1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * Copyright (c) 1994-1995 Søren Schmidt 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer 13 * in this position and unchanged. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 37 #include <sys/param.h> 38 #include <sys/blist.h> 39 #include <sys/fcntl.h> 40 #if defined(__i386__) 41 #include <sys/imgact_aout.h> 42 #endif 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mman.h> 49 #include <sys/mount.h> 50 #include <sys/mutex.h> 51 #include <sys/namei.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/procctl.h> 55 #include <sys/reboot.h> 56 #include <sys/racct.h> 57 #include <sys/random.h> 58 #include <sys/resourcevar.h> 59 #include <sys/sched.h> 60 #include <sys/sdt.h> 61 #include <sys/signalvar.h> 62 #include <sys/stat.h> 63 #include <sys/syscallsubr.h> 64 #include <sys/sysctl.h> 65 #include <sys/sysproto.h> 66 #include <sys/systm.h> 67 #include <sys/time.h> 68 #include <sys/vmmeter.h> 69 #include <sys/vnode.h> 70 #include <sys/wait.h> 71 #include <sys/cpuset.h> 72 #include <sys/uio.h> 73 74 #include <security/mac/mac_framework.h> 75 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_kern.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_extern.h> 81 #include <vm/vm_object.h> 82 #include <vm/swap_pager.h> 83 84 #ifdef COMPAT_LINUX32 85 #include <machine/../linux32/linux.h> 86 #include <machine/../linux32/linux32_proto.h> 87 #else 88 #include <machine/../linux/linux.h> 89 #include <machine/../linux/linux_proto.h> 90 #endif 91 92 #include <compat/linux/linux_dtrace.h> 93 #include <compat/linux/linux_file.h> 94 #include <compat/linux/linux_mib.h> 95 #include <compat/linux/linux_signal.h> 96 #include <compat/linux/linux_timer.h> 97 #include <compat/linux/linux_util.h> 98 #include <compat/linux/linux_sysproto.h> 99 #include <compat/linux/linux_emul.h> 100 #include <compat/linux/linux_misc.h> 101 102 /** 103 * Special DTrace provider for the linuxulator. 104 * 105 * In this file we define the provider for the entire linuxulator. All 106 * modules (= files of the linuxulator) use it. 107 * 108 * We define a different name depending on the emulated bitsize, see 109 * ../../<ARCH>/linux{,32}/linux.h, e.g.: 110 * native bitsize = linuxulator 111 * amd64, 32bit emulation = linuxulator32 112 */ 113 LIN_SDT_PROVIDER_DEFINE(LINUX_DTRACE); 114 115 int stclohz; /* Statistics clock frequency */ 116 117 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { 118 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, 119 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, 120 RLIMIT_MEMLOCK, RLIMIT_AS 121 }; 122 123 struct l_sysinfo { 124 l_long uptime; /* Seconds since boot */ 125 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ 126 #define LINUX_SYSINFO_LOADS_SCALE 65536 127 l_ulong totalram; /* Total usable main memory size */ 128 l_ulong freeram; /* Available memory size */ 129 l_ulong sharedram; /* Amount of shared memory */ 130 l_ulong bufferram; /* Memory used by buffers */ 131 l_ulong totalswap; /* Total swap space size */ 132 l_ulong freeswap; /* swap space still available */ 133 l_ushort procs; /* Number of current processes */ 134 l_ushort pads; 135 l_ulong totalbig; 136 l_ulong freebig; 137 l_uint mem_unit; 138 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ 139 }; 140 141 struct l_pselect6arg { 142 l_uintptr_t ss; 143 l_size_t ss_len; 144 }; 145 146 static int linux_utimensat_nsec_valid(l_long); 147 148 149 int 150 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) 151 { 152 struct l_sysinfo sysinfo; 153 vm_object_t object; 154 int i, j; 155 struct timespec ts; 156 157 bzero(&sysinfo, sizeof(sysinfo)); 158 getnanouptime(&ts); 159 if (ts.tv_nsec != 0) 160 ts.tv_sec++; 161 sysinfo.uptime = ts.tv_sec; 162 163 /* Use the information from the mib to get our load averages */ 164 for (i = 0; i < 3; i++) 165 sysinfo.loads[i] = averunnable.ldavg[i] * 166 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; 167 168 sysinfo.totalram = physmem * PAGE_SIZE; 169 sysinfo.freeram = sysinfo.totalram - vm_wire_count() * PAGE_SIZE; 170 171 sysinfo.sharedram = 0; 172 mtx_lock(&vm_object_list_mtx); 173 TAILQ_FOREACH(object, &vm_object_list, object_list) 174 if (object->shadow_count > 1) 175 sysinfo.sharedram += object->resident_page_count; 176 mtx_unlock(&vm_object_list_mtx); 177 178 sysinfo.sharedram *= PAGE_SIZE; 179 sysinfo.bufferram = 0; 180 181 swap_pager_status(&i, &j); 182 sysinfo.totalswap = i * PAGE_SIZE; 183 sysinfo.freeswap = (i - j) * PAGE_SIZE; 184 185 sysinfo.procs = nprocs; 186 187 /* The following are only present in newer Linux kernels. */ 188 sysinfo.totalbig = 0; 189 sysinfo.freebig = 0; 190 sysinfo.mem_unit = 1; 191 192 return (copyout(&sysinfo, args->info, sizeof(sysinfo))); 193 } 194 195 #ifdef LINUX_LEGACY_SYSCALLS 196 int 197 linux_alarm(struct thread *td, struct linux_alarm_args *args) 198 { 199 struct itimerval it, old_it; 200 u_int secs; 201 int error; 202 203 secs = args->secs; 204 /* 205 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 206 * to match kern_setitimer()'s limit to avoid error from it. 207 * 208 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit 209 * platforms. 210 */ 211 if (secs > INT32_MAX / 2) 212 secs = INT32_MAX / 2; 213 214 it.it_value.tv_sec = secs; 215 it.it_value.tv_usec = 0; 216 timevalclear(&it.it_interval); 217 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); 218 KASSERT(error == 0, ("kern_setitimer returns %d", error)); 219 220 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || 221 old_it.it_value.tv_usec >= 500000) 222 old_it.it_value.tv_sec++; 223 td->td_retval[0] = old_it.it_value.tv_sec; 224 return (0); 225 } 226 #endif 227 228 int 229 linux_brk(struct thread *td, struct linux_brk_args *args) 230 { 231 struct vmspace *vm = td->td_proc->p_vmspace; 232 uintptr_t new, old; 233 234 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); 235 new = (uintptr_t)args->dsend; 236 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) 237 td->td_retval[0] = (register_t)new; 238 else 239 td->td_retval[0] = (register_t)old; 240 241 return (0); 242 } 243 244 #if defined(__i386__) 245 /* XXX: what about amd64/linux32? */ 246 247 int 248 linux_uselib(struct thread *td, struct linux_uselib_args *args) 249 { 250 struct nameidata ni; 251 struct vnode *vp; 252 struct exec *a_out; 253 vm_map_t map; 254 vm_map_entry_t entry; 255 struct vattr attr; 256 vm_offset_t vmaddr; 257 unsigned long file_offset; 258 unsigned long bss_size; 259 char *library; 260 ssize_t aresid; 261 int error; 262 bool locked, opened, textset; 263 264 LCONVPATHEXIST(td, args->library, &library); 265 266 a_out = NULL; 267 vp = NULL; 268 locked = false; 269 textset = false; 270 opened = false; 271 272 NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, 273 UIO_SYSSPACE, library, td); 274 error = namei(&ni); 275 LFREEPATH(library); 276 if (error) 277 goto cleanup; 278 279 vp = ni.ni_vp; 280 NDFREE(&ni, NDF_ONLY_PNBUF); 281 282 /* 283 * From here on down, we have a locked vnode that must be unlocked. 284 * XXX: The code below largely duplicates exec_check_permissions(). 