xref: /freebsd/sys/compat/linux/linux_misc.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * Copyright (c) 1994-1995 Søren Schmidt
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer
13  *    in this position and unchanged.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 
37 #include <sys/param.h>
38 #include <sys/blist.h>
39 #include <sys/fcntl.h>
40 #if defined(__i386__)
41 #include <sys/imgact_aout.h>
42 #endif
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/mount.h>
50 #include <sys/msgbuf.h>
51 #include <sys/mutex.h>
52 #include <sys/namei.h>
53 #include <sys/poll.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/procctl.h>
57 #include <sys/reboot.h>
58 #include <sys/racct.h>
59 #include <sys/random.h>
60 #include <sys/resourcevar.h>
61 #include <sys/sched.h>
62 #include <sys/sdt.h>
63 #include <sys/signalvar.h>
64 #include <sys/stat.h>
65 #include <sys/syscallsubr.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysproto.h>
68 #include <sys/systm.h>
69 #include <sys/time.h>
70 #include <sys/vmmeter.h>
71 #include <sys/vnode.h>
72 #include <sys/wait.h>
73 #include <sys/cpuset.h>
74 #include <sys/uio.h>
75 
76 #include <security/mac/mac_framework.h>
77 
78 #include <vm/vm.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_extern.h>
83 #include <vm/swap_pager.h>
84 
85 #ifdef COMPAT_LINUX32
86 #include <machine/../linux32/linux.h>
87 #include <machine/../linux32/linux32_proto.h>
88 #else
89 #include <machine/../linux/linux.h>
90 #include <machine/../linux/linux_proto.h>
91 #endif
92 
93 #include <compat/linux/linux_common.h>
94 #include <compat/linux/linux_dtrace.h>
95 #include <compat/linux/linux_file.h>
96 #include <compat/linux/linux_mib.h>
97 #include <compat/linux/linux_signal.h>
98 #include <compat/linux/linux_timer.h>
99 #include <compat/linux/linux_util.h>
100 #include <compat/linux/linux_sysproto.h>
101 #include <compat/linux/linux_emul.h>
102 #include <compat/linux/linux_misc.h>
103 
104 int stclohz;				/* Statistics clock frequency */
105 
106 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
107 	RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
108 	RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
109 	RLIMIT_MEMLOCK, RLIMIT_AS
110 };
111 
112 struct l_sysinfo {
113 	l_long		uptime;		/* Seconds since boot */
114 	l_ulong		loads[3];	/* 1, 5, and 15 minute load averages */
115 #define LINUX_SYSINFO_LOADS_SCALE 65536
116 	l_ulong		totalram;	/* Total usable main memory size */
117 	l_ulong		freeram;	/* Available memory size */
118 	l_ulong		sharedram;	/* Amount of shared memory */
119 	l_ulong		bufferram;	/* Memory used by buffers */
120 	l_ulong		totalswap;	/* Total swap space size */
121 	l_ulong		freeswap;	/* swap space still available */
122 	l_ushort	procs;		/* Number of current processes */
123 	l_ushort	pads;
124 	l_ulong		totalhigh;
125 	l_ulong		freehigh;
126 	l_uint		mem_unit;
127 	char		_f[20-2*sizeof(l_long)-sizeof(l_int)];	/* padding */
128 };
129 
130 struct l_pselect6arg {
131 	l_uintptr_t	ss;
132 	l_size_t	ss_len;
133 };
134 
135 static int	linux_utimensat_lts_to_ts(struct l_timespec *,
136 			struct timespec *);
137 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
138 static int	linux_utimensat_lts64_to_ts(struct l_timespec64 *,
139 			struct timespec *);
140 #endif
141 static int	linux_common_utimensat(struct thread *, int,
142 			const char *, struct timespec *, int);
143 static int	linux_common_pselect6(struct thread *, l_int,
144 			l_fd_set *, l_fd_set *, l_fd_set *,
145 			struct timespec *, l_uintptr_t *);
146 static int	linux_common_ppoll(struct thread *, struct pollfd *,
147 			uint32_t, struct timespec *, l_sigset_t *,
148 			l_size_t);
149 static int	linux_pollin(struct thread *, struct pollfd *,
150 			struct pollfd *, u_int);
151 static int	linux_pollout(struct thread *, struct pollfd *,
152 			struct pollfd *, u_int);
153 
154 int
155 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
156 {
157 	struct l_sysinfo sysinfo;
158 	int i, j;
159 	struct timespec ts;
160 
161 	bzero(&sysinfo, sizeof(sysinfo));
162 	getnanouptime(&ts);
163 	if (ts.tv_nsec != 0)
164 		ts.tv_sec++;
165 	sysinfo.uptime = ts.tv_sec;
166 
167 	/* Use the information from the mib to get our load averages */
168 	for (i = 0; i < 3; i++)
169 		sysinfo.loads[i] = averunnable.ldavg[i] *
170 		    LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
171 
172 	sysinfo.totalram = physmem * PAGE_SIZE;
173 	sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
174 
175 	/*
176 	 * sharedram counts pages allocated to named, swap-backed objects such
177 	 * as shared memory segments and tmpfs files.  There is no cheap way to
178 	 * compute this, so just leave the field unpopulated.  Linux itself only
179 	 * started setting this field in the 3.x timeframe.
