1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * Copyright (c) 1994-1995 Søren Schmidt 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer 13 * in this position and unchanged. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/fcntl.h> 34 #include <sys/jail.h> 35 #include <sys/imgact.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/msgbuf.h> 39 #include <sys/mutex.h> 40 #include <sys/poll.h> 41 #include <sys/priv.h> 42 #include <sys/proc.h> 43 #include <sys/procctl.h> 44 #include <sys/reboot.h> 45 #include <sys/random.h> 46 #include <sys/resourcevar.h> 47 #include <sys/rtprio.h> 48 #include <sys/sched.h> 49 #include <sys/smp.h> 50 #include <sys/stat.h> 51 #include <sys/syscallsubr.h> 52 #include <sys/sysctl.h> 53 #include <sys/sysent.h> 54 #include <sys/sysproto.h> 55 #include <sys/time.h> 56 #include <sys/vmmeter.h> 57 #include <sys/vnode.h> 58 59 #include <security/audit/audit.h> 60 #include <security/mac/mac_framework.h> 61 62 #include <vm/pmap.h> 63 #include <vm/vm_map.h> 64 #include <vm/swap_pager.h> 65 66 #ifdef COMPAT_LINUX32 67 #include <machine/../linux32/linux.h> 68 #include <machine/../linux32/linux32_proto.h> 69 #else 70 #include <machine/../linux/linux.h> 71 #include <machine/../linux/linux_proto.h> 72 #endif 73 74 #include <compat/linux/linux_common.h> 75 #include <compat/linux/linux_dtrace.h> 76 #include <compat/linux/linux_file.h> 77 #include <compat/linux/linux_mib.h> 78 #include <compat/linux/linux_mmap.h> 79 #include <compat/linux/linux_signal.h> 80 #include <compat/linux/linux_time.h> 81 #include <compat/linux/linux_util.h> 82 #include <compat/linux/linux_sysproto.h> 83 #include <compat/linux/linux_emul.h> 84 #include <compat/linux/linux_misc.h> 85 86 int stclohz; /* Statistics clock frequency */ 87 88 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { 89 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, 90 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, 91 RLIMIT_MEMLOCK, RLIMIT_AS 92 }; 93 94 struct l_sysinfo { 95 l_long uptime; /* Seconds since boot */ 96 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ 97 #define LINUX_SYSINFO_LOADS_SCALE 65536 98 l_ulong totalram; /* Total usable main memory size */ 99 l_ulong freeram; /* Available memory size */ 100 l_ulong sharedram; /* Amount of shared memory */ 101 l_ulong bufferram; /* Memory used by buffers */ 102 l_ulong totalswap; /* Total swap space size */ 103 l_ulong freeswap; /* swap space still available */ 104 l_ushort procs; /* Number of current processes */ 105 l_ushort pads; 106 l_ulong totalhigh; 107 l_ulong freehigh; 108 l_uint mem_unit; 109 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ 110 }; 111 112 struct l_pselect6arg { 113 l_uintptr_t ss; 114 l_size_t ss_len; 115 }; 116 117 static int linux_utimensat_lts_to_ts(struct l_timespec *, 118 struct timespec *); 119 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 120 static int linux_utimensat_lts64_to_ts(struct l_timespec64 *, 121 struct timespec *); 122 #endif 123 static int linux_common_utimensat(struct thread *, int, 124 const char *, struct timespec *, int); 125 static int linux_common_pselect6(struct thread *, l_int, 126 l_fd_set *, l_fd_set *, l_fd_set *, 127 struct timespec *, l_uintptr_t *); 128 static int linux_common_ppoll(struct thread *, struct pollfd *, 129 uint32_t, struct timespec *, l_sigset_t *, 130 l_size_t); 131 static int linux_pollin(struct thread *, struct pollfd *, 132 struct pollfd *, u_int); 133 static int linux_pollout(struct thread *, struct pollfd *, 134 struct pollfd *, u_int); 135 136 int 137 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) 138 { 139 struct l_sysinfo sysinfo; 140 int i, j; 141 struct timespec ts; 142 143 bzero(&sysinfo, sizeof(sysinfo)); 144 getnanouptime(&ts); 145 if (ts.tv_nsec != 0) 146 ts.tv_sec++; 147 sysinfo.uptime = ts.tv_sec; 148 149 /* Use the information from the mib to get our load averages */ 150 for (i = 0; i < 3; i++) 151 sysinfo.loads[i] = averunnable.ldavg[i] * 152 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; 153 154 sysinfo.totalram = physmem * PAGE_SIZE; 155 sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE; 156 157 /* 158 * sharedram counts pages allocated to named, swap-backed objects such 159 * as shared memory segments and tmpfs files. There is no cheap way to 160 * compute this, so just leave the field unpopulated. Linux itself only 161 * started setting this field in the 3.x timeframe. 162 */ 163 sysinfo.sharedram = 0; 164 sysinfo.bufferram = 0; 165 166 swap_pager_status(&i, &j); 167 sysinfo.totalswap = i * PAGE_SIZE; 168 sysinfo.freeswap = (i - j) * PAGE_SIZE; 169 170 sysinfo.procs = nprocs; 171 172 /* 173 * Platforms supported by the emulation layer do not have a notion of 174 * high memory. 175 */ 176 sysinfo.totalhigh = 0; 177 sysinfo.freehigh = 0; 178 179 sysinfo.mem_unit = 1; 180 181 return (copyout(&sysinfo, args->info, sizeof(sysinfo))); 182 } 183 184 #ifdef LINUX_LEGACY_SYSCALLS 185 int 186 linux_alarm(struct thread *td, struct linux_alarm_args *args) 187 { 188 struct itimerval it, old_it; 189 u_int secs; 190 int error __diagused; 191 192 secs = args->secs; 193 /* 194 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 195 * to match kern_setitimer()'s limit to avoid error from it. 196 * 197 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit 198 * platforms. 199 */ 200 if (secs > INT32_MAX / 2) 201 secs = INT32_MAX / 2; 202 203 it.it_value.tv_sec = secs; 204 it.it_value.tv_usec = 0; 205 timevalclear(&it.it_interval); 206 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); 207 KASSERT(error == 0, ("kern_setitimer returns %d", error)); 208 209 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || 210 old_it.it_value.tv_usec >= 500000) 211 old_it.it_value.tv_sec++; 212 td->td_retval[0] = old_it.it_value.tv_sec; 213 return (0); 214 } 215 #endif 216 217 int 218 linux_brk(struct thread *td, struct linux_brk_args *args) 219 { 220 struct vmspace *vm = td->td_proc->p_vmspace; 221 uintptr_t new, old; 222 223 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); 224 new = (uintptr_t)args->dsend; 225 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) 226 td->td_retval[0] = (register_t)new; 227 else 228 td->td_retval[0] = (register_t)old; 229 230 return (0); 231 } 232 233 #ifdef LINUX_LEGACY_SYSCALLS 234 int 235 linux_select(struct thread *td, struct linux_select_args *args) 236 { 237 l_timeval ltv; 238 struct timeval tv0, tv1, utv, *tvp; 239 int error; 240 241 /* 242 * Store current time for computation of the amount of 243 * time left. 244 */ 245 if (args->timeout) { 246 if ((error = copyin(args->timeout, <v, sizeof(ltv)))) 247 goto select_out; 248 utv.tv_sec = ltv.tv_sec; 249 utv.tv_usec = ltv.tv_usec; 250 251 if (itimerfix(&utv)) { 252 /* 253 * The timeval was invalid. Convert it to something 254 * valid that will act as it does under Linux. 255 */ 256 utv.tv_sec += utv.tv_usec / 1000000; 257 utv.tv_usec %= 1000000; 258 if (utv.tv_usec < 0) { 259 utv.tv_sec -= 1; 260 utv.tv_usec += 1000000; 261 } 262 if (utv.tv_sec < 0) 263 timevalclear(&utv); 264 } 265 microtime(&tv0); 266 tvp = &utv; 267 } else 268 tvp = NULL; 269 270 error = kern_select(td, args->nfds, args->readfds, args->writefds, 271 args->exceptfds, tvp, LINUX_NFDBITS); 272 if (error) 273 goto select_out; 274 275 if (args->timeout) { 276 if (td->td_retval[0]) { 277 /* 278 * Compute how much time was left of the timeout, 279 * by subtracting the current time and the time 280 * before we started the call, and subtracting 281 * that result from the user-supplied value. 282 */ 283 microtime(&tv1); 284 timevalsub(&tv1, &tv0); 285 timevalsub(&utv, &tv1); 286 if (utv.tv_sec < 0) 287 timevalclear(&utv); 288 } else 289 timevalclear(&utv); 290 ltv.tv_sec = utv.tv_sec; 291 ltv.tv_usec = utv.tv_usec; 292 if ((error = copyout(<v, args->timeout, sizeof(ltv)))) 293 goto select_out; 294 } 295 296 select_out: 297 return (error); 298 } 299 #endif 300 301 int 302 linux_mremap(struct thread *td, struct linux_mremap_args *args) 303 { 304 uintptr_t addr; 305 size_t len; 306 int error = 0; 307 308 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { 309 td->td_retval[0] = 0; 310 return (EINVAL); 311 } 312 313 /* 314 * Check for the page alignment. 315 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. 