1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * Copyright (c) 1994-1995 Søren Schmidt 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer 13 * in this position and unchanged. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/fcntl.h> 34 #include <sys/jail.h> 35 #include <sys/imgact.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/msgbuf.h> 39 #include <sys/mqueue.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/priv.h> 43 #include <sys/proc.h> 44 #include <sys/procctl.h> 45 #include <sys/reboot.h> 46 #include <sys/random.h> 47 #include <sys/resourcevar.h> 48 #include <sys/rtprio.h> 49 #include <sys/sched.h> 50 #include <sys/smp.h> 51 #include <sys/stat.h> 52 #include <sys/syscallsubr.h> 53 #include <sys/sysctl.h> 54 #include <sys/sysent.h> 55 #include <sys/sysproto.h> 56 #include <sys/time.h> 57 #include <sys/vmmeter.h> 58 #include <sys/vnode.h> 59 60 #include <security/audit/audit.h> 61 #include <security/mac/mac_framework.h> 62 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/swap_pager.h> 66 67 #ifdef COMPAT_LINUX32 68 #include <machine/../linux32/linux.h> 69 #include <machine/../linux32/linux32_proto.h> 70 #else 71 #include <machine/../linux/linux.h> 72 #include <machine/../linux/linux_proto.h> 73 #endif 74 75 #include <compat/linux/linux_common.h> 76 #include <compat/linux/linux_dtrace.h> 77 #include <compat/linux/linux_file.h> 78 #include <compat/linux/linux_mib.h> 79 #include <compat/linux/linux_mmap.h> 80 #include <compat/linux/linux_signal.h> 81 #include <compat/linux/linux_time.h> 82 #include <compat/linux/linux_util.h> 83 #include <compat/linux/linux_emul.h> 84 #include <compat/linux/linux_misc.h> 85 86 int stclohz; /* Statistics clock frequency */ 87 88 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { 89 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, 90 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, 91 RLIMIT_MEMLOCK, RLIMIT_AS 92 }; 93 94 struct l_sysinfo { 95 l_long uptime; /* Seconds since boot */ 96 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ 97 #define LINUX_SYSINFO_LOADS_SCALE 65536 98 l_ulong totalram; /* Total usable main memory size */ 99 l_ulong freeram; /* Available memory size */ 100 l_ulong sharedram; /* Amount of shared memory */ 101 l_ulong bufferram; /* Memory used by buffers */ 102 l_ulong totalswap; /* Total swap space size */ 103 l_ulong freeswap; /* swap space still available */ 104 l_ushort procs; /* Number of current processes */ 105 l_ushort pads; 106 l_ulong totalhigh; 107 l_ulong freehigh; 108 l_uint mem_unit; 109 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ 110 }; 111 112 struct l_pselect6arg { 113 l_uintptr_t ss; 114 l_size_t ss_len; 115 }; 116 117 static int linux_utimensat_lts_to_ts(struct l_timespec *, 118 struct timespec *); 119 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 120 static int linux_utimensat_lts64_to_ts(struct l_timespec64 *, 121 struct timespec *); 122 #endif 123 static int linux_common_utimensat(struct thread *, int, 124 const char *, struct timespec *, int); 125 static int linux_common_pselect6(struct thread *, l_int, 126 l_fd_set *, l_fd_set *, l_fd_set *, 127 struct timespec *, l_uintptr_t *); 128 static int linux_common_ppoll(struct thread *, struct pollfd *, 129 uint32_t, struct timespec *, l_sigset_t *, 130 l_size_t); 131 static int linux_pollin(struct thread *, struct pollfd *, 132 struct pollfd *, u_int); 133 static int linux_pollout(struct thread *, struct pollfd *, 134 struct pollfd *, u_int); 135 136 int 137 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) 138 { 139 struct l_sysinfo sysinfo; 140 int i, j; 141 struct timespec ts; 142 143 bzero(&sysinfo, sizeof(sysinfo)); 144 getnanouptime(&ts); 145 if (ts.tv_nsec != 0) 146 ts.tv_sec++; 147 sysinfo.uptime = ts.tv_sec; 148 149 /* Use the information from the mib to get our load averages */ 150 for (i = 0; i < 3; i++) 151 sysinfo.loads[i] = averunnable.ldavg[i] * 152 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; 153 154 sysinfo.totalram = physmem * PAGE_SIZE; 155 sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE; 156 157 /* 158 * sharedram counts pages allocated to named, swap-backed objects such 159 * as shared memory segments and tmpfs files. There is no cheap way to 160 * compute this, so just leave the field unpopulated. Linux itself only 161 * started setting this field in the 3.x timeframe. 162 */ 163 sysinfo.sharedram = 0; 164 sysinfo.bufferram = 0; 165 166 swap_pager_status(&i, &j); 167 sysinfo.totalswap = i * PAGE_SIZE; 168 sysinfo.freeswap = (i - j) * PAGE_SIZE; 169 170 sysinfo.procs = nprocs; 171 172 /* 173 * Platforms supported by the emulation layer do not have a notion of 174 * high memory. 175 */ 176 sysinfo.totalhigh = 0; 177 sysinfo.freehigh = 0; 178 179 sysinfo.mem_unit = 1; 180 181 return (copyout(&sysinfo, args->info, sizeof(sysinfo))); 182 } 183 184 #ifdef LINUX_LEGACY_SYSCALLS 185 int 186 linux_alarm(struct thread *td, struct linux_alarm_args *args) 187 { 188 struct itimerval it, old_it; 189 u_int secs; 190 int error __diagused; 191 192 secs = args->secs; 193 /* 194 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 195 * to match kern_setitimer()'s limit to avoid error from it. 196 * 197 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit 198 * platforms. 199 */ 200 if (secs > INT32_MAX / 2) 201 secs = INT32_MAX / 2; 202 203 it.it_value.tv_sec = secs; 204 it.it_value.tv_usec = 0; 205 timevalclear(&it.it_interval); 206 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); 207 KASSERT(error == 0, ("kern_setitimer returns %d", error)); 208 209 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || 210 old_it.it_value.tv_usec >= 500000) 211 old_it.it_value.tv_sec++; 212 td->td_retval[0] = old_it.it_value.tv_sec; 213 return (0); 214 } 215 #endif 216 217 int 218 linux_brk(struct thread *td, struct linux_brk_args *args) 219 { 220 struct vmspace *vm = td->td_proc->p_vmspace; 221 uintptr_t new, old; 222 223 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); 224 new = (uintptr_t)args->dsend; 225 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) 226 td->td_retval[0] = (register_t)new; 227 else 228 td->td_retval[0] = (register_t)old; 229 230 return (0); 231 } 232 233 #ifdef LINUX_LEGACY_SYSCALLS 234 int 235 linux_select(struct thread *td, struct linux_select_args *args) 236 { 237 l_timeval ltv; 238 struct timeval tv0, tv1, utv, *tvp; 239 int error; 240 241 /* 242 * Store current time for computation of the amount of 243 * time left. 244 */ 245 if (args->timeout) { 246 if ((error = copyin(args->timeout, <v, sizeof(ltv)))) 247 goto select_out; 248 utv.tv_sec = ltv.tv_sec; 249 utv.tv_usec = ltv.tv_usec; 250 251 if (itimerfix(&utv)) { 252 /* 253 * The timeval was invalid. Convert it to something 254 * valid that will act as it does under Linux. 255 */ 256 utv.tv_sec += utv.tv_usec / 1000000; 257 utv.tv_usec %= 1000000; 258 if (utv.tv_usec < 0) { 259 utv.tv_sec -= 1; 260 utv.tv_usec += 1000000; 261 } 262 if (utv.tv_sec < 0) 263 timevalclear(&utv); 264 } 265 microtime(&tv0); 266 tvp = &utv; 267 } else 268 tvp = NULL; 269 270 error = kern_select(td, args->nfds, args->readfds, args->writefds, 271 args->exceptfds, tvp, LINUX_NFDBITS); 272 if (error) 273 goto select_out; 274 275 if (args->timeout) { 276 if (td->td_retval[0]) { 277 /* 278 * Compute how much time was left of the timeout, 279 * by subtracting the current time and the time 280 * before we started the call, and subtracting 281 * that result from the user-supplied value. 282 */ 283 microtime(&tv1); 284 timevalsub(&tv1, &tv0); 285 timevalsub(&utv, &tv1); 286 if (utv.tv_sec < 0) 287 timevalclear(&utv); 288 } else 289 timevalclear(&utv); 290 ltv.tv_sec = utv.tv_sec; 291 ltv.tv_usec = utv.tv_usec; 292 if ((error = copyout(<v, args->timeout, sizeof(ltv)))) 293 goto select_out; 294 } 295 296 select_out: 297 return (error); 298 } 299 #endif 300 301 int 302 linux_mremap(struct thread *td, struct linux_mremap_args *args) 303 { 304 uintptr_t addr; 305 size_t len; 306 int error = 0; 307 308 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { 309 td->td_retval[0] = 0; 310 return (EINVAL); 311 } 312 313 /* 314 * Check for the page alignment. 315 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. 316 */ 317 if (args->addr & PAGE_MASK) { 318 td->td_retval[0] = 0; 319 return (EINVAL); 320 } 321 322 args->new_len = round_page(args->new_len); 323 args->old_len = round_page(args->old_len); 324 325 if (args->new_len > args->old_len) { 326 td->td_retval[0] = 0; 327 return (ENOMEM); 328 } 329 330 if (args->new_len < args->old_len) { 331 addr = args->addr + args->new_len; 332 len = args->old_len - args->new_len; 333 error = kern_munmap(td, addr, len); 334 } 335 336 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; 337 return (error); 338 } 339 340 #define LINUX_MS_ASYNC 0x0001 341 #define LINUX_MS_INVALIDATE 0x0002 342 #define LINUX_MS_SYNC 0x0004 343 344 int 345 linux_msync(struct thread *td, struct linux_msync_args *args) 346 { 347 348 return (kern_msync(td, args->addr, args->len, 349 args->fl & ~LINUX_MS_SYNC)); 350 } 351 352 int 353 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) 354 { 355 356 return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, 357 uap->prot)); 358 } 359 360 int 361 linux_madvise(struct thread *td, struct linux_madvise_args *uap) 362 { 363 364 return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, 365 uap->behav)); 366 } 367 368 int 369 linux_mmap2(struct thread *td, struct linux_mmap2_args *uap) 370 { 371 #if defined(LINUX_ARCHWANT_MMAP2PGOFF) 372 /* 373 * For architectures with sizeof (off_t) < sizeof (loff_t) mmap is 374 * implemented with mmap2 syscall and the offset is represented in 375 * multiples of page size. 376 */ 377 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot, 378 uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE)); 379 #else 380 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot, 381 uap->flags, uap->fd, uap->pgoff)); 382 #endif 383 } 384 385 #ifdef LINUX_LEGACY_SYSCALLS 386 int 387 linux_time(struct thread *td, struct linux_time_args *args) 388 { 389 struct timeval tv; 390 l_time_t tm; 391 int error; 392 393 microtime(&tv); 394 tm = tv.tv_sec; 395 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) 396 return (error); 397 td->td_retval[0] = tm; 398 return (0); 399 } 400 #endif 401 402 struct l_times_argv { 403 l_clock_t tms_utime; 404 l_clock_t tms_stime; 405 l_clock_t tms_cutime; 406 l_clock_t tms_cstime; 407 }; 408 409 /* 410 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. 