1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * Copyright (c) 1994-1995 Søren Schmidt 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer 13 * in this position and unchanged. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 37 #include <sys/param.h> 38 #include <sys/blist.h> 39 #include <sys/fcntl.h> 40 #if defined(__i386__) 41 #include <sys/imgact_aout.h> 42 #endif 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mman.h> 49 #include <sys/mount.h> 50 #include <sys/mutex.h> 51 #include <sys/namei.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/reboot.h> 55 #include <sys/racct.h> 56 #include <sys/random.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sched.h> 59 #include <sys/sdt.h> 60 #include <sys/signalvar.h> 61 #include <sys/stat.h> 62 #include <sys/syscallsubr.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysproto.h> 65 #include <sys/systm.h> 66 #include <sys/time.h> 67 #include <sys/vmmeter.h> 68 #include <sys/vnode.h> 69 #include <sys/wait.h> 70 #include <sys/cpuset.h> 71 #include <sys/uio.h> 72 73 #include <security/mac/mac_framework.h> 74 75 #include <vm/vm.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_extern.h> 80 #include <vm/vm_object.h> 81 #include <vm/swap_pager.h> 82 83 #ifdef COMPAT_LINUX32 84 #include <machine/../linux32/linux.h> 85 #include <machine/../linux32/linux32_proto.h> 86 #else 87 #include <machine/../linux/linux.h> 88 #include <machine/../linux/linux_proto.h> 89 #endif 90 91 #include <compat/linux/linux_dtrace.h> 92 #include <compat/linux/linux_file.h> 93 #include <compat/linux/linux_mib.h> 94 #include <compat/linux/linux_signal.h> 95 #include <compat/linux/linux_timer.h> 96 #include <compat/linux/linux_util.h> 97 #include <compat/linux/linux_sysproto.h> 98 #include <compat/linux/linux_emul.h> 99 #include <compat/linux/linux_misc.h> 100 101 /** 102 * Special DTrace provider for the linuxulator. 103 * 104 * In this file we define the provider for the entire linuxulator. All 105 * modules (= files of the linuxulator) use it. 106 * 107 * We define a different name depending on the emulated bitsize, see 108 * ../../<ARCH>/linux{,32}/linux.h, e.g.: 109 * native bitsize = linuxulator 110 * amd64, 32bit emulation = linuxulator32 111 */ 112 LIN_SDT_PROVIDER_DEFINE(LINUX_DTRACE); 113 114 int stclohz; /* Statistics clock frequency */ 115 116 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { 117 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, 118 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, 119 RLIMIT_MEMLOCK, RLIMIT_AS 120 }; 121 122 struct l_sysinfo { 123 l_long uptime; /* Seconds since boot */ 124 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ 125 #define LINUX_SYSINFO_LOADS_SCALE 65536 126 l_ulong totalram; /* Total usable main memory size */ 127 l_ulong freeram; /* Available memory size */ 128 l_ulong sharedram; /* Amount of shared memory */ 129 l_ulong bufferram; /* Memory used by buffers */ 130 l_ulong totalswap; /* Total swap space size */ 131 l_ulong freeswap; /* swap space still available */ 132 l_ushort procs; /* Number of current processes */ 133 l_ushort pads; 134 l_ulong totalbig; 135 l_ulong freebig; 136 l_uint mem_unit; 137 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ 138 }; 139 140 struct l_pselect6arg { 141 l_uintptr_t ss; 142 l_size_t ss_len; 143 }; 144 145 static int linux_utimensat_nsec_valid(l_long); 146 147 148 int 149 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) 150 { 151 struct l_sysinfo sysinfo; 152 vm_object_t object; 153 int i, j; 154 struct timespec ts; 155 156 bzero(&sysinfo, sizeof(sysinfo)); 157 getnanouptime(&ts); 158 if (ts.tv_nsec != 0) 159 ts.tv_sec++; 160 sysinfo.uptime = ts.tv_sec; 161 162 /* Use the information from the mib to get our load averages */ 163 for (i = 0; i < 3; i++) 164 sysinfo.loads[i] = averunnable.ldavg[i] * 165 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; 166 167 sysinfo.totalram = physmem * PAGE_SIZE; 168 sysinfo.freeram = sysinfo.totalram - vm_wire_count() * PAGE_SIZE; 169 170 sysinfo.sharedram = 0; 171 mtx_lock(&vm_object_list_mtx); 172 TAILQ_FOREACH(object, &vm_object_list, object_list) 173 if (object->shadow_count > 1) 174 sysinfo.sharedram += object->resident_page_count; 175 mtx_unlock(&vm_object_list_mtx); 176 177 sysinfo.sharedram *= PAGE_SIZE; 178 sysinfo.bufferram = 0; 179 180 swap_pager_status(&i, &j); 181 sysinfo.totalswap = i * PAGE_SIZE; 182 sysinfo.freeswap = (i - j) * PAGE_SIZE; 183 184 sysinfo.procs = nprocs; 185 186 /* The following are only present in newer Linux kernels. */ 187 sysinfo.totalbig = 0; 188 sysinfo.freebig = 0; 189 sysinfo.mem_unit = 1; 190 191 return (copyout(&sysinfo, args->info, sizeof(sysinfo))); 192 } 193 194 #ifdef LINUX_LEGACY_SYSCALLS 195 int 196 linux_alarm(struct thread *td, struct linux_alarm_args *args) 197 { 198 struct itimerval it, old_it; 199 u_int secs; 200 int error; 201 202 #ifdef DEBUG 203 if (ldebug(alarm)) 204 printf(ARGS(alarm, "%u"), args->secs); 205 #endif 206 secs = args->secs; 207 /* 208 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 209 * to match kern_setitimer()'s limit to avoid error from it. 210 * 211 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit 212 * platforms. 213 */ 214 if (secs > INT32_MAX / 2) 215 secs = INT32_MAX / 2; 216 217 it.it_value.tv_sec = secs; 218 it.it_value.tv_usec = 0; 219 timevalclear(&it.it_interval); 220 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); 221 KASSERT(error == 0, ("kern_setitimer returns %d", error)); 222 223 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || 224 old_it.it_value.tv_usec >= 500000) 225 old_it.it_value.tv_sec++; 226 td->td_retval[0] = old_it.it_value.tv_sec; 227 return (0); 228 } 229 #endif 230 231 int 232 linux_brk(struct thread *td, struct linux_brk_args *args) 233 { 234 struct vmspace *vm = td->td_proc->p_vmspace; 235 uintptr_t new, old; 236 237 #ifdef DEBUG 238 if (ldebug(brk)) 239 printf(ARGS(brk, "%p"), (void *)(uintptr_t)args->dsend); 240 #endif 241 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); 242 new = (uintptr_t)args->dsend; 243 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) 244 td->td_retval[0] = (register_t)new; 245 else 246 td->td_retval[0] = (register_t)old; 247 248 return (0); 249 } 250 251 #if defined(__i386__) 252 /* XXX: what about amd64/linux32? */ 253 254 int 255 linux_uselib(struct thread *td, struct linux_uselib_args *args) 256 { 257 struct nameidata ni; 258 struct vnode *vp; 259 struct exec *a_out; 260 struct vattr attr; 261 vm_offset_t vmaddr; 262 unsigned long file_offset; 263 unsigned long bss_size; 264 char *library; 265 ssize_t aresid; 266 int error, locked, writecount; 267 268 LCONVPATHEXIST(td, args->library, &library); 269 270 #ifdef DEBUG 271 if (ldebug(uselib)) 272 printf(ARGS(uselib, "%s"), library); 273 #endif 274 275 a_out = NULL; 276 locked = 0; 277 vp = NULL; 278 279 NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, 280 UIO_SYSSPACE, library, td); 281 error = namei(&ni); 282 LFREEPATH(library); 283 if (error) 284 goto cleanup; 285 286 vp = ni.ni_vp; 287 NDFREE(&ni, NDF_ONLY_PNBUF); 288 289 /* 290 * From here on down, we have a locked vnode that must be unlocked. 291 * XXX: The code below largely duplicates exec_check_permissions(). 292 */ 293 locked = 1; 294 295 /* Writable? */ 296 error = VOP_GET_WRITECOUNT(vp, &writecount); 297 if (error != 0) 298 goto cleanup; 299 if (writecount != 0) { 300 error = ETXTBSY; 301 goto cleanup; 302 } 303 304 /* Executable? */ 305 error = VOP_GETATTR(vp, &attr, td->td_ucred); 306 if (error) 307 goto cleanup; 308 309 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || 310 ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) { 311 /* EACCESS is what exec(2) returns. */ 312 error = ENOEXEC; 313 goto cleanup; 314 } 315 316 /* Sensible size? */ 317 if (attr.va_size == 0) { 318 error = ENOEXEC; 319 goto cleanup; 320 } 321 322 /* Can we access it? */ 323 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); 324 if (error) 325 goto cleanup; 326 327 /* 328 * XXX: This should use vn_open() so that it is properly authorized, 329 * and to reduce code redundancy all over the place here. 330 * XXX: Not really, it duplicates far more of exec_check_permissions() 331 * than vn_open(). 