316 */ 317 if (args->addr & PAGE_MASK) { 318 td->td_retval[0] = 0; 319 return (EINVAL); 320 } 321 322 args->new_len = round_page(args->new_len); 323 args->old_len = round_page(args->old_len); 324 325 if (args->new_len > args->old_len) { 326 td->td_retval[0] = 0; 327 return (ENOMEM); 328 } 329 330 if (args->new_len < args->old_len) { 331 addr = args->addr + args->new_len; 332 len = args->old_len - args->new_len; 333 error = kern_munmap(td, addr, len); 334 } 335 336 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; 337 return (error); 338 } 339 340 #define LINUX_MS_ASYNC 0x0001 341 #define LINUX_MS_INVALIDATE 0x0002 342 #define LINUX_MS_SYNC 0x0004 343 344 int 345 linux_msync(struct thread *td, struct linux_msync_args *args) 346 { 347 348 return (kern_msync(td, args->addr, args->len, 349 args->fl & ~LINUX_MS_SYNC)); 350 } 351 352 int 353 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) 354 { 355 356 return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, 357 uap->prot)); 358 } 359 360 int 361 linux_madvise(struct thread *td, struct linux_madvise_args *uap) 362 { 363 364 return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, 365 uap->behav)); 366 } 367 368 int 369 linux_mmap2(struct thread *td, struct linux_mmap2_args *uap) 370 { 371 #if defined(LINUX_ARCHWANT_MMAP2PGOFF) 372 /* 373 * For architectures with sizeof (off_t) < sizeof (loff_t) mmap is 374 * implemented with mmap2 syscall and the offset is represented in 375 * multiples of page size. 376 */ 377 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot, 378 uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE)); 379 #else 380 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot, 381 uap->flags, uap->fd, uap->pgoff)); 382 #endif 383 } 384 385 #ifdef LINUX_LEGACY_SYSCALLS 386 int 387 linux_time(struct thread *td, struct linux_time_args *args) 388 { 389 struct timeval tv; 390 l_time_t tm; 391 int error; 392 393 microtime(&tv); 394 tm = tv.tv_sec; 395 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) 396 return (error); 397 td->td_retval[0] = tm; 398 return (0); 399 } 400 #endif 401 402 struct l_times_argv { 403 l_clock_t tms_utime; 404 l_clock_t tms_stime; 405 l_clock_t tms_cutime; 406 l_clock_t tms_cstime; 407 }; 408 409 /* 410 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. 411 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK 412 * auxiliary vector entry. 413 */ 414 #define CLK_TCK 100 415 416 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) 417 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) 418 419 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \ 420 CONVNTCK(r) : CONVOTCK(r)) 421 422 int 423 linux_times(struct thread *td, struct linux_times_args *args) 424 { 425 struct timeval tv, utime, stime, cutime, cstime; 426 struct l_times_argv tms; 427 struct proc *p; 428 int error; 429 430 if (args->buf != NULL) { 431 p = td->td_proc; 432 PROC_LOCK(p); 433 PROC_STATLOCK(p); 434 calcru(p, &utime, &stime); 435 PROC_STATUNLOCK(p); 436 calccru(p, &cutime, &cstime); 437 PROC_UNLOCK(p); 438 439 tms.tms_utime = CONVTCK(utime); 440 tms.tms_stime = CONVTCK(stime); 441 442 tms.tms_cutime = CONVTCK(cutime); 443 tms.tms_cstime = CONVTCK(cstime); 444 445 if ((error = copyout(&tms, args->buf, sizeof(tms)))) 446 return (error); 447 } 448 449 microuptime(&tv); 450 td->td_retval[0] = (int)CONVTCK(tv); 451 return (0); 452 } 453 454 int 455 linux_newuname(struct thread *td, struct linux_newuname_args *args) 456 { 457 struct l_new_utsname utsname; 458 char osname[LINUX_MAX_UTSNAME]; 459 char osrelease[LINUX_MAX_UTSNAME]; 460 char *p; 461 462 linux_get_osname(td, osname); 463 linux_get_osrelease(td, osrelease); 464 465 bzero(&utsname, sizeof(utsname)); 466 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); 467 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); 468 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); 469 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); 470 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); 471 for (p = utsname.version; *p != '\0'; ++p) 472 if (*p == '\n') { 473 *p = '\0'; 474 break; 475 } 476 #if defined(__amd64__) 477 /* 478 * On amd64, Linux uname(2) needs to return "x86_64" 479 * for both 64-bit and 32-bit applications. On 32-bit, 480 * the string returned by getauxval(AT_PLATFORM) needs 481 * to remain "i686", though. 482 */ 483 #if defined(COMPAT_LINUX32) 484 if (linux32_emulate_i386) 485 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); 486 else 487 #endif 488 strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME); 489 #elif defined(__aarch64__) 490 strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME); 491 #elif defined(__i386__) 492 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); 493 #endif 494 495 return (copyout(&utsname, args->buf, sizeof(utsname))); 496 } 497 498 struct l_utimbuf { 499 l_time_t l_actime; 500 l_time_t l_modtime; 501 }; 502 503 #ifdef LINUX_LEGACY_SYSCALLS 504 int 505 linux_utime(struct thread *td, struct linux_utime_args *args) 506 { 507 struct timeval tv[2], *tvp; 508 struct l_utimbuf lut; 509 int error; 510 511 if (args->times) { 512 if ((error = copyin(args->times, &lut, sizeof lut)) != 0) 513 return (error); 514 tv[0].tv_sec = lut.l_actime; 515 tv[0].tv_usec = 0; 516 tv[1].tv_sec = lut.l_modtime; 517 tv[1].tv_usec = 0; 518 tvp = tv; 519 } else 520 tvp = NULL; 521 522 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, 523 tvp, UIO_SYSSPACE)); 524 } 525 #endif 526 527 #ifdef LINUX_LEGACY_SYSCALLS 528 int 529 linux_utimes(struct thread *td, struct linux_utimes_args *args) 530 { 531 l_timeval ltv[2]; 532 struct timeval tv[2], *tvp = NULL; 533 int error; 534 535 if (args->tptr != NULL) { 536 if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0) 537 return (error); 538 tv[0].tv_sec = ltv[0].tv_sec; 539 tv[0].tv_usec = ltv[0].tv_usec; 540 tv[1].tv_sec = ltv[1].tv_sec; 541 tv[1].tv_usec = ltv[1].tv_usec; 542 tvp = tv; 543 } 544 545 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, 546 tvp, UIO_SYSSPACE)); 547 } 548 #endif 549 550 static int 551 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times) 552 { 553 554 if (l_times->tv_nsec != LINUX_UTIME_OMIT && 555 l_times->tv_nsec != LINUX_UTIME_NOW && 556 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) 557 return (EINVAL); 558 559 times->tv_sec = l_times->tv_sec; 560 switch (l_times->tv_nsec) 561 { 562 case LINUX_UTIME_OMIT: 563 times->tv_nsec = UTIME_OMIT; 564 break; 565 case LINUX_UTIME_NOW: 566 times->tv_nsec = UTIME_NOW; 567 break; 568 default: 569 times->tv_nsec = l_times->tv_nsec; 570 } 571 572 return (0); 573 } 574 575 static int 576 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname, 577 struct timespec *timesp, int lflags) 578 { 579 int dfd, flags = 0; 580 581 dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd; 582 583 if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH)) 584 return (EINVAL); 585 586 if (timesp != NULL) { 587 /* This breaks POSIX, but is what the Linux kernel does 588 * _on purpose_ (documented in the man page for utimensat(2)), 589 * so we must follow that behaviour. */ 590 if (timesp[0].tv_nsec == UTIME_OMIT && 591 timesp[1].tv_nsec == UTIME_OMIT) 592 return (0); 593 } 594 595 if (lflags & LINUX_AT_SYMLINK_NOFOLLOW) 596 flags |= AT_SYMLINK_NOFOLLOW; 597 if (lflags & LINUX_AT_EMPTY_PATH) 598 flags |= AT_EMPTY_PATH; 599 600 if (pathname != NULL) 601 return (kern_utimensat(td, dfd, pathname, 602 UIO_USERSPACE, timesp, UIO_SYSSPACE, flags)); 603 604 if (lflags != 0) 605 return (EINVAL); 606 607 return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE)); 608 } 609 610 int 611 linux_utimensat(struct thread *td, struct linux_utimensat_args *args) 612 { 613 struct l_timespec l_times[2]; 614 struct timespec times[2], *timesp; 615 int error; 616 617 if (args->times != NULL) { 618 error = copyin(args->times, l_times, sizeof(l_times)); 619 if (error != 0) 620 return (error); 621 622 error = linux_utimensat_lts_to_ts(&l_times[0], ×[0]); 623 if (error != 0) 624 return (error); 625 error = linux_utimensat_lts_to_ts(&l_times[1], ×[1]); 626 if (error != 0) 627 return (error); 628 timesp = times; 629 } else 630 timesp = NULL; 631 632 return (linux_common_utimensat(td, args->dfd, args->pathname, 633 timesp, args->flags)); 634 } 635 636 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 637 static int 638 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times) 639 { 640 641 /* Zero out the padding in compat mode. */ 642 l_times->tv_nsec &= 0xFFFFFFFFUL; 643 644 if (l_times->tv_nsec != LINUX_UTIME_OMIT && 645 l_times->tv_nsec != LINUX_UTIME_NOW && 646 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) 647 return (EINVAL); 648 649 times->tv_sec = l_times->tv_sec; 650 switch (l_times->tv_nsec) 651 { 652 case LINUX_UTIME_OMIT: 653 times->tv_nsec = UTIME_OMIT; 654 break; 655 case LINUX_UTIME_NOW: 656 times->tv_nsec = UTIME_NOW; 657 break; 658 default: 659 times->tv_nsec = l_times->tv_nsec; 660 } 661 662 return (0); 663 } 664 665 int 666 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args) 667 { 668 struct l_timespec64 l_times[2]; 669 struct timespec times[2], *timesp; 670 int error; 671 672 if (args->times64 != NULL) { 673 error = copyin(args->times64, l_times, sizeof(l_times)); 674 if (error != 0) 675 return (error); 676 677 error = linux_utimensat_lts64_to_ts(&l_times[0], ×[0]); 678 if (error != 0) 679 return (error); 680 error = linux_utimensat_lts64_to_ts(&l_times[1], ×[1]); 681 if (error != 0) 682 return (error); 683 timesp = times; 684 } else 685 timesp = NULL; 686 687 return (linux_common_utimensat(td, args->dfd, args->pathname, 688 timesp, args->flags)); 689 } 690 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 691 692 #ifdef LINUX_LEGACY_SYSCALLS 693 int 694 linux_futimesat(struct thread *td, struct linux_futimesat_args *args) 695 { 696 l_timeval ltv[2]; 697 struct timeval tv[2], *tvp = NULL; 698 int error, dfd; 699 700 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 701 702 if (args->utimes != NULL) { 703 if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0) 704 return (error); 705 tv[0].tv_sec = ltv[0].tv_sec; 706 tv[0].tv_usec = ltv[0].tv_usec; 707 tv[1].tv_sec = ltv[1].tv_sec; 708 tv[1].tv_usec = ltv[1].tv_usec; 709 tvp = tv; 710 } 711 712 return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE, 713 tvp, UIO_SYSSPACE)); 714 } 715 #endif 716 717 static int 718 linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp, 719 int options, void *rup, l_siginfo_t *infop) 720 { 721 l_siginfo_t lsi; 722 siginfo_t siginfo; 723 struct __wrusage wru; 724 int error, status, tmpstat, sig; 725 726 error = kern_wait6(td, idtype, id, &status, options, 727 rup != NULL ? &wru : NULL, &siginfo); 728 729 if (error == 0 && statusp) { 730 tmpstat = status & 0xffff; 731 if (WIFSIGNALED(tmpstat)) { 732 tmpstat = (tmpstat & 0xffffff80) | 733 bsd_to_linux_signal(WTERMSIG(tmpstat)); 734 } else if (WIFSTOPPED(tmpstat)) { 735 tmpstat = (tmpstat & 0xffff00ff) | 736 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); 737 #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32)) 738 if (WSTOPSIG(status) == SIGTRAP) { 739 tmpstat = linux_ptrace_status(td, 740 siginfo.si_pid, tmpstat); 741 } 742 #endif 743 } else if (WIFCONTINUED(tmpstat)) { 744 tmpstat = 0xffff; 745 } 746 error = copyout(&tmpstat, statusp, sizeof(int)); 747 } 748 if (error == 0 && rup != NULL) 749 error = linux_copyout_rusage(&wru.wru_self, rup); 750 if (error == 0 && infop != NULL && td->td_retval[0] != 0) { 751 sig = bsd_to_linux_signal(siginfo.si_signo); 752 siginfo_to_lsiginfo(&siginfo, &lsi, sig); 753 error = copyout(&lsi, infop, sizeof(lsi)); 754 } 755 756 return (error); 757 } 758 759 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 760 int 761 linux_waitpid(struct thread *td, struct linux_waitpid_args *args) 762 { 763 struct linux_wait4_args wait4_args = { 764 .pid = args->pid, 765 .status = args->status, 766 .options = args->options, 767 .rusage = NULL, 768 }; 769 770 return (linux_wait4(td, &wait4_args)); 771 } 772 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 773 774 int 775 linux_wait4(struct thread *td, struct linux_wait4_args *args) 776 { 777 struct proc *p; 778 int options, id, idtype; 779 780 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | 781 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 782 return (EINVAL); 783 784 /* -INT_MIN is not defined. */ 785 if (args->pid == INT_MIN) 786 return (ESRCH); 787 788 options = 0; 789 linux_to_bsd_waitopts(args->options, &options); 790 791 /* 792 * For backward compatibility we implicitly add flags WEXITED 793 * and WTRAPPED here. 794 */ 795 options |= WEXITED | WTRAPPED; 796 797 if (args->pid == WAIT_ANY) { 798 idtype = P_ALL; 799 id = 0; 800 } else if (args->pid < 0) { 801 idtype = P_PGID; 802 id = (id_t)-args->pid; 803 } else if (args->pid == 0) { 804 idtype = P_PGID; 805 p = td->td_proc; 806 PROC_LOCK(p); 807 id = p->p_pgid; 808 PROC_UNLOCK(p); 809 } else { 810 idtype = P_PID; 811 id = (id_t)args->pid; 812 } 813 814 return (linux_common_wait(td, idtype, id, args->status, options, 815 args->rusage, NULL)); 816 } 817 818 int 819 linux_waitid(struct thread *td, struct linux_waitid_args *args) 820 { 821 idtype_t idtype; 822 int error, options; 823 struct proc *p; 824 pid_t id; 825 826 if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED | 827 LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 828 return (EINVAL); 829 830 options = 0; 831 linux_to_bsd_waitopts(args->options, &options); 832 833 id = args->id; 834 switch (args->idtype) { 835 case LINUX_P_ALL: 836 idtype = P_ALL; 837 break; 838 case LINUX_P_PID: 839 if (args->id <= 0) 840 return (EINVAL); 841 idtype = P_PID; 842 break; 843 case LINUX_P_PGID: 844 if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) { 845 p = td->td_proc; 846 PROC_LOCK(p); 847 id = p->p_pgid; 848 PROC_UNLOCK(p); 849 } else if (args->id <= 0) 850 return (EINVAL); 851 idtype = P_PGID; 852 break; 853 case LINUX_P_PIDFD: 854 LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype"); 855 return (ENOSYS); 856 default: 857 return (EINVAL); 858 } 859 860 error = linux_common_wait(td, idtype, id, NULL, options, 861 args->rusage, args->info); 862 td->td_retval[0] = 0; 863 864 return (error); 865 } 866 867 #ifdef LINUX_LEGACY_SYSCALLS 868 int 869 linux_mknod(struct thread *td, struct linux_mknod_args *args) 870 { 871 int error; 872 873 switch (args->mode & S_IFMT) { 874 case S_IFIFO: 875 case S_IFSOCK: 876 error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE, 877 args->mode); 878 break; 879 880 case S_IFCHR: 881 case S_IFBLK: 882 error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE, 883 args->mode, linux_decode_dev(args->dev)); 884 break; 885 886 case S_IFDIR: 887 error = EPERM; 888 break; 889 890 case 0: 891 args->mode |= S_IFREG; 892 /* FALLTHROUGH */ 893 case S_IFREG: 894 error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE, 895 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 896 if (error == 0) 897 kern_close(td, td->td_retval[0]); 898 break; 899 900 default: 901 error = EINVAL; 902 break; 903 } 904 return (error); 905 } 906 #endif 907 908 int 909 linux_mknodat(struct thread *td, struct linux_mknodat_args *args) 910 { 911 int error, dfd; 912 913 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 914 915 switch (args->mode & S_IFMT) { 916 case S_IFIFO: 917 case S_IFSOCK: 918 error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE, 919 args->mode); 920 break; 921 922 case S_IFCHR: 923 case S_IFBLK: 924 error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE, 925 args->mode, linux_decode_dev(args->dev)); 926 break; 927 928 case S_IFDIR: 929 error = EPERM; 930 break; 931 932 case 0: 933 args->mode |= S_IFREG; 934 /* FALLTHROUGH */ 935 case S_IFREG: 936 error = kern_openat(td, dfd, args->filename, UIO_USERSPACE, 937 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 938 if (error == 0) 939 kern_close(td, td->td_retval[0]); 940 break; 941 942 default: 943 error = EINVAL; 944 break; 945 } 946 return (error); 947 } 948 949 /* 950 * UGH! This is just about the dumbest idea I've ever heard!! 951 */ 952 int 953 linux_personality(struct thread *td, struct linux_personality_args *args) 954 { 955 struct linux_pemuldata *pem; 956 struct proc *p = td->td_proc; 957 uint32_t old; 958 959 PROC_LOCK(p); 960 pem = pem_find(p); 961 old = pem->persona; 962 if (args->per != 0xffffffff) 963 pem->persona = args->per; 964 PROC_UNLOCK(p); 965 966 td->td_retval[0] = old; 967 return (0); 968 } 969 970 struct l_itimerval { 971 l_timeval it_interval; 972 l_timeval it_value; 973 }; 974 975 #define B2L_ITIMERVAL(bip, lip) \ 976 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ 977 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ 978 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ 979 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; 980 981 int 982 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) 983 { 984 int error; 985 struct l_itimerval ls; 986 struct itimerval aitv, oitv; 987 988 if (uap->itv == NULL) { 989 uap->itv = uap->oitv; 990 return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); 991 } 992 993 error = copyin(uap->itv, &ls, sizeof(ls)); 994 if (error != 0) 995 return (error); 996 B2L_ITIMERVAL(&aitv, &ls); 997 error = kern_setitimer(td, uap->which, &aitv, &oitv); 998 if (error != 0 || uap->oitv == NULL) 999 return (error); 1000 B2L_ITIMERVAL(&ls, &oitv); 1001 1002 return (copyout(&ls, uap->oitv, sizeof(ls))); 1003 } 1004 1005 int 1006 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) 1007 { 1008 int error; 1009 struct l_itimerval ls; 1010 struct itimerval aitv; 1011 1012 error = kern_getitimer(td, uap->which, &aitv); 1013 if (error != 0) 1014 return (error); 1015 B2L_ITIMERVAL(&ls, &aitv); 1016 return (copyout(&ls, uap->itv, sizeof(ls))); 1017 } 1018 1019 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1020 int 1021 linux_nice(struct thread *td, struct linux_nice_args *args) 1022 { 1023 1024 return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc)); 1025 } 1026 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1027 1028 int 1029 linux_setgroups(struct thread *td, struct linux_setgroups_args *args) 1030 { 1031 struct ucred *newcred, *oldcred; 1032 l_gid_t *linux_gidset; 1033 gid_t *bsd_gidset; 1034 int ngrp, error; 1035 struct proc *p; 1036 1037 ngrp = args->gidsetsize; 1038 if (ngrp < 0 || ngrp >= ngroups_max + 1) 1039 return (EINVAL); 1040 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); 1041 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); 1042 if (error) 1043 goto out; 1044 newcred = crget(); 1045 crextend(newcred, ngrp + 1); 1046 p = td->td_proc; 1047 PROC_LOCK(p); 1048 oldcred = p->p_ucred; 1049 crcopy(newcred, oldcred); 1050 1051 /* 1052 * cr_groups[0] holds egid. Setting the whole set from 1053 * the supplied set will cause egid to be changed too. 1054 * Keep cr_groups[0] unchanged to prevent that. 1055 */ 1056 1057 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) { 1058 PROC_UNLOCK(p); 1059 crfree(newcred); 1060 goto out; 1061 } 1062 1063 if (ngrp > 0) { 1064 newcred->cr_ngroups = ngrp + 1; 1065 1066 bsd_gidset = newcred->cr_groups; 1067 ngrp--; 1068 while (ngrp >= 0) { 1069 bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; 1070 ngrp--; 1071 } 1072 } else 1073 newcred->cr_ngroups = 1; 1074 1075 setsugid(p); 1076 proc_set_cred(p, newcred); 1077 PROC_UNLOCK(p); 1078 crfree(oldcred); 1079 error = 0; 1080 out: 1081 free(linux_gidset, M_LINUX); 1082 return (error); 1083 } 1084 1085 int 1086 linux_getgroups(struct thread *td, struct linux_getgroups_args *args) 1087 { 1088 struct ucred *cred; 1089 l_gid_t *linux_gidset; 1090 gid_t *bsd_gidset; 1091 int bsd_gidsetsz, ngrp, error; 1092 1093 cred = td->td_ucred; 1094 bsd_gidset = cred->cr_groups; 1095 bsd_gidsetsz = cred->cr_ngroups - 1; 1096 1097 /* 1098 * cr_groups[0] holds egid. Returning the whole set 1099 * here will cause a duplicate. Exclude cr_groups[0] 1100 * to