411 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK 412 * auxiliary vector entry. 413 */ 414 #define CLK_TCK 100 415 416 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) 417 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) 418 419 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \ 420 CONVNTCK(r) : CONVOTCK(r)) 421 422 int 423 linux_times(struct thread *td, struct linux_times_args *args) 424 { 425 struct timeval tv, utime, stime, cutime, cstime; 426 struct l_times_argv tms; 427 struct proc *p; 428 int error; 429 430 if (args->buf != NULL) { 431 p = td->td_proc; 432 PROC_LOCK(p); 433 PROC_STATLOCK(p); 434 calcru(p, &utime, &stime); 435 PROC_STATUNLOCK(p); 436 calccru(p, &cutime, &cstime); 437 PROC_UNLOCK(p); 438 439 tms.tms_utime = CONVTCK(utime); 440 tms.tms_stime = CONVTCK(stime); 441 442 tms.tms_cutime = CONVTCK(cutime); 443 tms.tms_cstime = CONVTCK(cstime); 444 445 if ((error = copyout(&tms, args->buf, sizeof(tms)))) 446 return (error); 447 } 448 449 microuptime(&tv); 450 td->td_retval[0] = (int)CONVTCK(tv); 451 return (0); 452 } 453 454 int 455 linux_newuname(struct thread *td, struct linux_newuname_args *args) 456 { 457 struct l_new_utsname utsname; 458 char osname[LINUX_MAX_UTSNAME]; 459 char osrelease[LINUX_MAX_UTSNAME]; 460 char *p; 461 462 linux_get_osname(td, osname); 463 linux_get_osrelease(td, osrelease); 464 465 bzero(&utsname, sizeof(utsname)); 466 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); 467 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); 468 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); 469 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); 470 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); 471 for (p = utsname.version; *p != '\0'; ++p) 472 if (*p == '\n') { 473 *p = '\0'; 474 break; 475 } 476 #if defined(__amd64__) 477 /* 478 * On amd64, Linux uname(2) needs to return "x86_64" 479 * for both 64-bit and 32-bit applications. On 32-bit, 480 * the string returned by getauxval(AT_PLATFORM) needs 481 * to remain "i686", though. 482 */ 483 #if defined(COMPAT_LINUX32) 484 if (linux32_emulate_i386) 485 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); 486 else 487 #endif 488 strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME); 489 #elif defined(__aarch64__) 490 strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME); 491 #elif defined(__i386__) 492 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); 493 #endif 494 495 return (copyout(&utsname, args->buf, sizeof(utsname))); 496 } 497 498 struct l_utimbuf { 499 l_time_t l_actime; 500 l_time_t l_modtime; 501 }; 502 503 #ifdef LINUX_LEGACY_SYSCALLS 504 int 505 linux_utime(struct thread *td, struct linux_utime_args *args) 506 { 507 struct timeval tv[2], *tvp; 508 struct l_utimbuf lut; 509 int error; 510 511 if (args->times) { 512 if ((error = copyin(args->times, &lut, sizeof lut)) != 0) 513 return (error); 514 tv[0].tv_sec = lut.l_actime; 515 tv[0].tv_usec = 0; 516 tv[1].tv_sec = lut.l_modtime; 517 tv[1].tv_usec = 0; 518 tvp = tv; 519 } else 520 tvp = NULL; 521 522 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, 523 tvp, UIO_SYSSPACE)); 524 } 525 #endif 526 527 #ifdef LINUX_LEGACY_SYSCALLS 528 int 529 linux_utimes(struct thread *td, struct linux_utimes_args *args) 530 { 531 l_timeval ltv[2]; 532 struct timeval tv[2], *tvp = NULL; 533 int error; 534 535 if (args->tptr != NULL) { 536 if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0) 537 return (error); 538 tv[0].tv_sec = ltv[0].tv_sec; 539 tv[0].tv_usec = ltv[0].tv_usec; 540 tv[1].tv_sec = ltv[1].tv_sec; 541 tv[1].tv_usec = ltv[1].tv_usec; 542 tvp = tv; 543 } 544 545 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, 546 tvp, UIO_SYSSPACE)); 547 } 548 #endif 549 550 static int 551 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times) 552 { 553 554 if (l_times->tv_nsec != LINUX_UTIME_OMIT && 555 l_times->tv_nsec != LINUX_UTIME_NOW && 556 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) 557 return (EINVAL); 558 559 times->tv_sec = l_times->tv_sec; 560 switch (l_times->tv_nsec) 561 { 562 case LINUX_UTIME_OMIT: 563 times->tv_nsec = UTIME_OMIT; 564 break; 565 case LINUX_UTIME_NOW: 566 times->tv_nsec = UTIME_NOW; 567 break; 568 default: 569 times->tv_nsec = l_times->tv_nsec; 570 } 571 572 return (0); 573 } 574 575 static int 576 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname, 577 struct timespec *timesp, int lflags) 578 { 579 int dfd, flags = 0; 580 581 dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd; 582 583 if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH)) 584 return (EINVAL); 585 586 if (timesp != NULL) { 587 /* This breaks POSIX, but is what the Linux kernel does 588 * _on purpose_ (documented in the man page for utimensat(2)), 589 * so we must follow that behaviour. */ 590 if (timesp[0].tv_nsec == UTIME_OMIT && 591 timesp[1].tv_nsec == UTIME_OMIT) 592 return (0); 593 } 594 595 if (lflags & LINUX_AT_SYMLINK_NOFOLLOW) 596 flags |= AT_SYMLINK_NOFOLLOW; 597 if (lflags & LINUX_AT_EMPTY_PATH) 598 flags |= AT_EMPTY_PATH; 599 600 if (pathname != NULL) 601 return (kern_utimensat(td, dfd, pathname, 602 UIO_USERSPACE, timesp, UIO_SYSSPACE, flags)); 603 604 if (lflags != 0) 605 return (EINVAL); 606 607 return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE)); 608 } 609 610 int 611 linux_utimensat(struct thread *td, struct linux_utimensat_args *args) 612 { 613 struct l_timespec l_times[2]; 614 struct timespec times[2], *timesp; 615 int error; 616 617 if (args->times != NULL) { 618 error = copyin(args->times, l_times, sizeof(l_times)); 619 if (error != 0) 620 return (error); 621 622 error = linux_utimensat_lts_to_ts(&l_times[0], ×[0]); 623 if (error != 0) 624 return (error); 625 error = linux_utimensat_lts_to_ts(&l_times[1], ×[1]); 626 if (error != 0) 627 return (error); 628 timesp = times; 629 } else 630 timesp = NULL; 631 632 return (linux_common_utimensat(td, args->dfd, args->pathname, 633 timesp, args->flags)); 634 } 635 636 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 637 static int 638 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times) 639 { 640 641 /* Zero out the padding in compat mode. */ 642 l_times->tv_nsec &= 0xFFFFFFFFUL; 643 644 if (l_times->tv_nsec != LINUX_UTIME_OMIT && 645 l_times->tv_nsec != LINUX_UTIME_NOW && 646 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) 647 return (EINVAL); 648 649 times->tv_sec = l_times->tv_sec; 650 switch (l_times->tv_nsec) 651 { 652 case LINUX_UTIME_OMIT: 653 times->tv_nsec = UTIME_OMIT; 654 break; 655 case LINUX_UTIME_NOW: 656 times->tv_nsec = UTIME_NOW; 657 break; 658 default: 659 times->tv_nsec = l_times->tv_nsec; 660 } 661 662 return (0); 663 } 664 665 int 666 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args) 667 { 668 struct l_timespec64 l_times[2]; 669 struct timespec times[2], *timesp; 670 int error; 671 672 if (args->times64 != NULL) { 673 error = copyin(args->times64, l_times, sizeof(l_times)); 674 if (error != 0) 675 return (error); 676 677 error = linux_utimensat_lts64_to_ts(&l_times[0], ×[0]); 678 if (error != 0) 679 return (error); 680 error = linux_utimensat_lts64_to_ts(&l_times[1], ×[1]); 681 if (error != 0) 682 return (error); 683 timesp = times; 684 } else 685 timesp = NULL; 686 687 return (linux_common_utimensat(td, args->dfd, args->pathname, 688 timesp, args->flags)); 689 } 690 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 691 692 #ifdef LINUX_LEGACY_SYSCALLS 693 int 694 linux_futimesat(struct thread *td, struct linux_futimesat_args *args) 695 { 696 l_timeval ltv[2]; 697 struct timeval tv[2], *tvp = NULL; 698 int error, dfd; 699 700 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 701 702 if (args->utimes != NULL) { 703 if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0) 704 return (error); 705 tv[0].tv_sec = ltv[0].tv_sec; 706 tv[0].tv_usec = ltv[0].tv_usec; 707 tv[1].tv_sec = ltv[1].tv_sec; 708 tv[1].tv_usec = ltv[1].tv_usec; 709 tvp = tv; 710 } 711 712 return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE, 713 tvp, UIO_SYSSPACE)); 714 } 715 #endif 716 717 static int 718 linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp, 719 int options, void *rup, l_siginfo_t *infop) 720 { 721 l_siginfo_t lsi; 722 siginfo_t siginfo; 723 struct __wrusage wru; 724 int error, status, tmpstat, sig; 725 726 error = kern_wait6(td, idtype, id, &status, options, 727 rup != NULL ? &wru : NULL, &siginfo); 728 729 if (error == 0 && statusp) { 730 tmpstat = status & 0xffff; 731 if (WIFSIGNALED(tmpstat)) { 732 tmpstat = (tmpstat & 0xffffff80) | 733 bsd_to_linux_signal(WTERMSIG(tmpstat)); 734 } else if (WIFSTOPPED(tmpstat)) { 735 tmpstat = (tmpstat & 0xffff00ff) | 736 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); 737 #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32)) 738 if (WSTOPSIG(status) == SIGTRAP) { 739 tmpstat = linux_ptrace_status(td, 740 siginfo.si_pid, tmpstat); 741 } 742 #endif 743 } else if (WIFCONTINUED(tmpstat)) { 744 tmpstat = 0xffff; 745 } 746 error = copyout(&tmpstat, statusp, sizeof(int)); 747 } 748 if (error == 0 && rup != NULL) 749 error = linux_copyout_rusage(&wru.wru_self, rup); 750 if (error == 0 && infop != NULL && td->td_retval[0] != 0) { 751 sig = bsd_to_linux_signal(siginfo.si_signo); 752 siginfo_to_lsiginfo(&siginfo, &lsi, sig); 753 error = copyout(&lsi, infop, sizeof(lsi)); 754 } 755 756 return (error); 757 } 758 759 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 760 int 761 linux_waitpid(struct thread *td, struct linux_waitpid_args *args) 762 { 763 struct linux_wait4_args wait4_args = { 764 .pid = args->pid, 765 .status = args->status, 766 .options = args->options, 767 .rusage = NULL, 768 }; 769 770 return (linux_wait4(td, &wait4_args)); 771 } 772 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 773 774 int 775 linux_wait4(struct thread *td, struct linux_wait4_args *args) 776 { 777 struct proc *p; 778 int options, id, idtype; 779 780 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | 781 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 782 return (EINVAL); 783 784 /* -INT_MIN is not defined. */ 785 if (args->pid == INT_MIN) 786 return (ESRCH); 787 788 options = 0; 789 linux_to_bsd_waitopts(args->options, &options); 790 791 /* 792 * For backward compatibility we implicitly add flags WEXITED 793 * and WTRAPPED here. 794 */ 795 options |= WEXITED | WTRAPPED; 796 797 if (args->pid == WAIT_ANY) { 798 idtype = P_ALL; 799 id = 0; 800 } else if (args->pid < 0) { 801 idtype = P_PGID; 802 id = (id_t)-args->pid; 803 } else if (args->pid == 0) { 804 idtype = P_PGID; 805 p = td->td_proc; 806 PROC_LOCK(p); 807 id = p->p_pgid; 808 PROC_UNLOCK(p); 809 } else { 810 idtype = P_PID; 811 id = (id_t)args->pid; 812 } 813 814 return (linux_common_wait(td, idtype, id, args->status, options, 815 args->rusage, NULL)); 816 } 817 818 int 819 linux_waitid(struct thread *td, struct linux_waitid_args *args) 820 { 821 idtype_t idtype; 822 int error, options; 823 struct proc *p; 824 pid_t id; 825 826 if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED | 827 LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 828 return (EINVAL); 829 830 options = 0; 831 linux_to_bsd_waitopts(args->options, &options); 832 833 id = args->id; 834 switch (args->idtype) { 835 case LINUX_P_ALL: 836 idtype = P_ALL; 837 break; 838 case LINUX_P_PID: 839 if (args->id <= 0) 840 return (EINVAL); 841 idtype = P_PID; 842 break; 843 case LINUX_P_PGID: 844 if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) { 845 p = td->td_proc; 846 PROC_LOCK(p); 847 id = p->p_pgid; 848 PROC_UNLOCK(p); 849 } else if (args->id <= 0) 850 return (EINVAL); 851 idtype = P_PGID; 852 break; 853 case LINUX_P_PIDFD: 854 LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype"); 855 return (ENOSYS); 856 default: 857 return (EINVAL); 858 } 859 860 error = linux_common_wait(td, idtype, id, NULL, options, 861 args->rusage, args->info); 862 td->td_retval[0] = 0; 863 864 return (error); 865 } 866 867 #ifdef LINUX_LEGACY_SYSCALLS 868 int 869 linux_mknod(struct thread *td, struct linux_mknod_args *args) 870 { 871 int error; 872 873 switch (args->mode & S_IFMT) { 874 case S_IFIFO: 875 case S_IFSOCK: 876 error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE, 877 args->mode); 878 break; 879 880 case S_IFCHR: 881 case S_IFBLK: 882 error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE, 883 args->mode, linux_decode_dev(args->dev)); 884 break; 885 886 case S_IFDIR: 887 error = EPERM; 888 break; 889 890 case 0: 891 args->mode |= S_IFREG; 892 /* FALLTHROUGH */ 893 case S_IFREG: 894 error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE, 895 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 896 if (error == 0) 897 kern_close(td, td->td_retval[0]); 898 break; 899 900 default: 901 error = EINVAL; 902 break; 903 } 904 return (error); 905 } 906 #endif 907 908 int 909 linux_mknodat(struct thread *td, struct linux_mknodat_args *args) 910 { 911 int error, dfd; 912 913 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 914 915 switch (args->mode & S_IFMT) { 916 case S_IFIFO: 917 case S_IFSOCK: 918 error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE, 919 args->mode); 920 break; 921 922 case S_IFCHR: 923 case S_IFBLK: 924 error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE, 925 args->mode, linux_decode_dev(args->dev)); 926 break; 927 928 case S_IFDIR: 929 error = EPERM; 930 break; 931 932 case 0: 933 args->mode |= S_IFREG; 934 /* FALLTHROUGH */ 935 case S_IFREG: 936 error = kern_openat(td, dfd, args->filename, UIO_USERSPACE, 937 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 938 if (error == 0) 939 kern_close(td, td->td_retval[0]); 940 break; 941 942 default: 943 error = EINVAL; 944 break; 945 } 946 return (error); 947 } 948 949 /* 950 * UGH! This is just about the dumbest idea I've ever heard!! 951 */ 952 int 953 linux_personality(struct thread *td, struct linux_personality_args *args) 954 { 955 struct linux_pemuldata *pem; 956 struct proc *p = td->td_proc; 957 uint32_t old; 958 959 PROC_LOCK(p); 960 pem = pem_find(p); 961 old = pem->persona; 962 if (args->per != 0xffffffff) 963 pem->persona = args->per; 964 PROC_UNLOCK(p); 965 966 td->td_retval[0] = old; 967 return (0); 968 } 969 970 struct l_itimerval { 971 l_timeval it_interval; 972 l_timeval it_value; 973 }; 974 975 #define B2L_ITIMERVAL(bip, lip) \ 976 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ 977 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ 978 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ 979 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; 980 981 int 982 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) 983 { 984 int error; 985 struct l_itimerval ls; 986 struct itimerval aitv, oitv; 987 988 if (uap->itv == NULL) { 989 uap->itv = uap->oitv; 990 return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); 991 } 992 993 error = copyin(uap->itv, &ls, sizeof(ls)); 994 if (error != 0) 995 return (error); 996 B2L_ITIMERVAL(&aitv, &ls); 997 error = kern_setitimer(td, uap->which, &aitv, &oitv); 998 if (error != 0 || uap->oitv == NULL) 999 return (error); 1000 B2L_ITIMERVAL(&ls, &oitv); 1001 1002 return (copyout(&ls, uap->oitv, sizeof(ls))); 1003 } 1004 1005 int 1006 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) 1007 { 1008 int error; 1009 struct l_itimerval ls; 1010 struct itimerval aitv; 1011 1012 error = kern_getitimer(td, uap->which, &aitv); 1013 if (error != 0) 1014 return (error); 1015 B2L_ITIMERVAL(&ls, &aitv); 1016 return (copyout(&ls, uap->itv, sizeof(ls))); 1017 } 1018 1019 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1020 int 1021 linux_nice(struct thread *td, struct linux_nice_args *args) 1022 { 1023 1024 return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc)); 1025 } 1026 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1027 1028 int 1029 linux_setgroups(struct thread *td, struct linux_setgroups_args *args) 1030 { 1031 const int ngrp = args->gidsetsize; 1032 struct ucred *newcred, *oldcred; 1033 l_gid_t *linux_gidset; 1034 int error; 1035 struct proc *p; 1036 1037 if (ngrp < 0 || ngrp > ngroups_max) 1038 return (EINVAL); 1039 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); 1040 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); 1041 if (error) 1042 goto out; 1043 1044 newcred = crget(); 1045 crextend(newcred, ngrp); 1046 p = td->td_proc; 1047 PROC_LOCK(p); 1048 oldcred = crcopysafe(p, newcred); 1049 1050 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) { 1051 PROC_UNLOCK(p); 1052 crfree(newcred); 1053 goto out; 1054 } 1055 1056 newcred->cr_ngroups = ngrp; 1057 for (int i = 0; i < ngrp; i++) 1058 newcred->cr_groups[i] = linux_gidset[i]; 1059 newcred->cr_flags |= CRED_FLAG_GROUPSET; 1060 1061 setsugid(p); 1062 proc_set_cred(p, newcred); 1063 PROC_UNLOCK(p); 1064 crfree(oldcred); 1065 error = 0; 1066 out: 1067 free(linux_gidset, M_LINUX); 1068 return (error); 1069 } 1070 1071 int 1072 linux_getgroups(struct thread *td, struct linux_getgroups_args *args) 1073 { 1074 const struct ucred *const cred = td->td_ucred; 1075 l_gid_t *linux_gidset; 1076 int ngrp, error; 1077 1078 ngrp = args->gidsetsize; 1079 1080 if (ngrp == 0) { 1081 td->td_retval[0] = cred->cr_ngroups; 1082 return (0); 1083 } 1084 if (ngrp < cred->cr_ngroups) 1085 return (EINVAL); 1086 1087 ngrp = cred->cr_ngroups; 1088 1089 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); 1090 for (int i = 0; i < ngrp; ++i) 1091 linux_gidset[i] = cred->cr_groups[i]; 1092 1093 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); 1094 free(linux_gidset, M_LINUX); 1095 1096 if (error != 0) 1097 return (error); 1098 1099 td->td_retval[0] = ngrp; 1100 return (0); 1101 } 1102 1103 static bool 1104 linux_get_dummy_limit(struct thread *td, l_uint resource, struct rlimit *rlim) 1105 { 1106 ssize_t size; 1107 int res, error; 1108 1109 if (linux_dummy_rlimits == 0) 1110 return (false); 1111 1112 switch (resource) { 1113 case LINUX_RLIMIT_LOCKS: 1114 case LINUX_RLIMIT_RTTIME: 1115 rlim->rlim_cur = LINUX_RLIM_INFINITY; 1116 rlim->rlim_max = LINUX_RLIM_INFINITY; 1117 return (true); 1118 case LINUX_RLIMIT_NICE: 1119 case LINUX_RLIMIT_RTPRIO: 1120 rlim->rlim_cur = 0; 1121 rlim->rlim_max = 0; 1122 return (true); 1123 case LINUX_RLIMIT_SIGPENDING: 1124 error = kernel_sysctlbyname(td, 1125 "kern.sigqueue.max_pending_per_proc", 1126 &res, &size, 0, 0, 0, 0); 1127 if (error != 0) 1128 return (false); 1129 rlim->rlim_cur = res; 1130 rlim->rlim_max = res; 1131 return (true); 1132 case LINUX_RLIMIT_MSGQUEUE: 1133 error = kernel_sysctlbyname(td, 1134 "kern.ipc.msgmnb", &res, &size, 0, 0, 0, 0); 1135 if (error != 0) 1136 return (false); 1137 rlim->rlim_cur = res; 1138 rlim->rlim_max = res; 1139 return (true); 1140 default: 1141 return (false); 1142 } 1143 } 1144 1145 int 1146 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) 1147 { 1148 struct rlimit bsd_rlim; 1149 struct l_rlimit rlim; 1150 u_int which; 1151 int