332 */ 333 #ifdef MAC 334 error = mac_vnode_check_open(td->td_ucred, vp, VREAD); 335 if (error) 336 goto cleanup; 337 #endif 338 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); 339 if (error) 340 goto cleanup; 341 342 /* Pull in executable header into exec_map */ 343 error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE, 344 VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0); 345 if (error) 346 goto cleanup; 347 348 /* Is it a Linux binary ? */ 349 if (((a_out->a_magic >> 16) & 0xff) != 0x64) { 350 error = ENOEXEC; 351 goto cleanup; 352 } 353 354 /* 355 * While we are here, we should REALLY do some more checks 356 */ 357 358 /* Set file/virtual offset based on a.out variant. */ 359 switch ((int)(a_out->a_magic & 0xffff)) { 360 case 0413: /* ZMAGIC */ 361 file_offset = 1024; 362 break; 363 case 0314: /* QMAGIC */ 364 file_offset = 0; 365 break; 366 default: 367 error = ENOEXEC; 368 goto cleanup; 369 } 370 371 bss_size = round_page(a_out->a_bss); 372 373 /* Check various fields in header for validity/bounds. */ 374 if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) { 375 error = ENOEXEC; 376 goto cleanup; 377 } 378 379 /* text + data can't exceed file size */ 380 if (a_out->a_data + a_out->a_text > attr.va_size) { 381 error = EFAULT; 382 goto cleanup; 383 } 384 385 /* 386 * text/data/bss must not exceed limits 387 * XXX - this is not complete. it should check current usage PLUS 388 * the resources needed by this library. 389 */ 390 PROC_LOCK(td->td_proc); 391 if (a_out->a_text > maxtsiz || 392 a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) || 393 racct_set(td->td_proc, RACCT_DATA, a_out->a_data + 394 bss_size) != 0) { 395 PROC_UNLOCK(td->td_proc); 396 error = ENOMEM; 397 goto cleanup; 398 } 399 PROC_UNLOCK(td->td_proc); 400 401 /* 402 * Prevent more writers. 403 * XXX: Note that if any of the VM operations fail below we don't 404 * clear this flag. 405 */ 406 VOP_SET_TEXT(vp); 407 408 /* 409 * Lock no longer needed 410 */ 411 locked = 0; 412 VOP_UNLOCK(vp, 0); 413 414 /* 415 * Check if file_offset page aligned. Currently we cannot handle 416 * misalinged file offsets, and so we read in the entire image 417 * (what a waste). 418 */ 419 if (file_offset & PAGE_MASK) { 420 #ifdef DEBUG 421 printf("uselib: Non page aligned binary %lu\n", file_offset); 422 #endif 423 /* Map text+data read/write/execute */ 424 425 /* a_entry is the load address and is page aligned */ 426 vmaddr = trunc_page(a_out->a_entry); 427 428 /* get anon user mapping, read+write+execute */ 429 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 430 &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE, 431 VM_PROT_ALL, VM_PROT_ALL, 0); 432 if (error) 433 goto cleanup; 434 435 error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset, 436 a_out->a_text + a_out->a_data, UIO_USERSPACE, 0, 437 td->td_ucred, NOCRED, &aresid, td); 438 if (error != 0) 439 goto cleanup; 440 if (aresid != 0) { 441 error = ENOEXEC; 442 goto cleanup; 443 } 444 } else { 445 #ifdef DEBUG 446 printf("uselib: Page aligned binary %lu\n", file_offset); 447 #endif 448 /* 449 * for QMAGIC, a_entry is 20 bytes beyond the load address 450 * to skip the executable header 451 */ 452 vmaddr = trunc_page(a_out->a_entry); 453 454 /* 455 * Map it all into the process's space as a single 456 * copy-on-write "data" segment. 457 */ 458 error = vm_mmap(&td->td_proc->p_vmspace->vm_map, &vmaddr, 459 a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL, 460 MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset); 461 if (error) 462 goto cleanup; 463 } 464 #ifdef DEBUG 465 printf("mem=%08lx = %08lx %08lx\n", (long)vmaddr, ((long *)vmaddr)[0], 466 ((long *)vmaddr)[1]); 467 #endif 468 if (bss_size != 0) { 469 /* Calculate BSS start address */ 470 vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + 471 a_out->a_data; 472 473 /* allocate some 'anon' space */ 474 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 475 &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL, 476 VM_PROT_ALL, 0); 477 if (error) 478 goto cleanup; 479 } 480 481 cleanup: 482 /* Unlock vnode if needed */ 483 if (locked) 484 VOP_UNLOCK(vp, 0); 485 486 /* Release the temporary mapping. */ 487 if (a_out) 488 kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE); 489 490 return (error); 491 } 492 493 #endif /* __i386__ */ 494 495 #ifdef LINUX_LEGACY_SYSCALLS 496 int 497 linux_select(struct thread *td, struct linux_select_args *args) 498 { 499 l_timeval ltv; 500 struct timeval tv0, tv1, utv, *tvp; 501 int error; 502 503 #ifdef DEBUG 504 if (ldebug(select)) 505 printf(ARGS(select, "%d, %p, %p, %p, %p"), args->nfds, 506 (void *)args->readfds, (void *)args->writefds, 507 (void *)args->exceptfds, (void *)args->timeout); 508 #endif 509 510 /* 511 * Store current time for computation of the amount of 512 * time left. 513 */ 514 if (args->timeout) { 515 if ((error = copyin(args->timeout, <v, sizeof(ltv)))) 516 goto select_out; 517 utv.tv_sec = ltv.tv_sec; 518 utv.tv_usec = ltv.tv_usec; 519 #ifdef DEBUG 520 if (ldebug(select)) 521 printf(LMSG("incoming timeout (%jd/%ld)"), 522 (intmax_t)utv.tv_sec, utv.tv_usec); 523 #endif 524 525 if (itimerfix(&utv)) { 526 /* 527 * The timeval was invalid. Convert it to something 528 * valid that will act as it does under Linux. 529 */ 530 utv.tv_sec += utv.tv_usec / 1000000; 531 utv.tv_usec %= 1000000; 532 if (utv.tv_usec < 0) { 533 utv.tv_sec -= 1; 534 utv.tv_usec += 1000000; 535 } 536 if (utv.tv_sec < 0) 537 timevalclear(&utv); 538 } 539 microtime(&tv0); 540 tvp = &utv; 541 } else 542 tvp = NULL; 543 544 error = kern_select(td, args->nfds, args->readfds, args->writefds, 545 args->exceptfds, tvp, LINUX_NFDBITS); 546 547 #ifdef DEBUG 548 if (ldebug(select)) 549 printf(LMSG("real select returns %d"), error); 550 #endif 551 if (error) 552 goto select_out; 553 554 if (args->timeout) { 555 if (td->td_retval[0]) { 556 /* 557 * Compute how much time was left of the timeout, 558 * by subtracting the current time and the time 559 * before we started the call, and subtracting 560 * that result from the user-supplied value. 561 */ 562 microtime(&tv1); 563 timevalsub(&tv1, &tv0); 564 timevalsub(&utv, &tv1); 565 if (utv.tv_sec < 0) 566 timevalclear(&utv); 567 } else 568 timevalclear(&utv); 569 #ifdef DEBUG 570 if (ldebug(select)) 571 printf(LMSG("outgoing timeout (%jd/%ld)"), 572 (intmax_t)utv.tv_sec, utv.tv_usec); 573 #endif 574 ltv.tv_sec = utv.tv_sec; 575 ltv.tv_usec = utv.tv_usec; 576 if ((error = copyout(<v, args->timeout, sizeof(ltv)))) 577 goto select_out; 578 } 579 580 select_out: 581 #ifdef DEBUG 582 if (ldebug(select)) 583 printf(LMSG("select_out -> %d"), error); 584 #endif 585 return (error); 586 } 587 #endif 588 589 int 590 linux_mremap(struct thread *td, struct linux_mremap_args *args) 591 { 592 uintptr_t addr; 593 size_t len; 594 int error = 0; 595 596 #ifdef DEBUG 597 if (ldebug(mremap)) 598 printf(ARGS(mremap, "%p, %08lx, %08lx, %08lx"), 599 (void *)(uintptr_t)args->addr, 600 (unsigned long)args->old_len, 601 (unsigned long)args->new_len, 602 (unsigned long)args->flags); 603 #endif 604 605 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { 606 td->td_retval[0] = 0; 607 return (EINVAL); 608 } 609 610 /* 611 * Check for the page alignment. 612 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. 613 */ 614 if (args->addr & PAGE_MASK) { 615 td->td_retval[0] = 0; 616 return (EINVAL); 617 } 618 619 args->new_len = round_page(args->new_len); 620 args->old_len = round_page(args->old_len); 621 622 if (args->new_len > args->old_len) { 623 td->td_retval[0] = 0; 624 return (ENOMEM); 625 } 626 627 if (args->new_len < args->old_len) { 628 addr = args->addr + args->new_len; 629 len = args->old_len - args->new_len; 630 error = kern_munmap(td, addr, len); 631 } 632 633 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; 634 return (error); 635 } 636 637 #define LINUX_MS_ASYNC 0x0001 638 #define LINUX_MS_INVALIDATE 0x0002 639 #define LINUX_MS_SYNC 0x0004 640 641 int 642 linux_msync(struct thread *td, struct linux_msync_args *args) 643 { 644 645 return (kern_msync(td, args->addr, args->len, 646 args->fl & ~LINUX_MS_SYNC)); 647 } 648 649 #ifdef LINUX_LEGACY_SYSCALLS 650 int 651 linux_time(struct thread *td, struct linux_time_args *args) 652 { 653 struct timeval tv; 654 l_time_t tm; 655 int error; 656 657 #ifdef DEBUG 658 if (ldebug(time)) 659 printf(ARGS(time, "*")); 660 #endif 661 662 microtime(&tv); 663 tm = tv.tv_sec; 664 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) 665 return (error); 666 td->td_retval[0] = tm; 667 return (0); 668 } 669 #endif 670 671 struct l_times_argv { 672 l_clock_t tms_utime; 673 l_clock_t tms_stime; 674 l_clock_t tms_cutime; 675 l_clock_t tms_cstime; 676 }; 677 678 679 /* 680 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. 