285 */ 286 locked = true; 287 288 /* Executable? */ 289 error = VOP_GETATTR(vp, &attr, td->td_ucred); 290 if (error) 291 goto cleanup; 292 293 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || 294 ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) { 295 /* EACCESS is what exec(2) returns. */ 296 error = ENOEXEC; 297 goto cleanup; 298 } 299 300 /* Sensible size? */ 301 if (attr.va_size == 0) { 302 error = ENOEXEC; 303 goto cleanup; 304 } 305 306 /* Can we access it? */ 307 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); 308 if (error) 309 goto cleanup; 310 311 /* 312 * XXX: This should use vn_open() so that it is properly authorized, 313 * and to reduce code redundancy all over the place here. 314 * XXX: Not really, it duplicates far more of exec_check_permissions() 315 * than vn_open(). 316 */ 317 #ifdef MAC 318 error = mac_vnode_check_open(td->td_ucred, vp, VREAD); 319 if (error) 320 goto cleanup; 321 #endif 322 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); 323 if (error) 324 goto cleanup; 325 opened = true; 326 327 /* Pull in executable header into exec_map */ 328 error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE, 329 VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0); 330 if (error) 331 goto cleanup; 332 333 /* Is it a Linux binary ? */ 334 if (((a_out->a_magic >> 16) & 0xff) != 0x64) { 335 error = ENOEXEC; 336 goto cleanup; 337 } 338 339 /* 340 * While we are here, we should REALLY do some more checks 341 */ 342 343 /* Set file/virtual offset based on a.out variant. */ 344 switch ((int)(a_out->a_magic & 0xffff)) { 345 case 0413: /* ZMAGIC */ 346 file_offset = 1024; 347 break; 348 case 0314: /* QMAGIC */ 349 file_offset = 0; 350 break; 351 default: 352 error = ENOEXEC; 353 goto cleanup; 354 } 355 356 bss_size = round_page(a_out->a_bss); 357 358 /* Check various fields in header for validity/bounds. */ 359 if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) { 360 error = ENOEXEC; 361 goto cleanup; 362 } 363 364 /* text + data can't exceed file size */ 365 if (a_out->a_data + a_out->a_text > attr.va_size) { 366 error = EFAULT; 367 goto cleanup; 368 } 369 370 /* 371 * text/data/bss must not exceed limits 372 * XXX - this is not complete. it should check current usage PLUS 373 * the resources needed by this library. 374 */ 375 PROC_LOCK(td->td_proc); 376 if (a_out->a_text > maxtsiz || 377 a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) || 378 racct_set(td->td_proc, RACCT_DATA, a_out->a_data + 379 bss_size) != 0) { 380 PROC_UNLOCK(td->td_proc); 381 error = ENOMEM; 382 goto cleanup; 383 } 384 PROC_UNLOCK(td->td_proc); 385 386 /* 387 * Prevent more writers. 388 */ 389 error = VOP_SET_TEXT(vp); 390 if (error != 0) 391 goto cleanup; 392 textset = true; 393 394 /* 395 * Lock no longer needed 396 */ 397 locked = false; 398 VOP_UNLOCK(vp, 0); 399 400 /* 401 * Check if file_offset page aligned. Currently we cannot handle 402 * misalinged file offsets, and so we read in the entire image 403 * (what a waste). 404 */ 405 if (file_offset & PAGE_MASK) { 406 /* Map text+data read/write/execute */ 407 408 /* a_entry is the load address and is page aligned */ 409 vmaddr = trunc_page(a_out->a_entry); 410 411 /* get anon user mapping, read+write+execute */ 412 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 413 &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE, 414 VM_PROT_ALL, VM_PROT_ALL, 0); 415 if (error) 416 goto cleanup; 417 418 error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset, 419 a_out->a_text + a_out->a_data, UIO_USERSPACE, 0, 420 td->td_ucred, NOCRED, &aresid, td); 421 if (error != 0) 422 goto cleanup; 423 if (aresid != 0) { 424 error = ENOEXEC; 425 goto cleanup; 426 } 427 } else { 428 /* 429 * for QMAGIC, a_entry is 20 bytes beyond the load address 430 * to skip the executable header 431 */ 432 vmaddr = trunc_page(a_out->a_entry); 433 434 /* 435 * Map it all into the process's space as a single 436 * copy-on-write "data" segment. 437 */ 438 map = &td->td_proc->p_vmspace->vm_map; 439 error = vm_mmap(map, &vmaddr, 440 a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL, 441 MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset); 442 if (error) 443 goto cleanup; 444 vm_map_lock(map); 445 if (!vm_map_lookup_entry(map, vmaddr, &entry)) { 446 vm_map_unlock(map); 447 error = EDOOFUS; 448 goto cleanup; 449 } 450 entry->eflags |= MAP_ENTRY_VN_EXEC; 451 vm_map_unlock(map); 452 textset = false; 453 } 454 455 if (bss_size != 0) { 456 /* Calculate BSS start address */ 457 vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + 458 a_out->a_data; 459 460 /* allocate some 'anon' space */ 461 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 462 &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL, 463 VM_PROT_ALL, 0); 464 if (error) 465 goto cleanup; 466 } 467 468 cleanup: 469 if (opened) { 470 if (locked) 471 VOP_UNLOCK(vp, 0); 472 locked = false; 473 VOP_CLOSE(vp, FREAD, td->td_ucred, td); 474 } 475 if (textset) 476 VOP_UNSET_TEXT_CHECKED(vp); 477 if (locked) 478 VOP_UNLOCK(vp, 0); 479 480 /* Release the temporary mapping. */ 481 if (a_out) 482 kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE); 483 484 return (error); 485 } 486 487 #endif /* __i386__ */ 488 489 #ifdef LINUX_LEGACY_SYSCALLS 490 int 491 linux_select(struct thread *td, struct linux_select_args *args) 492 { 493 l_timeval ltv; 494 struct timeval tv0, tv1, utv, *tvp; 495 int error; 496 497 /* 498 * Store current time for computation of the amount of 499 * time left. 500 */ 501 if (args->timeout) { 502 if ((error = copyin(args->timeout, <v, sizeof(ltv)))) 503 goto select_out; 504 utv.tv_sec = ltv.tv_sec; 505 utv.tv_usec = ltv.tv_usec; 506 507 if (itimerfix(&utv)) { 508 /* 509 * The timeval was invalid. Convert it to something 510 * valid that will act as it does under Linux. 511 */ 512 utv.tv_sec += utv.tv_usec / 1000000; 513 utv.tv_usec %= 1000000; 514 if (utv.tv_usec < 0) { 515 utv.tv_sec -= 1; 516 utv.tv_usec += 1000000; 517 } 518 if (utv.tv_sec < 0) 519 timevalclear(&utv); 520 } 521 microtime(&tv0); 522 tvp = &utv; 523 } else 524 tvp = NULL; 525 526 error = kern_select(td, args->nfds, args->readfds, args->writefds, 527 args->exceptfds, tvp, LINUX_NFDBITS); 528 if (error) 529 goto select_out; 530 531 if (args->timeout) { 532 if (td->td_retval[0]) { 533 /* 534 * Compute how much time was left of the timeout, 535 * by subtracting the current time and the time 536 * before we started the call, and subtracting 537 * that result from the user-supplied value. 538 */ 539 microtime(&tv1); 540 timevalsub(&tv1, &tv0); 541 timevalsub(&utv, &tv1); 542 if (utv.tv_sec < 0) 543 timevalclear(&utv); 544 } else 545 timevalclear(&utv); 546 ltv.tv_sec = utv.tv_sec; 547 ltv.tv_usec = utv.tv_usec; 548 if ((error = copyout(<v, args->timeout, sizeof(ltv)))) 549 goto select_out; 550 } 551 552 select_out: 553 return (error); 554 } 555 #endif 556 557 int 558 linux_mremap(struct thread *td, struct linux_mremap_args *args) 559 { 560 uintptr_t addr; 561 size_t len; 562 int error = 0; 563 564 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { 565 td->td_retval[0] = 0; 566 return (EINVAL); 567 } 568 569 /* 570 * Check for the page alignment. 