366 return (sys_sched_get_priority_max(td, &bsd)); 1367 } 1368 1369 int 1370 linux_sched_get_priority_min(struct thread *td, 1371 struct linux_sched_get_priority_min_args *args) 1372 { 1373 struct sched_get_priority_min_args bsd; 1374 1375 if (linux_map_sched_prio) { 1376 switch (args->policy) { 1377 case LINUX_SCHED_OTHER: 1378 td->td_retval[0] = 0; 1379 return (0); 1380 case LINUX_SCHED_FIFO: 1381 case LINUX_SCHED_RR: 1382 td->td_retval[0] = 1; 1383 return (0); 1384 default: 1385 return (EINVAL); 1386 } 1387 } 1388 1389 switch (args->policy) { 1390 case LINUX_SCHED_OTHER: 1391 bsd.policy = SCHED_OTHER; 1392 break; 1393 case LINUX_SCHED_FIFO: 1394 bsd.policy = SCHED_FIFO; 1395 break; 1396 case LINUX_SCHED_RR: 1397 bsd.policy = SCHED_RR; 1398 break; 1399 default: 1400 return (EINVAL); 1401 } 1402 return (sys_sched_get_priority_min(td, &bsd)); 1403 } 1404 1405 #define REBOOT_CAD_ON 0x89abcdef 1406 #define REBOOT_CAD_OFF 0 1407 #define REBOOT_HALT 0xcdef0123 1408 #define REBOOT_RESTART 0x01234567 1409 #define REBOOT_RESTART2 0xA1B2C3D4 1410 #define REBOOT_POWEROFF 0x4321FEDC 1411 #define REBOOT_MAGIC1 0xfee1dead 1412 #define REBOOT_MAGIC2 0x28121969 1413 #define REBOOT_MAGIC2A 0x05121996 1414 #define REBOOT_MAGIC2B 0x16041998 1415 1416 int 1417 linux_reboot(struct thread *td, struct linux_reboot_args *args) 1418 { 1419 struct reboot_args bsd_args; 1420 1421 if (args->magic1 != REBOOT_MAGIC1) 1422 return (EINVAL); 1423 1424 switch (args->magic2) { 1425 case REBOOT_MAGIC2: 1426 case REBOOT_MAGIC2A: 1427 case REBOOT_MAGIC2B: 1428 break; 1429 default: 1430 return (EINVAL); 1431 } 1432 1433 switch (args->cmd) { 1434 case REBOOT_CAD_ON: 1435 case REBOOT_CAD_OFF: 1436 return (priv_check(td, PRIV_REBOOT)); 1437 case REBOOT_HALT: 1438 bsd_args.opt = RB_HALT; 1439 break; 1440 case REBOOT_RESTART: 1441 case REBOOT_RESTART2: 1442 bsd_args.opt = 0; 1443 break; 1444 case REBOOT_POWEROFF: 1445 bsd_args.opt = RB_POWEROFF; 1446 break; 1447 default: 1448 return (EINVAL); 1449 } 1450 return (sys_reboot(td, &bsd_args)); 1451 } 1452 1453 int 1454 linux_getpid(struct thread *td, struct linux_getpid_args *args) 1455 { 1456 1457 td->td_retval[0] = td->td_proc->p_pid; 1458 1459 return (0); 1460 } 1461 1462 int 1463 linux_gettid(struct thread *td, struct linux_gettid_args *args) 1464 { 1465 struct linux_emuldata *em; 1466 1467 em = em_find(td); 1468 KASSERT(em != NULL, ("gettid: emuldata not found.\n")); 1469 1470 td->td_retval[0] = em->em_tid; 1471 1472 return (0); 1473 } 1474 1475 int 1476 linux_getppid(struct thread *td, struct linux_getppid_args *args) 1477 { 1478 1479 td->td_retval[0] = kern_getppid(td); 1480 return (0); 1481 } 1482 1483 int 1484 linux_getgid(struct thread *td, struct linux_getgid_args *args) 1485 { 1486 1487 td->td_retval[0] = td->td_ucred->cr_rgid; 1488 return (0); 1489 } 1490 1491 int 1492 linux_getuid(struct thread *td, struct linux_getuid_args *args) 1493 { 1494 1495 td->td_retval[0] = td->td_ucred->cr_ruid; 1496 return (0); 1497 } 1498 1499 int 1500 linux_getsid(struct thread *td, struct linux_getsid_args *args) 1501 { 1502 1503 return (kern_getsid(td, args->pid)); 1504 } 1505 1506 int 1507 linux_getpriority(struct thread *td, struct linux_getpriority_args *args) 1508 { 1509 int error; 1510 1511 error = kern_getpriority(td, args->which, args->who); 1512 td->td_retval[0] = 20 - td->td_retval[0]; 1513 return (error); 1514 } 1515 1516 int 1517 linux_sethostname(struct thread *td, struct linux_sethostname_args *args) 1518 { 1519 int name[2]; 1520 1521 name[0] = CTL_KERN; 1522 name[1] = KERN_HOSTNAME; 1523 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, 1524 args->len, 0, 0)); 1525 } 1526 1527 int 1528 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) 1529 { 1530 int name[2]; 1531 1532 name[0] = CTL_KERN; 1533 name[1] = KERN_NISDOMAINNAME; 1534 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, 1535 args->len, 0, 0)); 1536 } 1537 1538 int 1539 linux_exit_group(struct thread *td, struct linux_exit_group_args *args) 1540 { 1541 1542 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, 1543 args->error_code); 1544 1545 /* 1546 * XXX: we should send a signal to the parent if 1547 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) 1548 * as it doesnt occur often. 1549 */ 1550 exit1(td, args->error_code, 0); 1551 /* NOTREACHED */ 1552 } 1553 1554 #define _LINUX_CAPABILITY_VERSION_1 0x19980330 1555 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 1556 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 1557 1558 struct l_user_cap_header { 1559 l_int version; 1560 l_int pid; 1561 }; 1562 1563 struct l_user_cap_data { 1564 l_int effective; 1565 l_int permitted; 1566 l_int inheritable; 1567 }; 1568 1569 int 1570 linux_capget(struct thread *td, struct linux_capget_args *uap) 1571 { 1572 struct l_user_cap_header luch; 1573 struct l_user_cap_data lucd[2]; 1574 int error, u32s; 1575 1576 if (uap->hdrp == NULL) 1577 return (EFAULT); 1578 1579 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1580 if (error != 0) 1581 return (error); 1582 1583 switch (luch.version) { 1584 case _LINUX_CAPABILITY_VERSION_1: 1585 u32s = 1; 1586 break; 1587 case _LINUX_CAPABILITY_VERSION_2: 1588 case _LINUX_CAPABILITY_VERSION_3: 1589 u32s = 2; 1590 break; 1591 default: 1592 luch.version = _LINUX_CAPABILITY_VERSION_1; 1593 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1594 if (error) 1595 return (error); 1596 return (EINVAL); 1597 } 1598 1599 if (luch.pid) 1600 return (EPERM); 1601 1602 if (uap->datap) { 1603 /* 1604 * The current implementation doesn't support setting 1605 * a capability (it's essentially a stub) so indicate 1606 * that no capabilities are currently set or available 1607 * to request. 