error; 1152 1153 if (args->resource >= LINUX_RLIM_NLIMITS) 1154 return (EINVAL); 1155 1156 which = linux_to_bsd_resource[args->resource]; 1157 if (which == -1) 1158 return (EINVAL); 1159 1160 error = copyin(args->rlim, &rlim, sizeof(rlim)); 1161 if (error) 1162 return (error); 1163 1164 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; 1165 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; 1166 return (kern_setrlimit(td, which, &bsd_rlim)); 1167 } 1168 1169 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1170 int 1171 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) 1172 { 1173 struct l_rlimit rlim; 1174 struct rlimit bsd_rlim; 1175 u_int which; 1176 1177 if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) { 1178 rlim.rlim_cur = bsd_rlim.rlim_cur; 1179 rlim.rlim_max = bsd_rlim.rlim_max; 1180 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1181 } 1182 1183 if (args->resource >= LINUX_RLIM_NLIMITS) 1184 return (EINVAL); 1185 1186 which = linux_to_bsd_resource[args->resource]; 1187 if (which == -1) 1188 return (EINVAL); 1189 1190 lim_rlimit(td, which, &bsd_rlim); 1191 1192 #ifdef COMPAT_LINUX32 1193 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; 1194 if (rlim.rlim_cur == UINT_MAX) 1195 rlim.rlim_cur = INT_MAX; 1196 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; 1197 if (rlim.rlim_max == UINT_MAX) 1198 rlim.rlim_max = INT_MAX; 1199 #else 1200 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; 1201 if (rlim.rlim_cur == ULONG_MAX) 1202 rlim.rlim_cur = LONG_MAX; 1203 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; 1204 if (rlim.rlim_max == ULONG_MAX) 1205 rlim.rlim_max = LONG_MAX; 1206 #endif 1207 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1208 } 1209 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1210 1211 int 1212 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) 1213 { 1214 struct l_rlimit rlim; 1215 struct rlimit bsd_rlim; 1216 u_int which; 1217 1218 if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) { 1219 rlim.rlim_cur = bsd_rlim.rlim_cur; 1220 rlim.rlim_max = bsd_rlim.rlim_max; 1221 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1222 } 1223 1224 if (args->resource >= LINUX_RLIM_NLIMITS) 1225 return (EINVAL); 1226 1227 which = linux_to_bsd_resource[args->resource]; 1228 if (which == -1) 1229 return (EINVAL); 1230 1231 lim_rlimit(td, which, &bsd_rlim); 1232 1233 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; 1234 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; 1235 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1236 } 1237 1238 int 1239 linux_sched_setscheduler(struct thread *td, 1240 struct linux_sched_setscheduler_args *args) 1241 { 1242 struct sched_param sched_param; 1243 struct thread *tdt; 1244 int error, policy; 1245 1246 switch (args->policy) { 1247 case LINUX_SCHED_OTHER: 1248 policy = SCHED_OTHER; 1249 break; 1250 case LINUX_SCHED_FIFO: 1251 policy = SCHED_FIFO; 1252 break; 1253 case LINUX_SCHED_RR: 1254 policy = SCHED_RR; 1255 break; 1256 default: 1257 return (EINVAL); 1258 } 1259 1260 error = copyin(args->param, &sched_param, sizeof(sched_param)); 1261 if (error) 1262 return (error); 1263 1264 if (linux_map_sched_prio) { 1265 switch (policy) { 1266 case SCHED_OTHER: 1267 if (sched_param.sched_priority != 0) 1268 return (EINVAL); 1269 1270 sched_param.sched_priority = 1271 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 1272 break; 1273 case SCHED_FIFO: 1274 case SCHED_RR: 1275 if (sched_param.sched_priority < 1 || 1276 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) 1277 return (EINVAL); 1278 1279 /* 1280 * Map [1, LINUX_MAX_RT_PRIO - 1] to 1281 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 1282 */ 1283 sched_param.sched_priority = 1284 (sched_param.sched_priority - 1) * 1285 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 1286 (LINUX_MAX_RT_PRIO - 1); 1287 break; 1288 } 1289 } 1290 1291 tdt = linux_tdfind(td, args->pid, -1); 1292 if (tdt == NULL) 1293 return (ESRCH); 1294 1295 error = kern_sched_setscheduler(td, tdt, policy, &sched_param); 1296 PROC_UNLOCK(tdt->td_proc); 1297 return (error); 1298 } 1299 1300 int 1301 linux_sched_getscheduler(struct thread *td, 1302 struct linux_sched_getscheduler_args *args) 1303 { 1304 struct thread *tdt; 1305 int error, policy; 1306 1307 tdt = linux_tdfind(td, args->pid, -1); 1308 if (tdt == NULL) 1309 return (ESRCH); 1310 1311 error = kern_sched_getscheduler(td, tdt, &policy); 1312 PROC_UNLOCK(tdt->td_proc); 1313 1314 switch (policy) { 1315 case SCHED_OTHER: 1316 td->td_retval[0] = LINUX_SCHED_OTHER; 1317 break; 1318 case SCHED_FIFO: 1319 td->td_retval[0] = LINUX_SCHED_FIFO; 1320 break; 1321 case SCHED_RR: 1322 td->td_retval[0] = LINUX_SCHED_RR; 1323 break; 1324 } 1325 return (error); 1326 } 1327 1328 int 1329 linux_sched_get_priority_max(struct thread *td, 1330 struct linux_sched_get_priority_max_args *args) 1331 { 1332 struct sched_get_priority_max_args bsd; 1333 1334 if (linux_map_sched_prio) { 1335 switch (args->policy) { 1336 case LINUX_SCHED_OTHER: 1337 td->td_retval[0] = 0; 1338 return (0); 1339 case LINUX_SCHED_FIFO: 1340 case LINUX_SCHED_RR: 1341 td->td_retval[0] = LINUX_MAX_RT_PRIO - 1; 1342 return (0); 1343 default: 1344 return (EINVAL); 1345 } 1346 } 1347 1348 switch (args->policy) { 1349 case LINUX_SCHED_OTHER: 1350 bsd.policy = SCHED_OTHER; 1351 break; 1352 case LINUX_SCHED_FIFO: 1353 bsd.policy = SCHED_FIFO; 1354 break; 1355 case LINUX_SCHED_RR: 1356 bsd.policy = SCHED_RR; 1357 break; 1358 default: 1359 return (EINVAL); 1360 } 1361 return (sys_sched_get_priority_max(td, &bsd)); 1362 } 1363 1364 int 1365 linux_sched_get_priority_min(struct thread *td, 1366 struct linux_sched_get_priority_min_args *args) 1367 { 1368 struct sched_get_priority_min_args bsd; 1369 1370 if (linux_map_sched_prio) { 1371 switch (args->policy) { 1372 case LINUX_SCHED_OTHER: 1373 td->td_retval[0] = 0; 1374 return (0); 1375 case LINUX_SCHED_FIFO: 1376 case LINUX_SCHED_RR: 1377 td->td_retval[0] = 1; 1378 return (0); 1379 default: 1380 return (EINVAL); 1381 } 1382 } 1383 1384 switch (args->policy) { 1385 case LINUX_SCHED_OTHER: 1386 bsd.policy = SCHED_OTHER; 1387 break; 1388 case LINUX_SCHED_FIFO: 1389 bsd.policy = SCHED_FIFO; 1390 break; 1391 case LINUX_SCHED_RR: 1392 bsd.policy = SCHED_RR; 1393 break; 1394 default: 1395 return (EINVAL); 1396 } 1397 return (sys_sched_get_priority_min(td, &bsd)); 1398 } 1399 1400 #define REBOOT_CAD_ON 0x89abcdef 1401 #define REBOOT_CAD_OFF 0 1402 #define REBOOT_HALT 0xcdef0123 1403 #define REBOOT_RESTART 0x01234567 1404 #define REBOOT_RESTART2 0xA1B2C3D4 1405 #define REBOOT_POWEROFF 0x4321FEDC 1406 #define REBOOT_MAGIC1 0xfee1dead 1407 #define REBOOT_MAGIC2 0x28121969 1408 #define REBOOT_MAGIC2A 0x05121996 1409 #define REBOOT_MAGIC2B 0x16041998 1410 1411 int 1412 linux_reboot(struct thread *td, struct linux_reboot_args *args) 1413 { 1414 struct reboot_args bsd_args; 1415 1416 if (args->magic1 != REBOOT_MAGIC1) 1417 return (EINVAL); 1418 1419 switch (args->magic2) { 1420 case REBOOT_MAGIC2: 1421 case REBOOT_MAGIC2A: 1422 case REBOOT_MAGIC2B: 1423 break; 1424 default: 1425 return (EINVAL); 1426 } 1427 1428 switch (args->cmd) { 1429 case REBOOT_CAD_ON: 1430 case REBOOT_CAD_OFF: 1431 return (priv_check(td, PRIV_REBOOT)); 1432 case REBOOT_HALT: 1433 bsd_args.opt = RB_HALT; 1434 break; 1435 case REBOOT_RESTART: 1436 case REBOOT_RESTART2: 1437 bsd_args.opt = 0; 1438 break; 1439 case REBOOT_POWEROFF: 1440 bsd_args.opt = RB_POWEROFF; 1441 break; 1442 default: 1443 return (EINVAL); 1444 } 1445 return (sys_reboot(td, &bsd_args)); 1446 } 1447 1448 int 1449 linux_getpid(struct thread *td, struct linux_getpid_args *args) 1450 { 1451 1452 td->td_retval[0] = td->td_proc->p_pid; 1453 1454 return (0); 1455 } 1456 1457 int 1458 linux_gettid(struct thread *td, struct linux_gettid_args *args) 1459 { 1460 struct linux_emuldata *em; 1461 1462 em = em_find(td); 1463 KASSERT(em != NULL, ("gettid: emuldata not found.\n")); 1464 1465 td->td_retval[0] = em->em_tid; 1466 1467 return (0); 1468 } 1469 1470 int 1471 linux_getppid(struct thread *td, struct linux_getppid_args *args) 1472 { 1473 1474 td->td_retval[0] = kern_getppid(td); 1475 return (0); 1476 } 1477 1478 int 1479 linux_getgid(struct thread *td, struct linux_getgid_args *args) 1480 { 1481 1482 td->td_retval[0] = td->td_ucred->cr_rgid; 1483 return (0); 1484 } 1485 1486 int 1487 linux_getuid(struct thread *td, struct linux_getuid_args *args) 1488 { 1489 1490 td->td_retval[0] = td->td_ucred->cr_ruid; 1491 return (0); 1492 } 1493 1494 int 1495 linux_getsid(struct thread *td, struct linux_getsid_args *args) 1496 { 1497 1498 return (kern_getsid(td, args->pid)); 1499 } 1500 1501 int 1502 linux_getpriority(struct thread *td, struct linux_getpriority_args *args) 1503 { 1504 int error; 1505 1506 error = kern_getpriority(td, args->which, args->who); 1507 td->td_retval[0] = 20 - td->td_retval[0]; 1508 return (error); 1509 } 1510 1511 int 1512 linux_sethostname(struct thread *td, struct linux_sethostname_args *args) 1513 { 1514 int name[2]; 1515 1516 name[0] = CTL_KERN; 1517 name[1] = KERN_HOSTNAME; 1518 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, 1519 args->len, 0, 0)); 1520 } 1521 1522 int 1523 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) 1524 { 1525 int name[2]; 1526 1527 name[0] = CTL_KERN; 1528 name[1] = KERN_NISDOMAINNAME; 1529 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, 1530 args->len, 0, 0)); 1531 } 1532 1533 int 1534 linux_exit_group(struct thread *td, struct linux_exit_group_args *args) 1535 { 1536 1537 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, 1538 args->error_code); 1539 1540 /* 1541 * XXX: we should send a signal to the parent if 1542 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) 1543 * as it doesnt occur often. 