681 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK 682 * auxiliary vector entry. 683 */ 684 #define CLK_TCK 100 685 686 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) 687 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) 688 689 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \ 690 CONVNTCK(r) : CONVOTCK(r)) 691 692 int 693 linux_times(struct thread *td, struct linux_times_args *args) 694 { 695 struct timeval tv, utime, stime, cutime, cstime; 696 struct l_times_argv tms; 697 struct proc *p; 698 int error; 699 700 #ifdef DEBUG 701 if (ldebug(times)) 702 printf(ARGS(times, "*")); 703 #endif 704 705 if (args->buf != NULL) { 706 p = td->td_proc; 707 PROC_LOCK(p); 708 PROC_STATLOCK(p); 709 calcru(p, &utime, &stime); 710 PROC_STATUNLOCK(p); 711 calccru(p, &cutime, &cstime); 712 PROC_UNLOCK(p); 713 714 tms.tms_utime = CONVTCK(utime); 715 tms.tms_stime = CONVTCK(stime); 716 717 tms.tms_cutime = CONVTCK(cutime); 718 tms.tms_cstime = CONVTCK(cstime); 719 720 if ((error = copyout(&tms, args->buf, sizeof(tms)))) 721 return (error); 722 } 723 724 microuptime(&tv); 725 td->td_retval[0] = (int)CONVTCK(tv); 726 return (0); 727 } 728 729 int 730 linux_newuname(struct thread *td, struct linux_newuname_args *args) 731 { 732 struct l_new_utsname utsname; 733 char osname[LINUX_MAX_UTSNAME]; 734 char osrelease[LINUX_MAX_UTSNAME]; 735 char *p; 736 737 #ifdef DEBUG 738 if (ldebug(newuname)) 739 printf(ARGS(newuname, "*")); 740 #endif 741 742 linux_get_osname(td, osname); 743 linux_get_osrelease(td, osrelease); 744 745 bzero(&utsname, sizeof(utsname)); 746 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); 747 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); 748 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); 749 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); 750 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); 751 for (p = utsname.version; *p != '\0'; ++p) 752 if (*p == '\n') { 753 *p = '\0'; 754 break; 755 } 756 strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME); 757 758 return (copyout(&utsname, args->buf, sizeof(utsname))); 759 } 760 761 struct l_utimbuf { 762 l_time_t l_actime; 763 l_time_t l_modtime; 764 }; 765 766 #ifdef LINUX_LEGACY_SYSCALLS 767 int 768 linux_utime(struct thread *td, struct linux_utime_args *args) 769 { 770 struct timeval tv[2], *tvp; 771 struct l_utimbuf lut; 772 char *fname; 773 int error; 774 775 LCONVPATHEXIST(td, args->fname, &fname); 776 777 #ifdef DEBUG 778 if (ldebug(utime)) 779 printf(ARGS(utime, "%s, *"), fname); 780 #endif 781 782 if (args->times) { 783 if ((error = copyin(args->times, &lut, sizeof lut))) { 784 LFREEPATH(fname); 785 return (error); 786 } 787 tv[0].tv_sec = lut.l_actime; 788 tv[0].tv_usec = 0; 789 tv[1].tv_sec = lut.l_modtime; 790 tv[1].tv_usec = 0; 791 tvp = tv; 792 } else 793 tvp = NULL; 794 795 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, 796 UIO_SYSSPACE); 797 LFREEPATH(fname); 798 return (error); 799 } 800 #endif 801 802 #ifdef LINUX_LEGACY_SYSCALLS 803 int 804 linux_utimes(struct thread *td, struct linux_utimes_args *args) 805 { 806 l_timeval ltv[2]; 807 struct timeval tv[2], *tvp = NULL; 808 char *fname; 809 int error; 810 811 LCONVPATHEXIST(td, args->fname, &fname); 812 813 #ifdef DEBUG 814 if (ldebug(utimes)) 815 printf(ARGS(utimes, "%s, *"), fname); 816 #endif 817 818 if (args->tptr != NULL) { 819 if ((error = copyin(args->tptr, ltv, sizeof ltv))) { 820 LFREEPATH(fname); 821 return (error); 822 } 823 tv[0].tv_sec = ltv[0].tv_sec; 824 tv[0].tv_usec = ltv[0].tv_usec; 825 tv[1].tv_sec = ltv[1].tv_sec; 826 tv[1].tv_usec = ltv[1].tv_usec; 827 tvp = tv; 828 } 829 830 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, 831 tvp, UIO_SYSSPACE); 832 LFREEPATH(fname); 833 return (error); 834 } 835 #endif 836 837 static int 838 linux_utimensat_nsec_valid(l_long nsec) 839 { 840 841 if (nsec == LINUX_UTIME_OMIT || nsec == LINUX_UTIME_NOW) 842 return (0); 843 if (nsec >= 0 && nsec <= 999999999) 844 return (0); 845 return (1); 846 } 847 848 int 849 linux_utimensat(struct thread *td, struct linux_utimensat_args *args) 850 { 851 struct l_timespec l_times[2]; 852 struct timespec times[2], *timesp = NULL; 853 char *path = NULL; 854 int error, dfd, flags = 0; 855 856 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 857 858 #ifdef DEBUG 859 if (ldebug(utimensat)) 860 printf(ARGS(utimensat, "%d, *"), dfd); 861 #endif 862 863 if (args->flags & ~LINUX_AT_SYMLINK_NOFOLLOW) 864 return (EINVAL); 865 866 if (args->times != NULL) { 867 error = copyin(args->times, l_times, sizeof(l_times)); 868 if (error != 0) 869 return (error); 870 871 if (linux_utimensat_nsec_valid(l_times[0].tv_nsec) != 0 || 872 linux_utimensat_nsec_valid(l_times[1].tv_nsec) != 0) 873 return (EINVAL); 874 875 times[0].tv_sec = l_times[0].tv_sec; 876 switch (l_times[0].tv_nsec) 877 { 878 case LINUX_UTIME_OMIT: 879 times[0].tv_nsec = UTIME_OMIT; 880 break; 881 case LINUX_UTIME_NOW: 882 times[0].tv_nsec = UTIME_NOW; 883 break; 884 default: 885 times[0].tv_nsec = l_times[0].tv_nsec; 886 } 887 888 times[1].tv_sec = l_times[1].tv_sec; 889 switch (l_times[1].tv_nsec) 890 { 891 case LINUX_UTIME_OMIT: 892 times[1].tv_nsec = UTIME_OMIT; 893 break; 894 case LINUX_UTIME_NOW: 895 times[1].tv_nsec = UTIME_NOW; 896 break; 897 default: 898 times[1].tv_nsec = l_times[1].tv_nsec; 899 break; 900 } 901 timesp = times; 902 903 /* This breaks POSIX, but is what the Linux kernel does 904 * _on purpose_ (documented in the man page for utimensat(2)), 905 * so we must follow that behaviour. */ 906 if (times[0].tv_nsec == UTIME_OMIT && 907 times[1].tv_nsec == UTIME_OMIT) 908 return (0); 909 } 910 911 if (args->pathname != NULL) 912 LCONVPATHEXIST_AT(td, args->pathname, &path, dfd); 913 else if (args->flags != 0) 914 return (EINVAL); 915 916 if (args->flags & LINUX_AT_SYMLINK_NOFOLLOW) 917 flags |= AT_SYMLINK_NOFOLLOW; 918 919 if (path == NULL) 920 error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE); 921 else { 922 error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp, 923 UIO_SYSSPACE, flags); 924 LFREEPATH(path); 925 } 926 927 return (error); 928 } 929 930 #ifdef LINUX_LEGACY_SYSCALLS 931 int 932 linux_futimesat(struct thread *td, struct linux_futimesat_args *args) 933 { 934 l_timeval ltv[2]; 935 struct timeval tv[2], *tvp = NULL; 936 char *fname; 937 int error, dfd; 938 939 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 940 LCONVPATHEXIST_AT(td, args->filename, &fname, dfd); 941 942 #ifdef DEBUG 943 if (ldebug(futimesat)) 944 printf(ARGS(futimesat, "%s, *"), fname); 945 #endif 946 947 if (args->utimes != NULL) { 948 if ((error = copyin(args->utimes, ltv, sizeof ltv))) { 949 LFREEPATH(fname); 950 return (error); 951 } 952 tv[0].tv_sec = ltv[0].tv_sec; 953 tv[0].tv_usec = ltv[0].tv_usec; 954 tv[1].tv_sec = ltv[1].tv_sec; 955 tv[1].tv_usec = ltv[1].tv_usec; 956 tvp = tv; 957 } 958 959 error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); 960 LFREEPATH(fname); 961 return (error); 962 } 963 #endif 964 965 int 966 linux_common_wait(struct thread *td, int pid, int *status, 967 int options, struct rusage *ru) 968 { 969 int error, tmpstat; 970 971 error = kern_wait(td, pid, &tmpstat, options, ru); 972 if (error) 973 return (error); 974 975 if (status) { 976 tmpstat &= 0xffff; 977 if (WIFSIGNALED(tmpstat)) 978 tmpstat = (tmpstat & 0xffffff80) | 979 bsd_to_linux_signal(WTERMSIG(tmpstat)); 980 else if (WIFSTOPPED(tmpstat)) 