571 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. 572 */ 573 if (args->addr & PAGE_MASK) { 574 td->td_retval[0] = 0; 575 return (EINVAL); 576 } 577 578 args->new_len = round_page(args->new_len); 579 args->old_len = round_page(args->old_len); 580 581 if (args->new_len > args->old_len) { 582 td->td_retval[0] = 0; 583 return (ENOMEM); 584 } 585 586 if (args->new_len < args->old_len) { 587 addr = args->addr + args->new_len; 588 len = args->old_len - args->new_len; 589 error = kern_munmap(td, addr, len); 590 } 591 592 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; 593 return (error); 594 } 595 596 #define LINUX_MS_ASYNC 0x0001 597 #define LINUX_MS_INVALIDATE 0x0002 598 #define LINUX_MS_SYNC 0x0004 599 600 int 601 linux_msync(struct thread *td, struct linux_msync_args *args) 602 { 603 604 return (kern_msync(td, args->addr, args->len, 605 args->fl & ~LINUX_MS_SYNC)); 606 } 607 608 #ifdef LINUX_LEGACY_SYSCALLS 609 int 610 linux_time(struct thread *td, struct linux_time_args *args) 611 { 612 struct timeval tv; 613 l_time_t tm; 614 int error; 615 616 microtime(&tv); 617 tm = tv.tv_sec; 618 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) 619 return (error); 620 td->td_retval[0] = tm; 621 return (0); 622 } 623 #endif 624 625 struct l_times_argv { 626 l_clock_t tms_utime; 627 l_clock_t tms_stime; 628 l_clock_t tms_cutime; 629 l_clock_t tms_cstime; 630 }; 631 632 633 /* 634 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. 635 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK 636 * auxiliary vector entry. 637 */ 638 #define CLK_TCK 100 639 640 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) 641 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) 642 643 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \ 644 CONVNTCK(r) : CONVOTCK(r)) 645 646 int 647 linux_times(struct thread *td, struct linux_times_args *args) 648 { 649 struct timeval tv, utime, stime, cutime, cstime; 650 struct l_times_argv tms; 651 struct proc *p; 652 int error; 653 654 if (args->buf != NULL) { 655 p = td->td_proc; 656 PROC_LOCK(p); 657 PROC_STATLOCK(p); 658 calcru(p, &utime, &stime); 659 PROC_STATUNLOCK(p); 660 calccru(p, &cutime, &cstime); 661 PROC_UNLOCK(p); 662 663 tms.tms_utime = CONVTCK(utime); 664 tms.tms_stime = CONVTCK(stime); 665 666 tms.tms_cutime = CONVTCK(cutime); 667 tms.tms_cstime = CONVTCK(cstime); 668 669 if ((error = copyout(&tms, args->buf, sizeof(tms)))) 670 return (error); 671 } 672 673 microuptime(&tv); 674 td->td_retval[0] = (int)CONVTCK(tv); 675 return (0); 676 } 677 678 int 679 linux_newuname(struct thread *td, struct linux_newuname_args *args) 680 { 681 struct l_new_utsname utsname; 682 char osname[LINUX_MAX_UTSNAME]; 683 char osrelease[LINUX_MAX_UTSNAME]; 684 char *p; 685 686 linux_get_osname(td, osname); 687 linux_get_osrelease(td, osrelease); 688 689 bzero(&utsname, sizeof(utsname)); 690 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); 691 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); 692 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); 693 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); 694 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); 695 for (p = utsname.version; *p != '\0'; ++p) 696 if (*p == '\n') { 697 *p = '\0'; 698 break; 699 } 700 strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME); 701 702 return (copyout(&utsname, args->buf, sizeof(utsname))); 703 } 704 705 struct l_utimbuf { 706 l_time_t l_actime; 707 l_time_t l_modtime; 708 }; 709 710 #ifdef LINUX_LEGACY_SYSCALLS 711 int 712 linux_utime(struct thread *td, struct linux_utime_args *args) 713 { 714 struct timeval tv[2], *tvp; 715 struct l_utimbuf lut; 716 char *fname; 717 int error; 718 719 LCONVPATHEXIST(td, args->fname, &fname); 720 721 if (args->times) { 722 if ((error = copyin(args->times, &lut, sizeof lut))) { 723 LFREEPATH(fname); 724 return (error); 725 } 726 tv[0].tv_sec = lut.l_actime; 727 tv[0].tv_usec = 0; 728 tv[1].tv_sec = lut.l_modtime; 729 tv[1].tv_usec = 0; 730 tvp = tv; 731 } else 732 tvp = NULL; 733 734 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, 735 UIO_SYSSPACE); 736 LFREEPATH(fname); 737 return (error); 738 } 739 #endif 740 741 #ifdef LINUX_LEGACY_SYSCALLS 742 int 743 linux_utimes(struct thread *td, struct linux_utimes_args *args) 744 { 745 l_timeval ltv[2]; 746 struct timeval tv[2], *tvp = NULL; 747 char *fname; 748 int error; 749 750 LCONVPATHEXIST(td, args->fname, &fname); 751 752 if (args->tptr != NULL) { 753 if ((error = copyin(args->tptr, ltv, sizeof ltv))) { 754 LFREEPATH(fname); 755 return (error); 756 } 757 tv[0].tv_sec = ltv[0].tv_sec; 758 tv[0].tv_usec = ltv[0].tv_usec; 759 tv[1].tv_sec = ltv[1].tv_sec; 760 tv[1].tv_usec = ltv[1].tv_usec; 761 tvp = tv; 762 } 763 764 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, 765 tvp, UIO_SYSSPACE); 766 LFREEPATH(fname); 767 return (error); 768 } 769 #endif 770 771 static int 772 linux_utimensat_nsec_valid(l_long nsec) 773 { 774 775 if (nsec == LINUX_UTIME_OMIT || nsec == LINUX_UTIME_NOW) 776 return (0); 777 if (nsec >= 0 && nsec <= 999999999) 778 return (0); 779 return (1); 780 } 781 782 int 783 linux_utimensat(struct thread *td, struct linux_utimensat_args *args) 784 { 785 struct l_timespec l_times[2]; 786 struct timespec times[2], *timesp = NULL; 787 char *path = NULL; 788 int error, dfd, flags = 0; 789 790 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 791 792 if (args->flags & ~LINUX_AT_SYMLINK_NOFOLLOW) 793 return (EINVAL); 794 795 if (args->times != NULL) { 796 error = copyin(args->times, l_times, sizeof(l_times)); 797 if (error != 0) 798 return (error); 799 800 if (linux_utimensat_nsec_valid(l_times[0].tv_nsec) != 0 || 801 linux_utimensat_nsec_valid(l_times[1].tv_nsec) != 0) 802 return (EINVAL); 803 804 times[0].tv_sec = l_times[0].tv_sec; 805 switch (l_times[0].tv_nsec) 806 { 807 case LINUX_UTIME_OMIT: 808 times[0].tv_nsec = UTIME_OMIT; 809 break; 810 case LINUX_UTIME_NOW: 811 times[0].tv_nsec = UTIME_NOW; 812 break; 813 default: 814 times[0].tv_nsec = l_times[0].tv_nsec; 815 } 816 817 times[1].tv_sec = l_times[1].tv_sec; 818 switch (l_times[1].tv_nsec) 819 { 820 case LINUX_UTIME_OMIT: 821 times[1].tv_nsec = UTIME_OMIT; 822 break; 823 case LINUX_UTIME_NOW: 824 times[1].tv_nsec = UTIME_NOW; 825 break; 826 default: 827 times[1].tv_nsec = l_times[1].tv_nsec; 828 break; 829 } 830 timesp = times; 831 832 /* This breaks POSIX, but is what the Linux kernel does 833 * _on purpose_ (documented in the man page for utimensat(2)), 834 * so we must follow that behaviour. */ 835 if (times[0].tv_nsec == UTIME_OMIT && 836 times[1].tv_nsec == UTIME_OMIT) 837 return (0); 838 } 839 840 if (args->pathname != NULL) 841 LCONVPATHEXIST_AT(td, args->pathname, &path, dfd); 842 else if (args->flags != 0) 843 return (EINVAL); 844 845 if (args->flags & LINUX_AT_SYMLINK_NOFOLLOW) 846 flags |= AT_SYMLINK_NOFOLLOW; 847 848 if (path == NULL) 849 error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE); 850 else { 851 error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp, 852 UIO_SYSSPACE, flags); 853 LFREEPATH(path); 854 } 855 856 return (error); 857 } 858 859 #ifdef LINUX_LEGACY_SYSCALLS 860 int 861 