1608 */ 1609 memset(&lucd, 0, u32s * sizeof(lucd[0])); 1610 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); 1611 } 1612 1613 return (error); 1614 } 1615 1616 int 1617 linux_capset(struct thread *td, struct linux_capset_args *uap) 1618 { 1619 struct l_user_cap_header luch; 1620 struct l_user_cap_data lucd[2]; 1621 int error, i, u32s; 1622 1623 if (uap->hdrp == NULL || uap->datap == NULL) 1624 return (EFAULT); 1625 1626 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1627 if (error != 0) 1628 return (error); 1629 1630 switch (luch.version) { 1631 case _LINUX_CAPABILITY_VERSION_1: 1632 u32s = 1; 1633 break; 1634 case _LINUX_CAPABILITY_VERSION_2: 1635 case _LINUX_CAPABILITY_VERSION_3: 1636 u32s = 2; 1637 break; 1638 default: 1639 luch.version = _LINUX_CAPABILITY_VERSION_1; 1640 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1641 if (error) 1642 return (error); 1643 return (EINVAL); 1644 } 1645 1646 if (luch.pid) 1647 return (EPERM); 1648 1649 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); 1650 if (error != 0) 1651 return (error); 1652 1653 /* We currently don't support setting any capabilities. */ 1654 for (i = 0; i < u32s; i++) { 1655 if (lucd[i].effective || lucd[i].permitted || 1656 lucd[i].inheritable) { 1657 linux_msg(td, 1658 "capset[%d] effective=0x%x, permitted=0x%x, " 1659 "inheritable=0x%x is not implemented", i, 1660 (int)lucd[i].effective, (int)lucd[i].permitted, 1661 (int)lucd[i].inheritable); 1662 return (EPERM); 1663 } 1664 } 1665 1666 return (0); 1667 } 1668 1669 int 1670 linux_prctl(struct thread *td, struct linux_prctl_args *args) 1671 { 1672 int error = 0, max_size, arg; 1673 struct proc *p = td->td_proc; 1674 char comm[LINUX_MAX_COMM_LEN]; 1675 int pdeath_signal, trace_state; 1676 1677 switch (args->option) { 1678 case LINUX_PR_SET_PDEATHSIG: 1679 if (!LINUX_SIG_VALID(args->arg2)) 1680 return (EINVAL); 1681 pdeath_signal = linux_to_bsd_signal(args->arg2); 1682 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL, 1683 &pdeath_signal)); 1684 case LINUX_PR_GET_PDEATHSIG: 1685 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS, 1686 &pdeath_signal); 1687 if (error != 0) 1688 return (error); 1689 pdeath_signal = bsd_to_linux_signal(pdeath_signal); 1690 return (copyout(&pdeath_signal, 1691 (void *)(register_t)args->arg2, 1692 sizeof(pdeath_signal))); 1693 /* 1694 * In Linux, this flag controls if set[gu]id processes can coredump. 1695 * There are additional semantics imposed on processes that cannot 1696 * coredump: 1697 * - Such processes can not be ptraced. 1698 * - There are some semantics around ownership of process-related files 1699 * in the /proc namespace. 1700 * 1701 * In FreeBSD, we can (and by default, do) disable setuid coredump 1702 * system-wide with 'sugid_coredump.' We control tracability on a 1703 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag). 1704 * By happy coincidence, P2_NOTRACE also prevents coredumping. So the 1705 * procctl is roughly analogous to Linux's DUMPABLE. 1706 * 1707 * So, proxy these knobs to the corresponding PROC_TRACE setting. 1708 */ 1709 case LINUX_PR_GET_DUMPABLE: 1710 error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS, 1711 &trace_state); 1712 if (error != 0) 1713 return (error); 1714 td->td_retval[0] = (trace_state != -1); 1715 return (0); 1716 case LINUX_PR_SET_DUMPABLE: 1717 /* 1718 * It is only valid for userspace to set one of these two 1719 * flags, and only one at a time. 1720 */ 1721 switch (args->arg2) { 1722 case LINUX_SUID_DUMP_DISABLE: 1723 trace_state = PROC_TRACE_CTL_DISABLE_EXEC; 1724 break; 1725 case LINUX_SUID_DUMP_USER: 1726 trace_state = PROC_TRACE_CTL_ENABLE; 1727 break; 1728 default: 1729 return (EINVAL); 1730 } 1731 return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL, 1732 &trace_state)); 1733 case LINUX_PR_GET_KEEPCAPS: 1734 /* 1735 * Indicate that we always clear the effective and 1736 * permitted capability sets when the user id becomes 1737 * non-zero (actually the capability sets are simply 1738 * always zero in the current implementation). 1739 */ 1740 td->td_retval[0] = 0; 1741 break; 1742 case LINUX_PR_SET_KEEPCAPS: 1743 /* 1744 * Ignore requests to keep the effective and permitted 1745 * capability sets when the user id becomes non-zero. 1746 */ 1747 break; 1748 case LINUX_PR_SET_NAME: 1749 /* 1750 * To be on the safe side we need to make sure to not 1751 * overflow the size a Linux program expects. We already 1752 * do this here in the copyin, so that we don't need to 1753 * check on copyout. 1754 */ 1755 max_size = MIN(sizeof(comm), sizeof(p->p_comm)); 1756 error = copyinstr((void *)(register_t)args->arg2, comm, 1757 max_size, NULL); 1758 1759 /* Linux silently truncates the name if it is too long. */ 1760 if (error == ENAMETOOLONG) { 1761 /* 1762 * XXX: copyinstr() isn't documented to populate the 1763 * array completely, so do a copyin() to be on the 1764 * safe side. This should be changed in case 1765 * copyinstr() is changed to guarantee this. 1766 */ 1767 error = copyin((void *)(register_t)args->arg2, comm, 1768 max_size - 1); 1769 comm[max_size - 1] = '\0'; 1770 } 1771 if (error) 1772 return (error); 1773 1774 PROC_LOCK(p); 1775 strlcpy(p->p_comm, comm, sizeof(p->p_comm)); 1776 PROC_UNLOCK(p); 1777 break; 1778 case LINUX_PR_GET_NAME: 1779 PROC_LOCK(p); 1780 strlcpy(comm, p->p_comm, sizeof(comm)); 1781 PROC_UNLOCK(p); 1782 error = copyout(comm, (void *)(register_t)args->arg2, 1783 strlen(comm) + 1); 1784 break; 1785 case LINUX_PR_GET_SECCOMP: 1786 case LINUX_PR_SET_SECCOMP: 1787 /* 1788 * Same as returned by Linux without CONFIG_SECCOMP enabled. 