180 	 */
181 	sysinfo.sharedram = 0;
182 	sysinfo.bufferram = 0;
183 
184 	swap_pager_status(&i, &j);
185 	sysinfo.totalswap = i * PAGE_SIZE;
186 	sysinfo.freeswap = (i - j) * PAGE_SIZE;
187 
188 	sysinfo.procs = nprocs;
189 
190 	/*
191 	 * Platforms supported by the emulation layer do not have a notion of
192 	 * high memory.
193 	 */
194 	sysinfo.totalhigh = 0;
195 	sysinfo.freehigh = 0;
196 
197 	sysinfo.mem_unit = 1;
198 
199 	return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
200 }
201 
202 #ifdef LINUX_LEGACY_SYSCALLS
203 int
204 linux_alarm(struct thread *td, struct linux_alarm_args *args)
205 {
206 	struct itimerval it, old_it;
207 	u_int secs;
208 	int error __diagused;
209 
210 	secs = args->secs;
211 	/*
212 	 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
213 	 * to match kern_setitimer()'s limit to avoid error from it.
214 	 *
215 	 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
216 	 * platforms.
217 	 */
218 	if (secs > INT32_MAX / 2)
219 		secs = INT32_MAX / 2;
220 
221 	it.it_value.tv_sec = secs;
222 	it.it_value.tv_usec = 0;
223 	timevalclear(&it.it_interval);
224 	error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
225 	KASSERT(error == 0, ("kern_setitimer returns %d", error));
226 
227 	if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
228 	    old_it.it_value.tv_usec >= 500000)
229 		old_it.it_value.tv_sec++;
230 	td->td_retval[0] = old_it.it_value.tv_sec;
231 	return (0);
232 }
233 #endif
234 
235 int
236 linux_brk(struct thread *td, struct linux_brk_args *args)
237 {
238 	struct vmspace *vm = td->td_proc->p_vmspace;
239 	uintptr_t new, old;
240 
241 	old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
242 	new = (uintptr_t)args->dsend;
243 	if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
244 		td->td_retval[0] = (register_t)new;
245 	else
246 		td->td_retval[0] = (register_t)old;
247 
248 	return (0);
249 }
250 
251 #if defined(__i386__)
252 /* XXX: what about amd64/linux32? */
253 
254 int
255 linux_uselib(struct thread *td, struct linux_uselib_args *args)
256 {
257 	struct nameidata ni;
258 	struct vnode *vp;
259 	struct exec *a_out;
260 	vm_map_t map;
261 	vm_map_entry_t entry;
262 	struct vattr attr;
263 	vm_offset_t vmaddr;
264 	unsigned long file_offset;
265 	unsigned long bss_size;
266 	char *library;
267 	ssize_t aresid;
268 	int error;
269 	bool locked, opened, textset;
270 
271 	a_out = NULL;
272 	vp = NULL;
273 	locked = false;
274 	textset = false;
275 	opened = false;
276 
277 	if (!LUSECONVPATH(td)) {
278 		NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
279 		    UIO_USERSPACE, args->library);
280 		error = namei(&ni);
281 	} else {
282 		LCONVPATHEXIST(args->library, &library);
283 		NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
284 		    UIO_SYSSPACE, library);
285 		error = namei(&ni);
286 		LFREEPATH(library);
287 	}
288 	if (error)
289 		goto cleanup;
290 
291 	vp = ni.ni_vp;
292 	NDFREE(&ni, NDF_ONLY_PNBUF);
293 
294 	/*
295 	 * From here on down, we have a locked vnode that must be unlocked.
296 	 * XXX: The code below largely duplicates exec_check_permissions().
297 	 */
298 	locked = true;
299 
300 	/* Executable? */
301 	error = VOP_GETATTR(vp, &attr, td->td_ucred);
302 	if (error)
303 		goto cleanup;
304 
305 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
306 	    ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) {
307 		/* EACCESS is what exec(2) returns. */
308 		error = ENOEXEC;
309 		goto cleanup;
310 	}
311 
312 	/* Sensible size? */
313 	if (attr.va_size == 0) {
314 		error = ENOEXEC;
315 		goto cleanup;
316 	}
317 
318 	/* Can we access it? */
319 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
320 	if (error)
321 		goto cleanup;
322 
323 	/*
324 	 * XXX: This should use vn_open() so that it is properly authorized,
325 	 * and to reduce code redundancy all over the place here.