981 tmpstat = (tmpstat & 0xffff00ff) | 982 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); 983 else if (WIFCONTINUED(tmpstat)) 984 tmpstat = 0xffff; 985 error = copyout(&tmpstat, status, sizeof(int)); 986 } 987 988 return (error); 989 } 990 991 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 992 int 993 linux_waitpid(struct thread *td, struct linux_waitpid_args *args) 994 { 995 struct linux_wait4_args wait4_args; 996 997 #ifdef DEBUG 998 if (ldebug(waitpid)) 999 printf(ARGS(waitpid, "%d, %p, %d"), 1000 args->pid, (void *)args->status, args->options); 1001 #endif 1002 1003 wait4_args.pid = args->pid; 1004 wait4_args.status = args->status; 1005 wait4_args.options = args->options; 1006 wait4_args.rusage = NULL; 1007 1008 return (linux_wait4(td, &wait4_args)); 1009 } 1010 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1011 1012 int 1013 linux_wait4(struct thread *td, struct linux_wait4_args *args) 1014 { 1015 int error, options; 1016 struct rusage ru, *rup; 1017 1018 #ifdef DEBUG 1019 if (ldebug(wait4)) 1020 printf(ARGS(wait4, "%d, %p, %d, %p"), 1021 args->pid, (void *)args->status, args->options, 1022 (void *)args->rusage); 1023 #endif 1024 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | 1025 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 1026 return (EINVAL); 1027 1028 options = WEXITED; 1029 linux_to_bsd_waitopts(args->options, &options); 1030 1031 if (args->rusage != NULL) 1032 rup = &ru; 1033 else 1034 rup = NULL; 1035 error = linux_common_wait(td, args->pid, args->status, options, rup); 1036 if (error != 0) 1037 return (error); 1038 if (args->rusage != NULL) 1039 error = linux_copyout_rusage(&ru, args->rusage); 1040 return (error); 1041 } 1042 1043 int 1044 linux_waitid(struct thread *td, struct linux_waitid_args *args) 1045 { 1046 int status, options, sig; 1047 struct __wrusage wru; 1048 siginfo_t siginfo; 1049 l_siginfo_t lsi; 1050 idtype_t idtype; 1051 struct proc *p; 1052 int error; 1053 1054 options = 0; 1055 linux_to_bsd_waitopts(args->options, &options); 1056 1057 if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED)) 1058 return (EINVAL); 1059 if (!(options & (WEXITED | WUNTRACED | WCONTINUED))) 1060 return (EINVAL); 1061 1062 switch (args->idtype) { 1063 case LINUX_P_ALL: 1064 idtype = P_ALL; 1065 break; 1066 case LINUX_P_PID: 1067 if (args->id <= 0) 1068 return (EINVAL); 1069 idtype = P_PID; 1070 break; 1071 case LINUX_P_PGID: 1072 if (args->id <= 0) 1073 return (EINVAL); 1074 idtype = P_PGID; 1075 break; 1076 default: 1077 return (EINVAL); 1078 } 1079 1080 error = kern_wait6(td, idtype, args->id, &status, options, 1081 &wru, &siginfo); 1082 if (error != 0) 1083 return (error); 1084 if (args->rusage != NULL) { 1085 error = linux_copyout_rusage(&wru.wru_children, 1086 args->rusage); 1087 if (error != 0) 1088 return (error); 1089 } 1090 if (args->info != NULL) { 1091 p = td->td_proc; 1092 if (td->td_retval[0] == 0) 1093 bzero(&lsi, sizeof(lsi)); 1094 else { 1095 sig = bsd_to_linux_signal(siginfo.si_signo); 1096 siginfo_to_lsiginfo(&siginfo, &lsi, sig); 1097 } 1098 error = copyout(&lsi, args->info, sizeof(lsi)); 1099 } 1100 td->td_retval[0] = 0; 1101 1102 return (error); 1103 } 1104 1105 #ifdef LINUX_LEGACY_SYSCALLS 1106 int 1107 linux_mknod(struct thread *td, struct linux_mknod_args *args) 1108 { 1109 char *path; 1110 int error; 1111 1112 LCONVPATHCREAT(td, args->path, &path); 1113 1114 #ifdef DEBUG 1115 if (ldebug(mknod)) 1116 printf(ARGS(mknod, "%s, %d, %ju"), path, args->mode, 1117 (uintmax_t)args->dev); 1118 #endif 1119 1120 switch (args->mode & S_IFMT) { 1121 case S_IFIFO: 1122 case S_IFSOCK: 1123 error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE, 1124 args->mode); 1125 break; 1126 1127 case S_IFCHR: 1128 case S_IFBLK: 1129 error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE, 1130 args->mode, args->dev); 1131 break; 1132 1133 case S_IFDIR: 1134 error = EPERM; 1135 break; 1136 1137 case 0: 1138 args->mode |= S_IFREG; 1139 /* FALLTHROUGH */ 1140 case S_IFREG: 1141 error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE, 1142 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1143 if (error == 0) 1144 kern_close(td, td->td_retval[0]); 1145 break; 1146 1147 default: 1148 error = EINVAL; 1149 break; 1150 } 1151 LFREEPATH(path); 1152 return (error); 1153 } 1154 #endif 1155 1156 int 1157 linux_mknodat(struct thread *td, struct linux_mknodat_args *args) 1158 { 1159 char *path; 1160 int error, dfd; 1161 1162 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 1163 LCONVPATHCREAT_AT(td, args->filename, &path, dfd); 1164 1165 #ifdef DEBUG 1166 if (ldebug(mknodat)) 1167 printf(ARGS(mknodat, "%s, %d, %d"), path, args->mode, args->dev); 1168 #endif 1169 1170 switch (args->mode & S_IFMT) { 1171 case S_IFIFO: 1172 case S_IFSOCK: 1173 error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode); 1174 break; 1175 1176 case S_IFCHR: 1177 case S_IFBLK: 1178 error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode, 1179 args->dev); 1180 break; 1181 1182 case S_IFDIR: 1183 error = EPERM; 1184 break; 1185 1186 case 0: 1187 args->mode |= S_IFREG; 1188 /* FALLTHROUGH */ 1189 case S_IFREG: 1190 error = kern_openat(td, dfd, path, UIO_SYSSPACE, 1191 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1192 if (error == 0) 1193 kern_close(td, td->td_retval[0]); 1194 break; 1195 1196 default: 1197 error = EINVAL; 1198 break; 1199 } 1200 LFREEPATH(path); 1201 return (error); 1202 } 1203 1204 /* 1205 * UGH! This is just about the dumbest idea I've ever heard!! 1206 */ 1207 int 1208 linux_personality(struct thread *td, struct linux_personality_args *args) 1209 { 1210 struct linux_pemuldata *pem; 1211 struct proc *p = td->td_proc; 1212 uint32_t old; 1213 1214 #ifdef DEBUG 1215 if (ldebug(personality)) 1216 printf(ARGS(personality, "%u"), args->per); 1217 #endif 1218 1219 PROC_LOCK(p); 1220 pem = pem_find(p); 1221 old = pem->persona; 1222 if (args->per != 0xffffffff) 1223 pem->persona = args->per; 1224 PROC_UNLOCK(p); 1225 1226 td->td_retval[0] = old; 1227 return (0); 1228 } 1229 1230 struct l_itimerval { 1231 l_timeval it_interval; 1232 l_timeval it_value; 1233 }; 1234 1235 #define B2L_ITIMERVAL(bip, lip) \ 1236 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ 1237 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ 1238 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ 1239 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; 1240 1241 int 1242 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) 1243 { 1244 int error; 1245 struct l_itimerval ls; 1246 struct itimerval aitv, oitv; 1247 1248 #ifdef DEBUG 1249 if (ldebug(setitimer)) 1250 printf(ARGS(setitimer, "%p, %p"), 1251 (void *)uap->itv, (void *)uap->oitv); 1252 #endif 1253 1254 if (uap->itv == NULL) { 1255 uap->itv = uap->oitv; 1256 return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); 1257 } 1258 1259 error = copyin(uap->itv, &ls, sizeof(ls)); 1260 if (error != 0) 1261 return (error); 1262 B2L_ITIMERVAL(&aitv, &ls); 1263 #ifdef DEBUG 1264 if (ldebug(setitimer)) { 1265 printf("setitimer: value: sec: %jd, usec: %ld\n", 1266 (intmax_t)aitv.it_value.tv_sec, aitv.it_value.tv_usec); 1267 printf("setitimer: interval: sec: %jd, usec: %ld\n", 1268 (intmax_t)aitv.it_interval.tv_sec, aitv.it_interval.tv_usec); 1269 } 1270 #endif 1271 error = kern_setitimer(td, uap->which, &aitv, &oitv); 1272 if (error != 0 || uap->oitv == NULL) 1273 return (error); 1274 B2L_ITIMERVAL(&ls, &oitv); 1275 1276 return (copyout(&ls, uap->oitv, sizeof(ls))); 1277 } 1278 1279 int 1280 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) 1281 { 1282 int error; 1283 struct l_itimerval ls; 1284 struct itimerval aitv; 1285 1286 #ifdef DEBUG 1287 if (ldebug(getitimer)) 1288 printf(ARGS(getitimer, "%p"), (void *)uap->itv); 1289 #endif 1290 error = kern_getitimer(td, uap->which, &aitv); 1291 if (error != 0) 1292 return (error); 1293 B2L_ITIMERVAL(&ls, &aitv); 1294 return (copyout(&ls, uap->itv, sizeof(ls))); 1295 } 1296 1297 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1298 int 1299 linux_nice(struct thread *td, struct linux_nice_args *args) 1300 { 1301 struct setpriority_args bsd_args; 