prevent that. 1101 */ 1102 1103 if ((ngrp = args->gidsetsize) == 0) { 1104 td->td_retval[0] = bsd_gidsetsz; 1105 return (0); 1106 } 1107 1108 if (ngrp < bsd_gidsetsz) 1109 return (EINVAL); 1110 1111 ngrp = 0; 1112 linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), 1113 M_LINUX, M_WAITOK); 1114 while (ngrp < bsd_gidsetsz) { 1115 linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; 1116 ngrp++; 1117 } 1118 1119 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); 1120 free(linux_gidset, M_LINUX); 1121 if (error) 1122 return (error); 1123 1124 td->td_retval[0] = ngrp; 1125 return (0); 1126 } 1127 1128 static bool 1129 linux_get_dummy_limit(l_uint resource, struct rlimit *rlim) 1130 { 1131 1132 if (linux_dummy_rlimits == 0) 1133 return (false); 1134 1135 switch (resource) { 1136 case LINUX_RLIMIT_LOCKS: 1137 case LINUX_RLIMIT_SIGPENDING: 1138 case LINUX_RLIMIT_MSGQUEUE: 1139 case LINUX_RLIMIT_RTTIME: 1140 rlim->rlim_cur = LINUX_RLIM_INFINITY; 1141 rlim->rlim_max = LINUX_RLIM_INFINITY; 1142 return (true); 1143 case LINUX_RLIMIT_NICE: 1144 case LINUX_RLIMIT_RTPRIO: 1145 rlim->rlim_cur = 0; 1146 rlim->rlim_max = 0; 1147 return (true); 1148 default: 1149 return (false); 1150 } 1151 } 1152 1153 int 1154 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) 1155 { 1156 struct rlimit bsd_rlim; 1157 struct l_rlimit rlim; 1158 u_int which; 1159 int error; 1160 1161 if (args->resource >= LINUX_RLIM_NLIMITS) 1162 return (EINVAL); 1163 1164 which = linux_to_bsd_resource[args->resource]; 1165 if (which == -1) 1166 return (EINVAL); 1167 1168 error = copyin(args->rlim, &rlim, sizeof(rlim)); 1169 if (error) 1170 return (error); 1171 1172 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; 1173 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; 1174 return (kern_setrlimit(td, which, &bsd_rlim)); 1175 } 1176 1177 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1178 int 1179 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) 1180 { 1181 struct l_rlimit rlim; 1182 struct rlimit bsd_rlim; 1183 u_int which; 1184 1185 if (linux_get_dummy_limit(args->resource, &bsd_rlim)) { 1186 rlim.rlim_cur = bsd_rlim.rlim_cur; 1187 rlim.rlim_max = bsd_rlim.rlim_max; 1188 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1189 } 1190 1191 if (args->resource >= LINUX_RLIM_NLIMITS) 1192 return (EINVAL); 1193 1194 which = linux_to_bsd_resource[args->resource]; 1195 if (which == -1) 1196 return (EINVAL); 1197 1198 lim_rlimit(td, which, &bsd_rlim); 1199 1200 #ifdef COMPAT_LINUX32 1201 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; 1202 if (rlim.rlim_cur == UINT_MAX) 1203 rlim.rlim_cur = INT_MAX; 1204 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; 1205 if (rlim.rlim_max == UINT_MAX) 1206 rlim.rlim_max = INT_MAX; 1207 #else 1208 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; 1209 if (rlim.rlim_cur == ULONG_MAX) 1210 rlim.rlim_cur = LONG_MAX; 1211 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; 1212 if (rlim.rlim_max == ULONG_MAX) 1213 rlim.rlim_max = LONG_MAX; 1214 #endif 1215 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1216 } 1217 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1218 1219 int 1220 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) 1221 { 1222 struct l_rlimit rlim; 1223 struct rlimit bsd_rlim; 1224 u_int which; 1225 1226 if (linux_get_dummy_limit(args->resource, &bsd_rlim)) { 1227 rlim.rlim_cur = bsd_rlim.rlim_cur; 1228 rlim.rlim_max = bsd_rlim.rlim_max; 1229 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1230 } 1231 1232 if (args->resource >= LINUX_RLIM_NLIMITS) 1233 return (EINVAL); 1234 1235 which = linux_to_bsd_resource[args->resource]; 1236 if (which == -1) 1237 return (EINVAL); 1238 1239 lim_rlimit(td, which, &bsd_rlim); 1240 1241 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; 1242 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; 1243 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1244 } 1245 1246 int 1247 linux_sched_setscheduler(struct thread *td, 1248 struct linux_sched_setscheduler_args *args) 1249 { 1250 struct sched_param sched_param; 1251 struct thread *tdt; 1252 int error, policy; 1253 1254 switch (args->policy) { 1255 case LINUX_SCHED_OTHER: 1256 policy = SCHED_OTHER; 1257 break; 1258 case LINUX_SCHED_FIFO: 1259 policy = SCHED_FIFO; 1260 break; 1261 case LINUX_SCHED_RR: 1262 policy = SCHED_RR; 1263 break; 1264 default: 1265 return (EINVAL); 1266 } 1267 1268 error = copyin(args->param, &sched_param, sizeof(sched_param)); 1269 if (error) 1270 return (error); 1271 1272 if (linux_map_sched_prio) { 1273 switch (policy) { 1274 case SCHED_OTHER: 1275 if (sched_param.sched_priority != 0) 1276 return (EINVAL); 1277 1278 sched_param.sched_priority = 1279 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 1280 break; 1281 case SCHED_FIFO: 1282 case SCHED_RR: 1283 if (sched_param.sched_priority < 1 || 1284 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) 1285 return (EINVAL); 1286 1287 /* 1288 * Map [1, LINUX_MAX_RT_PRIO - 1] to 1289 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 1290 */ 1291 sched_param.sched_priority = 1292 (sched_param.sched_priority - 1) * 1293 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 1294 (LINUX_MAX_RT_PRIO - 1); 1295 break; 1296 } 1297 } 1298 1299 tdt = linux_tdfind(td, args->pid, -1); 1300 if (tdt == NULL) 1301 return (ESRCH); 1302 1303 error = kern_sched_setscheduler(td, tdt, policy, &sched_param); 1304 PROC_UNLOCK(tdt->td_proc); 1305 return (error); 1306 } 1307 1308 int 1309 linux_sched_getscheduler(struct thread *td, 1310 struct linux_sched_getscheduler_args *args) 1311 { 1312 struct thread *tdt; 1313 int error, policy; 1314 1315 tdt = linux_tdfind(td, args->pid, -1); 1316 if (tdt == NULL) 1317 return (ESRCH); 1318 1319 error = kern_sched_getscheduler(td, tdt, &policy); 1320 PROC_UNLOCK(tdt->td_proc); 1321 1322 switch (policy) { 1323 case SCHED_OTHER: 1324 td->td_retval[0] = LINUX_SCHED_OTHER; 1325 break; 1326 case SCHED_FIFO: 1327 td->td_retval[0] = LINUX_SCHED_FIFO; 1328 break; 1329 case SCHED_RR: 1330 td->td_retval[0] = LINUX_SCHED_RR; 1331 break; 1332 } 1333 return (error); 1334 } 1335 1336 int 1337 linux_sched_get_priority_max(struct thread *td, 1338 struct linux_sched_get_priority_max_args *args) 1339 { 1340 struct sched_get_priority_max_args bsd; 1341 1342 if (linux_map_sched_prio) { 1343 switch (args->policy) { 1344 case LINUX_SCHED_OTHER: 1345 td->td_retval[0] = 0; 1346 return (0); 1347 case LINUX_SCHED_FIFO: 1348 case LINUX_SCHED_RR: 1349 td->td_retval[0] = LINUX_MAX_RT_PRIO - 1; 1350 return (0); 1351 default: 1352 return (EINVAL); 1353 } 1354 } 1355 1356 switch (args->policy) { 1357 case LINUX_SCHED_OTHER: 1358 bsd.policy = SCHED_OTHER; 1359 break; 1360 case LINUX_SCHED_FIFO: 1361 bsd.policy = SCHED_FIFO; 1362 break; 1363 case LINUX_SCHED_RR: 1364 bsd.policy = SCHED_RR; 1365 break; 1366 default: 1367 return (EINVAL); 1368 } 1369 return (sys_sched_get_priority_max(td, &bsd)); 1370 } 1371 1372 int 1373 linux_sched_get_priority_min(struct thread *td, 1374 struct linux_sched_get_priority_min_args *args) 1375 { 1376 struct sched_get_priority_min_args bsd; 1377 1378 if (linux_map_sched_prio) { 1379 switch (args->policy) { 1380 case LINUX_SCHED_OTHER: 1381 td->td_retval[0] = 0; 1382 return (0); 1383 case LINUX_SCHED_FIFO: 1384 case LINUX_SCHED_RR: 1385 td->td_retval[0] = 1; 1386 return (0); 1387 default: 1388 return (EINVAL); 1389 } 1390 } 1391 1392 switch (args->policy) { 1393 case LINUX_SCHED_OTHER: 1394 bsd.policy = SCHED_OTHER; 1395 break; 1396 case LINUX_SCHED_FIFO: 1397 bsd.policy = SCHED_FIFO; 1398 break; 1399 case LINUX_SCHED_RR: 1400 bsd.policy = SCHED_RR; 1401 break; 1402 default: 1403 return (EINVAL); 1404 } 1405 return (sys_sched_get_priority_min(td, &bsd)); 1406 } 1407 1408 #define REBOOT_CAD_ON 0x89abcdef 1409 #define REBOOT_CAD_OFF 0 1410 #define REBOOT_HALT 0xcdef0123 1411 #define REBOOT_RESTART 0x01234567 1412 #define REBOOT_RESTART2 0xA1B2C3D4 1413 #define REBOOT_POWEROFF 0x4321FEDC 1414 #define REBOOT_MAGIC1 0xfee1dead 1415 #define REBOOT_MAGIC2 0x28121969 1416 #define REBOOT_MAGIC2A 0x05121996 1417 #define REBOOT_MAGIC2B 0x16041998 1418 1419 int 1420 linux_reboot(struct thread *td, struct linux_reboot_args *args) 1421 { 1422 struct reboot_args bsd_args; 1423 1424 if (args->magic1 != REBOOT_MAGIC1) 1425 return (EINVAL); 1426 1427 switch (args->magic2) { 1428 case REBOOT_MAGIC2: 1429 case REBOOT_MAGIC2A: 1430 case REBOOT_MAGIC2B: 1431 break; 1432 default: 1433 return (EINVAL); 1434 } 1435 1436 switch (args->cmd) { 1437 case REBOOT_CAD_ON: 1438 case REBOOT_CAD_OFF: 1439 return (priv_check(td, PRIV_REBOOT)); 1440 case REBOOT_HALT: 1441 bsd_args.opt = RB_HALT; 1442 break; 1443 case REBOOT_RESTART: 1444 case REBOOT_RESTART2: 1445 bsd_args.opt = 0; 1446 break; 1447 case REBOOT_POWEROFF: 1448 bsd_args.opt = RB_POWEROFF; 1449 break; 1450 default: 1451 return (EINVAL); 1452 } 1453 return (sys_reboot(td, &bsd_args)); 1454 } 1455 1456 int 1457 linux_getpid(struct thread *td, struct linux_getpid_args *args) 1458 { 1459 1460 td->td_retval[0] = td->td_proc->p_pid; 1461 1462 return (0); 1463 } 1464 1465 int 1466 linux_gettid(struct thread *td, struct linux_gettid_args *args) 1467 { 1468 struct linux_emuldata *em; 1469 1470 em = em_find(td); 1471 KASSERT(em != NULL, ("gettid: emuldata not found.