1789 */ 1790 error = EINVAL; 1791 break; 1792 case LINUX_PR_CAPBSET_READ: 1793 #if 0 1794 /* 1795 * This makes too much noise with Ubuntu Focal. 1796 */ 1797 linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d", 1798 (int)args->arg2); 1799 #endif 1800 error = EINVAL; 1801 break; 1802 case LINUX_PR_SET_CHILD_SUBREAPER: 1803 if (args->arg2 == 0) { 1804 return (kern_procctl(td, P_PID, 0, PROC_REAP_RELEASE, 1805 NULL)); 1806 } 1807 1808 return (kern_procctl(td, P_PID, 0, PROC_REAP_ACQUIRE, 1809 NULL)); 1810 case LINUX_PR_SET_NO_NEW_PRIVS: 1811 arg = args->arg2 == 1 ? 1812 PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE; 1813 error = kern_procctl(td, P_PID, p->p_pid, 1814 PROC_NO_NEW_PRIVS_CTL, &arg); 1815 break; 1816 case LINUX_PR_SET_PTRACER: 1817 linux_msg(td, "unsupported prctl PR_SET_PTRACER"); 1818 error = EINVAL; 1819 break; 1820 default: 1821 linux_msg(td, "unsupported prctl option %d", args->option); 1822 error = EINVAL; 1823 break; 1824 } 1825 1826 return (error); 1827 } 1828 1829 int 1830 linux_sched_setparam(struct thread *td, 1831 struct linux_sched_setparam_args *uap) 1832 { 1833 struct sched_param sched_param; 1834 struct thread *tdt; 1835 int error, policy; 1836 1837 error = copyin(uap->param, &sched_param, sizeof(sched_param)); 1838 if (error) 1839 return (error); 1840 1841 tdt = linux_tdfind(td, uap->pid, -1); 1842 if (tdt == NULL) 1843 return (ESRCH); 1844 1845 if (linux_map_sched_prio) { 1846 error = kern_sched_getscheduler(td, tdt, &policy); 1847 if (error) 1848 goto out; 1849 1850 switch (policy) { 1851 case SCHED_OTHER: 1852 if (sched_param.sched_priority != 0) { 1853 error = EINVAL; 1854 goto out; 1855 } 1856 sched_param.sched_priority = 1857 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 1858 break; 1859 case SCHED_FIFO: 1860 case SCHED_RR: 1861 if (sched_param.sched_priority < 1 || 1862 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) { 1863 error = EINVAL; 1864 goto out; 1865 } 1866 /* 1867 * Map [1, LINUX_MAX_RT_PRIO - 1] to 1868 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 1869 */ 1870 sched_param.sched_priority = 1871 (sched_param.sched_priority - 1) * 1872 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 1873 (LINUX_MAX_RT_PRIO - 1); 1874 break; 1875 } 1876 } 1877 1878 error = kern_sched_setparam(td, tdt, &sched_param); 1879 out: PROC_UNLOCK(tdt->td_proc); 1880 return (error); 1881 } 1882 1883 int 1884 linux_sched_getparam(struct thread *td, 1885 struct linux_sched_getparam_args *uap) 1886 { 1887 struct sched_param sched_param; 1888 struct thread *tdt; 1889 int error, policy; 1890 1891 tdt = linux_tdfind(td, uap->pid, -1); 1892 if (tdt == NULL) 1893 return (ESRCH); 1894 1895 error = kern_sched_getparam(td, tdt, &sched_param); 1896 if (error) { 1897 PROC_UNLOCK(tdt->td_proc); 1898 return (error); 1899 } 1900 1901 if (linux_map_sched_prio) { 1902 error = kern_sched_getscheduler(td, tdt, &policy); 1903 PROC_UNLOCK(tdt->td_proc); 1904 if (error) 1905 return (error); 1906 1907 switch (policy) { 1908 case SCHED_OTHER: 1909 sched_param.sched_priority = 0; 1910 break; 1911 case SCHED_FIFO: 1912 case SCHED_RR: 1913 /* 1914 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to 1915 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up). 1916 */ 1917 sched_param.sched_priority = 1918 (sched_param.sched_priority * 1919 (LINUX_MAX_RT_PRIO - 1) + 1920 (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) / 1921 (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1; 1922 break; 1923 } 1924 } else 1925 PROC_UNLOCK(tdt->td_proc); 1926 1927 error = copyout(&sched_param, uap->param, sizeof(sched_param)); 1928 return (error); 1929 } 1930 1931 /* 1932 * Get affinity of a process. 1933 */ 1934 int 1935 linux_sched_getaffinity(struct thread *td, 1936 struct linux_sched_getaffinity_args *args) 1937 { 1938 struct thread *tdt; 1939 cpuset_t *mask; 1940 size_t size; 1941 int error; 1942 id_t tid; 1943 1944 tdt = linux_tdfind(td, args->pid, -1); 1945 if (tdt == NULL) 1946 return (ESRCH); 1947 tid = tdt->td_tid; 1948 PROC_UNLOCK(tdt->td_proc); 1949 1950 mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO); 1951 size = min(args->len, sizeof(cpuset_t)); 1952 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1953 tid, size, mask); 1954 if (error == ERANGE) 1955 error = EINVAL; 1956 if (error == 0) 1957 error = copyout(mask, args->user_mask_ptr, size); 1958 if (error == 0) 1959 td->td_retval[0] = size; 1960 free(mask, M_LINUX); 1961 return (error); 1962 } 1963 1964 /* 1965 * Set affinity of a process. 