1302 1303 bsd_args.which = PRIO_PROCESS; 1304 bsd_args.who = 0; /* current process */ 1305 bsd_args.prio = args->inc; 1306 return (sys_setpriority(td, &bsd_args)); 1307 } 1308 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1309 1310 int 1311 linux_setgroups(struct thread *td, struct linux_setgroups_args *args) 1312 { 1313 struct ucred *newcred, *oldcred; 1314 l_gid_t *linux_gidset; 1315 gid_t *bsd_gidset; 1316 int ngrp, error; 1317 struct proc *p; 1318 1319 ngrp = args->gidsetsize; 1320 if (ngrp < 0 || ngrp >= ngroups_max + 1) 1321 return (EINVAL); 1322 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); 1323 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); 1324 if (error) 1325 goto out; 1326 newcred = crget(); 1327 crextend(newcred, ngrp + 1); 1328 p = td->td_proc; 1329 PROC_LOCK(p); 1330 oldcred = p->p_ucred; 1331 crcopy(newcred, oldcred); 1332 1333 /* 1334 * cr_groups[0] holds egid. Setting the whole set from 1335 * the supplied set will cause egid to be changed too. 1336 * Keep cr_groups[0] unchanged to prevent that. 1337 */ 1338 1339 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0)) != 0) { 1340 PROC_UNLOCK(p); 1341 crfree(newcred); 1342 goto out; 1343 } 1344 1345 if (ngrp > 0) { 1346 newcred->cr_ngroups = ngrp + 1; 1347 1348 bsd_gidset = newcred->cr_groups; 1349 ngrp--; 1350 while (ngrp >= 0) { 1351 bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; 1352 ngrp--; 1353 } 1354 } else 1355 newcred->cr_ngroups = 1; 1356 1357 setsugid(p); 1358 proc_set_cred(p, newcred); 1359 PROC_UNLOCK(p); 1360 crfree(oldcred); 1361 error = 0; 1362 out: 1363 free(linux_gidset, M_LINUX); 1364 return (error); 1365 } 1366 1367 int 1368 linux_getgroups(struct thread *td, struct linux_getgroups_args *args) 1369 { 1370 struct ucred *cred; 1371 l_gid_t *linux_gidset; 1372 gid_t *bsd_gidset; 1373 int bsd_gidsetsz, ngrp, error; 1374 1375 cred = td->td_ucred; 1376 bsd_gidset = cred->cr_groups; 1377 bsd_gidsetsz = cred->cr_ngroups - 1; 1378 1379 /* 1380 * cr_groups[0] holds egid. Returning the whole set 1381 * here will cause a duplicate. Exclude cr_groups[0] 1382 * to prevent that. 1383 */ 1384 1385 if ((ngrp = args->gidsetsize) == 0) { 1386 td->td_retval[0] = bsd_gidsetsz; 1387 return (0); 1388 } 1389 1390 if (ngrp < bsd_gidsetsz) 1391 return (EINVAL); 1392 1393 ngrp = 0; 1394 linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), 1395 M_LINUX, M_WAITOK); 1396 while (ngrp < bsd_gidsetsz) { 1397 linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; 1398 ngrp++; 1399 } 1400 1401 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); 1402 free(linux_gidset, M_LINUX); 1403 if (error) 1404 return (error); 1405 1406 td->td_retval[0] = ngrp; 1407 return (0); 1408 } 1409 1410 int 1411 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) 1412 { 1413 struct rlimit bsd_rlim; 1414 struct l_rlimit rlim; 1415 u_int which; 1416 int error; 1417 1418 #ifdef DEBUG 1419 if (ldebug(setrlimit)) 1420 printf(ARGS(setrlimit, "%d, %p"), 1421 args->resource, (void *)args->rlim); 1422 #endif 1423 1424 if (args->resource >= LINUX_RLIM_NLIMITS) 1425 return (EINVAL); 1426 1427 which = linux_to_bsd_resource[args->resource]; 1428 if (which == -1) 1429 return (EINVAL); 1430 1431 error = copyin(args->rlim, &rlim, sizeof(rlim)); 1432 if (error) 1433 return (error); 1434 1435 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; 1436 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; 1437 return (kern_setrlimit(td, which, &bsd_rlim)); 1438 } 1439 1440 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1441 int 1442 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) 1443 { 1444 struct l_rlimit rlim; 1445 struct rlimit bsd_rlim; 1446 u_int which; 1447 1448 #ifdef DEBUG 1449 if (ldebug(old_getrlimit)) 1450 printf(ARGS(old_getrlimit, "%d, %p"), 1451 args->resource, (void *)args->rlim); 1452 #endif 1453 1454 if (args->resource >= LINUX_RLIM_NLIMITS) 1455 return (EINVAL); 1456 1457 which = linux_to_bsd_resource[args->resource]; 1458 if (which == -1) 1459 return (EINVAL); 1460 1461 lim_rlimit(td, which, &bsd_rlim); 1462 1463 #ifdef COMPAT_LINUX32 1464 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; 1465 if (rlim.rlim_cur == UINT_MAX) 1466 rlim.rlim_cur = INT_MAX; 1467 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; 1468 if (rlim.rlim_max == UINT_MAX) 1469 rlim.rlim_max = INT_MAX; 1470 #else 1471 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; 1472 if (rlim.rlim_cur == ULONG_MAX) 1473 rlim.rlim_cur = LONG_MAX; 1474 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; 1475 if (rlim.rlim_max == ULONG_MAX) 1476 rlim.rlim_max = LONG_MAX; 1477 #endif 1478 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1479 } 1480 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1481 1482 int 1483 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) 1484 { 1485 struct l_rlimit rlim; 1486 struct rlimit bsd_rlim; 1487 u_int which; 1488 1489 #ifdef DEBUG 1490 if (ldebug(getrlimit)) 1491 printf(ARGS(getrlimit, "%d, %p"), 1492 args->resource, (void *)args->rlim); 1493 #endif 1494 1495 if (args->resource >= LINUX_RLIM_NLIMITS) 1496 return (EINVAL); 1497 1498 which = linux_to_bsd_resource[args->resource]; 1499 if (which == -1) 1500 return (EINVAL); 1501 1502 lim_rlimit(td, which, &bsd_rlim); 1503 1504 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; 1505 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; 1506 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1507 } 1508 1509 int 1510 linux_sched_setscheduler(struct thread *td, 1511 struct linux_sched_setscheduler_args *args) 1512 { 1513 struct sched_param sched_param; 1514 struct thread *tdt; 1515 int error, policy; 1516 1517 #ifdef DEBUG 1518 if (ldebug(sched_setscheduler)) 1519 printf(ARGS(sched_setscheduler, "%d, %d, %p"), 1520 args->pid, args->policy, (const void *)args->param); 1521 #endif 1522 1523 switch (args->policy) { 1524 case LINUX_SCHED_OTHER: 1525 policy = SCHED_OTHER; 1526 break; 1527 case LINUX_SCHED_FIFO: 1528 policy = SCHED_FIFO; 1529 break; 1530 case LINUX_SCHED_RR: 1531 policy = SCHED_RR; 1532 break; 1533 default: 1534 return (EINVAL); 1535 } 1536 1537 error = copyin(args->param, &sched_param, sizeof(sched_param)); 1538 if (error) 1539 return (error); 1540 1541 tdt = linux_tdfind(td, args->pid, -1); 1542 if (tdt == NULL) 1543 return (ESRCH); 1544 1545 error = kern_sched_setscheduler(td, tdt, policy, &sched_param); 1546 PROC_UNLOCK(tdt->td_proc); 1547 return (error); 1548 } 1549 1550 int 1551 linux_sched_getscheduler(struct thread *td, 1552 struct linux_sched_getscheduler_args *args) 1553 { 1554 struct thread *tdt; 1555 int error, policy; 1556 1557 #ifdef DEBUG 1558 if (ldebug(sched_getscheduler)) 1559 printf(ARGS(sched_getscheduler, "%d"), args->pid); 1560 #endif 1561 1562 tdt = linux_tdfind(td, args->pid, -1); 1563 if (tdt == NULL) 1564 return (ESRCH); 1565 1566 error = kern_sched_getscheduler(td, tdt, &policy); 1567 PROC_UNLOCK(tdt->td_proc); 1568 1569 switch (policy) { 1570 case SCHED_OTHER: 1571 td->td_retval[0] = LINUX_SCHED_OTHER; 1572 break; 1573 case SCHED_FIFO: 1574 td->td_retval[0] = LINUX_SCHED_FIFO; 1575 break; 1576 case SCHED_RR: 1577 td->td_retval[0] = LINUX_SCHED_RR; 1578 break; 1579 } 1580 return (error); 1581 } 1582 1583 int 1584 linux_sched_get_priority_max(struct thread *td, 1585 struct linux_sched_get_priority_max_args *args) 1586 { 1587 struct sched_get_priority_max_args bsd; 1588 1589 #ifdef DEBUG 1590 if (ldebug(sched_get_priority_max)) 1591 printf(ARGS(sched_get_priority_max, "%d"), args->policy); 1592 #endif 1593 1594 switch (args->policy) { 1595 case LINUX_SCHED_OTHER: 1596 bsd.policy = SCHED_OTHER; 1597 break; 1598 case LINUX_SCHED_FIFO: 1599 bsd.policy = SCHED_FIFO; 1600 break; 1601 case LINUX_SCHED_RR: 1602 bsd.policy = SCHED_RR; 1603 break; 1604 default: 1605 return (EINVAL); 1606 } 1607 return (sys_sched_get_priority_max(td, &bsd)); 1608 } 1609 1610 int 1611 linux_sched_get_priority_min(struct thread *td, 1612 struct linux_sched_get_priority_min_args *args) 1613 { 1614 struct sched_get_priority_min_args bsd; 1615 1616 #ifdef DEBUG 1617 if (ldebug(sched_get_priority_min)) 1618 