\n")); 1472 1473 td->td_retval[0] = em->em_tid; 1474 1475 return (0); 1476 } 1477 1478 int 1479 linux_getppid(struct thread *td, struct linux_getppid_args *args) 1480 { 1481 1482 td->td_retval[0] = kern_getppid(td); 1483 return (0); 1484 } 1485 1486 int 1487 linux_getgid(struct thread *td, struct linux_getgid_args *args) 1488 { 1489 1490 td->td_retval[0] = td->td_ucred->cr_rgid; 1491 return (0); 1492 } 1493 1494 int 1495 linux_getuid(struct thread *td, struct linux_getuid_args *args) 1496 { 1497 1498 td->td_retval[0] = td->td_ucred->cr_ruid; 1499 return (0); 1500 } 1501 1502 int 1503 linux_getsid(struct thread *td, struct linux_getsid_args *args) 1504 { 1505 1506 return (kern_getsid(td, args->pid)); 1507 } 1508 1509 int 1510 linux_nosys(struct thread *td, struct nosys_args *ignore) 1511 { 1512 1513 return (ENOSYS); 1514 } 1515 1516 int 1517 linux_getpriority(struct thread *td, struct linux_getpriority_args *args) 1518 { 1519 int error; 1520 1521 error = kern_getpriority(td, args->which, args->who); 1522 td->td_retval[0] = 20 - td->td_retval[0]; 1523 return (error); 1524 } 1525 1526 int 1527 linux_sethostname(struct thread *td, struct linux_sethostname_args *args) 1528 { 1529 int name[2]; 1530 1531 name[0] = CTL_KERN; 1532 name[1] = KERN_HOSTNAME; 1533 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, 1534 args->len, 0, 0)); 1535 } 1536 1537 int 1538 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) 1539 { 1540 int name[2]; 1541 1542 name[0] = CTL_KERN; 1543 name[1] = KERN_NISDOMAINNAME; 1544 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, 1545 args->len, 0, 0)); 1546 } 1547 1548 int 1549 linux_exit_group(struct thread *td, struct linux_exit_group_args *args) 1550 { 1551 1552 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, 1553 args->error_code); 1554 1555 /* 1556 * XXX: we should send a signal to the parent if 1557 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) 1558 * as it doesnt occur often. 1559 */ 1560 exit1(td, args->error_code, 0); 1561 /* NOTREACHED */ 1562 } 1563 1564 #define _LINUX_CAPABILITY_VERSION_1 0x19980330 1565 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 1566 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 1567 1568 struct l_user_cap_header { 1569 l_int version; 1570 l_int pid; 1571 }; 1572 1573 struct l_user_cap_data { 1574 l_int effective; 1575 l_int permitted; 1576 l_int inheritable; 1577 }; 1578 1579 int 1580 linux_capget(struct thread *td, struct linux_capget_args *uap) 1581 { 1582 struct l_user_cap_header luch; 1583 struct l_user_cap_data lucd[2]; 1584 int error, u32s; 1585 1586 if (uap->hdrp == NULL) 1587 return (EFAULT); 1588 1589 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1590 if (error != 0) 1591 return (error); 1592 1593 switch (luch.version) { 1594 case _LINUX_CAPABILITY_VERSION_1: 1595 u32s = 1; 1596 break; 1597 case _LINUX_CAPABILITY_VERSION_2: 1598 case _LINUX_CAPABILITY_VERSION_3: 1599 u32s = 2; 1600 break; 1601 default: 1602 luch.version = _LINUX_CAPABILITY_VERSION_1; 1603 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1604 if (error) 1605 return (error); 1606 return (EINVAL); 1607 } 1608 1609 if (luch.pid) 1610 return (EPERM); 1611 1612 if (uap->datap) { 1613 /* 1614 * The current implementation doesn't support setting 1615 * a capability (it's essentially a stub) so indicate 1616 * that no capabilities are currently set or available 1617 * to request. 1618 */ 1619 memset(&lucd, 0, u32s * sizeof(lucd[0])); 1620 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); 1621 } 1622 1623 return (error); 1624 } 1625 1626 int 1627 linux_capset(struct thread *td, struct linux_capset_args *uap) 1628 { 1629 struct l_user_cap_header luch; 1630 struct l_user_cap_data lucd[2]; 1631 int error, i, u32s; 1632 1633 if (uap->hdrp == NULL || uap->datap == NULL) 1634 return (EFAULT); 1635 1636 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1637 if (error != 0) 1638 return (error); 1639 1640 switch (luch.version) { 1641 case _LINUX_CAPABILITY_VERSION_1: 1642 u32s = 1; 1643 break; 1644 case _LINUX_CAPABILITY_VERSION_2: 1645 case _LINUX_CAPABILITY_VERSION_3: 1646 u32s = 2; 1647 break; 1648 default: 1649 luch.version = _LINUX_CAPABILITY_VERSION_1; 1650 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1651 if (error) 1652 return (error); 1653 return (EINVAL); 1654 } 1655 1656 if (luch.pid) 1657 return (EPERM); 1658 1659 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); 1660 if (error != 0) 1661 return (error); 1662 1663 /* We currently don't support setting any capabilities. */ 1664 for (i = 0; i < u32s; i++) { 1665 if (lucd[i].effective || lucd[i].permitted || 1666 lucd[i].inheritable) { 1667 linux_msg(td, 1668 "capset[%d] effective=0x%x, permitted=0x%x, " 1669 "inheritable=0x%x is not implemented", i, 1670 (int)lucd[i].effective, (int)lucd[i].permitted, 1671 (int)lucd[i].inheritable); 1672 return (EPERM); 1673 } 1674 } 1675 1676 return (0); 1677 } 1678 1679 int 1680 linux_prctl(struct thread *td, struct linux_prctl_args *args) 1681 { 1682 int error = 0, max_size, arg; 1683 struct proc *p = td->td_proc; 1684 char comm[LINUX_MAX_COMM_LEN]; 1685 int pdeath_signal, trace_state; 1686 1687 switch (args->option) { 1688 case LINUX_PR_SET_PDEATHSIG: 1689 if (!LINUX_SIG_VALID(args->arg2)) 1690 return (EINVAL); 1691 pdeath_signal = linux_to_bsd_signal(args->arg2); 1692 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL, 1693 &pdeath_signal)); 1694 case LINUX_PR_GET_PDEATHSIG: 1695 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS, 1696 &pdeath_signal); 1697 if (error != 0) 1698 return (error); 1699 pdeath_signal = bsd_to_linux_signal(pdeath_signal); 1700 return (copyout(&pdeath_signal, 1701 (void *)(register_t)args->arg2, 1702 sizeof(pdeath_signal))); 1703 /* 1704 * In Linux, this flag controls if set[gu]id processes can coredump. 1705 * There are additional semantics imposed on processes that cannot 1706 * coredump: 1707 * - Such processes can not be ptraced. 1708 * - There are some semantics around ownership of process-related files 1709 * in the /proc namespace. 1710 * 1711 * In FreeBSD, we can (and by default, do) disable setuid coredump 1712 * system-wide with 'sugid_coredump.' We control tracability on a 1713 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag). 1714 * By happy coincidence, P2_NOTRACE also prevents coredumping. So the 1715 * procctl is roughly analogous to Linux's DUMPABLE. 1716 * 1717 * So, proxy these knobs to the corresponding PROC_TRACE setting. 1718 */ 1719 case LINUX_PR_GET_DUMPABLE: 1720 error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS, 1721 &trace_state); 1722 if (error != 0) 1723 return (error); 1724 td->td_retval[0] = (trace_state != -1); 1725 return (0); 1726 case LINUX_PR_SET_DUMPABLE: 1727 /* 1728 * It is only valid for userspace to set one of these two 1729 * flags, and only one at a time. 1730 */ 1731 switch (args->arg2) { 1732 case LINUX_SUID_DUMP_DISABLE: 1733 trace_state = PROC_TRACE_CTL_DISABLE_EXEC; 1734 break; 1735 case LINUX_SUID_DUMP_USER: 1736 trace_state = PROC_TRACE_CTL_ENABLE; 1737 break; 1738 default: 1739 return (EINVAL); 1740 } 1741 return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL, 1742 &trace_state)); 1743 case LINUX_PR_GET_KEEPCAPS: 1744 /* 1745 * Indicate that we always clear the effective and 1746 * permitted capability sets when the user id becomes 1747 * non-zero (actually the capability sets are simply 1748 * always zero in the current implementation). 1749 */ 1750 td->td_retval[0] = 0; 1751 break; 1752 case LINUX_PR_SET_KEEPCAPS: 1753 /* 1754 * Ignore requests to keep the effective and permitted 1755 * capability sets when the user id becomes non-zero. 1756 */ 1757 break; 1758 case LINUX_PR_SET_NAME: 1759 /* 1760 * To be on the safe side we need to make sure to not 1761 * overflow the size a Linux program expects. We already 1762 * do this here in the copyin, so that we don't need to 1763 * check on copyout. 1764 */ 1765 max_size = MIN(sizeof(comm), sizeof(p->p_comm)); 1766 error = copyinstr((void *)(register_t)args->arg2, comm, 1767 max_size, NULL); 1768 1769 /* Linux silently truncates the name if it is too long. */ 1770 if (error == ENAMETOOLONG) { 1771 /* 1772 * XXX: copyinstr() isn't documented to populate the 1773 * array completely, so do a copyin() to be on the 1774 * safe side. This should be changed in case 1775 * copyinstr() is changed to guarantee this. 1776 */ 1777 error = copyin((void *)(register_t)args->arg2, comm, 1778 max_size - 1); 1779 comm[max_size - 1] = '\0'; 1780 } 1781 if (error) 1782 return (error); 1783 1784 PROC_LOCK(p); 1785 strlcpy(p->p_comm, comm, sizeof(p->p_comm)); 1786 PROC_UNLOCK(p); 1787 break; 1788 case LINUX_PR_GET_NAME: 1789 PROC_LOCK(p); 1790 strlcpy(comm, p->p_comm, sizeof(comm)); 1791 PROC_UNLOCK(p); 1792 error = copyout(comm, (void *)(register_t)args->arg2, 1793 strlen(comm) + 1); 1794 break; 1795 case LINUX_PR_GET_SECCOMP: 1796 case LINUX_PR_SET_SECCOMP: 1797 /* 1798 * Same as returned by Linux without CONFIG_SECCOMP enabled. 1799 */ 1800 error = EINVAL; 1801 break; 1802 case LINUX_PR_CAPBSET_READ: 1803 #if 0 1804 /* 1805 * This makes too much noise with Ubuntu Focal. 1806 */ 1807 linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d", 1808 (int)args->arg2); 1809 #endif 1810 error = EINVAL; 1811 break; 1812 case LINUX_PR_SET_NO_NEW_PRIVS: 1813 arg = args->arg2 == 1 ? 