1966 */ 1967 int 1968 linux_sched_setaffinity(struct thread *td, 1969 struct linux_sched_setaffinity_args *args) 1970 { 1971 struct thread *tdt; 1972 cpuset_t *mask; 1973 int cpu, error; 1974 size_t len; 1975 id_t tid; 1976 1977 tdt = linux_tdfind(td, args->pid, -1); 1978 if (tdt == NULL) 1979 return (ESRCH); 1980 tid = tdt->td_tid; 1981 PROC_UNLOCK(tdt->td_proc); 1982 1983 len = min(args->len, sizeof(cpuset_t)); 1984 mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO); 1985 error = copyin(args->user_mask_ptr, mask, len); 1986 if (error != 0) 1987 goto out; 1988 /* Linux ignore high bits */ 1989 CPU_FOREACH_ISSET(cpu, mask) 1990 if (cpu > mp_maxid) 1991 CPU_CLR(cpu, mask); 1992 1993 error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1994 tid, mask); 1995 if (error == EDEADLK) 1996 error = EINVAL; 1997 out: 1998 free(mask, M_TEMP); 1999 return (error); 2000 } 2001 2002 struct linux_rlimit64 { 2003 uint64_t rlim_cur; 2004 uint64_t rlim_max; 2005 }; 2006 2007 int 2008 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) 2009 { 2010 struct rlimit rlim, nrlim; 2011 struct linux_rlimit64 lrlim; 2012 struct proc *p; 2013 u_int which; 2014 int flags; 2015 int error; 2016 2017 if (args->new == NULL && args->old != NULL) { 2018 if (linux_get_dummy_limit(td, args->resource, &rlim)) { 2019 lrlim.rlim_cur = rlim.rlim_cur; 2020 lrlim.rlim_max = rlim.rlim_max; 2021 return (copyout(&lrlim, args->old, sizeof(lrlim))); 2022 } 2023 } 2024 2025 if (args->resource >= LINUX_RLIM_NLIMITS) 2026 return (EINVAL); 2027 2028 which = linux_to_bsd_resource[args->resource]; 2029 if (which == -1) 2030 return (EINVAL); 2031 2032 if (args->new != NULL) { 2033 /* 2034 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux 2035 * rlim is unsigned 64-bit. FreeBSD treats negative limits 2036 * as INFINITY so we do not need a conversion even. 2037 */ 2038 error = copyin(args->new, &nrlim, sizeof(nrlim)); 2039 if (error != 0) 2040 return (error); 2041 } 2042 2043 flags = PGET_HOLD | PGET_NOTWEXIT; 2044 if (args->new != NULL) 2045 flags |= PGET_CANDEBUG; 2046 else 2047 flags |= PGET_CANSEE; 2048 if (args->pid == 0) { 2049 p = td->td_proc; 2050 PHOLD(p); 2051 } else { 2052 error = pget(args->pid, flags, &p); 2053 if (error != 0) 2054 return (error); 2055 } 2056 if (args->old != NULL) { 2057 PROC_LOCK(p); 2058 lim_rlimit_proc(p, which, &rlim); 2059 PROC_UNLOCK(p); 2060 if (rlim.rlim_cur == RLIM_INFINITY) 2061 lrlim.rlim_cur = LINUX_RLIM_INFINITY; 2062 else 2063 lrlim.rlim_cur = rlim.rlim_cur; 2064 if (rlim.rlim_max == RLIM_INFINITY) 2065 lrlim.rlim_max = LINUX_RLIM_INFINITY; 2066 else 2067 lrlim.rlim_max = rlim.rlim_max; 2068 error = copyout(&lrlim, args->old, sizeof(lrlim)); 2069 if (error != 0) 2070 goto out; 2071 } 2072 2073 if (args->new != NULL) 2074 error = kern_proc_setrlimit(td, p, which, &nrlim); 2075 2076 out: 2077 PRELE(p); 2078 return (error); 2079 } 2080 2081 int 2082 linux_pselect6(struct thread *td, struct linux_pselect6_args *args) 2083 { 2084 struct timespec ts, *tsp; 2085 int error; 2086 2087 if (args->tsp != NULL) { 2088 error = linux_get_timespec(&ts, args->tsp); 2089 if (error != 0) 2090 return (error); 2091 tsp = &ts; 2092 } else 2093 tsp = NULL; 2094 2095 error = linux_common_pselect6(td, args->nfds, args->readfds, 2096 args->writefds, args->exceptfds, tsp, args->sig); 2097 2098 if (args->tsp != NULL) 2099 linux_put_timespec(&ts, args->tsp); 2100 return (error); 2101 } 2102 2103 static int 2104 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds, 2105 l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp, 2106 l_uintptr_t *sig) 2107 { 2108 struct timeval utv, tv0, tv1, *tvp; 2109 struct l_pselect6arg lpse6; 2110 sigset_t *ssp; 2111 sigset_t ss; 2112 int error; 2113 2114 ssp = NULL; 2115 if (sig != NULL) { 2116 error = copyin(sig, &lpse6, sizeof(lpse6)); 2117 if (error != 0) 2118 return (error); 2119 error = linux_copyin_sigset(td, PTRIN(lpse6.ss), 2120 lpse6.ss_len, &ss, &ssp); 2121 if (error != 0) 2122 return (error); 2123 } else 2124 ssp = NULL; 2125 2126 /* 2127 * Currently glibc changes nanosecond number to microsecond. 2128 * This mean losing precision but for now it is hardly seen. 2129 */ 2130 if (tsp != NULL) { 2131 TIMESPEC_TO_TIMEVAL(&utv, tsp); 2132 if (itimerfix(&utv)) 2133 return (EINVAL); 2134 2135 microtime(&tv0); 2136 tvp = &utv; 2137 } else 2138 tvp = NULL; 2139 2140 error = kern_pselect(td, nfds, readfds, writefds, 2141 exceptfds, tvp, ssp, LINUX_NFDBITS); 2142 2143 if (tsp != NULL) { 2144 /* 2145 * Compute how much time was left of the timeout, 2146 * by subtracting the current time and the time 2147 * before we started the call, and subtracting 2148 * that result from the user-supplied value. 2149 */ 2150 microtime(&tv1); 2151 timevalsub(&tv1, &tv0); 2152 timevalsub(&utv, &tv1); 2153 if (utv.tv_sec < 0) 2154 timevalclear(&utv); 2155 TIMEVAL_TO_TIMESPEC(&utv, tsp); 2156 } 2157 return (error); 2158 } 2159 2160 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 2161 int 2162 linux_pselect6_time64(struct thread *td, 2163 struct linux_pselect6_time64_args *args) 2164 { 2165 struct timespec ts, *tsp; 2166 int error; 2167 2168 if (args->tsp != NULL) { 2169 error = linux_get_timespec64(&ts, args->tsp); 2170 if (error != 0) 2171 return (error); 2172 tsp = &ts; 2173 } else 2174 tsp = NULL; 2175 2176 error = linux_common_pselect6(td, args->nfds, args->readfds, 2177 args->writefds, args->exceptfds, tsp, args->sig); 2178 2179 if (args->tsp != NULL) 2180 linux_put_timespec64(&ts, args->tsp); 2181 return (error); 2182 } 2183 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 2184 2185 int 2186 linux_ppoll(struct thread *td, struct linux_ppoll_args *args) 2187 { 2188 struct timespec uts, *tsp; 2189 int error; 2190 2191 if (args->tsp != NULL) { 2192 error = linux_get_timespec(&uts, args->tsp); 2193 if (error != 0) 2194 return (error); 2195 tsp = &uts; 2196 } else 2197 tsp = NULL; 2198 2199 error = linux_common_ppoll(td, args->fds, args->nfds, tsp, 