linux_futimesat(struct thread *td, struct linux_futimesat_args *args) 862 { 863 l_timeval ltv[2]; 864 struct timeval tv[2], *tvp = NULL; 865 char *fname; 866 int error, dfd; 867 868 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 869 LCONVPATHEXIST_AT(td, args->filename, &fname, dfd); 870 871 if (args->utimes != NULL) { 872 if ((error = copyin(args->utimes, ltv, sizeof ltv))) { 873 LFREEPATH(fname); 874 return (error); 875 } 876 tv[0].tv_sec = ltv[0].tv_sec; 877 tv[0].tv_usec = ltv[0].tv_usec; 878 tv[1].tv_sec = ltv[1].tv_sec; 879 tv[1].tv_usec = ltv[1].tv_usec; 880 tvp = tv; 881 } 882 883 error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); 884 LFREEPATH(fname); 885 return (error); 886 } 887 #endif 888 889 static int 890 linux_common_wait(struct thread *td, int pid, int *statusp, 891 int options, struct __wrusage *wrup) 892 { 893 siginfo_t siginfo; 894 idtype_t idtype; 895 id_t id; 896 int error, status, tmpstat; 897 898 if (pid == WAIT_ANY) { 899 idtype = P_ALL; 900 id = 0; 901 } else if (pid < 0) { 902 idtype = P_PGID; 903 id = (id_t)-pid; 904 } else { 905 idtype = P_PID; 906 id = (id_t)pid; 907 } 908 909 /* 910 * For backward compatibility we implicitly add flags WEXITED 911 * and WTRAPPED here. 912 */ 913 options |= WEXITED | WTRAPPED; 914 error = kern_wait6(td, idtype, id, &status, options, wrup, &siginfo); 915 if (error) 916 return (error); 917 918 if (statusp) { 919 tmpstat = status & 0xffff; 920 if (WIFSIGNALED(tmpstat)) { 921 tmpstat = (tmpstat & 0xffffff80) | 922 bsd_to_linux_signal(WTERMSIG(tmpstat)); 923 } else if (WIFSTOPPED(tmpstat)) { 924 tmpstat = (tmpstat & 0xffff00ff) | 925 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); 926 #if defined(__amd64__) && !defined(COMPAT_LINUX32) 927 if (WSTOPSIG(status) == SIGTRAP) { 928 tmpstat = linux_ptrace_status(td, 929 siginfo.si_pid, tmpstat); 930 } 931 #endif 932 } else if (WIFCONTINUED(tmpstat)) { 933 tmpstat = 0xffff; 934 } 935 error = copyout(&tmpstat, statusp, sizeof(int)); 936 } 937 938 return (error); 939 } 940 941 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 942 int 943 linux_waitpid(struct thread *td, struct linux_waitpid_args *args) 944 { 945 struct linux_wait4_args wait4_args; 946 947 wait4_args.pid = args->pid; 948 wait4_args.status = args->status; 949 wait4_args.options = args->options; 950 wait4_args.rusage = NULL; 951 952 return (linux_wait4(td, &wait4_args)); 953 } 954 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 955 956 int 957 linux_wait4(struct thread *td, struct linux_wait4_args *args) 958 { 959 int error, options; 960 struct __wrusage wru, *wrup; 961 962 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | 963 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 964 return (EINVAL); 965 966 options = WEXITED; 967 linux_to_bsd_waitopts(args->options, &options); 968 969 if (args->rusage != NULL) 970 wrup = &wru; 971 else 972 wrup = NULL; 973 error = linux_common_wait(td, args->pid, args->status, options, wrup); 974 if (error != 0) 975 return (error); 976 if (args->rusage != NULL) 977 error = linux_copyout_rusage(&wru.wru_self, args->rusage); 978 return (error); 979 } 980 981 int 982 linux_waitid(struct thread *td, struct linux_waitid_args *args) 983 { 984 int status, options, sig; 985 struct __wrusage wru; 986 siginfo_t siginfo; 987 l_siginfo_t lsi; 988 idtype_t idtype; 989 struct proc *p; 990 int error; 991 992 options = 0; 993 linux_to_bsd_waitopts(args->options, &options); 994 995 if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED)) 996 return (EINVAL); 997 if (!(options & (WEXITED | WUNTRACED | WCONTINUED))) 998 return (EINVAL); 999 1000 switch (args->idtype) { 1001 case LINUX_P_ALL: 1002 idtype = P_ALL; 1003 break; 1004 case LINUX_P_PID: 1005 if (args->id <= 0) 1006 return (EINVAL); 1007 idtype = P_PID; 1008 break; 1009 case LINUX_P_PGID: 1010 if (args->id <= 0) 1011 return (EINVAL); 1012 idtype = P_PGID; 1013 break; 1014 default: 1015 return (EINVAL); 1016 } 1017 1018 error = kern_wait6(td, idtype, args->id, &status, options, 1019 &wru, &siginfo); 1020 if (error != 0) 1021 return (error); 1022 if (args->rusage != NULL) { 1023 error = linux_copyout_rusage(&wru.wru_children, 1024 args->rusage); 1025 if (error != 0) 1026 return (error); 1027 } 1028 if (args->info != NULL) { 1029 p = td->td_proc; 1030 bzero(&lsi, sizeof(lsi)); 1031 if (td->td_retval[0] != 0) { 1032 sig = bsd_to_linux_signal(siginfo.si_signo); 1033 siginfo_to_lsiginfo(&siginfo, &lsi, sig); 1034 } 1035 error = copyout(&lsi, args->info, sizeof(lsi)); 1036 } 1037 td->td_retval[0] = 0; 1038 1039 return (error); 1040 } 1041 1042 #ifdef LINUX_LEGACY_SYSCALLS 1043 int 1044 linux_mknod(struct thread *td, struct linux_mknod_args *args) 1045 { 1046 char *path; 1047 int error; 1048 1049 LCONVPATHCREAT(td, args->path, &path); 1050 1051 switch (args->mode & S_IFMT) { 1052 case S_IFIFO: 1053 case S_IFSOCK: 1054 error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE, 1055 args->mode); 1056 break; 1057 1058 case S_IFCHR: 1059 case S_IFBLK: 1060 error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE, 1061 args->mode, args->dev); 1062 break; 1063 1064 case S_IFDIR: 1065 error = EPERM; 1066 break; 1067 1068 case 0: 1069 args->mode |= S_IFREG; 1070 /* FALLTHROUGH */ 1071 case S_IFREG: 1072 error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE, 1073 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1074 if (error == 0) 1075 kern_close(td, td->td_retval[0]); 1076 break; 1077 1078 default: 1079 error = EINVAL; 1080 break; 1081 } 1082 LFREEPATH(path); 1083 return (error); 1084 } 1085 #endif 1086 1087 int 1088 linux_mknodat(struct thread *td, struct linux_mknodat_args *args) 1089 { 1090 char *path; 1091 int error, dfd; 1092 1093 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 1094 LCONVPATHCREAT_AT(td, args->filename, &path, dfd); 1095 1096 switch (args->mode & S_IFMT) { 1097 case S_IFIFO: 1098 case S_IFSOCK: 1099 error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode); 1100 break; 1101 1102 case S_IFCHR: 1103 case S_IFBLK: 1104 error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode, 1105 args->dev); 1106 break; 1107 1108 case S_IFDIR: 1109 error = EPERM; 1110 break; 1111 1112 case 0: 1113 args->mode |= S_IFREG; 1114 /* FALLTHROUGH */ 1115 case S_IFREG: 1116 error = kern_openat(td, dfd, path, UIO_SYSSPACE, 1117 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1118 if (error == 0) 1119 kern_close(td, td->td_retval[0]); 1120 break; 1121 1122 default: 1123 error = EINVAL; 1124 break; 1125 } 1126 LFREEPATH(path); 1127 return (error); 1128 } 1129 1130 /* 1131 * UGH! This is just about the dumbest idea I've ever heard!! 