1814 PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE; 1815 error = kern_procctl(td, P_PID, p->p_pid, 1816 PROC_NO_NEW_PRIVS_CTL, &arg); 1817 break; 1818 case LINUX_PR_SET_PTRACER: 1819 linux_msg(td, "unsupported prctl PR_SET_PTRACER"); 1820 error = EINVAL; 1821 break; 1822 default: 1823 linux_msg(td, "unsupported prctl option %d", args->option); 1824 error = EINVAL; 1825 break; 1826 } 1827 1828 return (error); 1829 } 1830 1831 int 1832 linux_sched_setparam(struct thread *td, 1833 struct linux_sched_setparam_args *uap) 1834 { 1835 struct sched_param sched_param; 1836 struct thread *tdt; 1837 int error, policy; 1838 1839 error = copyin(uap->param, &sched_param, sizeof(sched_param)); 1840 if (error) 1841 return (error); 1842 1843 tdt = linux_tdfind(td, uap->pid, -1); 1844 if (tdt == NULL) 1845 return (ESRCH); 1846 1847 if (linux_map_sched_prio) { 1848 error = kern_sched_getscheduler(td, tdt, &policy); 1849 if (error) 1850 goto out; 1851 1852 switch (policy) { 1853 case SCHED_OTHER: 1854 if (sched_param.sched_priority != 0) { 1855 error = EINVAL; 1856 goto out; 1857 } 1858 sched_param.sched_priority = 1859 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 1860 break; 1861 case SCHED_FIFO: 1862 case SCHED_RR: 1863 if (sched_param.sched_priority < 1 || 1864 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) { 1865 error = EINVAL; 1866 goto out; 1867 } 1868 /* 1869 * Map [1, LINUX_MAX_RT_PRIO - 1] to 1870 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 1871 */ 1872 sched_param.sched_priority = 1873 (sched_param.sched_priority - 1) * 1874 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 1875 (LINUX_MAX_RT_PRIO - 1); 1876 break; 1877 } 1878 } 1879 1880 error = kern_sched_setparam(td, tdt, &sched_param); 1881 out: PROC_UNLOCK(tdt->td_proc); 1882 return (error); 1883 } 1884 1885 int 1886 linux_sched_getparam(struct thread *td, 1887 struct linux_sched_getparam_args *uap) 1888 { 1889 struct sched_param sched_param; 1890 struct thread *tdt; 1891 int error, policy; 1892 1893 tdt = linux_tdfind(td, uap->pid, -1); 1894 if (tdt == NULL) 1895 return (ESRCH); 1896 1897 error = kern_sched_getparam(td, tdt, &sched_param); 1898 if (error) { 1899 PROC_UNLOCK(tdt->td_proc); 1900 return (error); 1901 } 1902 1903 if (linux_map_sched_prio) { 1904 error = kern_sched_getscheduler(td, tdt, &policy); 1905 PROC_UNLOCK(tdt->td_proc); 1906 if (error) 1907 return (error); 1908 1909 switch (policy) { 1910 case SCHED_OTHER: 1911 sched_param.sched_priority = 0; 1912 break; 1913 case SCHED_FIFO: 1914 case SCHED_RR: 1915 /* 1916 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to 1917 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up). 1918 */ 1919 sched_param.sched_priority = 1920 (sched_param.sched_priority * 1921 (LINUX_MAX_RT_PRIO - 1) + 1922 (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) / 1923 (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1; 1924 break; 1925 } 1926 } else 1927 PROC_UNLOCK(tdt->td_proc); 1928 1929 error = copyout(&sched_param, uap->param, sizeof(sched_param)); 1930 return (error); 1931 } 1932 1933 /* 1934 * Get affinity of a process. 1935 */ 1936 int 1937 linux_sched_getaffinity(struct thread *td, 1938 struct linux_sched_getaffinity_args *args) 1939 { 1940 struct thread *tdt; 1941 cpuset_t *mask; 1942 size_t size; 1943 int error; 1944 id_t tid; 1945 1946 tdt = linux_tdfind(td, args->pid, -1); 1947 if (tdt == NULL) 1948 return (ESRCH); 1949 tid = tdt->td_tid; 1950 PROC_UNLOCK(tdt->td_proc); 1951 1952 mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO); 1953 size = min(args->len, sizeof(cpuset_t)); 1954 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1955 tid, size, mask); 1956 if (error == ERANGE) 1957 error = EINVAL; 1958 if (error == 0) 1959 error = copyout(mask, args->user_mask_ptr, size); 1960 if (error == 0) 1961 td->td_retval[0] = size; 1962 free(mask, M_LINUX); 1963 return (error); 1964 } 1965 1966 /* 1967 * Set affinity of a process. 1968 */ 1969 int 1970 linux_sched_setaffinity(struct thread *td, 1971 struct linux_sched_setaffinity_args *args) 1972 { 1973 struct thread *tdt; 1974 cpuset_t *mask; 1975 int cpu, error; 1976 size_t len; 1977 id_t tid; 1978 1979 tdt = linux_tdfind(td, args->pid, -1); 1980 if (tdt == NULL) 1981 return (ESRCH); 1982 tid = tdt->td_tid; 1983 PROC_UNLOCK(tdt->td_proc); 1984 1985 len = min(args->len, sizeof(cpuset_t)); 1986 mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);; 1987 error = copyin(args->user_mask_ptr, mask, len); 1988 if (error != 0) 1989 goto out; 1990 /* Linux ignore high bits */ 1991 CPU_FOREACH_ISSET(cpu, mask) 1992 if (cpu > mp_maxid) 1993 CPU_CLR(cpu, mask); 1994 1995 error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 1996 tid, mask); 1997 if (error == EDEADLK) 1998 error = EINVAL; 1999 out: 2000 free(mask, M_TEMP); 2001 return (error); 2002 } 2003 2004 struct linux_rlimit64 { 2005 uint64_t rlim_cur; 2006 uint64_t rlim_max; 2007 }; 2008 2009 int 2010 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) 2011 { 2012 struct rlimit rlim, nrlim; 2013 struct linux_rlimit64 lrlim; 2014 struct proc *p; 2015 u_int which; 2016 int flags; 2017 int error; 2018 2019 if (args->new == NULL && args->old != NULL) { 2020 if (linux_get_dummy_limit(args->resource, &rlim)) { 2021 lrlim.rlim_cur = rlim.rlim_cur; 2022 lrlim.rlim_max = rlim.rlim_max; 2023 return (copyout(&lrlim, args->old, sizeof(lrlim))); 2024 } 2025 } 2026 2027 if (args->resource >= LINUX_RLIM_NLIMITS) 2028 return (EINVAL); 2029 2030 which = linux_to_bsd_resource[args->resource]; 2031 if (which == -1) 2032 return (EINVAL); 2033 2034 if (args->new != NULL) { 2035 /* 2036 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux 2037 * rlim is unsigned 64-bit. FreeBSD treats negative limits 2038 * as INFINITY so we do not need a conversion even. 2039 */ 2040 error = copyin(args->new, &nrlim, sizeof(nrlim)); 2041 if (error != 0) 2042 return (error); 2043 } 2044 2045 flags = PGET_HOLD | PGET_NOTWEXIT; 2046 if (args->new != NULL) 2047 flags |= PGET_CANDEBUG; 2048 else 2049 flags |= PGET_CANSEE; 2050 if (args->pid == 0) { 2051 p = td->td_proc; 2052 PHOLD(p); 2053 } else { 2054 error = pget(args->pid, flags, &p); 2055 if (error != 0) 2056 return (error); 2057 } 2058 if (args->old != NULL) { 2059 PROC_LOCK(p); 2060 lim_rlimit_proc(p, which, &rlim); 2061 PROC_UNLOCK(p); 2062 if (rlim.rlim_cur == RLIM_INFINITY) 2063 lrlim.rlim_cur = LINUX_RLIM_INFINITY; 2064 else 2065 lrlim.rlim_cur = rlim.rlim_cur; 2066 if (rlim.rlim_max == RLIM_INFINITY) 2067 lrlim.rlim_max = LINUX_RLIM_INFINITY; 2068 else 2069 lrlim.rlim_max = rlim.rlim_max; 2070 error = copyout(&lrlim, args->old, sizeof(lrlim)); 2071 if (error != 0) 2072 goto out; 2073 } 2074 2075 if (args->new != NULL) 2076 error = kern_proc_setrlimit(td, p, which, &nrlim); 2077 2078 out: 2079 PRELE(p); 2080 return (error); 2081 } 2082 2083 int 2084 linux_pselect6(struct thread *td, struct linux_pselect6_args *args) 2085 { 2086 struct timespec ts, *tsp; 2087 int error; 2088 2089 if (args->tsp != NULL) { 2090 error = linux_get_timespec(&ts, args->tsp); 2091 if (error != 0) 2092 return (error); 2093 tsp = &ts; 2094 } else 2095 tsp = NULL; 2096 2097 error = linux_common_pselect6(td, args->nfds, args->readfds, 2098 args->writefds, args->exceptfds, tsp, args->sig); 2099 2100 if (args->tsp != NULL) 2101 linux_put_timespec(&ts, args->tsp); 2102 return (error); 2103 } 2104 2105 static int 2106 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds, 2107 l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp, 2108 l_uintptr_t *sig) 2109 { 2110 struct timeval utv, tv0, tv1, *tvp; 2111 struct l_pselect6arg lpse6; 2112 sigset_t *ssp; 2113 sigset_t ss; 2114 int error; 2115 2116 ssp = NULL; 2117 if (sig != NULL) { 2118 error = copyin(sig, &lpse6, sizeof(lpse6)); 2119 if (error != 0) 2120 return (error); 2121 error = linux_copyin_sigset(td, PTRIN(lpse6.ss), 2122 lpse6.ss_len, &ss, &ssp); 2123 if (error != 0) 2124 return (error); 2125 } else 2126 ssp = NULL; 2127 2128 /* 2129 * Currently glibc changes nanosecond number to microsecond. 2130 * This mean losing precision but for now it is hardly seen. 2131 */ 2132 if (tsp != NULL) { 2133 TIMESPEC_TO_TIMEVAL(&utv, tsp); 2134 if (itimerfix(&utv)) 2135 return (EINVAL); 2136 2137 microtime(&tv0); 2138 tvp = &utv; 2139 } else 2140 tvp = NULL; 2141 2142 error = kern_pselect(td, nfds, readfds, writefds, 2143 exceptfds, tvp, ssp, LINUX_NFDBITS); 2144 2145 if (tsp != NULL) { 2146 /* 2147 * Compute how much time was left of the timeout, 2148 * by subtracting the current time and the time 2149 * before we started the call, and subtracting 2150 * that result from the user-supplied value. 