2200 args->sset, args->ssize); 2201 if (error == 0 && args->tsp != NULL) 2202 error = linux_put_timespec(&uts, args->tsp); 2203 return (error); 2204 } 2205 2206 static int 2207 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds, 2208 struct timespec *tsp, l_sigset_t *sset, l_size_t ssize) 2209 { 2210 struct timespec ts0, ts1; 2211 struct pollfd stackfds[32]; 2212 struct pollfd *kfds; 2213 sigset_t *ssp; 2214 sigset_t ss; 2215 int error; 2216 2217 if (kern_poll_maxfds(nfds)) 2218 return (EINVAL); 2219 if (sset != NULL) { 2220 error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp); 2221 if (error != 0) 2222 return (error); 2223 } else 2224 ssp = NULL; 2225 if (tsp != NULL) 2226 nanotime(&ts0); 2227 2228 if (nfds > nitems(stackfds)) 2229 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); 2230 else 2231 kfds = stackfds; 2232 error = linux_pollin(td, kfds, fds, nfds); 2233 if (error != 0) 2234 goto out; 2235 2236 error = kern_poll_kfds(td, kfds, nfds, tsp, ssp); 2237 if (error == 0) 2238 error = linux_pollout(td, kfds, fds, nfds); 2239 2240 if (error == 0 && tsp != NULL) { 2241 if (td->td_retval[0]) { 2242 nanotime(&ts1); 2243 timespecsub(&ts1, &ts0, &ts1); 2244 timespecsub(tsp, &ts1, tsp); 2245 if (tsp->tv_sec < 0) 2246 timespecclear(tsp); 2247 } else 2248 timespecclear(tsp); 2249 } 2250 2251 out: 2252 if (nfds > nitems(stackfds)) 2253 free(kfds, M_TEMP); 2254 return (error); 2255 } 2256 2257 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 2258 int 2259 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args) 2260 { 2261 struct timespec uts, *tsp; 2262 int error; 2263 2264 if (args->tsp != NULL) { 2265 error = linux_get_timespec64(&uts, args->tsp); 2266 if (error != 0) 2267 return (error); 2268 tsp = &uts; 2269 } else 2270 tsp = NULL; 2271 error = linux_common_ppoll(td, args->fds, args->nfds, tsp, 2272 args->sset, args->ssize); 2273 if (error == 0 && args->tsp != NULL) 2274 error = linux_put_timespec64(&uts, args->tsp); 2275 return (error); 2276 } 2277 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 2278 2279 static int 2280 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) 2281 { 2282 int error; 2283 u_int i; 2284 2285 error = copyin(ufds, fds, nfd * sizeof(*fds)); 2286 if (error != 0) 2287 return (error); 2288 2289 for (i = 0; i < nfd; i++) { 2290 if (fds->events != 0) 2291 linux_to_bsd_poll_events(td, fds->fd, 2292 fds->events, &fds->events); 2293 fds++; 2294 } 2295 return (0); 2296 } 2297 2298 static int 2299 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) 2300 { 2301 int error = 0; 2302 u_int i, n = 0; 2303 2304 for (i = 0; i < nfd; i++) { 2305 if (fds->revents != 0) { 2306 bsd_to_linux_poll_events(fds->revents, 2307 &fds->revents); 2308 n++; 2309 } 2310 error = copyout(&fds->revents, &ufds->revents, 2311 sizeof(ufds->revents)); 2312 if (error) 2313 return (error); 2314 fds++; 2315 ufds++; 2316 } 2317 td->td_retval[0] = n; 2318 return (0); 2319 } 2320 2321 static int 2322 linux_sched_rr_get_interval_common(struct thread *td, pid_t pid, 2323 struct timespec *ts) 2324 { 2325 struct thread *tdt; 2326 int error; 2327 2328 /* 2329 * According to man in case the invalid pid specified 2330 * EINVAL should be returned. 2331 */ 2332 if (pid < 0) 2333 return (EINVAL); 2334 2335 tdt = linux_tdfind(td, pid, -1); 2336 if (tdt == NULL) 2337 return (ESRCH); 2338 2339 error = kern_sched_rr_get_interval_td(td, tdt, ts); 2340 PROC_UNLOCK(tdt->td_proc); 2341 return (error); 2342 } 2343 2344 int 2345 linux_sched_rr_get_interval(struct thread *td, 2346 struct linux_sched_rr_get_interval_args *uap) 2347 { 2348 struct timespec ts; 2349 int error; 2350 2351 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); 2352 if (error != 0) 2353 return (error); 2354 return (linux_put_timespec(&ts, uap->interval)); 2355 } 2356 2357 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 2358 int 2359 linux_sched_rr_get_interval_time64(struct thread *td, 2360 struct linux_sched_rr_get_interval_time64_args *uap) 2361 { 2362 struct timespec ts; 2363 int error; 2364 2365 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); 2366 if (error != 0) 2367 return (error); 2368 return (linux_put_timespec64(&ts, uap->interval)); 2369 } 2370 #endif 2371 2372 /* 2373 * In case when the Linux thread is the initial thread in 2374 * the thread group thread id is equal to the process id. 2375 * Glibc depends on this magic (assert in pthread_getattr_np.c). 2376 */ 2377 struct thread * 2378 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) 2379 { 2380 struct linux_emuldata *em; 2381 struct thread *tdt; 2382 struct proc *p; 2383 2384 tdt = NULL; 2385 if (tid == 0 || tid == td->td_tid) { 2386 if (pid != -1 && td->td_proc->p_pid != pid) 2387 return (NULL); 2388 PROC_LOCK(td->td_proc); 2389 return (td); 2390 } else if (tid > PID_MAX) 2391 return (tdfind(tid, pid)); 2392 2393 /* 2394 * Initial thread where the tid equal to the pid. 2395 */ 2396 p = pfind(tid); 2397 if (p != NULL) { 2398 if (SV_PROC_ABI(p) != SV_ABI_LINUX || 2399 (pid != -1 && tid != pid)) { 2400 /* 2401 * p is not a Linuxulator process. 