1132 */ 1133 int 1134 linux_personality(struct thread *td, struct linux_personality_args *args) 1135 { 1136 struct linux_pemuldata *pem; 1137 struct proc *p = td->td_proc; 1138 uint32_t old; 1139 1140 PROC_LOCK(p); 1141 pem = pem_find(p); 1142 old = pem->persona; 1143 if (args->per != 0xffffffff) 1144 pem->persona = args->per; 1145 PROC_UNLOCK(p); 1146 1147 td->td_retval[0] = old; 1148 return (0); 1149 } 1150 1151 struct l_itimerval { 1152 l_timeval it_interval; 1153 l_timeval it_value; 1154 }; 1155 1156 #define B2L_ITIMERVAL(bip, lip) \ 1157 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ 1158 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ 1159 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ 1160 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; 1161 1162 int 1163 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) 1164 { 1165 int error; 1166 struct l_itimerval ls; 1167 struct itimerval aitv, oitv; 1168 1169 if (uap->itv == NULL) { 1170 uap->itv = uap->oitv; 1171 return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); 1172 } 1173 1174 error = copyin(uap->itv, &ls, sizeof(ls)); 1175 if (error != 0) 1176 return (error); 1177 B2L_ITIMERVAL(&aitv, &ls); 1178 error = kern_setitimer(td, uap->which, &aitv, &oitv); 1179 if (error != 0 || uap->oitv == NULL) 1180 return (error); 1181 B2L_ITIMERVAL(&ls, &oitv); 1182 1183 return (copyout(&ls, uap->oitv, sizeof(ls))); 1184 } 1185 1186 int 1187 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) 1188 { 1189 int error; 1190 struct l_itimerval ls; 1191 struct itimerval aitv; 1192 1193 error = kern_getitimer(td, uap->which, &aitv); 1194 if (error != 0) 1195 return (error); 1196 B2L_ITIMERVAL(&ls, &aitv); 1197 return (copyout(&ls, uap->itv, sizeof(ls))); 1198 } 1199 1200 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1201 int 1202 linux_nice(struct thread *td, struct linux_nice_args *args) 1203 { 1204 struct setpriority_args bsd_args; 1205 1206 bsd_args.which = PRIO_PROCESS; 1207 bsd_args.who = 0; /* current process */ 1208 bsd_args.prio = args->inc; 1209 return (sys_setpriority(td, &bsd_args)); 1210 } 1211 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1212 1213 int 1214 linux_setgroups(struct thread *td, struct linux_setgroups_args *args) 1215 { 1216 struct ucred *newcred, *oldcred; 1217 l_gid_t *linux_gidset; 1218 gid_t *bsd_gidset; 1219 int ngrp, error; 1220 struct proc *p; 1221 1222 ngrp = args->gidsetsize; 1223 if (ngrp < 0 || ngrp >= ngroups_max + 1) 1224 return (EINVAL); 1225 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); 1226 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); 1227 if (error) 1228 goto out; 1229 newcred = crget(); 1230 crextend(newcred, ngrp + 1); 1231 p = td->td_proc; 1232 PROC_LOCK(p); 1233 oldcred = p->p_ucred; 1234 crcopy(newcred, oldcred); 1235 1236 /* 1237 * cr_groups[0] holds egid. Setting the whole set from 1238 * the supplied set will cause egid to be changed too. 1239 * Keep cr_groups[0] unchanged to prevent that. 1240 */ 1241 1242 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) { 1243 PROC_UNLOCK(p); 1244 crfree(newcred); 1245 goto out; 1246 } 1247 1248 if (ngrp > 0) { 1249 newcred->cr_ngroups = ngrp + 1; 1250 1251 bsd_gidset = newcred->cr_groups; 1252 ngrp--; 1253 while (ngrp >= 0) { 1254 bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; 1255 ngrp--; 1256 } 1257 } else 1258 newcred->cr_ngroups = 1; 1259 1260 setsugid(p); 1261 proc_set_cred(p, newcred); 1262 PROC_UNLOCK(p); 1263 crfree(oldcred); 1264 error = 0; 1265 out: 1266 free(linux_gidset, M_LINUX); 1267 return (error); 1268 } 1269 1270 int 1271 linux_getgroups(struct thread *td, struct linux_getgroups_args *args) 1272 { 1273 struct ucred *cred; 1274 l_gid_t *linux_gidset; 1275 gid_t *bsd_gidset; 1276 int bsd_gidsetsz, ngrp, error; 1277 1278 cred = td->td_ucred; 1279 bsd_gidset = cred->cr_groups; 1280 bsd_gidsetsz = cred->cr_ngroups - 1; 1281 1282 /* 1283 * cr_groups[0] holds egid. Returning the whole set 1284 * here will cause a duplicate. Exclude cr_groups[0] 1285 * to prevent that. 1286 */ 1287 1288 if ((ngrp = args->gidsetsize) == 0) { 1289 td->td_retval[0] = bsd_gidsetsz; 1290 return (0); 1291 } 1292 1293 if (ngrp < bsd_gidsetsz) 1294 return (EINVAL); 1295 1296 ngrp = 0; 1297 linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), 1298 M_LINUX, M_WAITOK); 1299 while (ngrp < bsd_gidsetsz) { 1300 linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; 1301 ngrp++; 1302 } 1303 1304 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); 1305 free(linux_gidset, M_LINUX); 1306 if (error) 1307 return (error); 1308 1309 td->td_retval[0] = ngrp; 1310 return (0); 1311 } 1312 1313 int 1314 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) 1315 { 1316 struct rlimit bsd_rlim; 1317 struct l_rlimit rlim; 1318 u_int which; 1319 int error; 1320 1321 if (args->resource >= LINUX_RLIM_NLIMITS) 1322 return (EINVAL); 1323 1324 which = linux_to_bsd_resource[args->resource]; 1325 if (which == -1) 1326 return (EINVAL); 1327 1328 error = copyin(args->rlim, &rlim, sizeof(rlim)); 1329 if (error) 1330 return (error); 1331 1332 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; 1333 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; 1334 return (kern_setrlimit(td, which, &bsd_rlim)); 1335 } 1336 1337 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1338 int 1339 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) 1340 { 1341 struct l_rlimit rlim; 1342 struct rlimit bsd_rlim; 1343 u_int which; 1344 1345 if (args->resource >= LINUX_RLIM_NLIMITS) 1346 return (EINVAL); 1347 1348 which = linux_to_bsd_resource[args->resource]; 1349 if (which == -1) 1350 return (EINVAL); 1351 1352 lim_rlimit(td, which, &bsd_rlim); 1353 1354 #ifdef COMPAT_LINUX32 1355 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; 1356 if (rlim.rlim_cur == UINT_MAX) 1357 rlim.rlim_cur = INT_MAX; 1358 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; 1359 if (rlim.rlim_max == UINT_MAX) 1360 rlim.rlim_max = INT_MAX; 1361 #else 1362 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; 1363 if (rlim.rlim_cur == ULONG_MAX) 1364 rlim.rlim_cur = LONG_MAX; 1365 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; 1366 if (rlim.rlim_max == ULONG_MAX) 1367 rlim.rlim_max = LONG_MAX; 1368 #endif 1369 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1370 } 1371 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1372 1373 int 1374 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) 1375 { 1376 struct l_rlimit rlim; 1377 struct rlimit bsd_rlim; 1378 u_int which; 1379 1380 if (args->resource >= LINUX_RLIM_NLIMITS) 1381 return (EINVAL); 1382 1383 which = linux_to_bsd_resource[args->resource]; 1384 if (which == -1) 1385 return (EINVAL); 1386 1387 lim_rlimit(td, which, &bsd_rlim); 1388 1389 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; 1390 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; 1391 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1392 } 1393 1394 int 1395 linux_sched_setscheduler(struct thread *td, 1396 struct linux_sched_setscheduler_args *args) 1397 { 1398 struct sched_param sched_param; 1399 struct thread *tdt; 1400 int error, policy; 1401 1402 switch (args->policy) { 1403 case LINUX_SCHED_OTHER: 1404 policy = SCHED_OTHER; 1405 break; 1406 case LINUX_SCHED_FIFO: 1407 policy = SCHED_FIFO; 1408 break; 1409 case LINUX_SCHED_RR: 1410 policy = SCHED_RR; 1411 break; 1412 default: 1413 return (EINVAL); 1414 } 1415 1416 error = copyin(args->param, &sched_param, sizeof(sched_param)); 1417 if (error) 1418 return (error); 1419 1420 tdt = linux_tdfind(td, args->pid, -1); 1421 if (tdt == NULL) 1422 return (ESRCH); 1423 1424 error = kern_sched_setscheduler(td, tdt, policy, &sched_param); 1425 PROC_UNLOCK(tdt->td_proc); 1426 return (error); 1427 } 1428 1429 int 1430 linux_sched_getscheduler(struct thread *td, 1431 struct linux_sched_getscheduler_args *args) 1432 { 1433 struct thread *tdt; 1434 int error, policy; 1435 1436 tdt = linux_tdfind(td, args->pid, -1); 1437 if (tdt == NULL) 1438 return (ESRCH); 1439 1440 error = kern_sched_getscheduler(td, tdt, &policy); 1441 PROC_UNLOCK(tdt->td_proc); 1442 1443 switch (policy) { 1444 case SCHED_OTHER: 1445 td->td_retval[0] = LINUX_SCHED_OTHER; 1446 break; 1447 case SCHED_FIFO: 1448 td->td_retval[0] = LINUX_SCHED_FIFO; 1449 break; 1450 case SCHED_RR: 1451 td->td_retval[0] = LINUX_SCHED_RR; 1452 break; 1453 } 1454 return (error); 1455 } 1456 1457 int 1458 linux_sched_get_priority_max(struct thread *td, 1459 struct linux_sched_get_priority_max_args *args) 1460 { 1461 struct sched_get_priority_max_args bsd; 1462 1463 switch (args->policy) { 1464 case LINUX_SCHED_OTHER: 1465 bsd.policy = SCHED_OTHER; 1466 break; 1467 case LINUX_SCHED_FIFO: 1468 bsd.policy = SCHED_FIFO; 1469 break; 1470 case LINUX_SCHED_RR: 1471 bsd.policy = SCHED_RR; 1472 break; 1473 default: 1474 return (EINVAL); 1475 } 1476 return (sys_sched_get_priority_max(td, &bsd)); 1477 } 1478 1479 int 1480 linux_sched_get_priority_min(struct thread *td, 1481 struct linux_sched_get_priority_min_args *args) 1482 { 1483 struct sched_get_priority_min_args bsd; 1484 1485 switch (args->policy) { 1486 case LINUX_SCHED_OTHER: 1487 bsd.policy = SCHED_OTHER; 1488 break; 1489 case LINUX_SCHED_FIFO: 1490 bsd.policy = SCHED_FIFO; 1491 break; 1492 case LINUX_SCHED_RR: 1493 bsd.policy = SCHED_RR; 1494 break; 1495 default: 1496 return (EINVAL); 1497 } 1498 return (sys_sched_get_priority_min(td, &bsd)); 1499 } 1500 1501 #define REBOOT_CAD_ON 0x89abcdef 1502 #define REBOOT_CAD_OFF 0 1503 #define REBOOT_HALT 0xcdef0123 1504 #define REBOOT_RESTART 0x01234567 1505 #define REBOOT_RESTART2 0xA1B2C3D4 1506 #define REBOOT_POWEROFF 0x4321FEDC 1507 #define REBOOT_MAGIC1 0xfee1dead 1508 #define REBOOT_MAGIC2 0x28121969 1509 #define REBOOT_MAGIC2A 0x05121996 1510 #define REBOOT_MAGIC2B 0x16041998 1511 1512 int 1513 linux_reboot(struct thread *td, struct linux_reboot_args *args) 1514 { 1515 struct reboot_args bsd_args; 1516 1517 if (args->magic1 != REBOOT_MAGIC1) 1518 return (EINVAL); 1519 1520 switch (args->magic2) { 1521 case REBOOT_MAGIC2: 1522 case REBOOT_MAGIC2A: 1523 case REBOOT_MAGIC2B: 1524 break; 1525 default: 1526 return (EINVAL); 1527 } 1528 1529 switch (args->cmd) { 1530 case REBOOT_CAD_ON: 1531 case REBOOT_CAD_OFF: 1532 return (priv_check(td, PRIV_REBOOT)); 1533 case REBOOT_HALT: 1534 bsd_args.opt = RB_HALT; 1535 break; 1536 case REBOOT_RESTART: 1537 case REBOOT_RESTART2: 1538 bsd_args.opt = 0; 1539 break; 1540 case REBOOT_POWEROFF: 1541 bsd_args.opt = RB_POWEROFF; 1542 break; 1543 default: 1544 return (EINVAL); 1545 } 1546 return (sys_reboot(td, &bsd_args)); 1547 } 1548 1549 1550 int 1551 linux_getpid(struct thread *td, struct linux_getpid_args *args) 1552 { 1553 1554 td->td_retval[0] = td->td_proc->p_pid; 1555 1556 return (0); 1557 } 1558 1559 int 1560 linux_gettid(struct thread *td, struct linux_gettid_args *args) 1561 { 1562 struct linux_emuldata *em; 1563 1564 em = em_find(td); 1565 KASSERT(em != NULL, ("gettid: emuldata not found.\n")); 1566 1567 td->td_retval[0] = em->em_tid; 1568 1569 return (0); 1570 } 1571 1572 1573 int 1574 linux_getppid(struct thread *td, struct linux_getppid_args *args) 1575 { 1576 1577 td->td_retval[0] = kern_getppid(td); 1578 return (0); 1579 } 1580 1581 int 1582 linux_getgid(struct thread *td, struct linux_getgid_args *args) 1583 { 1584 1585 td->td_retval[0] = td->td_ucred->cr_rgid; 1586 return (0); 1587 } 1588 1589 int 1590 linux_getuid(struct thread *td, struct linux_getuid_args *args) 1591 { 1592 1593 td->td_retval[0] = td->td_ucred->cr_ruid; 1594 return (0); 1595 } 1596 1597 1598 int 1599 linux_getsid(struct thread *td, struct linux_getsid_args *args) 1600 { 1601 struct getsid_args bsd; 1602 1603 bsd.pid = args->pid; 1604 return (sys_getsid(td, &bsd)); 1605 } 1606 1607 int 1608 linux_nosys(struct thread *td, struct nosys_args *ignore) 1609 { 1610 1611 return (ENOSYS); 1612 } 1613 1614 int 1615 linux_getpriority(struct thread *td, struct linux_getpriority_args *args) 1616 { 1617 struct getpriority_args bsd_args; 1618 int error; 1619 1620 bsd_args.which = args->which; 1621 bsd_args.who = args->who; 1622 error = sys_getpriority(td, &bsd_args); 1623 td->td_retval[0] = 20 - td->td_retval[0]; 1624 return (error); 1625 } 1626 1627 int 1628 linux_sethostname(struct thread *td, struct linux_sethostname_args *args) 1629 { 1630 int name[2]; 1631 1632 name[0] = CTL_KERN; 1633 name[1] = KERN_HOSTNAME; 1634 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, 1635 args->len, 0, 0)); 1636 } 1637 1638 int 1639 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) 1640 { 1641 int name[2]; 1642 1643 name[0] = CTL_KERN; 1644 name[1] = KERN_NISDOMAINNAME; 1645 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, 1646 args->len, 0, 0)); 1647 } 1648 1649 int 1650 linux_exit_group(struct thread *td, struct linux_exit_group_args *args) 1651 { 1652 1653 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, 1654 args->error_code); 1655 1656 /* 1657 * XXX: we should send a signal to the parent if 1658 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) 1659 * as it doesnt occur often. 1660 */ 1661 exit1(td, args->error_code, 0); 1662 /* NOTREACHED */ 1663 } 1664 1665 #define _LINUX_CAPABILITY_VERSION_1 0x19980330 1666 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 1667 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 1668 1669 struct l_user_cap_header { 1670 l_int version; 1671 l_int pid; 1672 }; 1673 1674 struct l_user_cap_data { 1675 l_int effective; 1676 l_int permitted; 1677 l_int inheritable; 1678 }; 1679 1680 int 1681 linux_capget(struct thread *td, struct linux_capget_args *uap) 1682 { 1683 struct l_user_cap_header luch; 1684 struct l_user_cap_data lucd[2]; 1685 int error, u32s; 1686 1687 if (uap->hdrp == NULL) 1688 return (EFAULT); 1689 1690 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1691 if (error != 0) 1692 return (error); 1693 1694 switch (luch.version) { 1695 case _LINUX_CAPABILITY_VERSION_1: 1696 u32s = 1; 1697 break; 1698 case _LINUX_CAPABILITY_VERSION_2: 1699 case _LINUX_CAPABILITY_VERSION_3: 1700 u32s = 2; 1701 break; 1702 default: 1703 luch.version = _LINUX_CAPABILITY_VERSION_1; 1704 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1705 if (error) 1706 return (error); 1707 return (EINVAL); 1708 } 1709 1710 if (luch.pid) 1711 return (EPERM); 1712 1713 if (uap->datap) { 1714 /* 1715 * The current implementation doesn't support setting 1716 * a capability (it's essentially a stub) so indicate 1717 * that no capabilities are currently set or available 1718 * to request. 