2151 */ 2152 microtime(&tv1); 2153 timevalsub(&tv1, &tv0); 2154 timevalsub(&utv, &tv1); 2155 if (utv.tv_sec < 0) 2156 timevalclear(&utv); 2157 TIMEVAL_TO_TIMESPEC(&utv, tsp); 2158 } 2159 return (error); 2160 } 2161 2162 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 2163 int 2164 linux_pselect6_time64(struct thread *td, 2165 struct linux_pselect6_time64_args *args) 2166 { 2167 struct timespec ts, *tsp; 2168 int error; 2169 2170 if (args->tsp != NULL) { 2171 error = linux_get_timespec64(&ts, args->tsp); 2172 if (error != 0) 2173 return (error); 2174 tsp = &ts; 2175 } else 2176 tsp = NULL; 2177 2178 error = linux_common_pselect6(td, args->nfds, args->readfds, 2179 args->writefds, args->exceptfds, tsp, args->sig); 2180 2181 if (args->tsp != NULL) 2182 linux_put_timespec64(&ts, args->tsp); 2183 return (error); 2184 } 2185 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 2186 2187 int 2188 linux_ppoll(struct thread *td, struct linux_ppoll_args *args) 2189 { 2190 struct timespec uts, *tsp; 2191 int error; 2192 2193 if (args->tsp != NULL) { 2194 error = linux_get_timespec(&uts, args->tsp); 2195 if (error != 0) 2196 return (error); 2197 tsp = &uts; 2198 } else 2199 tsp = NULL; 2200 2201 error = linux_common_ppoll(td, args->fds, args->nfds, tsp, 2202 args->sset, args->ssize); 2203 if (error == 0 && args->tsp != NULL) 2204 error = linux_put_timespec(&uts, args->tsp); 2205 return (error); 2206 } 2207 2208 static int 2209 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds, 2210 struct timespec *tsp, l_sigset_t *sset, l_size_t ssize) 2211 { 2212 struct timespec ts0, ts1; 2213 struct pollfd stackfds[32]; 2214 struct pollfd *kfds; 2215 sigset_t *ssp; 2216 sigset_t ss; 2217 int error; 2218 2219 if (kern_poll_maxfds(nfds)) 2220 return (EINVAL); 2221 if (sset != NULL) { 2222 error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp); 2223 if (error != 0) 2224 return (error); 2225 } else 2226 ssp = NULL; 2227 if (tsp != NULL) 2228 nanotime(&ts0); 2229 2230 if (nfds > nitems(stackfds)) 2231 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); 2232 else 2233 kfds = stackfds; 2234 error = linux_pollin(td, kfds, fds, nfds); 2235 if (error != 0) 2236 goto out; 2237 2238 error = kern_poll_kfds(td, kfds, nfds, tsp, ssp); 2239 if (error == 0) 2240 error = linux_pollout(td, kfds, fds, nfds); 2241 2242 if (error == 0 && tsp != NULL) { 2243 if (td->td_retval[0]) { 2244 nanotime(&ts1); 2245 timespecsub(&ts1, &ts0, &ts1); 2246 timespecsub(tsp, &ts1, tsp); 2247 if (tsp->tv_sec < 0) 2248 timespecclear(tsp); 2249 } else 2250 timespecclear(tsp); 2251 } 2252 2253 out: 2254 if (nfds > nitems(stackfds)) 2255 free(kfds, M_TEMP); 2256 return (error); 2257 } 2258 2259 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 2260 int 2261 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args) 2262 { 2263 struct timespec uts, *tsp; 2264 int error; 2265 2266 if (args->tsp != NULL) { 2267 error = linux_get_timespec64(&uts, args->tsp); 2268 if (error != 0) 2269 return (error); 2270 tsp = &uts; 2271 } else 2272 tsp = NULL; 2273 error = linux_common_ppoll(td, args->fds, args->nfds, tsp, 2274 args->sset, args->ssize); 2275 if (error == 0 && args->tsp != NULL) 2276 error = linux_put_timespec64(&uts, args->tsp); 2277 return (error); 2278 } 2279 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 2280 2281 static int 2282 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) 2283 { 2284 int error; 2285 u_int i; 2286 2287 error = copyin(ufds, fds, nfd * sizeof(*fds)); 2288 if (error != 0) 2289 return (error); 2290 2291 for (i = 0; i < nfd; i++) { 2292 if (fds->events != 0) 2293 linux_to_bsd_poll_events(td, fds->fd, 2294 fds->events, &fds->events); 2295 fds++; 2296 } 2297 return (0); 2298 } 2299 2300 static int 2301 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) 2302 { 2303 int error = 0; 2304 u_int i, n = 0; 2305 2306 for (i = 0; i < nfd; i++) { 2307 if (fds->revents != 0) { 2308 bsd_to_linux_poll_events(fds->revents, 2309 &fds->revents); 2310 n++; 2311 } 2312 error = copyout(&fds->revents, &ufds->revents, 2313 sizeof(ufds->revents)); 2314 if (error) 2315 return (error); 2316 fds++; 2317 ufds++; 2318 } 2319 td->td_retval[0] = n; 2320 return (0); 2321 } 2322 2323 static int 2324 linux_sched_rr_get_interval_common(struct thread *td, pid_t pid, 2325 struct timespec *ts) 2326 { 2327 struct thread *tdt; 2328 int error; 2329 2330 /* 2331 * According to man in case the invalid pid specified 2332 * EINVAL should be returned. 2333 */ 2334 if (pid < 0) 2335 return (EINVAL); 2336 2337 tdt = linux_tdfind(td, pid, -1); 2338 if (tdt == NULL) 2339 return (ESRCH); 2340 2341 error = kern_sched_rr_get_interval_td(td, tdt, ts); 2342 PROC_UNLOCK(tdt->td_proc); 2343 return (error); 2344 } 2345 2346 int 2347 linux_sched_rr_get_interval(struct thread *td, 2348 struct linux_sched_rr_get_interval_args *uap) 2349 { 2350 struct timespec ts; 2351 int error; 2352 2353 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); 2354 if (error != 0) 2355 return (error); 2356 return (linux_put_timespec(&ts, uap->interval)); 2357 } 2358 2359 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 2360 int 2361 linux_sched_rr_get_interval_time64(struct thread *td, 2362 struct linux_sched_rr_get_interval_time64_args *uap) 2363 { 2364 struct timespec ts; 2365 int error; 2366 2367 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); 2368 if (error != 0) 2369 return (error); 2370 return (linux_put_timespec64(&ts, uap->interval)); 2371 } 2372 #endif 2373 2374 /* 2375 * In case when the Linux thread is the initial thread in 2376 * the thread group thread id is equal to the process id. 2377 * Glibc depends on this magic (assert in pthread_getattr_np.c). 2378 */ 2379 struct thread * 2380 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) 2381 { 2382 struct linux_emuldata *em; 2383 struct thread *tdt; 2384 struct proc *p; 2385 2386 tdt = NULL; 2387 if (tid == 0 || tid == td->td_tid) { 2388 if (pid != -1 && td->td_proc->p_pid != pid) 2389 return (NULL); 2390 PROC_LOCK(td->td_proc); 2391 return (td); 2392 } else if (tid > PID_MAX) 2393 return (tdfind(tid, pid)); 2394 2395 /* 2396 * Initial thread where the tid equal to the pid. 2397 */ 2398 p = pfind(tid); 2399 if (p != NULL) { 2400 if (SV_PROC_ABI(p) != SV_ABI_LINUX || 2401 (pid != -1 && tid != pid)) { 2402 /* 2403 * p is not a Linuxulator process. 2404 */ 2405 PROC_UNLOCK(p); 2406 return (NULL); 2407 } 2408 FOREACH_THREAD_IN_PROC(p, tdt) { 2409 em = em_find(tdt); 2410 if (tid == em->em_tid) 2411 return (tdt); 2412 } 2413 PROC_UNLOCK(p); 2414 } 2415 return (NULL); 2416 } 2417 2418 void 2419 linux_to_bsd_waitopts(int options, int *bsdopts) 2420 { 2421 2422 if (options & LINUX_WNOHANG) 2423 *bsdopts |= WNOHANG; 2424 if (options & LINUX_WUNTRACED) 2425 *bsdopts |= WUNTRACED; 2426 if (options & LINUX_WEXITED) 2427 *bsdopts |= WEXITED; 2428 if (options & LINUX_WCONTINUED) 2429 *bsdopts |= WCONTINUED; 2430 if (options & LINUX_WNOWAIT) 2431 *bsdopts |= WNOWAIT; 2432 2433 if (options & __WCLONE) 2434 *bsdopts |= WLINUXCLONE; 2435 } 2436 2437 int 2438 linux_getrandom(struct thread *td, struct linux_getrandom_args *args) 2439 { 2440 struct uio uio; 2441 struct iovec iov; 2442 int error; 2443 2444 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) 2445 return (EINVAL); 2446 if (args->count > INT_MAX) 2447 args->count = INT_MAX; 2448 2449 iov.iov_base = args->buf; 2450 iov.iov_len = args->count; 2451 2452 uio.uio_iov = &iov; 2453 uio.uio_iovcnt = 1; 2454 uio.uio_resid = iov.iov_len; 2455 uio.uio_segflg = UIO_USERSPACE; 2456 uio.uio_rw = UIO_READ; 2457 uio.uio_td = td; 2458 2459 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); 2460 if (error == 0) 2461 td->td_retval[0] = args->count - uio.uio_resid; 2462 return (error); 2463 } 2464 2465 int 2466 linux_mincore(struct thread *td, struct linux_mincore_args *args) 2467 { 2468 2469 /* Needs to be page-aligned */ 2470 if (args->start & PAGE_MASK) 2471 return (EINVAL); 2472 return (kern_mincore(td, args->start, args->len, args->vec)); 2473 } 2474 2475 #define SYSLOG_TAG "<6>" 2476 2477 int 2478 linux_syslog(struct thread *td, struct linux_syslog_args *args) 2479 { 2480 char buf[128], *src, *dst; 2481 u_int seq; 2482 int buflen, error; 2483 2484 if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) { 2485 linux_msg(td, "syslog unsupported type 0x%x", args->type); 2486 return (EINVAL); 2487 } 2488 2489 if (args->len < 6) { 2490 td->td_retval[0] = 0; 2491 return (0); 2492 } 2493 2494 error = priv_check(td, PRIV_MSGBUF); 2495 if (error) 2496 return (error); 2497 2498 mtx_lock(&msgbuf_lock); 2499 msgbuf_peekbytes(msgbufp, NULL, 0, &seq); 2500 mtx_unlock(&msgbuf_lock); 2501 2502 dst = args->buf; 2503 error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG)); 2504 /* The -1 is to skip the trailing '\0'. */ 2505 dst += sizeof(SYSLOG_TAG) - 1; 2506 2507 while (error == 0) { 2508 mtx_lock(&msgbuf_lock); 2509 buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq); 2510 mtx_unlock(&msgbuf_lock); 2511 2512 if (buflen == 0) 2513 break; 2514 2515 for (src = buf; src < buf + buflen && error == 0; src++) { 2516 if (*src == '\0') 2517 continue; 2518 2519 if (dst >= args->buf + args->len) 2520 goto out; 2521 2522 error = copyout(src, dst, 1); 2523 dst++; 2524 2525 if (*src == '\n' && *(src + 1) != '<' && 2526 dst + sizeof(SYSLOG_TAG) < args->buf + args->len) { 2527 error = copyout(&SYSLOG_TAG, 2528 dst, sizeof(SYSLOG_TAG)); 2529 dst += sizeof(SYSLOG_TAG) - 1; 2530 } 2531 } 2532 } 2533 out: 2534 td->td_retval[0] = dst - args->buf; 2535 return (error); 2536 } 2537 2538 int 2539 linux_getcpu(struct thread *td, struct linux_getcpu_args *args) 2540 { 2541 int cpu, error, node; 2542 2543 cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */ 2544 error = 0; 2545 node = cpuid_to_pcpu[cpu]->pc_domain; 2546 2547 if (args->cpu != NULL) 2548 error = copyout(&cpu, args->cpu, sizeof(l_int)); 2549 if (args->node != NULL) 2550 error = copyout(&node, args->node, sizeof(l_int)); 2551 return (error); 2552 } 2553 2554 #if defined(__i386__) || defined(__amd64__) 2555 int 2556 linux_poll(struct thread *td, struct linux_poll_args *args) 2557 { 2558 struct timespec ts, *tsp; 2559 2560 if (args->timeout != INFTIM) { 2561 if (args->timeout < 0) 2562 return (EINVAL); 2563 ts.tv_sec = args->timeout / 1000; 2564 ts.tv_nsec = (args->timeout % 1000) * 1000000; 2565 tsp = &ts; 2566 } else 2567 tsp = NULL; 2568 2569 return (linux_common_ppoll(td, args->fds, args->nfds, 2570 tsp, NULL, 0)); 2571 } 2572 #endif /* __i386__ || __amd64__ */ 2573 2574 int 2575 linux_seccomp(struct thread *td, struct linux_seccomp_args *args) 2576 { 2577 2578 switch (args->op) { 2579 case LINUX_SECCOMP_GET_ACTION_AVAIL: 2580 return (EOPNOTSUPP); 2581 default: 2582 /* 2583 * Ignore unknown operations, just like Linux kernel built 2584 * without CONFIG_SECCOMP. 