printf(ARGS(sched_get_priority_min, "%d"), args->policy); 1619 #endif 1620 1621 switch (args->policy) { 1622 case LINUX_SCHED_OTHER: 1623 bsd.policy = SCHED_OTHER; 1624 break; 1625 case LINUX_SCHED_FIFO: 1626 bsd.policy = SCHED_FIFO; 1627 break; 1628 case LINUX_SCHED_RR: 1629 bsd.policy = SCHED_RR; 1630 break; 1631 default: 1632 return (EINVAL); 1633 } 1634 return (sys_sched_get_priority_min(td, &bsd)); 1635 } 1636 1637 #define REBOOT_CAD_ON 0x89abcdef 1638 #define REBOOT_CAD_OFF 0 1639 #define REBOOT_HALT 0xcdef0123 1640 #define REBOOT_RESTART 0x01234567 1641 #define REBOOT_RESTART2 0xA1B2C3D4 1642 #define REBOOT_POWEROFF 0x4321FEDC 1643 #define REBOOT_MAGIC1 0xfee1dead 1644 #define REBOOT_MAGIC2 0x28121969 1645 #define REBOOT_MAGIC2A 0x05121996 1646 #define REBOOT_MAGIC2B 0x16041998 1647 1648 int 1649 linux_reboot(struct thread *td, struct linux_reboot_args *args) 1650 { 1651 struct reboot_args bsd_args; 1652 1653 #ifdef DEBUG 1654 if (ldebug(reboot)) 1655 printf(ARGS(reboot, "0x%x"), args->cmd); 1656 #endif 1657 1658 if (args->magic1 != REBOOT_MAGIC1) 1659 return (EINVAL); 1660 1661 switch (args->magic2) { 1662 case REBOOT_MAGIC2: 1663 case REBOOT_MAGIC2A: 1664 case REBOOT_MAGIC2B: 1665 break; 1666 default: 1667 return (EINVAL); 1668 } 1669 1670 switch (args->cmd) { 1671 case REBOOT_CAD_ON: 1672 case REBOOT_CAD_OFF: 1673 return (priv_check(td, PRIV_REBOOT)); 1674 case REBOOT_HALT: 1675 bsd_args.opt = RB_HALT; 1676 break; 1677 case REBOOT_RESTART: 1678 case REBOOT_RESTART2: 1679 bsd_args.opt = 0; 1680 break; 1681 case REBOOT_POWEROFF: 1682 bsd_args.opt = RB_POWEROFF; 1683 break; 1684 default: 1685 return (EINVAL); 1686 } 1687 return (sys_reboot(td, &bsd_args)); 1688 } 1689 1690 1691 /* 1692 * The FreeBSD native getpid(2), getgid(2) and getuid(2) also modify 1693 * td->td_retval[1] when COMPAT_43 is defined. This clobbers registers that 1694 * are assumed to be preserved. The following lightweight syscalls fixes 1695 * this. See also linux_getgid16() and linux_getuid16() in linux_uid16.c 1696 * 1697 * linux_getpid() - MP SAFE 1698 * linux_getgid() - MP SAFE 1699 * linux_getuid() - MP SAFE 1700 */ 1701 1702 int 1703 linux_getpid(struct thread *td, struct linux_getpid_args *args) 1704 { 1705 1706 #ifdef DEBUG 1707 if (ldebug(getpid)) 1708 printf(ARGS(getpid, "")); 1709 #endif 1710 td->td_retval[0] = td->td_proc->p_pid; 1711 1712 return (0); 1713 } 1714 1715 int 1716 linux_gettid(struct thread *td, struct linux_gettid_args *args) 1717 { 1718 struct linux_emuldata *em; 1719 1720 #ifdef DEBUG 1721 if (ldebug(gettid)) 1722 printf(ARGS(gettid, "")); 1723 #endif 1724 1725 em = em_find(td); 1726 KASSERT(em != NULL, ("gettid: emuldata not found.\n")); 1727 1728 td->td_retval[0] = em->em_tid; 1729 1730 return (0); 1731 } 1732 1733 1734 int 1735 linux_getppid(struct thread *td, struct linux_getppid_args *args) 1736 { 1737 1738 #ifdef DEBUG 1739 if (ldebug(getppid)) 1740 printf(ARGS(getppid, "")); 1741 #endif 1742 1743 td->td_retval[0] = kern_getppid(td); 1744 return (0); 1745 } 1746 1747 int 1748 linux_getgid(struct thread *td, struct linux_getgid_args *args) 1749 { 1750 1751 #ifdef DEBUG 1752 if (ldebug(getgid)) 1753 printf(ARGS(getgid, "")); 1754 #endif 1755 1756 td->td_retval[0] = td->td_ucred->cr_rgid; 1757 return (0); 1758 } 1759 1760 int 1761 linux_getuid(struct thread *td, struct linux_getuid_args *args) 1762 { 1763 1764 #ifdef DEBUG 1765 if (ldebug(getuid)) 1766 printf(ARGS(getuid, "")); 1767 #endif 1768 1769 td->td_retval[0] = td->td_ucred->cr_ruid; 1770 return (0); 1771 } 1772 1773 1774 int 1775 linux_getsid(struct thread *td, struct linux_getsid_args *args) 1776 { 1777 struct getsid_args bsd; 1778 1779 #ifdef DEBUG 1780 if (ldebug(getsid)) 1781 printf(ARGS(getsid, "%i"), args->pid); 1782 #endif 1783 1784 bsd.pid = args->pid; 1785 return (sys_getsid(td, &bsd)); 1786 } 1787 1788 int 1789 linux_nosys(struct thread *td, struct nosys_args *ignore) 1790 { 1791 1792 return (ENOSYS); 1793 } 1794 1795 int 1796 linux_getpriority(struct thread *td, struct linux_getpriority_args *args) 1797 { 1798 struct getpriority_args bsd_args; 1799 int error; 1800 1801 #ifdef DEBUG 1802 if (ldebug(getpriority)) 1803 printf(ARGS(getpriority, "%i, %i"), args->which, args->who); 1804 #endif 1805 1806 bsd_args.which = args->which; 1807 bsd_args.who = args->who; 1808 error = sys_getpriority(td, &bsd_args); 1809 td->td_retval[0] = 20 - td->td_retval[0]; 1810 return (error); 1811 } 1812 1813 int 1814 linux_sethostname(struct thread *td, struct linux_sethostname_args *args) 1815 { 1816 int name[2]; 1817 1818 #ifdef DEBUG 1819 if (ldebug(sethostname)) 1820 printf(ARGS(sethostname, "*, %i"), args->len); 1821 #endif 1822 1823 name[0] = CTL_KERN; 1824 name[1] = KERN_HOSTNAME; 1825 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, 1826 args->len, 0, 0)); 1827 } 1828 1829 int 1830 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) 1831 { 1832 int name[2]; 1833 1834 #ifdef DEBUG 1835 if (ldebug(setdomainname)) 1836 printf(ARGS(setdomainname, "*, %i"), args->len); 1837 #endif 1838 1839 name[0] = CTL_KERN; 1840 name[1] = KERN_NISDOMAINNAME; 1841 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, 1842 args->len, 0, 0)); 1843 } 1844 1845 int 1846 linux_exit_group(struct thread *td, struct linux_exit_group_args *args) 1847 { 1848 1849 #ifdef DEBUG 1850 if (ldebug(exit_group)) 1851 printf(ARGS(exit_group, "%i"), args->error_code); 1852 #endif 1853 1854 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, 1855 args->error_code); 1856 1857 /* 1858 * XXX: we should send a signal to the parent if 1859 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) 1860 * as it doesnt occur often. 1861 */ 1862 exit1(td, args->error_code, 0); 1863 /* NOTREACHED */ 1864 } 1865 1866 #define _LINUX_CAPABILITY_VERSION_1 0x19980330 1867 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 1868 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 1869 1870 struct l_user_cap_header { 1871 l_int version; 1872 l_int pid; 1873 }; 1874 1875 struct l_user_cap_data { 1876 l_int effective; 1877 l_int permitted; 1878 l_int inheritable; 1879 }; 1880 1881 int 1882 linux_capget(struct thread *td, struct linux_capget_args *uap) 1883 { 1884 struct l_user_cap_header luch; 1885 struct l_user_cap_data lucd[2]; 1886 int error, u32s; 1887 1888 if (uap->hdrp == NULL) 1889 return (EFAULT); 1890 1891 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1892 if (error != 0) 1893 return (error); 1894 1895 switch (luch.version) { 1896 case _LINUX_CAPABILITY_VERSION_1: 1897 u32s = 1; 1898 break; 1899 case _LINUX_CAPABILITY_VERSION_2: 1900 case _LINUX_CAPABILITY_VERSION_3: 1901 u32s = 2; 1902 break; 1903 default: 1904 #ifdef DEBUG 1905 if (ldebug(capget)) 1906 printf(LMSG("invalid capget capability version 0x%x"), 1907 luch.version); 1908 #endif 1909 luch.version = _LINUX_CAPABILITY_VERSION_1; 1910 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1911 if (error) 1912 return (error); 1913 return (EINVAL); 1914 } 1915 1916 if (luch.pid) 1917 return (EPERM); 1918 1919 if (uap->datap) { 1920 /* 1921 * The current implementation doesn't support setting 1922 * a capability (it's essentially a stub) so indicate 1923 * that no capabilities are currently set or available 1924 * to request. 