1544 */ 1545 exit1(td, args->error_code, 0); 1546 /* NOTREACHED */ 1547 } 1548 1549 #define _LINUX_CAPABILITY_VERSION_1 0x19980330 1550 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 1551 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 1552 1553 struct l_user_cap_header { 1554 l_int version; 1555 l_int pid; 1556 }; 1557 1558 struct l_user_cap_data { 1559 l_int effective; 1560 l_int permitted; 1561 l_int inheritable; 1562 }; 1563 1564 int 1565 linux_capget(struct thread *td, struct linux_capget_args *uap) 1566 { 1567 struct l_user_cap_header luch; 1568 struct l_user_cap_data lucd[2]; 1569 int error, u32s; 1570 1571 if (uap->hdrp == NULL) 1572 return (EFAULT); 1573 1574 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1575 if (error != 0) 1576 return (error); 1577 1578 switch (luch.version) { 1579 case _LINUX_CAPABILITY_VERSION_1: 1580 u32s = 1; 1581 break; 1582 case _LINUX_CAPABILITY_VERSION_2: 1583 case _LINUX_CAPABILITY_VERSION_3: 1584 u32s = 2; 1585 break; 1586 default: 1587 luch.version = _LINUX_CAPABILITY_VERSION_1; 1588 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1589 if (error) 1590 return (error); 1591 return (EINVAL); 1592 } 1593 1594 if (luch.pid) 1595 return (EPERM); 1596 1597 if (uap->datap) { 1598 /* 1599 * The current implementation doesn't support setting 1600 * a capability (it's essentially a stub) so indicate 1601 * that no capabilities are currently set or available 1602 * to request. 1603 */ 1604 memset(&lucd, 0, u32s * sizeof(lucd[0])); 1605 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); 1606 } 1607 1608 return (error); 1609 } 1610 1611 int 1612 linux_capset(struct thread *td, struct linux_capset_args *uap) 1613 { 1614 struct l_user_cap_header luch; 1615 struct l_user_cap_data lucd[2]; 1616 int error, i, u32s; 1617 1618 if (uap->hdrp == NULL || uap->datap == NULL) 1619 return (EFAULT); 1620 1621 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1622 if (error != 0) 1623 return (error); 1624 1625 switch (luch.version) { 1626 case _LINUX_CAPABILITY_VERSION_1: 1627 u32s = 1; 1628 break; 1629 case _LINUX_CAPABILITY_VERSION_2: 1630 case _LINUX_CAPABILITY_VERSION_3: 1631 u32s = 2; 1632 break; 1633 default: 1634 luch.version = _LINUX_CAPABILITY_VERSION_1; 1635 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1636 if (error) 1637 return (error); 1638 return (EINVAL); 1639 } 1640 1641 if (luch.pid) 1642 return (EPERM); 1643 1644 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); 1645 if (error != 0) 1646 return (error); 1647 1648 /* We currently don't support setting any capabilities. */ 1649 for (i = 0; i < u32s; i++) { 1650 if (lucd[i].effective || lucd[i].permitted || 1651 lucd[i].inheritable) { 1652 linux_msg(td, 1653 "capset[%d] effective=0x%x, permitted=0x%x, " 1654 "inheritable=0x%x is not implemented", i, 1655 (int)lucd[i].effective, (int)lucd[i].permitted, 1656 (int)lucd[i].inheritable); 1657 return (EPERM); 1658 } 1659 } 1660 1661 return (0); 1662 } 1663 1664 int 1665 linux_prctl(struct thread *td, struct linux_prctl_args *args) 1666 { 1667 int error = 0, max_size, arg; 1668 struct proc *p = td->td_proc; 1669 char comm[LINUX_MAX_COMM_LEN]; 1670 int pdeath_signal, trace_state; 1671 1672 switch (args->option) { 1673 case LINUX_PR_SET_PDEATHSIG: 1674 if (!LINUX_SIG_VALID(args->arg2)) 1675 return (EINVAL); 1676 pdeath_signal = linux_to_bsd_signal(args->arg2); 1677 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL, 1678 &pdeath_signal)); 1679 case LINUX_PR_GET_PDEATHSIG: 1680 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS, 1681 &pdeath_signal); 1682 if (error != 0) 1683 return (error); 1684 pdeath_signal = bsd_to_linux_signal(pdeath_signal); 1685 return (copyout(&pdeath_signal, 1686 (void *)(register_t)args->arg2, 1687 sizeof(pdeath_signal))); 1688 /* 1689 * In Linux, this flag controls if set[gu]id processes can coredump. 1690 * There are additional semantics imposed on processes that cannot 1691 * coredump: 1692 * - Such processes can not be ptraced. 1693 * - There are some semantics around ownership of process-related files 1694 * in the /proc namespace. 1695 * 1696 * In FreeBSD, we can (and by default, do) disable setuid coredump 1697 * system-wide with 'sugid_coredump.' We control tracability on a 1698 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag). 1699 * By happy coincidence, P2_NOTRACE also prevents coredumping. So the 1700 * procctl is roughly analogous to Linux's DUMPABLE. 1701 * 1702 * So, proxy these knobs to the corresponding PROC_TRACE setting. 1703 */ 1704 case LINUX_PR_GET_DUMPABLE: 1705 error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS, 1706 &trace_state); 1707 if (error != 0) 1708 return (error); 1709 td->td_retval[0] = (trace_state != -1); 1710 return (0); 1711 case LINUX_PR_SET_DUMPABLE: 1712 /* 1713 * It is only valid for userspace to set one of these two 1714 * flags, and only one at a time. 1715 */ 1716 switch (args->arg2) { 1717 case LINUX_SUID_DUMP_DISABLE: 1718 trace_state = PROC_TRACE_CTL_DISABLE_EXEC; 1719 break; 1720 case LINUX_SUID_DUMP_USER: 1721 trace_state = PROC_TRACE_CTL_ENABLE; 1722 break; 1723 default: 1724 return (EINVAL); 1725 } 1726 return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL, 1727 &trace_state)); 1728 case LINUX_PR_GET_KEEPCAPS: 1729 /* 1730 * Indicate that we always clear the effective and 1731 * permitted capability sets when the user id becomes 1732 * non-zero (actually the capability sets are simply 1733 * always zero in the current implementation). 1734 */ 1735 td->td_retval[0] = 0; 1736 break; 1737 case LINUX_PR_SET_KEEPCAPS: 1738 /* 1739 * Ignore requests to keep the effective and permitted 1740 * capability sets when the user id becomes non-zero. 1741 */ 1742 break; 1743 case LINUX_PR_SET_NAME: 1744 /* 1745 * To be on the safe side we need to make sure to not 1746 * overflow the size a Linux program expects. We already 1747 * do this here in the copyin, so that we don't need to 1748 * check on copyout. 1749 */ 1750 max_size = MIN(sizeof(comm), sizeof(p->p_comm)); 1751 error = copyinstr((void *)(register_t)args->arg2, comm, 1752 max_size, NULL); 1753 1754 /* Linux silently truncates the name if it is too long. */ 1755 if (error == ENAMETOOLONG) { 1756 /* 1757 * XXX: copyinstr() isn't documented to populate the 1758 * array completely, so do a copyin() to be on the 1759 * safe side. This should be changed in case 1760 * copyinstr() is changed to guarantee this. 1761 */ 1762 error = copyin((void *)(register_t)args->arg2, comm, 1763 max_size - 1); 1764 comm[max_size - 1] = '\0'; 1765 } 1766 if (error) 1767 return (error); 1768 1769 PROC_LOCK(p); 1770 strlcpy(p->p_comm, comm, sizeof(p->p_comm)); 1771 PROC_UNLOCK(p); 1772 break; 1773 case LINUX_PR_GET_NAME: 1774 PROC_LOCK(p); 1775 strlcpy(comm, p->p_comm, sizeof(comm)); 1776 PROC_UNLOCK(p); 1777 error = copyout(comm, (void *)(register_t)args->arg2, 1778 strlen(comm) + 1); 1779 break; 1780 case LINUX_PR_GET_SECCOMP: 1781 case LINUX_PR_SET_SECCOMP: 1782 /* 1783 * Same as returned by Linux without CONFIG_SECCOMP enabled. 1784 */ 1785 error = EINVAL; 1786 break; 1787 case LINUX_PR_CAPBSET_READ: 1788 #if 0 1789 /* 1790 * This makes too much noise with Ubuntu Focal. 1791 */ 1792 linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d", 1793 (int)args->arg2); 1794 #endif 1795 error = EINVAL; 1796 break; 1797 case LINUX_PR_SET_CHILD_SUBREAPER: 1798 if (args->arg2 == 0) { 1799 return (kern_procctl(td, P_PID, 0, PROC_REAP_RELEASE, 1800 NULL)); 1801 } 1802 1803 return (kern_procctl(td, P_PID, 0, PROC_REAP_ACQUIRE, 1804 NULL)); 1805 case LINUX_PR_SET_NO_NEW_PRIVS: 1806 arg = args->arg2 == 1 ? 1807 PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE; 1808 error = kern_procctl(td, P_PID, p->p_pid, 1809 PROC_NO_NEW_PRIVS_CTL, &arg); 1810 break; 1811 case LINUX_PR_SET_PTRACER: 1812 linux_msg(td, "unsupported prctl PR_SET_PTRACER"); 1813 error = EINVAL; 1814 break; 1815 default: 1816 linux_msg(td, "unsupported prctl option %d", args->option); 1817 error = EINVAL; 1818 break; 1819 } 1820 1821 return (error); 1822 } 1823 1824 int 1825 linux_sched_setparam(struct thread *td, 1826 struct linux_sched_setparam_args *uap) 1827 { 1828 struct sched_param sched_param; 1829 struct thread *tdt; 1830 int error, policy; 1831 1832 error = copyin(uap->param, &sched_param, sizeof(sched_param)); 1833 if (error) 1834 return (error); 1835 1836 tdt = linux_tdfind(td, uap->pid, -1); 1837 if (tdt == NULL) 1838 return (ESRCH); 1839 1840 if (linux_map_sched_prio) { 1841 error = kern_sched_getscheduler(td, tdt, &policy); 1842 if (error) 1843 goto out; 1844 1845 switch (policy) { 1846 case SCHED_OTHER: 1847 if (sched_param.sched_priority != 0) { 1848 error = EINVAL; 1849 goto out; 1850 } 1851 sched_param.sched_priority = 1852 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 1853 break; 1854 case SCHED_FIFO: 1855 case SCHED_RR: 1856 if (sched_param.sched_priority < 1 || 1857 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) { 1858 error = EINVAL; 1859 goto out; 1860 } 1861 /* 1862 * Map [1, LINUX_MAX_RT_PRIO - 1] to 1863 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 1864 */ 1865 sched_param.sched_priority = 1866 (sched_param.sched_priority - 1) * 1867 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 1868 (LINUX_MAX_RT_PRIO - 1); 1869 break; 1870 } 1871 } 1872 1873 error = kern_sched_setparam(td, tdt, &sched_param); 1874 out: PROC_UNLOCK(tdt->td_proc); 1875 return (error); 1876 } 1877 1878 int 1879 linux_sched_getparam(struct thread *td, 1880 struct linux_sched_getparam_args *uap) 1881 { 1882 struct sched_param sched_param; 1883 struct thread *tdt; 1884 int error, policy; 1885 1886 tdt = linux_tdfind(td, uap->pid, -1); 1887 if (tdt == NULL) 1888 return (ESRCH); 1889 1890 error = kern_sched_getparam(td, tdt, &sched_param); 1891 if (error) { 1892 PROC_UNLOCK(tdt->td_proc); 1893 return (error); 1894 } 1895 1896 if (linux_map_sched_prio) { 1897 error = kern_sched_getscheduler(td, tdt, &policy); 1898 PROC_UNLOCK(tdt->td_proc); 1899 if (error) 1900 return (error); 1901 1902 switch (policy) { 1903 case SCHED_OTHER: 1904 sched_param.sched_priority = 0; 1905 break; 1906 case SCHED_FIFO: 1907 case SCHED_RR: 1908 /* 1909 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to 1910 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up). 