2585 */ 2586 return (EINVAL); 2587 } 2588 } 2589 2590 /* 2591 * Custom version of exec_copyin_args(), to copy out argument and environment 2592 * strings from the old process address space into the temporary string buffer. 2593 * Based on freebsd32_exec_copyin_args. 2594 */ 2595 static int 2596 linux_exec_copyin_args(struct image_args *args, const char *fname, 2597 enum uio_seg segflg, l_uintptr_t *argv, l_uintptr_t *envv) 2598 { 2599 char *argp, *envp; 2600 l_uintptr_t *ptr, arg; 2601 int error; 2602 2603 bzero(args, sizeof(*args)); 2604 if (argv == NULL) 2605 return (EFAULT); 2606 2607 /* 2608 * Allocate demand-paged memory for the file name, argument, and 2609 * environment strings. 2610 */ 2611 error = exec_alloc_args(args); 2612 if (error != 0) 2613 return (error); 2614 2615 /* 2616 * Copy the file name. 2617 */ 2618 error = exec_args_add_fname(args, fname, segflg); 2619 if (error != 0) 2620 goto err_exit; 2621 2622 /* 2623 * extract arguments first 2624 */ 2625 ptr = argv; 2626 for (;;) { 2627 error = copyin(ptr++, &arg, sizeof(arg)); 2628 if (error) 2629 goto err_exit; 2630 if (arg == 0) 2631 break; 2632 argp = PTRIN(arg); 2633 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 2634 if (error != 0) 2635 goto err_exit; 2636 } 2637 2638 /* 2639 * This comment is from Linux do_execveat_common: 2640 * When argv is empty, add an empty string ("") as argv[0] to 2641 * ensure confused userspace programs that start processing 2642 * from argv[1] won't end up walking envp. 2643 */ 2644 if (args->argc == 0 && 2645 (error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0)) 2646 goto err_exit; 2647 2648 /* 2649 * extract environment strings 2650 */ 2651 if (envv) { 2652 ptr = envv; 2653 for (;;) { 2654 error = copyin(ptr++, &arg, sizeof(arg)); 2655 if (error) 2656 goto err_exit; 2657 if (arg == 0) 2658 break; 2659 envp = PTRIN(arg); 2660 error = exec_args_add_env(args, envp, UIO_USERSPACE); 2661 if (error != 0) 2662 goto err_exit; 2663 } 2664 } 2665 2666 return (0); 2667 2668 err_exit: 2669 exec_free_args(args); 2670 return (error); 2671 } 2672 2673 int 2674 linux_execve(struct thread *td, struct linux_execve_args *args) 2675 { 2676 struct image_args eargs; 2677 int error; 2678 2679 LINUX_CTR(execve); 2680 2681 error = linux_exec_copyin_args(&eargs, args->path, UIO_USERSPACE, 2682 args->argp, args->envp); 2683 if (error == 0) 2684 error = linux_common_execve(td, &eargs); 2685 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 2686 return (error); 2687 } 2688 2689 static void 2690 linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp) 2691 { 2692 struct rtprio rtp2; 2693 2694 pri_to_rtp(td1, &rtp2); 2695 if (rtp2.type < rtp->type || 2696 (rtp2.type == rtp->type && 2697 rtp2.prio < rtp->prio)) { 2698 rtp->type = rtp2.type; 2699 rtp->prio = rtp2.prio; 2700 } 2701 } 2702 2703 #define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX 2704 2705 static int 2706 linux_rtprio2ioprio(struct rtprio *rtp) 2707 { 2708 int ioprio, prio; 2709 2710 switch (rtp->type) { 2711 case RTP_PRIO_IDLE: 2712 prio = RTP_PRIO_MIN; 2713 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio); 2714 break; 2715 case RTP_PRIO_NORMAL: 2716 prio = rtp->prio / LINUX_PRIO_DIVIDER; 2717 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio); 2718 break; 2719 case RTP_PRIO_REALTIME: 2720 prio = rtp->prio / LINUX_PRIO_DIVIDER; 2721 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio); 2722 break; 2723 default: 2724 prio = RTP_PRIO_MIN; 2725 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio); 2726 break; 2727 } 2728 return (ioprio); 2729 } 2730 2731 static int 2732 linux_ioprio2rtprio(int ioprio, struct rtprio *rtp) 2733 { 2734 2735 switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) { 2736 case LINUX_IOPRIO_CLASS_IDLE: 2737 rtp->prio = RTP_PRIO_MIN; 2738 rtp->type = RTP_PRIO_IDLE; 2739 break; 2740 case LINUX_IOPRIO_CLASS_BE: 2741 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER; 2742 rtp->type = RTP_PRIO_NORMAL; 2743 break; 2744 case LINUX_IOPRIO_CLASS_RT: 2745 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER; 2746 rtp->type = RTP_PRIO_REALTIME; 2747 break; 2748 default: 2749 return (EINVAL); 2750 } 2751 return (0); 2752 } 2753 #undef LINUX_PRIO_DIVIDER 2754 2755 int 2756 linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args) 2757 { 2758 struct thread *td1; 2759 struct rtprio rtp; 2760 struct pgrp *pg; 2761 struct proc *p; 2762 int error, found; 2763 2764 p = NULL; 2765 td1 = NULL; 2766 error = 0; 2767 found = 0; 2768 rtp.type = RTP_PRIO_IDLE; 2769 rtp.prio = RTP_PRIO_MAX; 2770 switch (args->which) { 2771 case LINUX_IOPRIO_WHO_PROCESS: 2772 if (args->who == 0) { 2773 td1 = td; 2774 p = td1->td_proc; 2775 PROC_LOCK(p); 2776 } else if (args->who > PID_MAX) { 2777 td1 = linux_tdfind(td, args->who, -1); 2778 if (td1 != NULL) 2779 p = td1->td_proc; 2780 } else 2781 p = pfind(args->who); 2782 if (p == NULL) 2783 return (ESRCH); 2784 if ((error = p_cansee(td, p))) { 2785 PROC_UNLOCK(p); 2786 break; 2787 } 2788 if (td1 != NULL) { 2789 pri_to_rtp(td1, &rtp); 2790 } else { 2791 FOREACH_THREAD_IN_PROC(p, td1) { 2792 linux_up_rtprio_if(td1, &rtp); 2793 } 2794 } 2795 found++; 2796 PROC_UNLOCK(p); 2797 break; 2798 case LINUX_IOPRIO_WHO_PGRP: 2799 sx_slock(&proctree_lock); 2800 if (args->who == 0) { 2801 pg = td->td_proc->p_pgrp; 2802 PGRP_LOCK(pg); 2803 } else { 2804 pg = pgfind(args->who); 2805 if (pg == NULL) { 2806 sx_sunlock(&proctree_lock); 2807 error = ESRCH; 2808 break; 2809 } 2810 } 2811 sx_sunlock(&proctree_lock); 2812 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 2813 PROC_LOCK(p); 2814 if (p->p_state == PRS_NORMAL && 2815 p_cansee(td, p) == 0) { 2816 FOREACH_THREAD_IN_PROC(p, td1) { 2817 linux_up_rtprio_if(td1, &rtp); 2818 found++; 2819 } 2820 } 2821 PROC_UNLOCK(p); 2822 } 2823 PGRP_UNLOCK(pg); 2824 break; 2825 case LINUX_IOPRIO_WHO_USER: 2826 if (args->who == 0) 2827 args->who = td->td_ucred->cr_uid; 2828 sx_slock(&allproc_lock); 2829 FOREACH_PROC_IN_SYSTEM(p) { 2830 PROC_LOCK(p); 2831 if (p->p_state == PRS_NORMAL && 2832 p->p_ucred->cr_uid == args->who && 2833 p_cansee(td, p) == 0) { 2834 FOREACH_THREAD_IN_PROC(p, td1) { 2835 linux_up_rtprio_if(td1, &rtp); 2836 found++; 2837 } 2838 } 2839 PROC_UNLOCK(p); 2840 } 2841 sx_sunlock(&allproc_lock); 2842 break; 2843 default: 2844 error = EINVAL; 2845 break; 2846 } 2847 if (error == 0) { 2848 if (found != 0) 2849 td->td_retval[0] = linux_rtprio2ioprio(&rtp); 2850 else 2851 error = ESRCH; 2852 } 2853 return (error); 2854 } 2855 2856 int 2857 linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args) 2858 { 2859 struct thread *td1; 2860 struct rtprio rtp; 2861 struct pgrp *pg; 2862 struct proc *p; 2863 int error; 2864 2865 if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0) 2866 return (error); 2867 /* Attempts to set high priorities (REALTIME) require su privileges. */ 2868 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME && 2869 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0) 2870 return (error); 2871 2872 p = NULL; 2873 td1 = NULL; 2874 switch (args->which) { 2875 case LINUX_IOPRIO_WHO_PROCESS: 2876 if (args->who == 0) { 2877 td1 = td; 2878 p = td1->td_proc; 2879 PROC_LOCK(p); 2880 } else if (args->who > PID_MAX) { 2881 td1 = linux_tdfind(td, args->who, -1); 2882 if (td1 != NULL) 2883 p = td1->td_proc; 2884 } else 2885 p = pfind(args->who); 2886 if (p == NULL) 2887 return (ESRCH); 2888 if ((error = p_cansched(td, p))) { 2889 PROC_UNLOCK(p); 2890 break; 2891 } 2892 if (td1 != NULL) { 2893 error = rtp_to_pri(&rtp, td1); 2894 } else { 2895 FOREACH_THREAD_IN_PROC(p, td1) { 2896 if ((error = rtp_to_pri(&rtp, td1)) != 0) 2897 break; 2898 } 2899 } 2900 PROC_UNLOCK(p); 2901 break; 2902 case LINUX_IOPRIO_WHO_PGRP: 2903 sx_slock(&proctree_lock); 2904 if (args->who == 0) { 2905 pg = td->td_proc->p_pgrp; 2906 PGRP_LOCK(pg); 2907 } else { 2908 pg = pgfind(args->who); 2909 if (pg == NULL) { 2910 sx_sunlock(&proctree_lock); 2911 error = ESRCH; 2912 break; 2913 } 2914 } 2915 sx_sunlock(&proctree_lock); 2916 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 2917 PROC_LOCK(p); 2918 if (p->p_state == PRS_NORMAL && 2919 p_cansched(td, p) == 0) { 2920 FOREACH_THREAD_IN_PROC(p, td1) { 2921 if ((error = rtp_to_pri(&rtp, td1)) != 0) 2922 break; 2923 } 2924 } 2925 PROC_UNLOCK(p); 2926 if (error != 0) 2927 break; 2928 } 2929 PGRP_UNLOCK(pg); 2930 break; 2931 case LINUX_IOPRIO_WHO_USER: 2932 if (args->who == 0) 2933 args->who = td->td_ucred->cr_uid; 2934 sx_slock(&allproc_lock); 2935 FOREACH_PROC_IN_SYSTEM(p) { 2936 PROC_LOCK(p); 2937 if (p->p_state == PRS_NORMAL && 2938 p->p_ucred->cr_uid == args->who && 2939 p_cansched(td, p) == 0) { 2940 FOREACH_THREAD_IN_PROC(p, td1) { 2941 if ((error = rtp_to_pri(&rtp, td1)) != 0) 2942 break; 2943 } 2944 } 2945 PROC_UNLOCK(p); 2946 if (error != 0) 2947 break; 2948 } 2949 sx_sunlock(&allproc_lock); 2950 break; 2951 default: 2952 error = EINVAL; 2953 break; 2954 } 2955 return (error); 2956 } 2957