1925 */ 1926 memset(&lucd, 0, u32s * sizeof(lucd[0])); 1927 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); 1928 } 1929 1930 return (error); 1931 } 1932 1933 int 1934 linux_capset(struct thread *td, struct linux_capset_args *uap) 1935 { 1936 struct l_user_cap_header luch; 1937 struct l_user_cap_data lucd[2]; 1938 int error, i, u32s; 1939 1940 if (uap->hdrp == NULL || uap->datap == NULL) 1941 return (EFAULT); 1942 1943 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1944 if (error != 0) 1945 return (error); 1946 1947 switch (luch.version) { 1948 case _LINUX_CAPABILITY_VERSION_1: 1949 u32s = 1; 1950 break; 1951 case _LINUX_CAPABILITY_VERSION_2: 1952 case _LINUX_CAPABILITY_VERSION_3: 1953 u32s = 2; 1954 break; 1955 default: 1956 #ifdef DEBUG 1957 if (ldebug(capset)) 1958 printf(LMSG("invalid capset capability version 0x%x"), 1959 luch.version); 1960 #endif 1961 luch.version = _LINUX_CAPABILITY_VERSION_1; 1962 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1963 if (error) 1964 return (error); 1965 return (EINVAL); 1966 } 1967 1968 if (luch.pid) 1969 return (EPERM); 1970 1971 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); 1972 if (error != 0) 1973 return (error); 1974 1975 /* We currently don't support setting any capabilities. */ 1976 for (i = 0; i < u32s; i++) { 1977 if (lucd[i].effective || lucd[i].permitted || 1978 lucd[i].inheritable) { 1979 linux_msg(td, 1980 "capset[%d] effective=0x%x, permitted=0x%x, " 1981 "inheritable=0x%x is not implemented", i, 1982 (int)lucd[i].effective, (int)lucd[i].permitted, 1983 (int)lucd[i].inheritable); 1984 return (EPERM); 1985 } 1986 } 1987 1988 return (0); 1989 } 1990 1991 int 1992 linux_prctl(struct thread *td, struct linux_prctl_args *args) 1993 { 1994 int error = 0, max_size; 1995 struct proc *p = td->td_proc; 1996 char comm[LINUX_MAX_COMM_LEN]; 1997 struct linux_emuldata *em; 1998 int pdeath_signal; 1999 2000 #ifdef DEBUG 2001 if (ldebug(prctl)) 2002 printf(ARGS(prctl, "%d, %ju, %ju, %ju, %ju"), args->option, 2003 (uintmax_t)args->arg2, (uintmax_t)args->arg3, 2004 (uintmax_t)args->arg4, (uintmax_t)args->arg5); 2005 #endif 2006 2007 switch (args->option) { 2008 case LINUX_PR_SET_PDEATHSIG: 2009 if (!LINUX_SIG_VALID(args->arg2)) 2010 return (EINVAL); 2011 em = em_find(td); 2012 KASSERT(em != NULL, ("prctl: emuldata not found.\n")); 2013 em->pdeath_signal = args->arg2; 2014 break; 2015 case LINUX_PR_GET_PDEATHSIG: 2016 em = em_find(td); 2017 KASSERT(em != NULL, ("prctl: emuldata not found.\n")); 2018 pdeath_signal = em->pdeath_signal; 2019 error = copyout(&pdeath_signal, 2020 (void *)(register_t)args->arg2, 2021 sizeof(pdeath_signal)); 2022 break; 2023 case LINUX_PR_GET_KEEPCAPS: 2024 /* 2025 * Indicate that we always clear the effective and 2026 * permitted capability sets when the user id becomes 2027 * non-zero (actually the capability sets are simply 2028 * always zero in the current implementation). 2029 */ 2030 td->td_retval[0] = 0; 2031 break; 2032 case LINUX_PR_SET_KEEPCAPS: 2033 /* 2034 * Ignore requests to keep the effective and permitted 2035 * capability sets when the user id becomes non-zero. 2036 */ 2037 break; 2038 case LINUX_PR_SET_NAME: 2039 /* 2040 * To be on the safe side we need to make sure to not 2041 * overflow the size a Linux program expects. We already 2042 * do this here in the copyin, so that we don't need to 2043 * check on copyout. 2044 */ 2045 max_size = MIN(sizeof(comm), sizeof(p->p_comm)); 2046 error = copyinstr((void *)(register_t)args->arg2, comm, 2047 max_size, NULL); 2048 2049 /* Linux silently truncates the name if it is too long. */ 2050 if (error == ENAMETOOLONG) { 2051 /* 2052 * XXX: copyinstr() isn't documented to populate the 2053 * array completely, so do a copyin() to be on the 2054 * safe side. This should be changed in case 2055 * copyinstr() is changed to guarantee this. 2056 */ 2057 error = copyin((void *)(register_t)args->arg2, comm, 2058 max_size - 1); 2059 comm[max_size - 1] = '\0'; 2060 } 2061 if (error) 2062 return (error); 2063 2064 PROC_LOCK(p); 2065 strlcpy(p->p_comm, comm, sizeof(p->p_comm)); 2066 PROC_UNLOCK(p); 2067 break; 2068 case LINUX_PR_GET_NAME: 2069 PROC_LOCK(p); 2070 strlcpy(comm, p->p_comm, sizeof(comm)); 2071 PROC_UNLOCK(p); 2072 error = copyout(comm, (void *)(register_t)args->arg2, 2073 strlen(comm) + 1); 2074 break; 2075 default: 2076 error = EINVAL; 2077 break; 2078 } 2079 2080 return (error); 2081 } 2082 2083 int 2084 linux_sched_setparam(struct thread *td, 2085 struct linux_sched_setparam_args *uap) 2086 { 2087 struct sched_param sched_param; 2088 struct thread *tdt; 2089 int error; 2090 2091 #ifdef DEBUG 2092 if (ldebug(sched_setparam)) 2093 printf(ARGS(sched_setparam, "%d, *"), uap->pid); 2094 #endif 2095 2096 error = copyin(uap->param, &sched_param, sizeof(sched_param)); 2097 if (error) 2098 return (error); 2099 2100 tdt = linux_tdfind(td, uap->pid, -1); 2101 if (tdt == NULL) 2102 return (ESRCH); 2103 2104 error = kern_sched_setparam(td, tdt, &sched_param); 2105 PROC_UNLOCK(tdt->td_proc); 2106 return (error); 2107 } 2108 2109 int 2110 linux_sched_getparam(struct thread *td, 2111 struct linux_sched_getparam_args *uap) 2112 { 2113 struct sched_param sched_param; 2114 struct thread *tdt; 2115 int error; 2116 2117 #ifdef DEBUG 2118 if (ldebug(sched_getparam)) 2119 printf(ARGS(sched_getparam, "%d, *"), uap->pid); 2120 #endif 2121 2122 tdt = linux_tdfind(td, uap->pid, -1); 2123 if (tdt == NULL) 2124 return (ESRCH); 2125 2126 error = kern_sched_getparam(td, tdt, &sched_param); 2127 PROC_UNLOCK(tdt->td_proc); 2128 if (error == 0) 2129 error = copyout(&sched_param, uap->param, 2130 sizeof(sched_param)); 2131 return (error); 2132 } 2133 2134 /* 2135 * Get affinity of a process. 2136 */ 2137 int 2138 linux_sched_getaffinity(struct thread *td, 2139 struct linux_sched_getaffinity_args *args) 2140 { 2141 int error; 2142 struct thread *tdt; 2143 2144 #ifdef DEBUG 2145 if (ldebug(sched_getaffinity)) 2146 printf(ARGS(sched_getaffinity, "%d, %d, *"), args->pid, 2147 args->len); 2148 #endif 2149 if (args->len < sizeof(cpuset_t)) 2150 return (EINVAL); 2151 2152 tdt = linux_tdfind(td, args->pid, -1); 2153 if (tdt == NULL) 2154 return (ESRCH); 2155 2156 PROC_UNLOCK(tdt->td_proc); 2157 2158 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 2159 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr); 2160 if (error == 0) 2161 td->td_retval[0] = sizeof(cpuset_t); 2162 2163 return (error); 2164 } 2165 2166 /* 2167 * Set affinity of a process. 2168 */ 2169 int 2170 linux_sched_setaffinity(struct thread *td, 2171 struct linux_sched_setaffinity_args *args) 2172 { 2173 struct thread *tdt; 2174 2175 #ifdef DEBUG 2176 if (ldebug(sched_setaffinity)) 2177 printf(ARGS(sched_setaffinity, "%d, %d, *"), args->pid, 2178 args->len); 2179 #endif 2180 if (args->len < sizeof(cpuset_t)) 2181 return (EINVAL); 2182 2183 tdt = linux_tdfind(td, args->pid, -1); 2184 if (tdt == NULL) 2185 return (ESRCH); 2186 2187 PROC_UNLOCK(tdt->td_proc); 2188 2189 return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 2190 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr)); 2191 } 2192 2193 struct linux_rlimit64 { 2194 uint64_t rlim_cur; 2195 uint64_t rlim_max; 2196 }; 2197 2198 int 2199 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) 2200 { 2201 struct rlimit rlim, nrlim; 2202 struct linux_rlimit64 lrlim; 2203 struct proc *p; 2204 u_int which; 2205 int flags; 2206 int error; 2207 2208 #ifdef DEBUG 2209 if (ldebug(prlimit64)) 2210 printf(ARGS(prlimit64, "%d, %d, %p, %p"), args->pid, 2211 args->resource, (void *)args->new, (void *)args->old); 2212 #endif 2213 2214 if (args->resource >= LINUX_RLIM_NLIMITS) 2215 return (EINVAL); 2216 2217 which = linux_to_bsd_resource[args->resource]; 2218 if (which == -1) 2219 return (EINVAL); 2220 2221 if (args->new != NULL) { 2222 /* 2223 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux 2224 * rlim is unsigned 64-bit. FreeBSD treats negative limits 2225 * as INFINITY so we do not need a conversion even. 2226 */ 2227 error = copyin(args->new, &nrlim, sizeof(nrlim)); 2228 if (error != 0) 2229 return (error); 2230 } 2231 2232 flags = PGET_HOLD | PGET_NOTWEXIT; 2233 if (args->new != NULL) 2234 flags |= PGET_CANDEBUG; 2235 else 2236 flags |= PGET_CANSEE; 2237 error = pget(args->pid, flags, &p); 2238 if (error != 0) 2239 return (error); 2240 2241 if (args->old != NULL) { 2242 PROC_LOCK(p); 2243 lim_rlimit_proc(p, which, &rlim); 2244 PROC_UNLOCK(p); 2245 if (rlim.rlim_cur == RLIM_INFINITY) 2246 lrlim.rlim_cur = LINUX_RLIM_INFINITY; 2247 else 2248 lrlim.rlim_cur = rlim.rlim_cur; 2249 if (rlim.rlim_max == RLIM_INFINITY) 2250 lrlim.rlim_max = LINUX_RLIM_INFINITY; 2251 else 2252 lrlim.rlim_max = rlim.rlim_max; 2253 error = copyout(&lrlim, args->old, sizeof(lrlim)); 2254 if (error != 0) 2255 goto out; 2256 } 2257 2258 if (args->new != NULL) 2259 error = kern_proc_setrlimit(td, p, which, &nrlim); 2260 2261 out: 2262 PRELE(p); 2263 return (error); 2264 } 2265 2266 int 2267 linux_pselect6(struct thread *td, struct linux_pselect6_args *args) 2268 { 2269 struct timeval utv, tv0, tv1, *tvp; 2270 struct l_pselect6arg lpse6; 2271 struct l_timespec lts; 2272 struct timespec uts; 2273 l_sigset_t l_ss; 2274 sigset_t *ssp; 2275 sigset_t ss; 2276 int error; 2277 2278 ssp = NULL; 2279 if (args->sig != NULL) { 2280 error = copyin(args->sig, &lpse6, sizeof(lpse6)); 2281 if (error != 0) 2282 return (error); 2283 if (lpse6.ss_len != sizeof(l_ss)) 2284 return (EINVAL); 2285 if (lpse6.ss != 0) { 2286 error = copyin(PTRIN(lpse6.ss), &l_ss, 2287 sizeof(l_ss)); 2288 if (error != 0) 2289 return (error); 2290 linux_to_bsd_sigset(&l_ss, &ss); 2291 ssp = &ss; 2292 } 2293 } 2294 2295 /* 2296 * Currently glibc changes nanosecond number to microsecond. 