1911 */ 1912 sched_param.sched_priority = 1913 (sched_param.sched_priority * 1914 (LINUX_MAX_RT_PRIO - 1) + 1915 (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) / 1916 (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1; 1917 break; 1918 } 1919 } else 1920 PROC_UNLOCK(tdt->td_proc); 1921 1922 error = copyout(&sched_param, uap->param, sizeof(sched_param)); 1923 return (error); 1924 } 1925 1926 /* 1927 * Get affinity of a process. 1928 */ 1929 int 1930 linux_sched_getaffinity(struct thread *td, 1931 struct linux_sched_getaffinity_args *args) 1932 { 1933 struct thread *tdt; 1934 cpuset_t *mask; 1935 size_t size; 1936 int error; 1937 id_t tid; 1938 1939 tdt = linux_tdfind(td, args->pid, -1); 1940 if (tdt == NULL) 1941 return (ESRCH); 1942 tid = tdt->td_tid; 1943 PROC_UNLOCK(tdt->td_proc); 1944 1945 mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO); 1946 size = min(args->len, sizeof(cpuset_t)); 1947 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1948 tid, size, mask); 1949 if (error == ERANGE) 1950 error = EINVAL; 1951 if (error == 0) 1952 error = copyout(mask, args->user_mask_ptr, size); 1953 if (error == 0) 1954 td->td_retval[0] = size; 1955 free(mask, M_LINUX); 1956 return (error); 1957 } 1958 1959 /* 1960 * Set affinity of a process. 1961 */ 1962 int 1963 linux_sched_setaffinity(struct thread *td, 1964 struct linux_sched_setaffinity_args *args) 1965 { 1966 struct thread *tdt; 1967 cpuset_t *mask; 1968 int cpu, error; 1969 size_t len; 1970 id_t tid; 1971 1972 tdt = linux_tdfind(td, args->pid, -1); 1973 if (tdt == NULL) 1974 return (ESRCH); 1975 tid = tdt->td_tid; 1976 PROC_UNLOCK(tdt->td_proc); 1977 1978 len = min(args->len, sizeof(cpuset_t)); 1979 mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO); 1980 error = copyin(args->user_mask_ptr, mask, len); 1981 if (error != 0) 1982 goto out; 1983 /* Linux ignore high bits */ 1984 CPU_FOREACH_ISSET(cpu, mask) 1985 if (cpu > mp_maxid) 1986 CPU_CLR(cpu, mask); 1987 1988 error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1989 tid, mask); 1990 if (error == EDEADLK) 1991 error = EINVAL; 1992 out: 1993 free(mask, M_TEMP); 1994 return (error); 1995 } 1996 1997 struct linux_rlimit64 { 1998 uint64_t rlim_cur; 1999 uint64_t rlim_max; 2000 }; 2001 2002 int 2003 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) 2004 { 2005 struct rlimit rlim, nrlim; 2006 struct linux_rlimit64 lrlim; 2007 struct proc *p; 2008 u_int which; 2009 int flags; 2010 int error; 2011 2012 if (args->new == NULL && args->old != NULL) { 2013 if (linux_get_dummy_limit(td, args->resource, &rlim)) { 2014 lrlim.rlim_cur = rlim.rlim_cur; 2015 lrlim.rlim_max = rlim.rlim_max; 2016 return (copyout(&lrlim, args->old, sizeof(lrlim))); 2017 } 2018 } 2019 2020 if (args->resource >= LINUX_RLIM_NLIMITS) 2021 return (EINVAL); 2022 2023 which = linux_to_bsd_resource[args->resource]; 2024 if (which == -1) 2025 return (EINVAL); 2026 2027 if (args->new != NULL) { 2028 /* 2029 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux 2030 * rlim is unsigned 64-bit. FreeBSD treats negative limits 2031 * as INFINITY so we do not need a conversion even. 2032 */ 2033 error = copyin(args->new, &nrlim, sizeof(nrlim)); 2034 if (error != 0) 2035 return (error); 2036 } 2037 2038 flags = PGET_HOLD | PGET_NOTWEXIT; 2039 if (args->new != NULL) 2040 flags |= PGET_CANDEBUG; 2041 else 2042 flags |= PGET_CANSEE; 2043 if (args->pid == 0) { 2044 p = td->td_proc; 2045 PHOLD(p); 2046 } else { 2047 error = pget(args->pid, flags, &p); 2048 if (error != 0) 2049 return (error); 2050 } 2051 if (args->old != NULL) { 2052 PROC_LOCK(p); 2053 lim_rlimit_proc(p, which, &rlim); 2054 PROC_UNLOCK(p); 2055 if (rlim.rlim_cur == RLIM_INFINITY) 2056 lrlim.rlim_cur = LINUX_RLIM_INFINITY; 2057 else 2058 lrlim.rlim_cur = rlim.rlim_cur; 2059 if (rlim.rlim_max == RLIM_INFINITY) 2060 lrlim.rlim_max = LINUX_RLIM_INFINITY; 2061 else 2062 lrlim.rlim_max = rlim.rlim_max; 2063 error = copyout(&lrlim, args->old, sizeof(lrlim)); 2064 if (error != 0) 2065 goto out; 2066 } 2067 2068 if (args->new != NULL) 2069 error = kern_proc_setrlimit(td, p, which, &nrlim); 2070 2071 out: 2072 PRELE(p); 2073 return (error); 2074 } 2075 2076 int 2077 linux_pselect6(struct thread *td, struct linux_pselect6_args *args) 2078 { 2079 struct timespec ts, *tsp; 2080 int error; 2081 2082 if (args->tsp != NULL) { 2083 error = linux_get_timespec(&ts, args->tsp); 2084 if (error != 0) 2085 return (error); 2086 tsp = &ts; 2087 } else 2088 tsp = NULL; 2089 2090 error = linux_common_pselect6(td, args->nfds, args->readfds, 2091 args->writefds, args->exceptfds, tsp, args->sig); 2092 2093 if (args->tsp != NULL) 2094 linux_put_timespec(&ts, args->tsp); 2095 return (error); 2096 } 2097 2098 static int 2099 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds, 2100 l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp, 2101 l_uintptr_t *sig) 2102 { 2103 struct timeval utv, tv0, tv1, *tvp; 2104 struct l_pselect6arg lpse6; 2105 sigset_t *ssp; 2106 sigset_t ss; 2107 int error; 2108 2109 ssp = NULL; 2110 if (sig != NULL) { 2111 error = copyin(sig, &lpse6, sizeof(lpse6)); 2112 if (error != 0) 2113 return (error); 2114 error = linux_copyin_sigset(td, PTRIN(lpse6.ss), 2115 lpse6.ss_len, &ss, &ssp); 2116 if (error != 0) 2117 return (error); 2118 } else 2119 ssp = NULL; 2120 2121 /* 2122 * Currently glibc changes nanosecond number to microsecond. 2123 * This mean losing precision but for now it is hardly seen. 2124 */ 2125 if (tsp != NULL) { 2126 TIMESPEC_TO_TIMEVAL(&utv, tsp); 2127 if (itimerfix(&utv)) 2128 return (EINVAL); 2129 2130 microtime(&tv0); 2131 tvp = &utv; 2132 } else 2133 tvp = NULL; 2134 2135 error = kern_pselect(td, nfds, readfds, writefds, 2136 exceptfds, tvp, ssp, LINUX_NFDBITS); 2137 2138 if (tsp != NULL) { 2139 /* 2140 * Compute how much time was left of the timeout, 2141 * by subtracting the current time and the time 2142 * before we started the call, and subtracting 2143 * that result from the user-supplied value. 2144 */ 2145 microtime(&tv1); 2146 timevalsub(&tv1, &tv0); 2147 timevalsub(&utv, &tv1); 2148 if (utv.tv_sec < 0) 2149 timevalclear(&utv); 2150 TIMEVAL_TO_TIMESPEC(&utv, tsp); 2151 } 2152 return (error); 2153 } 2154 2155 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 2156 int 2157 linux_pselect6_time64(struct thread *td, 2158 struct linux_pselect6_time64_args *args) 2159 { 2160 struct timespec ts, *tsp; 2161 int error; 2162 2163 if (args->tsp != NULL) { 2164 error = linux_get_timespec64(&ts, args->tsp); 2165 if (error != 0) 2166 return (error); 2167 tsp = &ts; 2168 } else 2169 tsp = NULL; 2170 2171 error = linux_common_pselect6(td, args->nfds, args->readfds, 2172 args->writefds, args->exceptfds, tsp, args->sig); 2173 2174 if (args->tsp != NULL) 2175 linux_put_timespec64(&ts, args->tsp); 2176 return (error); 2177 } 2178 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 2179 2180 int 2181 linux_ppoll(struct thread *td, struct linux_ppoll_args *args) 2182 { 2183 struct timespec uts, *tsp; 2184 int error; 2185 2186 if (args->tsp != NULL) { 2187 error = linux_get_timespec(&uts, args->tsp); 2188 if (error != 0) 2189 return (error); 2190 tsp = &uts; 2191 } else 2192 tsp = NULL; 2193 2194 error = linux_common_ppoll(td, args->fds, args->nfds, tsp, 2195 args->sset, args->ssize); 2196 if (error == 0 && args->tsp != NULL) 2197 error = linux_put_timespec(&uts, args->tsp); 2198 return (error); 2199 } 2200 2201 static int 2202 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds, 2203 struct timespec *tsp, l_sigset_t *sset, l_size_t ssize) 2204 { 2205 struct timespec ts0, ts1; 2206 struct pollfd stackfds[32]; 2207 struct pollfd *kfds; 2208 sigset_t *ssp; 2209 sigset_t ss; 2210 int error; 2211 2212 if (kern_poll_maxfds(nfds)) 2213 return (EINVAL); 2214 if (sset != NULL) { 2215 error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp); 2216 if (error != 0) 2217 return (error); 2218 } else 2219 ssp = NULL; 2220 if (tsp != NULL) 2221 nanotime(&ts0); 2222 2223 if (nfds > nitems(stackfds)) 2224 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); 2225 else 2226 kfds = stackfds; 2227 error = linux_pollin(td, kfds, fds, nfds); 2228 if (error != 0) 2229 goto out; 2230 2231 error = kern_poll_kfds(td, kfds, nfds, tsp, ssp); 2232 if (error == 0) 2233 error = linux_pollout(td, kfds, fds, nfds); 2234 2235 if (error == 0 && tsp != NULL) { 2236 if (td->td_retval[0]) { 2237 nanotime(&ts1); 2238 timespecsub(&ts1, &ts0, &ts1); 2239 timespecsub(tsp, &ts1, tsp); 2240 if (tsp->tv_sec < 0) 2241 timespecclear(tsp); 2242 } else 2243 timespecclear(tsp); 2244 } 2245 2246 out: 2247 if (nfds > nitems(stackfds)) 2248 free(kfds, M_TEMP); 2249 return (error); 2250 } 2251 2252 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 2253 int 2254 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args) 2255 { 2256 struct timespec uts, *tsp; 2257 int error; 2258 2259 if (args->tsp != NULL) { 2260 error = linux_get_timespec64(&uts, args->tsp); 2261 if (error != 0) 2262 return (error); 2263 tsp = &uts; 2264 } else 2265 tsp = NULL; 2266 error = linux_common_ppoll(td, args->fds, args->nfds, tsp, 2267 args->sset, args->ssize); 2268 if (error == 0 && args->tsp != NULL) 2269 error = linux_put_timespec64(&uts, args->tsp); 2270 return (error); 2271 } 2272 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 2273 2274 static int 2275 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) 2276 { 2277 int error; 2278 u_int i; 2279 2280 error = copyin(ufds, fds, nfd * sizeof(*fds)); 2281 if (error != 0) 2282 return (error); 2283 2284 for (i = 0; i < nfd; i++) { 2285 if (fds->events != 0) 2286 linux_to_bsd_poll_events(td, fds->fd, 2287 fds->events, &fds->events); 2288 fds++; 2289 } 2290 return (0); 2291 } 2292 2293 static int 2294 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) 2295 { 2296 int error = 0; 2297 u_int i, n = 0; 2298 2299 for (i = 0; i < nfd; i++) { 2300 if (fds->revents != 0) { 2301 bsd_to_linux_poll_events(fds->revents, 2302 &fds->revents); 2303 n++; 2304 } 2305 error = copyout(&fds->revents, &ufds->revents, 2306 sizeof(ufds->revents)); 2307 if (error) 2308 return (error); 2309 fds++; 2310 ufds++; 2311 } 2312 td->td_retval[0] = n; 2313 return (0); 2314 } 2315 2316 static int 2317 linux_sched_rr_get_interval_common(struct thread *td, pid_t pid, 2318 struct timespec *ts) 2319 { 2320 struct thread *tdt; 2321 int error; 2322 2323 /* 2324 * According to man in case the invalid pid specified 2325 * EINVAL should be returned. 