2402 */ 2403 PROC_UNLOCK(p); 2404 return (NULL); 2405 } 2406 FOREACH_THREAD_IN_PROC(p, tdt) { 2407 em = em_find(tdt); 2408 if (tid == em->em_tid) 2409 return (tdt); 2410 } 2411 PROC_UNLOCK(p); 2412 } 2413 return (NULL); 2414 } 2415 2416 void 2417 linux_to_bsd_waitopts(int options, int *bsdopts) 2418 { 2419 2420 if (options & LINUX_WNOHANG) 2421 *bsdopts |= WNOHANG; 2422 if (options & LINUX_WUNTRACED) 2423 *bsdopts |= WUNTRACED; 2424 if (options & LINUX_WEXITED) 2425 *bsdopts |= WEXITED; 2426 if (options & LINUX_WCONTINUED) 2427 *bsdopts |= WCONTINUED; 2428 if (options & LINUX_WNOWAIT) 2429 *bsdopts |= WNOWAIT; 2430 2431 if (options & __WCLONE) 2432 *bsdopts |= WLINUXCLONE; 2433 } 2434 2435 int 2436 linux_getrandom(struct thread *td, struct linux_getrandom_args *args) 2437 { 2438 struct uio uio; 2439 struct iovec iov; 2440 int error; 2441 2442 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) 2443 return (EINVAL); 2444 if (args->count > INT_MAX) 2445 args->count = INT_MAX; 2446 2447 iov.iov_base = args->buf; 2448 iov.iov_len = args->count; 2449 2450 uio.uio_iov = &iov; 2451 uio.uio_iovcnt = 1; 2452 uio.uio_resid = iov.iov_len; 2453 uio.uio_segflg = UIO_USERSPACE; 2454 uio.uio_rw = UIO_READ; 2455 uio.uio_td = td; 2456 2457 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); 2458 if (error == 0) 2459 td->td_retval[0] = args->count - uio.uio_resid; 2460 return (error); 2461 } 2462 2463 int 2464 linux_mincore(struct thread *td, struct linux_mincore_args *args) 2465 { 2466 2467 /* Needs to be page-aligned */ 2468 if (args->start & PAGE_MASK) 2469 return (EINVAL); 2470 return (kern_mincore(td, args->start, args->len, args->vec)); 2471 } 2472 2473 #define SYSLOG_TAG "<6>" 2474 2475 int 2476 linux_syslog(struct thread *td, struct linux_syslog_args *args) 2477 { 2478 char buf[128], *src, *dst; 2479 u_int seq; 2480 int buflen, error; 2481 2482 if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) { 2483 linux_msg(td, "syslog unsupported type 0x%x", args->type); 2484 return (EINVAL); 2485 } 2486 2487 if (args->len < 6) { 2488 td->td_retval[0] = 0; 2489 return (0); 2490 } 2491 2492 error = priv_check(td, PRIV_MSGBUF); 2493 if (error) 2494 return (error); 2495 2496 mtx_lock(&msgbuf_lock); 2497 msgbuf_peekbytes(msgbufp, NULL, 0, &seq); 2498 mtx_unlock(&msgbuf_lock); 2499 2500 dst = args->buf; 2501 error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG)); 2502 /* The -1 is to skip the trailing '\0'. */ 2503 dst += sizeof(SYSLOG_TAG) - 1; 2504 2505 while (error == 0) { 2506 mtx_lock(&msgbuf_lock); 2507 buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq); 2508 mtx_unlock(&msgbuf_lock); 2509 2510 if (buflen == 0) 2511 break; 2512 2513 for (src = buf; src < buf + buflen && error == 0; src++) { 2514 if (*src == '\0') 2515 continue; 2516 2517 if (dst >= args->buf + args->len) 2518 goto out; 2519 2520 error = copyout(src, dst, 1); 2521 dst++; 2522 2523 if (*src == '\n' && *(src + 1) != '<' && 2524 dst + sizeof(SYSLOG_TAG) < args->buf + args->len) { 2525 error = copyout(&SYSLOG_TAG, 2526 dst, sizeof(SYSLOG_TAG)); 2527 dst += sizeof(SYSLOG_TAG) - 1; 2528 } 2529 } 2530 } 2531 out: 2532 td->td_retval[0] = dst - args->buf; 2533 return (error); 2534 } 2535 2536 int 2537 linux_getcpu(struct thread *td, struct linux_getcpu_args *args) 2538 { 2539 int cpu, error, node; 2540 2541 cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */ 2542 error = 0; 2543 node = cpuid_to_pcpu[cpu]->pc_domain; 2544 2545 if (args->cpu != NULL) 2546 error = copyout(&cpu, args->cpu, sizeof(l_int)); 2547 if (args->node != NULL) 2548 error = copyout(&node, args->node, sizeof(l_int)); 2549 return (error); 2550 } 2551 2552 #if defined(__i386__) || defined(__amd64__) 2553 int 2554 linux_poll(struct thread *td, struct linux_poll_args *args) 2555 { 2556 struct timespec ts, *tsp; 2557 2558 if (args->timeout != INFTIM) { 2559 if (args->timeout < 0) 2560 return (EINVAL); 2561 ts.tv_sec = args->timeout / 1000; 2562 ts.tv_nsec = (args->timeout % 1000) * 1000000; 2563 tsp = &ts; 2564 } else 2565 tsp = NULL; 2566 2567 return (linux_common_ppoll(td, args->fds, args->nfds, 2568 tsp, NULL, 0)); 2569 } 2570 #endif /* __i386__ || __amd64__ */ 2571 2572 int 2573 linux_seccomp(struct thread *td, struct linux_seccomp_args *args) 2574 { 2575 2576 switch (args->op) { 2577 case LINUX_SECCOMP_GET_ACTION_AVAIL: 2578 return (EOPNOTSUPP); 2579 default: 2580 /* 2581 * Ignore unknown operations, just like Linux kernel built 2582 * without CONFIG_SECCOMP. 2583 */ 2584 return (EINVAL); 2585 } 2586 } 2587 2588 /* 2589 * Custom version of exec_copyin_args(), to copy out argument and environment 2590 * strings from the old process address space into the temporary string buffer. 2591 * Based on freebsd32_exec_copyin_args. 2592 */ 2593 static int 2594 linux_exec_copyin_args(struct image_args *args, const char *fname, 2595 l_uintptr_t *argv, l_uintptr_t *envv) 2596 { 2597 char *argp, *envp; 2598 l_uintptr_t *ptr, arg; 2599 int error; 2600 2601 bzero(args, sizeof(*args)); 2602 if (argv == NULL) 2603 return (EFAULT); 2604 2605 /* 2606 * Allocate demand-paged memory for the file name, argument, and 2607 * environment strings. 