2297 * This mean losing precision but for now it is hardly seen. 2298 */ 2299 if (args->tsp != NULL) { 2300 error = copyin(args->tsp, <s, sizeof(lts)); 2301 if (error != 0) 2302 return (error); 2303 error = linux_to_native_timespec(&uts, <s); 2304 if (error != 0) 2305 return (error); 2306 2307 TIMESPEC_TO_TIMEVAL(&utv, &uts); 2308 if (itimerfix(&utv)) 2309 return (EINVAL); 2310 2311 microtime(&tv0); 2312 tvp = &utv; 2313 } else 2314 tvp = NULL; 2315 2316 error = kern_pselect(td, args->nfds, args->readfds, args->writefds, 2317 args->exceptfds, tvp, ssp, LINUX_NFDBITS); 2318 2319 if (error == 0 && args->tsp != NULL) { 2320 if (td->td_retval[0] != 0) { 2321 /* 2322 * Compute how much time was left of the timeout, 2323 * by subtracting the current time and the time 2324 * before we started the call, and subtracting 2325 * that result from the user-supplied value. 2326 */ 2327 2328 microtime(&tv1); 2329 timevalsub(&tv1, &tv0); 2330 timevalsub(&utv, &tv1); 2331 if (utv.tv_sec < 0) 2332 timevalclear(&utv); 2333 } else 2334 timevalclear(&utv); 2335 2336 TIMEVAL_TO_TIMESPEC(&utv, &uts); 2337 2338 error = native_to_linux_timespec(<s, &uts); 2339 if (error == 0) 2340 error = copyout(<s, args->tsp, sizeof(lts)); 2341 } 2342 2343 return (error); 2344 } 2345 2346 int 2347 linux_ppoll(struct thread *td, struct linux_ppoll_args *args) 2348 { 2349 struct timespec ts0, ts1; 2350 struct l_timespec lts; 2351 struct timespec uts, *tsp; 2352 l_sigset_t l_ss; 2353 sigset_t *ssp; 2354 sigset_t ss; 2355 int error; 2356 2357 if (args->sset != NULL) { 2358 if (args->ssize != sizeof(l_ss)) 2359 return (EINVAL); 2360 error = copyin(args->sset, &l_ss, sizeof(l_ss)); 2361 if (error) 2362 return (error); 2363 linux_to_bsd_sigset(&l_ss, &ss); 2364 ssp = &ss; 2365 } else 2366 ssp = NULL; 2367 if (args->tsp != NULL) { 2368 error = copyin(args->tsp, <s, sizeof(lts)); 2369 if (error) 2370 return (error); 2371 error = linux_to_native_timespec(&uts, <s); 2372 if (error != 0) 2373 return (error); 2374 2375 nanotime(&ts0); 2376 tsp = &uts; 2377 } else 2378 tsp = NULL; 2379 2380 error = kern_poll(td, args->fds, args->nfds, tsp, ssp); 2381 2382 if (error == 0 && args->tsp != NULL) { 2383 if (td->td_retval[0]) { 2384 nanotime(&ts1); 2385 timespecsub(&ts1, &ts0, &ts1); 2386 timespecsub(&uts, &ts1, &uts); 2387 if (uts.tv_sec < 0) 2388 timespecclear(&uts); 2389 } else 2390 timespecclear(&uts); 2391 2392 error = native_to_linux_timespec(<s, &uts); 2393 if (error == 0) 2394 error = copyout(<s, args->tsp, sizeof(lts)); 2395 } 2396 2397 return (error); 2398 } 2399 2400 #if defined(DEBUG) || defined(KTR) 2401 /* XXX: can be removed when every ldebug(...) and KTR stuff are removed. */ 2402 2403 #ifdef COMPAT_LINUX32 2404 #define L_MAXSYSCALL LINUX32_SYS_MAXSYSCALL 2405 #else 2406 #define L_MAXSYSCALL LINUX_SYS_MAXSYSCALL 2407 #endif 2408 2409 u_char linux_debug_map[howmany(L_MAXSYSCALL, sizeof(u_char))]; 2410 2411 static int 2412 linux_debug(int syscall, int toggle, int global) 2413 { 2414 2415 if (global) { 2416 char c = toggle ? 0 : 0xff; 2417 2418 memset(linux_debug_map, c, sizeof(linux_debug_map)); 2419 return (0); 2420 } 2421 if (syscall < 0 || syscall >= L_MAXSYSCALL) 2422 return (EINVAL); 2423 if (toggle) 2424 clrbit(linux_debug_map, syscall); 2425 else 2426 setbit(linux_debug_map, syscall); 2427 return (0); 2428 } 2429 #undef L_MAXSYSCALL 2430 2431 /* 2432 * Usage: sysctl linux.debug=<syscall_nr>.<0/1> 2433 * 2434 * E.g.: sysctl linux.debug=21.0 2435 * 2436 * As a special case, syscall "all" will apply to all syscalls globally. 2437 */ 2438 #define LINUX_MAX_DEBUGSTR 16 2439 int 2440 linux_sysctl_debug(SYSCTL_HANDLER_ARGS) 2441 { 2442 char value[LINUX_MAX_DEBUGSTR], *p; 2443 int error, sysc, toggle; 2444 int global = 0; 2445 2446 value[0] = '\0'; 2447 error = sysctl_handle_string(oidp, value, LINUX_MAX_DEBUGSTR, req); 2448 if (error || req->newptr == NULL) 2449 return (error); 2450 for (p = value; *p != '\0' && *p != '.'; p++); 2451 if (*p == '\0') 2452 return (EINVAL); 2453 *p++ = '\0'; 2454 sysc = strtol(value, NULL, 0); 2455 toggle = strtol(p, NULL, 0); 2456 if (strcmp(value, "all") == 0) 2457 global = 1; 2458 error = linux_debug(sysc, toggle, global); 2459 return (error); 2460 } 2461 2462 #endif /* DEBUG || KTR */ 2463 2464 int 2465 linux_sched_rr_get_interval(struct thread *td, 2466 struct linux_sched_rr_get_interval_args *uap) 2467 { 2468 struct timespec ts; 2469 struct l_timespec lts; 2470 struct thread *tdt; 2471 int error; 2472 2473 /* 2474 * According to man in case the invalid pid specified 2475 * EINVAL should be returned. 2476 */ 2477 if (uap->pid < 0) 2478 return (EINVAL); 2479 2480 tdt = linux_tdfind(td, uap->pid, -1); 2481 if (tdt == NULL) 2482 return (ESRCH); 2483 2484 error = kern_sched_rr_get_interval_td(td, tdt, &ts); 2485 PROC_UNLOCK(tdt->td_proc); 2486 if (error != 0) 2487 return (error); 2488 error = native_to_linux_timespec(<s, &ts); 2489 if (error != 0) 2490 return (error); 2491 return (copyout(<s, uap->interval, sizeof(lts))); 2492 } 2493 2494 /* 2495 * In case when the Linux thread is the initial thread in 2496 * the thread group thread id is equal to the process id. 2497 * Glibc depends on this magic (assert in pthread_getattr_np.c). 2498 */ 2499 struct thread * 2500 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) 2501 { 2502 struct linux_emuldata *em; 2503 struct thread *tdt; 2504 struct proc *p; 2505 2506 tdt = NULL; 2507 if (tid == 0 || tid == td->td_tid) { 2508 tdt = td; 2509 PROC_LOCK(tdt->td_proc); 2510 } else if (tid > PID_MAX) 2511 tdt = tdfind(tid, pid); 2512 else { 2513 /* 2514 * Initial thread where the tid equal to the pid. 2515 */ 2516 p = pfind(tid); 2517 if (p != NULL) { 2518 if (SV_PROC_ABI(p) != SV_ABI_LINUX) { 2519 /* 2520 * p is not a Linuxulator process. 2521 */ 2522 PROC_UNLOCK(p); 2523 return (NULL); 2524 } 2525 FOREACH_THREAD_IN_PROC(p, tdt) { 2526 em = em_find(tdt); 2527 if (tid == em->em_tid) 2528 return (tdt); 2529 } 2530 PROC_UNLOCK(p); 2531 } 2532 return (NULL); 2533 } 2534 2535 return (tdt); 2536 } 2537 2538 void 2539 linux_to_bsd_waitopts(int options, int *bsdopts) 2540 { 2541 2542 if (options & LINUX_WNOHANG) 2543 *bsdopts |= WNOHANG; 2544 if (options & LINUX_WUNTRACED) 2545 *bsdopts |= WUNTRACED; 2546 if (options & LINUX_WEXITED) 2547 *bsdopts |= WEXITED; 2548 if (options & LINUX_WCONTINUED) 2549 *bsdopts |= WCONTINUED; 2550 if (options & LINUX_WNOWAIT) 2551 *bsdopts |= WNOWAIT; 2552 2553 if (options & __WCLONE) 2554 *bsdopts |= WLINUXCLONE; 2555 } 2556 2557 int 2558 linux_getrandom(struct thread *td, struct linux_getrandom_args *args) 2559 { 2560 struct uio uio; 2561 struct iovec iov; 2562 int error; 2563 2564 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) 2565 return (EINVAL); 2566 if (args->count > INT_MAX) 2567 args->count = INT_MAX; 2568 2569 iov.iov_base = args->buf; 2570 iov.iov_len = args->count; 2571 2572 uio.uio_iov = &iov; 2573 uio.uio_iovcnt = 1; 2574 uio.uio_resid = iov.iov_len; 2575 uio.uio_segflg = UIO_USERSPACE; 2576 uio.uio_rw = UIO_READ; 2577 uio.uio_td = td; 2578 2579 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); 2580 if (error == 0) 2581 td->td_retval[0] = args->count - uio.uio_resid; 2582 return (error); 2583 } 2584 2585 int 2586 linux_mincore(struct thread *td, struct linux_mincore_args *args) 2587 { 2588 2589 /* Needs to be page-aligned */ 2590 if (args->start & PAGE_MASK) 2591 return (EINVAL); 2592 return (kern_mincore(td, args->start, args->len, args->vec)); 2593 } 2594