2326 */ 2327 if (pid < 0) 2328 return (EINVAL); 2329 2330 tdt = linux_tdfind(td, pid, -1); 2331 if (tdt == NULL) 2332 return (ESRCH); 2333 2334 error = kern_sched_rr_get_interval_td(td, tdt, ts); 2335 PROC_UNLOCK(tdt->td_proc); 2336 return (error); 2337 } 2338 2339 int 2340 linux_sched_rr_get_interval(struct thread *td, 2341 struct linux_sched_rr_get_interval_args *uap) 2342 { 2343 struct timespec ts; 2344 int error; 2345 2346 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); 2347 if (error != 0) 2348 return (error); 2349 return (linux_put_timespec(&ts, uap->interval)); 2350 } 2351 2352 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 2353 int 2354 linux_sched_rr_get_interval_time64(struct thread *td, 2355 struct linux_sched_rr_get_interval_time64_args *uap) 2356 { 2357 struct timespec ts; 2358 int error; 2359 2360 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); 2361 if (error != 0) 2362 return (error); 2363 return (linux_put_timespec64(&ts, uap->interval)); 2364 } 2365 #endif 2366 2367 /* 2368 * In case when the Linux thread is the initial thread in 2369 * the thread group thread id is equal to the process id. 2370 * Glibc depends on this magic (assert in pthread_getattr_np.c). 2371 */ 2372 struct thread * 2373 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) 2374 { 2375 struct linux_emuldata *em; 2376 struct thread *tdt; 2377 struct proc *p; 2378 2379 tdt = NULL; 2380 if (tid == 0 || tid == td->td_tid) { 2381 if (pid != -1 && td->td_proc->p_pid != pid) 2382 return (NULL); 2383 PROC_LOCK(td->td_proc); 2384 return (td); 2385 } else if (tid > PID_MAX) 2386 return (tdfind(tid, pid)); 2387 2388 /* 2389 * Initial thread where the tid equal to the pid. 2390 */ 2391 p = pfind(tid); 2392 if (p != NULL) { 2393 if (SV_PROC_ABI(p) != SV_ABI_LINUX || 2394 (pid != -1 && tid != pid)) { 2395 /* 2396 * p is not a Linuxulator process. 2397 */ 2398 PROC_UNLOCK(p); 2399 return (NULL); 2400 } 2401 FOREACH_THREAD_IN_PROC(p, tdt) { 2402 em = em_find(tdt); 2403 if (tid == em->em_tid) 2404 return (tdt); 2405 } 2406 PROC_UNLOCK(p); 2407 } 2408 return (NULL); 2409 } 2410 2411 void 2412 linux_to_bsd_waitopts(int options, int *bsdopts) 2413 { 2414 2415 if (options & LINUX_WNOHANG) 2416 *bsdopts |= WNOHANG; 2417 if (options & LINUX_WUNTRACED) 2418 *bsdopts |= WUNTRACED; 2419 if (options & LINUX_WEXITED) 2420 *bsdopts |= WEXITED; 2421 if (options & LINUX_WCONTINUED) 2422 *bsdopts |= WCONTINUED; 2423 if (options & LINUX_WNOWAIT) 2424 *bsdopts |= WNOWAIT; 2425 2426 if (options & __WCLONE) 2427 *bsdopts |= WLINUXCLONE; 2428 } 2429 2430 int 2431 linux_getrandom(struct thread *td, struct linux_getrandom_args *args) 2432 { 2433 struct uio uio; 2434 struct iovec iov; 2435 int error; 2436 2437 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) 2438 return (EINVAL); 2439 if (args->count > INT_MAX) 2440 args->count = INT_MAX; 2441 2442 iov.iov_base = args->buf; 2443 iov.iov_len = args->count; 2444 2445 uio.uio_iov = &iov; 2446 uio.uio_iovcnt = 1; 2447 uio.uio_resid = iov.iov_len; 2448 uio.uio_segflg = UIO_USERSPACE; 2449 uio.uio_rw = UIO_READ; 2450 uio.uio_td = td; 2451 2452 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); 2453 if (error == 0) 2454 td->td_retval[0] = args->count - uio.uio_resid; 2455 return (error); 2456 } 2457 2458 int 2459 linux_mincore(struct thread *td, struct linux_mincore_args *args) 2460 { 2461 2462 /* Needs to be page-aligned */ 2463 if (args->start & PAGE_MASK) 2464 return (EINVAL); 2465 return (kern_mincore(td, args->start, args->len, args->vec)); 2466 } 2467 2468 #define SYSLOG_TAG "<6>" 2469 2470 int 2471 linux_syslog(struct thread *td, struct linux_syslog_args *args) 2472 { 2473 char buf[128], *src, *dst; 2474 u_int seq; 2475 int buflen, error; 2476 2477 if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) { 2478 linux_msg(td, "syslog unsupported type 0x%x", args->type); 2479 return (EINVAL); 2480 } 2481 2482 if (args->len < 6) { 2483 td->td_retval[0] = 0; 2484 return (0); 2485 } 2486 2487 error = priv_check(td, PRIV_MSGBUF); 2488 if (error) 2489 return (error); 2490 2491 mtx_lock(&msgbuf_lock); 2492 msgbuf_peekbytes(msgbufp, NULL, 0, &seq); 2493 mtx_unlock(&msgbuf_lock); 2494 2495 dst = args->buf; 2496 error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG)); 2497 /* The -1 is to skip the trailing '\0'. */ 2498 dst += sizeof(SYSLOG_TAG) - 1; 2499 2500 while (error == 0) { 2501 mtx_lock(&msgbuf_lock); 2502 buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq); 2503 mtx_unlock(&msgbuf_lock); 2504 2505 if (buflen == 0) 2506 break; 2507 2508 for (src = buf; src < buf + buflen && error == 0; src++) { 2509 if (*src == '\0') 2510 continue; 2511 2512 if (dst >= args->buf + args->len) 2513 goto out; 2514 2515 error = copyout(src, dst, 1); 2516 dst++; 2517 2518 if (*src == '\n' && *(src + 1) != '<' && 2519 dst + sizeof(SYSLOG_TAG) < args->buf + args->len) { 2520 error = copyout(&SYSLOG_TAG, 2521 dst, sizeof(SYSLOG_TAG)); 2522 dst += sizeof(SYSLOG_TAG) - 1; 2523 } 2524 } 2525 } 2526 out: 2527 td->td_retval[0] = dst - args->buf; 2528 return (error); 2529 } 2530 2531 int 2532 linux_getcpu(struct thread *td, struct linux_getcpu_args *args) 2533 { 2534 int cpu, error, node; 2535 2536 cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */ 2537 error = 0; 2538 node = cpuid_to_pcpu[cpu]->pc_domain; 2539 2540 if (args->cpu != NULL) 2541 error = copyout(&cpu, args->cpu, sizeof(l_int)); 2542 if (args->node != NULL) 2543 error = copyout(&node, args->node, sizeof(l_int)); 2544 return (error); 2545 } 2546 2547 #if defined(__i386__) || defined(__amd64__) 2548 int 2549 linux_poll(struct thread *td, struct linux_poll_args *args) 2550 { 2551 struct timespec ts, *tsp; 2552 2553 if (args->timeout != INFTIM) { 2554 if (args->timeout < 0) 2555 return (EINVAL); 2556 ts.tv_sec = args->timeout / 1000; 2557 ts.tv_nsec = (args->timeout % 1000) * 1000000; 2558 tsp = &ts; 2559 } else 2560 tsp = NULL; 2561 2562 return (linux_common_ppoll(td, args->fds, args->nfds, 2563 tsp, NULL, 0)); 2564 } 2565 #endif /* __i386__ || __amd64__ */ 2566 2567 int 2568 linux_seccomp(struct thread *td, struct linux_seccomp_args *args) 2569 { 2570 2571 switch (args->op) { 2572 case LINUX_SECCOMP_GET_ACTION_AVAIL: 2573 return (EOPNOTSUPP); 2574 default: 2575 /* 2576 * Ignore unknown operations, just like Linux kernel built 2577 * without CONFIG_SECCOMP. 2578 */ 2579 return (EINVAL); 2580 } 2581 } 2582 2583 /* 2584 * Custom version of exec_copyin_args(), to copy out argument and environment 2585 * strings from the old process address space into the temporary string buffer. 2586 * Based on freebsd32_exec_copyin_args. 2587 */ 2588 static int 2589 linux_exec_copyin_args(struct image_args *args, const char *fname, 2590 l_uintptr_t *argv, l_uintptr_t *envv) 2591 { 2592 char *argp, *envp; 2593 l_uintptr_t *ptr, arg; 2594 int error; 2595 2596 bzero(args, sizeof(*args)); 2597 if (argv == NULL) 2598 return (EFAULT); 2599 2600 /* 2601 * Allocate demand-paged memory for the file name, argument, and 2602 * environment strings. 2603 */ 2604 error = exec_alloc_args(args); 2605 if (error != 0) 2606 return (error); 2607 2608 /* 2609 * Copy the file name. 2610 */ 2611 error = exec_args_add_fname(args, fname, UIO_USERSPACE); 2612 if (error != 0) 2613 goto err_exit; 2614 2615 /* 2616 * extract arguments first 2617 */ 2618 ptr = argv; 2619 for (;;) { 2620 error = copyin(ptr++, &arg, sizeof(arg)); 2621 if (error) 2622 goto err_exit; 2623 if (arg == 0) 2624 break; 2625 argp = PTRIN(arg); 2626 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 2627 if (error != 0) 2628 goto err_exit; 2629 } 2630 2631 /* 2632 * This comment is from Linux do_execveat_common: 2633 * When argv is empty, add an empty string ("") as argv[0] to 2634 * ensure confused userspace programs that start processing 2635 * from argv[1] won't end up walking envp. 2636 */ 2637 if (args->argc == 0 && 2638 (error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0)) 2639 goto err_exit; 2640 2641 /* 2642 * extract environment strings 2643 */ 2644 if (envv) { 2645 ptr = envv; 2646 for (;;) { 2647 error = copyin(ptr++, &arg, sizeof(arg)); 2648 if (error) 2649 goto err_exit; 2650 if (arg == 0) 2651 break; 2652 envp = PTRIN(arg); 2653 error = exec_args_add_env(args, envp, UIO_USERSPACE); 2654 if (error != 0) 2655 goto err_exit; 2656 } 2657 } 2658 2659 return (0); 2660 2661 err_exit: 2662 exec_free_args(args); 2663 return (error); 2664 } 2665 2666 int 2667 linux_execve(struct thread *td, struct linux_execve_args *args) 2668 { 2669 struct image_args eargs; 2670 int error; 2671 2672 LINUX_CTR(execve); 2673 2674 error = linux_exec_copyin_args(&eargs, args->path, args->argp, 2675 args->envp); 2676 if (error == 0) 2677 error = linux_common_execve(td, &eargs); 