1719 */ 1720 memset(&lucd, 0, u32s * sizeof(lucd[0])); 1721 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); 1722 } 1723 1724 return (error); 1725 } 1726 1727 int 1728 linux_capset(struct thread *td, struct linux_capset_args *uap) 1729 { 1730 struct l_user_cap_header luch; 1731 struct l_user_cap_data lucd[2]; 1732 int error, i, u32s; 1733 1734 if (uap->hdrp == NULL || uap->datap == NULL) 1735 return (EFAULT); 1736 1737 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1738 if (error != 0) 1739 return (error); 1740 1741 switch (luch.version) { 1742 case _LINUX_CAPABILITY_VERSION_1: 1743 u32s = 1; 1744 break; 1745 case _LINUX_CAPABILITY_VERSION_2: 1746 case _LINUX_CAPABILITY_VERSION_3: 1747 u32s = 2; 1748 break; 1749 default: 1750 luch.version = _LINUX_CAPABILITY_VERSION_1; 1751 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1752 if (error) 1753 return (error); 1754 return (EINVAL); 1755 } 1756 1757 if (luch.pid) 1758 return (EPERM); 1759 1760 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); 1761 if (error != 0) 1762 return (error); 1763 1764 /* We currently don't support setting any capabilities. */ 1765 for (i = 0; i < u32s; i++) { 1766 if (lucd[i].effective || lucd[i].permitted || 1767 lucd[i].inheritable) { 1768 linux_msg(td, 1769 "capset[%d] effective=0x%x, permitted=0x%x, " 1770 "inheritable=0x%x is not implemented", i, 1771 (int)lucd[i].effective, (int)lucd[i].permitted, 1772 (int)lucd[i].inheritable); 1773 return (EPERM); 1774 } 1775 } 1776 1777 return (0); 1778 } 1779 1780 int 1781 linux_prctl(struct thread *td, struct linux_prctl_args *args) 1782 { 1783 int error = 0, max_size; 1784 struct proc *p = td->td_proc; 1785 char comm[LINUX_MAX_COMM_LEN]; 1786 int pdeath_signal; 1787 1788 switch (args->option) { 1789 case LINUX_PR_SET_PDEATHSIG: 1790 if (!LINUX_SIG_VALID(args->arg2)) 1791 return (EINVAL); 1792 pdeath_signal = linux_to_bsd_signal(args->arg2); 1793 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL, 1794 &pdeath_signal)); 1795 case LINUX_PR_GET_PDEATHSIG: 1796 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS, 1797 &pdeath_signal); 1798 if (error != 0) 1799 return (error); 1800 pdeath_signal = bsd_to_linux_signal(pdeath_signal); 1801 return (copyout(&pdeath_signal, 1802 (void *)(register_t)args->arg2, 1803 sizeof(pdeath_signal))); 1804 break; 1805 case LINUX_PR_GET_KEEPCAPS: 1806 /* 1807 * Indicate that we always clear the effective and 1808 * permitted capability sets when the user id becomes 1809 * non-zero (actually the capability sets are simply 1810 * always zero in the current implementation). 1811 */ 1812 td->td_retval[0] = 0; 1813 break; 1814 case LINUX_PR_SET_KEEPCAPS: 1815 /* 1816 * Ignore requests to keep the effective and permitted 1817 * capability sets when the user id becomes non-zero. 1818 */ 1819 break; 1820 case LINUX_PR_SET_NAME: 1821 /* 1822 * To be on the safe side we need to make sure to not 1823 * overflow the size a Linux program expects. We already 1824 * do this here in the copyin, so that we don't need to 1825 * check on copyout. 1826 */ 1827 max_size = MIN(sizeof(comm), sizeof(p->p_comm)); 1828 error = copyinstr((void *)(register_t)args->arg2, comm, 1829 max_size, NULL); 1830 1831 /* Linux silently truncates the name if it is too long. */ 1832 if (error == ENAMETOOLONG) { 1833 /* 1834 * XXX: copyinstr() isn't documented to populate the 1835 * array completely, so do a copyin() to be on the 1836 * safe side. This should be changed in case 1837 * copyinstr() is changed to guarantee this. 1838 */ 1839 error = copyin((void *)(register_t)args->arg2, comm, 1840 max_size - 1); 1841 comm[max_size - 1] = '\0'; 1842 } 1843 if (error) 1844 return (error); 1845 1846 PROC_LOCK(p); 1847 strlcpy(p->p_comm, comm, sizeof(p->p_comm)); 1848 PROC_UNLOCK(p); 1849 break; 1850 case LINUX_PR_GET_NAME: 1851 PROC_LOCK(p); 1852 strlcpy(comm, p->p_comm, sizeof(comm)); 1853 PROC_UNLOCK(p); 1854 error = copyout(comm, (void *)(register_t)args->arg2, 1855 strlen(comm) + 1); 1856 break; 1857 default: 1858 error = EINVAL; 1859 break; 1860 } 1861 1862 return (error); 1863 } 1864 1865 int 1866 linux_sched_setparam(struct thread *td, 1867 struct linux_sched_setparam_args *uap) 1868 { 1869 struct sched_param sched_param; 1870 struct thread *tdt; 1871 int error; 1872 1873 error = copyin(uap->param, &sched_param, sizeof(sched_param)); 1874 if (error) 1875 return (error); 1876 1877 tdt = linux_tdfind(td, uap->pid, -1); 1878 if (tdt == NULL) 1879 return (ESRCH); 1880 1881 error = kern_sched_setparam(td, tdt, &sched_param); 1882 PROC_UNLOCK(tdt->td_proc); 1883 return (error); 1884 } 1885 1886 int 1887 linux_sched_getparam(struct thread *td, 1888 struct linux_sched_getparam_args *uap) 1889 { 1890 struct sched_param sched_param; 1891 struct thread *tdt; 1892 int error; 1893 1894 tdt = linux_tdfind(td, uap->pid, -1); 1895 if (tdt == NULL) 1896 return (ESRCH); 1897 1898 error = kern_sched_getparam(td, tdt, &sched_param); 1899 PROC_UNLOCK(tdt->td_proc); 1900 if (error == 0) 1901 error = copyout(&sched_param, uap->param, 1902 sizeof(sched_param)); 1903 return (error); 1904 } 1905 1906 /* 1907 * Get affinity of a process. 1908 */ 1909 int 1910 linux_sched_getaffinity(struct thread *td, 1911 struct linux_sched_getaffinity_args *args) 1912 { 1913 int error; 1914 struct thread *tdt; 1915 1916 if (args->len < sizeof(cpuset_t)) 1917 return (EINVAL); 1918 1919 tdt = linux_tdfind(td, args->pid, -1); 1920 if (tdt == NULL) 1921 return (ESRCH); 1922 1923 PROC_UNLOCK(tdt->td_proc); 1924 1925 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1926 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr); 1927 if (error == 0) 1928 td->td_retval[0] = sizeof(cpuset_t); 1929 1930 return (error); 1931 } 1932 1933 /* 1934 * Set affinity of a process. 1935 */ 1936 int 1937 linux_sched_setaffinity(struct thread *td, 1938 struct linux_sched_setaffinity_args *args) 1939 { 1940 struct thread *tdt; 1941 1942 if (args->len < sizeof(cpuset_t)) 1943 return (EINVAL); 1944 1945 tdt = linux_tdfind(td, args->pid, -1); 1946 if (tdt == NULL) 1947 return (ESRCH); 1948 1949 PROC_UNLOCK(tdt->td_proc); 1950 1951 return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1952 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr)); 1953 } 1954 1955 struct linux_rlimit64 { 1956 uint64_t rlim_cur; 1957 uint64_t rlim_max; 1958 }; 1959 1960 int 1961 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) 1962 { 1963 struct rlimit rlim, nrlim; 1964 struct linux_rlimit64 lrlim; 1965 struct proc *p; 1966 u_int which; 1967 int flags; 1968 int error; 1969 1970 if (args->resource >= LINUX_RLIM_NLIMITS) 1971 return (EINVAL); 1972 1973 which = linux_to_bsd_resource[args->resource]; 1974 if (which == -1) 1975 return (EINVAL); 1976 1977 if (args->new != NULL) { 1978 /* 1979 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux 1980 * rlim is unsigned 64-bit. FreeBSD treats negative limits 1981 * as INFINITY so we do not need a conversion even. 1982 */ 1983 error = copyin(args->new, &nrlim, sizeof(nrlim)); 1984 if (error != 0) 1985 return (error); 1986 } 1987 1988 flags = PGET_HOLD | PGET_NOTWEXIT; 1989 if (args->new != NULL) 1990 flags |= PGET_CANDEBUG; 1991 else 1992 flags |= PGET_CANSEE; 1993 if (args->pid == 0) { 1994 p = td->td_proc; 1995 PHOLD(p); 1996 } else { 1997 error = pget(args->pid, flags, &p); 1998 if (error != 0) 1999 return (error); 2000 } 2001 if (args->old != NULL) { 