2608 */ 2609 error = exec_alloc_args(args); 2610 if (error != 0) 2611 return (error); 2612 2613 /* 2614 * Copy the file name. 2615 */ 2616 error = exec_args_add_fname(args, fname, UIO_USERSPACE); 2617 if (error != 0) 2618 goto err_exit; 2619 2620 /* 2621 * extract arguments first 2622 */ 2623 ptr = argv; 2624 for (;;) { 2625 error = copyin(ptr++, &arg, sizeof(arg)); 2626 if (error) 2627 goto err_exit; 2628 if (arg == 0) 2629 break; 2630 argp = PTRIN(arg); 2631 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 2632 if (error != 0) 2633 goto err_exit; 2634 } 2635 2636 /* 2637 * This comment is from Linux do_execveat_common: 2638 * When argv is empty, add an empty string ("") as argv[0] to 2639 * ensure confused userspace programs that start processing 2640 * from argv[1] won't end up walking envp. 2641 */ 2642 if (args->argc == 0 && 2643 (error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0)) 2644 goto err_exit; 2645 2646 /* 2647 * extract environment strings 2648 */ 2649 if (envv) { 2650 ptr = envv; 2651 for (;;) { 2652 error = copyin(ptr++, &arg, sizeof(arg)); 2653 if (error) 2654 goto err_exit; 2655 if (arg == 0) 2656 break; 2657 envp = PTRIN(arg); 2658 error = exec_args_add_env(args, envp, UIO_USERSPACE); 2659 if (error != 0) 2660 goto err_exit; 2661 } 2662 } 2663 2664 return (0); 2665 2666 err_exit: 2667 exec_free_args(args); 2668 return (error); 2669 } 2670 2671 int 2672 linux_execve(struct thread *td, struct linux_execve_args *args) 2673 { 2674 struct image_args eargs; 2675 int error; 2676 2677 LINUX_CTR(execve); 2678 2679 error = linux_exec_copyin_args(&eargs, args->path, args->argp, 2680 args->envp); 2681 if (error == 0) 2682 error = linux_common_execve(td, &eargs); 2683 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 2684 return (error); 2685 } 2686 2687 static void 2688 linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp) 2689 { 2690 struct rtprio rtp2; 2691 2692 pri_to_rtp(td1, &rtp2); 2693 if (rtp2.type < rtp->type || 2694 (rtp2.type == rtp->type && 2695 rtp2.prio < rtp->prio)) { 2696 rtp->type = rtp2.type; 2697 rtp->prio = rtp2.prio; 2698 } 2699 } 2700 2701 #define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX 2702 2703 static int 2704 linux_rtprio2ioprio(struct rtprio *rtp) 2705 { 2706 int ioprio, prio; 2707 2708 switch (rtp->type) { 2709 case RTP_PRIO_IDLE: 2710 prio = RTP_PRIO_MIN; 2711 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio); 2712 break; 2713 case RTP_PRIO_NORMAL: 2714 prio = rtp->prio / LINUX_PRIO_DIVIDER; 2715 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio); 2716 break; 2717 case RTP_PRIO_REALTIME: 2718 prio = rtp->prio / LINUX_PRIO_DIVIDER; 2719 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio); 2720 break; 2721 default: 2722 prio = RTP_PRIO_MIN; 2723 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio); 2724 break; 2725 } 2726 return (ioprio); 2727 } 2728 2729 static int 2730 linux_ioprio2rtprio(int ioprio, struct rtprio *rtp) 2731 { 2732 2733 switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) { 2734 case LINUX_IOPRIO_CLASS_IDLE: 2735 rtp->prio = RTP_PRIO_MIN; 2736 rtp->type = RTP_PRIO_IDLE; 2737 break; 2738 case LINUX_IOPRIO_CLASS_BE: 2739 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER; 2740 rtp->type = RTP_PRIO_NORMAL; 2741 break; 2742 case LINUX_IOPRIO_CLASS_RT: 2743 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER; 2744 rtp->type = RTP_PRIO_REALTIME; 2745 break; 2746 default: 2747 return (EINVAL); 2748 } 2749 return (0); 2750 } 2751 #undef LINUX_PRIO_DIVIDER 2752 2753 int 2754 linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args) 2755 { 2756 struct thread *td1; 2757 struct rtprio rtp; 2758 struct pgrp *pg; 2759 struct proc *p; 2760 int error, found; 2761 2762 p = NULL; 2763 td1 = NULL; 2764 error = 0; 2765 found = 0; 2766 rtp.type = RTP_PRIO_IDLE; 2767 rtp.prio = RTP_PRIO_MAX; 2768 switch (args->which) { 2769 case LINUX_IOPRIO_WHO_PROCESS: 2770 if (args->who == 0) { 2771 td1 = td; 2772 p = td1->td_proc; 2773 PROC_LOCK(p); 2774 } else if (args->who > PID_MAX) { 2775 td1 = linux_tdfind(td, args->who, -1); 2776 if (td1 != NULL) 2777 p = td1->td_proc; 2778 } else 2779 p = pfind(args->who); 2780 if (p == NULL) 2781 return (ESRCH); 2782 if ((error = p_cansee(td, p))) { 2783 PROC_UNLOCK(p); 2784 break; 2785 } 2786 if (td1 != NULL) { 2787 pri_to_rtp(td1, &rtp); 2788 } else { 2789 FOREACH_THREAD_IN_PROC(p, td1) { 2790 linux_up_rtprio_if(td1, &rtp); 2791 } 2792 } 2793 found++; 2794 PROC_UNLOCK(p); 2795 break; 2796 case LINUX_IOPRIO_WHO_PGRP: 2797 sx_slock(&proctree_lock); 2798 if (args->who == 0) { 2799 pg = td->td_proc->p_pgrp; 2800 PGRP_LOCK(pg); 2801 } else { 2802 pg = pgfind(args->who); 2803 if (pg == NULL) { 2804 sx_sunlock(&proctree_lock); 2805 error = ESRCH; 2806 break; 2807 } 2808 } 2809 sx_sunlock(&proctree_lock); 2810 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 2811 PROC_LOCK(p); 2812 if (p->p_state == PRS_NORMAL && 2813 p_cansee(td, p) == 0) { 2814 FOREACH_THREAD_IN_PROC(p, td1) { 2815 linux_up_rtprio_if(td1, &rtp); 2816 found++; 2817 } 2818 } 2819 PROC_UNLOCK(p); 2820 } 2821 PGRP_UNLOCK(pg); 2822 break; 2823 case LINUX_IOPRIO_WHO_USER: 2824 if (args->who == 0) 2825 args->who = td->td_ucred->cr_uid; 2826 sx_slock(&allproc_lock); 2827 FOREACH_PROC_IN_SYSTEM(p) { 2828 PROC_LOCK(p); 2829 if (p->p_state == PRS_NORMAL && 2830 p->p_ucred->cr_uid == args->who && 2831 p_cansee(td, p) == 0) { 2832 FOREACH_THREAD_IN_PROC(p, td1) { 2833 linux_up_rtprio_if(td1, &rtp); 2834 found++; 2835 } 2836 } 2837 PROC_UNLOCK(p); 2838 } 2839 sx_sunlock(&allproc_lock); 2840 break; 2841 default: 2842 error = EINVAL; 2843 break; 2844 } 2845 if (error == 0) { 2846 if (found != 0) 2847 td->td_retval[0] = linux_rtprio2ioprio(&rtp); 2848 else 2849 error = ESRCH; 2850 } 2851 return (error); 2852 } 2853 2854 int 2855 linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args) 2856 { 2857 struct thread *td1; 2858 struct rtprio rtp; 2859 struct pgrp *pg; 2860 struct proc *p; 2861 int error; 2862 2863 if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0) 2864 return (error); 2865 /* Attempts to set high priorities (REALTIME) require su privileges. */ 2866 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME && 2867 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0) 2868 return (error); 2869 2870 p = NULL; 2871 td1 = NULL; 2872 switch (args->which) { 2873 case LINUX_IOPRIO_WHO_PROCESS: 2874 if (args->who == 0) { 2875 td1 = td; 2876 p = td1->td_proc; 2877 PROC_LOCK(p); 2878 } else if (args->who > PID_MAX) { 2879 td1 = linux_tdfind(td, args->who, -1); 2880 if (td1 != NULL) 2881 p = td1->td_proc; 2882 } else 2883 p = pfind(args->who); 2884 if (p == NULL) 2885 return (ESRCH); 2886 if ((error = p_cansched(td, p))) { 2887 PROC_UNLOCK(p); 2888 break; 2889 } 2890 if (td1 != NULL) { 2891 error = rtp_to_pri(&rtp, td1); 2892 } else { 2893 FOREACH_THREAD_IN_PROC(p, td1) { 2894 if ((error = rtp_to_pri(&rtp, td1)) != 0) 2895 break; 2896 } 2897 } 2898 PROC_UNLOCK(p); 2899 break; 2900 case LINUX_IOPRIO_WHO_PGRP: 2901 sx_slock(&proctree_lock); 2902 if (args->who == 0) { 2903 pg = td->td_proc->p_pgrp; 2904 PGRP_LOCK(pg); 2905 } else { 2906 pg = pgfind(args->who); 2907 if (pg == NULL) { 2908 sx_sunlock(&proctree_lock); 2909 error = ESRCH; 2910 break; 2911 } 2912 } 2913 sx_sunlock(&proctree_lock); 2914 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 2915 PROC_LOCK(p); 2916 if (p->p_state == PRS_NORMAL && 2917 p_cansched(td, p) == 0) { 2918 FOREACH_THREAD_IN_PROC(p, td1) { 2919 if ((error = rtp_to_pri(&rtp, td1)) != 0) 2920 break; 2921 } 2922 } 2923 PROC_UNLOCK(p); 2924 if (error != 0) 2925 break; 2926 } 2927 PGRP_UNLOCK(pg); 2928 break; 2929 case LINUX_IOPRIO_WHO_USER: 2930 if (args->who == 0) 2931 args->who = td->td_ucred->cr_uid; 2932 sx_slock(&allproc_lock); 2933 FOREACH_PROC_IN_SYSTEM(p) { 2934 PROC_LOCK(p); 2935 if (p->p_state == PRS_NORMAL && 2936 p->p_ucred->cr_uid == args->who && 2937 p_cansched(td, p) == 0) { 2938 FOREACH_THREAD_IN_PROC(p, td1) { 2939 if ((error = rtp_to_pri(&rtp, td1)) != 0) 2940 break; 2941 } 2942 } 2943 PROC_UNLOCK(p); 2944 if (error != 0) 2945 break; 2946 } 2947 sx_sunlock(&allproc_lock); 2948 break; 2949 default: 2950 error = EINVAL; 2951 break; 2952 } 2953 return (error); 2954 } 2955 2956 /* The only flag is O_NONBLOCK */ 2957 #define B2L_MQ_FLAGS(bflags) ((bflags) != 0 ? LINUX_O_NONBLOCK : 0) 2958 #define L2B_MQ_FLAGS(lflags) ((lflags) != 0 ? O_NONBLOCK : 0) 2959 2960 int 2961 linux_mq_open(struct thread *td, struct linux_mq_open_args *args) 2962 { 2963 struct mq_attr attr; 2964 int error, flags; 2965 2966 flags = linux_common_openflags(args->oflag); 2967 if ((flags & O_ACCMODE) == O_ACCMODE || (flags & O_EXEC) != 0) 2968 return (EINVAL); 2969 flags = FFLAGS(flags); 2970 if ((flags & O_CREAT) != 0 && args->attr != NULL) { 2971 error = copyin(args->attr, &attr, sizeof(attr)); 2972 if (error != 0) 2973 return (error); 2974 attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags); 2975 } 2976 2977 return (kern_kmq_open(td, args->name, flags, args->mode, 2978 args->attr != NULL ? &attr : NULL)); 2979 } 2980 2981 int 2982 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args) 2983 { 2984 struct kmq_unlink_args bsd_args = { 2985 .path = PTRIN(args->name) 2986 }; 2987 2988 return (sys_kmq_unlink(td, &bsd_args)); 2989 } 2990 2991 int 2992 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args) 2993 { 2994 struct timespec ts, *abs_timeout; 2995 int error; 2996 2997 if (args->abs_timeout == NULL) 2998 abs_timeout = NULL; 2999 else { 3000 error = linux_get_timespec(&ts, args->abs_timeout); 3001 if (error != 0) 3002 return (error); 3003 abs_timeout = &ts; 3004 } 3005 3006 return (kern_kmq_timedsend(td, args->mqd, PTRIN(args->msg_ptr), 3007 args->msg_len, args->msg_prio, abs_timeout)); 3008 } 3009 3010 int 3011 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args) 3012 { 3013 struct timespec ts, *abs_timeout; 3014 int error; 3015 3016 if (args->abs_timeout == NULL) 3017 abs_timeout = NULL; 3018 else { 3019 error = linux_get_timespec(&ts, args->abs_timeout); 3020 if (error != 0) 3021 return (error); 3022 abs_timeout = &ts; 3023 } 3024 3025 return (kern_kmq_timedreceive(td, args->mqd, PTRIN(args->msg_ptr), 3026 args->msg_len, args->msg_prio, abs_timeout)); 3027 } 3028 3029 int 3030 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args) 3031 { 3032 struct sigevent ev, *evp; 3033 struct l_sigevent l_ev; 3034 int error; 3035 3036 if (args->sevp == NULL) 3037 evp = NULL; 3038 else { 3039 error = copyin(args->sevp, &l_ev, sizeof(l_ev)); 3040 if (error != 0) 3041 return (error); 3042 error = linux_convert_l_sigevent(&l_ev, &ev); 3043 if (error != 0) 3044 return (error); 3045 evp = &ev; 3046 } 3047 3048 return (kern_kmq_notify(td, args->mqd, evp)); 3049 } 3050 3051 int 3052 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args) 3053 { 3054 struct mq_attr attr, oattr; 3055 int error; 3056 3057 if (args->attr != NULL) { 3058 error = copyin(args->attr, &attr, sizeof(attr)); 3059 if (error != 0) 3060 return (error); 3061 attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags); 3062 } 3063 3064 error = kern_kmq_setattr(td, args->mqd, args->attr != NULL ? &attr : NULL, 3065 &oattr); 3066 if (error == 0 && args->oattr != NULL) { 3067 oattr.mq_flags = B2L_MQ_FLAGS(oattr.mq_flags); 3068 bzero(oattr.__reserved, sizeof(oattr.__reserved)); 3069 error = copyout(&oattr, args->oattr, sizeof(oattr)); 3070 } 3071 3072 return (error); 3073 } 3074 3075 MODULE_DEPEND(linux, mqueuefs, 1, 1, 1); 3076