2678 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 2679 return (error); 2680 } 2681 2682 static void 2683 linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp) 2684 { 2685 struct rtprio rtp2; 2686 2687 pri_to_rtp(td1, &rtp2); 2688 if (rtp2.type < rtp->type || 2689 (rtp2.type == rtp->type && 2690 rtp2.prio < rtp->prio)) { 2691 rtp->type = rtp2.type; 2692 rtp->prio = rtp2.prio; 2693 } 2694 } 2695 2696 #define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX 2697 2698 static int 2699 linux_rtprio2ioprio(struct rtprio *rtp) 2700 { 2701 int ioprio, prio; 2702 2703 switch (rtp->type) { 2704 case RTP_PRIO_IDLE: 2705 prio = RTP_PRIO_MIN; 2706 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio); 2707 break; 2708 case RTP_PRIO_NORMAL: 2709 prio = rtp->prio / LINUX_PRIO_DIVIDER; 2710 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio); 2711 break; 2712 case RTP_PRIO_REALTIME: 2713 prio = rtp->prio / LINUX_PRIO_DIVIDER; 2714 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio); 2715 break; 2716 default: 2717 prio = RTP_PRIO_MIN; 2718 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio); 2719 break; 2720 } 2721 return (ioprio); 2722 } 2723 2724 static int 2725 linux_ioprio2rtprio(int ioprio, struct rtprio *rtp) 2726 { 2727 2728 switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) { 2729 case LINUX_IOPRIO_CLASS_IDLE: 2730 rtp->prio = RTP_PRIO_MIN; 2731 rtp->type = RTP_PRIO_IDLE; 2732 break; 2733 case LINUX_IOPRIO_CLASS_BE: 2734 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER; 2735 rtp->type = RTP_PRIO_NORMAL; 2736 break; 2737 case LINUX_IOPRIO_CLASS_RT: 2738 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER; 2739 rtp->type = RTP_PRIO_REALTIME; 2740 break; 2741 default: 2742 return (EINVAL); 2743 } 2744 return (0); 2745 } 2746 #undef LINUX_PRIO_DIVIDER 2747 2748 int 2749 linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args) 2750 { 2751 struct thread *td1; 2752 struct rtprio rtp; 2753 struct pgrp *pg; 2754 struct proc *p; 2755 int error, found; 2756 2757 p = NULL; 2758 td1 = NULL; 2759 error = 0; 2760 found = 0; 2761 rtp.type = RTP_PRIO_IDLE; 2762 rtp.prio = RTP_PRIO_MAX; 2763 switch (args->which) { 2764 case LINUX_IOPRIO_WHO_PROCESS: 2765 if (args->who == 0) { 2766 td1 = td; 2767 p = td1->td_proc; 2768 PROC_LOCK(p); 2769 } else if (args->who > PID_MAX) { 2770 td1 = linux_tdfind(td, args->who, -1); 2771 if (td1 != NULL) 2772 p = td1->td_proc; 2773 } else 2774 p = pfind(args->who); 2775 if (p == NULL) 2776 return (ESRCH); 2777 if ((error = p_cansee(td, p))) { 2778 PROC_UNLOCK(p); 2779 break; 2780 } 2781 if (td1 != NULL) { 2782 pri_to_rtp(td1, &rtp); 2783 } else { 2784 FOREACH_THREAD_IN_PROC(p, td1) { 2785 linux_up_rtprio_if(td1, &rtp); 2786 } 2787 } 2788 found++; 2789 PROC_UNLOCK(p); 2790 break; 2791 case LINUX_IOPRIO_WHO_PGRP: 2792 sx_slock(&proctree_lock); 2793 if (args->who == 0) { 2794 pg = td->td_proc->p_pgrp; 2795 PGRP_LOCK(pg); 2796 } else { 2797 pg = pgfind(args->who); 2798 if (pg == NULL) { 2799 sx_sunlock(&proctree_lock); 2800 error = ESRCH; 2801 break; 2802 } 2803 } 2804 sx_sunlock(&proctree_lock); 2805 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 2806 PROC_LOCK(p); 2807 if (p->p_state == PRS_NORMAL && 2808 p_cansee(td, p) == 0) { 2809 FOREACH_THREAD_IN_PROC(p, td1) { 2810 linux_up_rtprio_if(td1, &rtp); 2811 found++; 2812 } 2813 } 2814 PROC_UNLOCK(p); 2815 } 2816 PGRP_UNLOCK(pg); 2817 break; 2818 case LINUX_IOPRIO_WHO_USER: 2819 if (args->who == 0) 2820 args->who = td->td_ucred->cr_uid; 2821 sx_slock(&allproc_lock); 2822 FOREACH_PROC_IN_SYSTEM(p) { 2823 PROC_LOCK(p); 2824 if (p->p_state == PRS_NORMAL && 2825 p->p_ucred->cr_uid == args->who && 2826 p_cansee(td, p) == 0) { 2827 FOREACH_THREAD_IN_PROC(p, td1) { 2828 linux_up_rtprio_if(td1, &rtp); 2829 found++; 2830 } 2831 } 2832 PROC_UNLOCK(p); 2833 } 2834 sx_sunlock(&allproc_lock); 2835 break; 2836 default: 2837 error = EINVAL; 2838 break; 2839 } 2840 if (error == 0) { 2841 if (found != 0) 2842 td->td_retval[0] = linux_rtprio2ioprio(&rtp); 2843 else 2844 error = ESRCH; 2845 } 2846 return (error); 2847 } 2848 2849 int 2850 linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args) 2851 { 2852 struct thread *td1; 2853 struct rtprio rtp; 2854 struct pgrp *pg; 2855 struct proc *p; 2856 int error; 2857 2858 if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0) 2859 return (error); 2860 /* Attempts to set high priorities (REALTIME) require su privileges. */ 2861 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME && 2862 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0) 2863 return (error); 2864 2865 p = NULL; 2866 td1 = NULL; 2867 switch (args->which) { 2868 case LINUX_IOPRIO_WHO_PROCESS: 2869 if (args->who == 0) { 2870 td1 = td; 2871 p = td1->td_proc; 2872 PROC_LOCK(p); 2873 } else if (args->who > PID_MAX) { 2874 td1 = linux_tdfind(td, args->who, -1); 2875 if (td1 != NULL) 2876 p = td1->td_proc; 2877 } else 2878 p = pfind(args->who); 2879 if (p == NULL) 2880 return (ESRCH); 2881 if ((error = p_cansched(td, p))) { 2882 PROC_UNLOCK(p); 2883 break; 2884 } 2885 if (td1 != NULL) { 2886 error = rtp_to_pri(&rtp, td1); 2887 } else { 2888 FOREACH_THREAD_IN_PROC(p, td1) { 2889 if ((error = rtp_to_pri(&rtp, td1)) != 0) 2890 break; 2891 } 2892 } 2893 PROC_UNLOCK(p); 2894 break; 2895 case LINUX_IOPRIO_WHO_PGRP: 2896 sx_slock(&proctree_lock); 2897 if (args->who == 0) { 2898 pg = td->td_proc->p_pgrp; 2899 PGRP_LOCK(pg); 2900 } else { 2901 pg = pgfind(args->who); 2902 if (pg == NULL) { 2903 sx_sunlock(&proctree_lock); 2904 error = ESRCH; 2905 break; 2906 } 2907 } 2908 sx_sunlock(&proctree_lock); 2909 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 2910 PROC_LOCK(p); 2911 if (p->p_state == PRS_NORMAL && 2912 p_cansched(td, p) == 0) { 2913 FOREACH_THREAD_IN_PROC(p, td1) { 2914 if ((error = rtp_to_pri(&rtp, td1)) != 0) 2915 break; 2916 } 2917 } 2918 PROC_UNLOCK(p); 2919 if (error != 0) 2920 break; 2921 } 2922 PGRP_UNLOCK(pg); 2923 break; 2924 case LINUX_IOPRIO_WHO_USER: 2925 if (args->who == 0) 2926 args->who = td->td_ucred->cr_uid; 2927 sx_slock(&allproc_lock); 2928 FOREACH_PROC_IN_SYSTEM(p) { 2929 PROC_LOCK(p); 2930 if (p->p_state == PRS_NORMAL && 2931 p->p_ucred->cr_uid == args->who && 2932 p_cansched(td, p) == 0) { 2933 FOREACH_THREAD_IN_PROC(p, td1) { 2934 if ((error = rtp_to_pri(&rtp, td1)) != 0) 2935 break; 2936 } 2937 } 2938 PROC_UNLOCK(p); 2939 if (error != 0) 2940 break; 2941 } 2942 sx_sunlock(&allproc_lock); 2943 break; 2944 default: 2945 error = EINVAL; 2946 break; 2947 } 2948 return (error); 2949 } 2950 2951 /* The only flag is O_NONBLOCK */ 2952 #define B2L_MQ_FLAGS(bflags) ((bflags) != 0 ? LINUX_O_NONBLOCK : 0) 2953 #define L2B_MQ_FLAGS(lflags) ((lflags) != 0 ? O_NONBLOCK : 0) 2954 2955 int 2956 linux_mq_open(struct thread *td, struct linux_mq_open_args *args) 2957 { 2958 struct mq_attr attr; 2959 int error, flags; 2960 2961 flags = linux_common_openflags(args->oflag); 2962 if ((flags & O_ACCMODE) == O_ACCMODE || (flags & O_EXEC) != 0) 2963 return (EINVAL); 2964 flags = FFLAGS(flags); 2965 if ((flags & O_CREAT) != 0 && args->attr != NULL) { 2966 error = copyin(args->attr, &attr, sizeof(attr)); 2967 if (error != 0) 2968 return (error); 2969 attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags); 2970 } 2971 2972 return (kern_kmq_open(td, args->name, flags, args->mode, 2973 args->attr != NULL ? &attr : NULL)); 2974 } 2975 2976 int 2977 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args) 2978 { 2979 struct kmq_unlink_args bsd_args = { 2980 .path = PTRIN(args->name) 2981 }; 2982 2983 return (sys_kmq_unlink(td, &bsd_args)); 2984 } 2985 2986 int 2987 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args) 2988 { 2989 struct timespec ts, *abs_timeout; 2990 int error; 2991 2992 if (args->abs_timeout == NULL) 2993 abs_timeout = NULL; 2994 else { 2995 error = linux_get_timespec(&ts, args->abs_timeout); 2996 if (error != 0) 2997 return (error); 2998 abs_timeout = &ts; 2999 } 3000 3001 return (kern_kmq_timedsend(td, args->mqd, PTRIN(args->msg_ptr), 3002 args->msg_len, args->msg_prio, abs_timeout)); 3003 } 3004 3005 int 3006 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args) 3007 { 3008 struct timespec ts, *abs_timeout; 3009 int error; 3010 3011 if (args->abs_timeout == NULL) 3012 abs_timeout = NULL; 3013 else { 3014 error = linux_get_timespec(&ts, args->abs_timeout); 3015 if (error != 0) 3016 return (error); 3017 abs_timeout = &ts; 3018 } 3019 3020 return (kern_kmq_timedreceive(td, args->mqd, PTRIN(args->msg_ptr), 3021 args->msg_len, args->msg_prio, abs_timeout)); 3022 } 3023 3024 int 3025 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args) 3026 { 3027 struct sigevent ev, *evp; 3028 struct l_sigevent l_ev; 3029 int error; 3030 3031 if (args->sevp == NULL) 3032 evp = NULL; 3033 else { 3034 error = copyin(args->sevp, &l_ev, sizeof(l_ev)); 3035 if (error != 0) 3036 return (error); 3037 error = linux_convert_l_sigevent(&l_ev, &ev); 3038 if (error != 0) 3039 return (error); 3040 evp = &ev; 3041 } 3042 3043 return (kern_kmq_notify(td, args->mqd, evp)); 3044 } 3045 3046 int 3047 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args) 3048 { 3049 struct mq_attr attr, oattr; 3050 int error; 3051 3052 if (args->attr != NULL) { 3053 error = copyin(args->attr, &attr, sizeof(attr)); 3054 if (error != 0) 3055 return (error); 3056 attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags); 3057 } 3058 3059 error = kern_kmq_setattr(td, args->mqd, args->attr != NULL ? &attr : NULL, 3060 &oattr); 3061 if (error == 0 && args->oattr != NULL) { 3062 oattr.mq_flags = B2L_MQ_FLAGS(oattr.mq_flags); 3063 bzero(oattr.__reserved, sizeof(oattr.__reserved)); 3064 error = copyout(&oattr, args->oattr, sizeof(oattr)); 3065 } 3066 3067 return (error); 3068 } 3069 3070 MODULE_DEPEND(linux, mqueuefs, 1, 1, 1); 3071