2002 PROC_LOCK(p); 2003 lim_rlimit_proc(p, which, &rlim); 2004 PROC_UNLOCK(p); 2005 if (rlim.rlim_cur == RLIM_INFINITY) 2006 lrlim.rlim_cur = LINUX_RLIM_INFINITY; 2007 else 2008 lrlim.rlim_cur = rlim.rlim_cur; 2009 if (rlim.rlim_max == RLIM_INFINITY) 2010 lrlim.rlim_max = LINUX_RLIM_INFINITY; 2011 else 2012 lrlim.rlim_max = rlim.rlim_max; 2013 error = copyout(&lrlim, args->old, sizeof(lrlim)); 2014 if (error != 0) 2015 goto out; 2016 } 2017 2018 if (args->new != NULL) 2019 error = kern_proc_setrlimit(td, p, which, &nrlim); 2020 2021 out: 2022 PRELE(p); 2023 return (error); 2024 } 2025 2026 int 2027 linux_pselect6(struct thread *td, struct linux_pselect6_args *args) 2028 { 2029 struct timeval utv, tv0, tv1, *tvp; 2030 struct l_pselect6arg lpse6; 2031 struct l_timespec lts; 2032 struct timespec uts; 2033 l_sigset_t l_ss; 2034 sigset_t *ssp; 2035 sigset_t ss; 2036 int error; 2037 2038 ssp = NULL; 2039 if (args->sig != NULL) { 2040 error = copyin(args->sig, &lpse6, sizeof(lpse6)); 2041 if (error != 0) 2042 return (error); 2043 if (lpse6.ss_len != sizeof(l_ss)) 2044 return (EINVAL); 2045 if (lpse6.ss != 0) { 2046 error = copyin(PTRIN(lpse6.ss), &l_ss, 2047 sizeof(l_ss)); 2048 if (error != 0) 2049 return (error); 2050 linux_to_bsd_sigset(&l_ss, &ss); 2051 ssp = &ss; 2052 } 2053 } 2054 2055 /* 2056 * Currently glibc changes nanosecond number to microsecond. 2057 * This mean losing precision but for now it is hardly seen. 2058 */ 2059 if (args->tsp != NULL) { 2060 error = copyin(args->tsp, <s, sizeof(lts)); 2061 if (error != 0) 2062 return (error); 2063 error = linux_to_native_timespec(&uts, <s); 2064 if (error != 0) 2065 return (error); 2066 2067 TIMESPEC_TO_TIMEVAL(&utv, &uts); 2068 if (itimerfix(&utv)) 2069 return (EINVAL); 2070 2071 microtime(&tv0); 2072 tvp = &utv; 2073 } else 2074 tvp = NULL; 2075 2076 error = kern_pselect(td, args->nfds, args->readfds, args->writefds, 2077 args->exceptfds, tvp, ssp, LINUX_NFDBITS); 2078 2079 if (error == 0 && args->tsp != NULL) { 2080 if (td->td_retval[0] != 0) { 2081 /* 2082 * Compute how much time was left of the timeout, 2083 * by subtracting the current time and the time 2084 * before we started the call, and subtracting 2085 * that result from the user-supplied value. 2086 */ 2087 2088 microtime(&tv1); 2089 timevalsub(&tv1, &tv0); 2090 timevalsub(&utv, &tv1); 2091 if (utv.tv_sec < 0) 2092 timevalclear(&utv); 2093 } else 2094 timevalclear(&utv); 2095 2096 TIMEVAL_TO_TIMESPEC(&utv, &uts); 2097 2098 error = native_to_linux_timespec(<s, &uts); 2099 if (error == 0) 2100 error = copyout(<s, args->tsp, sizeof(lts)); 2101 } 2102 2103 return (error); 2104 } 2105 2106 int 2107 linux_ppoll(struct thread *td, struct linux_ppoll_args *args) 2108 { 2109 struct timespec ts0, ts1; 2110 struct l_timespec lts; 2111 struct timespec uts, *tsp; 2112 l_sigset_t l_ss; 2113 sigset_t *ssp; 2114 sigset_t ss; 2115 int error; 2116 2117 if (args->sset != NULL) { 2118 if (args->ssize != sizeof(l_ss)) 2119 return (EINVAL); 2120 error = copyin(args->sset, &l_ss, sizeof(l_ss)); 2121 if (error) 2122 return (error); 2123 linux_to_bsd_sigset(&l_ss, &ss); 2124 ssp = &ss; 2125 } else 2126 ssp = NULL; 2127 if (args->tsp != NULL) { 2128 error = copyin(args->tsp, <s, sizeof(lts)); 2129 if (error) 2130 return (error); 2131 error = linux_to_native_timespec(&uts, <s); 2132 if (error != 0) 2133 return (error); 2134 2135 nanotime(&ts0); 2136 tsp = &uts; 2137 } else 2138 tsp = NULL; 2139 2140 error = kern_poll(td, args->fds, args->nfds, tsp, ssp); 2141 2142 if (error == 0 && args->tsp != NULL) { 2143 if (td->td_retval[0]) { 2144 nanotime(&ts1); 2145 timespecsub(&ts1, &ts0, &ts1); 2146 timespecsub(&uts, &ts1, &uts); 2147 if (uts.tv_sec < 0) 2148 timespecclear(&uts); 2149 } else 2150 timespecclear(&uts); 2151 2152 error = native_to_linux_timespec(<s, &uts); 2153 if (error == 0) 2154 error = copyout(<s, args->tsp, sizeof(lts)); 2155 } 2156 2157 return (error); 2158 } 2159 2160 int 2161 linux_sched_rr_get_interval(struct thread *td, 2162 struct linux_sched_rr_get_interval_args *uap) 2163 { 2164 struct timespec ts; 2165 struct l_timespec lts; 2166 struct thread *tdt; 2167 int error; 2168 2169 /* 2170 * According to man in case the invalid pid specified 2171 * EINVAL should be returned. 2172 */ 2173 if (uap->pid < 0) 2174 return (EINVAL); 2175 2176 tdt = linux_tdfind(td, uap->pid, -1); 2177 if (tdt == NULL) 2178 return (ESRCH); 2179 2180 error = kern_sched_rr_get_interval_td(td, tdt, &ts); 2181 PROC_UNLOCK(tdt->td_proc); 2182 if (error != 0) 2183 return (error); 2184 error = native_to_linux_timespec(<s, &ts); 2185 if (error != 0) 2186 return (error); 2187 return (copyout(<s, uap->interval, sizeof(lts))); 2188 } 2189 2190 /* 2191 * In case when the Linux thread is the initial thread in 2192 * the thread group thread id is equal to the process id. 2193 * Glibc depends on this magic (assert in pthread_getattr_np.c). 2194 */ 2195 struct thread * 2196 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) 2197 { 2198 struct linux_emuldata *em; 2199 struct thread *tdt; 2200 struct proc *p; 2201 2202 tdt = NULL; 2203 if (tid == 0 || tid == td->td_tid) { 2204 tdt = td; 2205 PROC_LOCK(tdt->td_proc); 2206 } else if (tid > PID_MAX) 2207 tdt = tdfind(tid, pid); 2208 else { 2209 /* 2210 * Initial thread where the tid equal to the pid. 2211 */ 2212 p = pfind(tid); 2213 if (p != NULL) { 2214 if (SV_PROC_ABI(p) != SV_ABI_LINUX) { 2215 /* 2216 * p is not a Linuxulator process. 2217 */ 2218 PROC_UNLOCK(p); 2219 return (NULL); 2220 } 2221 FOREACH_THREAD_IN_PROC(p, tdt) { 2222 em = em_find(tdt); 2223 if (tid == em->em_tid) 2224 return (tdt); 2225 } 2226 PROC_UNLOCK(p); 2227 } 2228 return (NULL); 2229 } 2230 2231 return (tdt); 2232 } 2233 2234 void 2235 linux_to_bsd_waitopts(int options, int *bsdopts) 2236 { 2237 2238 if (options & LINUX_WNOHANG) 2239 *bsdopts |= WNOHANG; 2240 if (options & LINUX_WUNTRACED) 2241 *bsdopts |= WUNTRACED; 2242 if (options & LINUX_WEXITED) 2243 *bsdopts |= WEXITED; 2244 if (options & LINUX_WCONTINUED) 2245 *bsdopts |= WCONTINUED; 2246 if (options & LINUX_WNOWAIT) 2247 *bsdopts |= WNOWAIT; 2248 2249 if (options & __WCLONE) 2250 *bsdopts |= WLINUXCLONE; 2251 } 2252 2253 int 2254 linux_getrandom(struct thread *td, struct linux_getrandom_args *args) 2255 { 2256 struct uio uio; 2257 struct iovec iov; 2258 int error; 2259 2260 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) 2261 return (EINVAL); 2262 if (args->count > INT_MAX) 2263 args->count = INT_MAX; 2264 2265 iov.iov_base = args->buf; 2266 iov.iov_len = args->count; 2267 2268 uio.uio_iov = &iov; 2269 uio.uio_iovcnt = 1; 2270 uio.uio_resid = iov.iov_len; 2271 uio.uio_segflg = UIO_USERSPACE; 2272 uio.uio_rw = UIO_READ; 2273 uio.uio_td = td; 2274 2275 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); 2276 if (error == 0) 2277 td->td_retval[0] = args->count - uio.uio_resid; 2278 return (error); 2279 } 2280 2281 int 2282 linux_mincore(struct thread *td, struct linux_mincore_args *args) 2283 { 2284 2285 /* Needs to be page-aligned */ 2286 if (args->start & PAGE_MASK) 2287 return (EINVAL); 2288 return (kern_mincore(td, args->start, args->len, args->vec)); 2289 } 2290