326 	 * XXX: Not really, it duplicates far more of exec_check_permissions()
327 	 * than vn_open().
328 	 */
329 #ifdef MAC
330 	error = mac_vnode_check_open(td->td_ucred, vp, VREAD);
331 	if (error)
332 		goto cleanup;
333 #endif
334 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
335 	if (error)
336 		goto cleanup;
337 	opened = true;
338 
339 	/* Pull in executable header into exec_map */
340 	error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE,
341 	    VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0);
342 	if (error)
343 		goto cleanup;
344 
345 	/* Is it a Linux binary ? */
346 	if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
347 		error = ENOEXEC;
348 		goto cleanup;
349 	}
350 
351 	/*
352 	 * While we are here, we should REALLY do some more checks
353 	 */
354 
355 	/* Set file/virtual offset based on a.out variant. */
356 	switch ((int)(a_out->a_magic & 0xffff)) {
357 	case 0413:			/* ZMAGIC */
358 		file_offset = 1024;
359 		break;
360 	case 0314:			/* QMAGIC */
361 		file_offset = 0;
362 		break;
363 	default:
364 		error = ENOEXEC;
365 		goto cleanup;
366 	}
367 
368 	bss_size = round_page(a_out->a_bss);
369 
370 	/* Check various fields in header for validity/bounds. */
371 	if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
372 		error = ENOEXEC;
373 		goto cleanup;
374 	}
375 
376 	/* text + data can't exceed file size */
377 	if (a_out->a_data + a_out->a_text > attr.va_size) {
378 		error = EFAULT;
379 		goto cleanup;
380 	}
381 
382 	/*
383 	 * text/data/bss must not exceed limits
384 	 * XXX - this is not complete. it should check current usage PLUS
385 	 * the resources needed by this library.
386 	 */
387 	PROC_LOCK(td->td_proc);
388 	if (a_out->a_text > maxtsiz ||
389 	    a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) ||
390 	    racct_set(td->td_proc, RACCT_DATA, a_out->a_data +
391 	    bss_size) != 0) {
392 		PROC_UNLOCK(td->td_proc);
393 		error = ENOMEM;
394 		goto cleanup;
395 	}
396 	PROC_UNLOCK(td->td_proc);
397 
398 	/*
399 	 * Prevent more writers.
400 	 */
401 	error = VOP_SET_TEXT(vp);
402 	if (error != 0)
403 		goto cleanup;
404 	textset = true;
405 
406 	/*
407 	 * Lock no longer needed
408 	 */
409 	locked = false;
410 	VOP_UNLOCK(vp);
411 
412 	/*
413 	 * Check if file_offset page aligned. Currently we cannot handle
414 	 * misalinged file offsets, and so we read in the entire image
415 	 * (what a waste).
416 	 */
417 	if (file_offset & PAGE_MASK) {
418 		/* Map text+data read/write/execute */
419 
420 		/* a_entry is the load address and is page aligned */
421 		vmaddr = trunc_page(a_out->a_entry);
422 
423 		/* get anon user mapping, read+write+execute */
424 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
425 		    &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE,
426 		    VM_PROT_ALL, VM_PROT_ALL, 0);
427 		if (error)
428 			goto cleanup;
429 
430 		error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset,
431 		    a_out->a_text + a_out->a_data, UIO_USERSPACE, 0,
432 		    td->td_ucred, NOCRED, &aresid, td);
433 		if (error != 0)
434 			goto cleanup;
435 		if (aresid != 0) {
436 			error = ENOEXEC;
437 			goto cleanup;
438 		}
439 	} else {
440 		/*
441 		 * for QMAGIC, a_entry is 20 bytes beyond the load address
442 		 * to skip the executable header
443 		 */
444 		vmaddr = trunc_page(a_out->a_entry);
445 
446 		/*
447 		 * Map it all into the process's space as a single
448 		 * copy-on-write "data" segment.
449 		 */
450 		map = &td->td_proc->p_vmspace->vm_map;
451 		error = vm_mmap(map, &vmaddr,
452 		    a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL,
453 		    MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset);
454 		if (error)
455 			goto cleanup;
456 		vm_map_lock(map);
457 		if (!vm_map_lookup_entry(map, vmaddr, &entry)) {
458 			vm_map_unlock(map);
459 			error = EDOOFUS;
460 			goto cleanup;
461 		}
462 		entry->eflags |= MAP_ENTRY_VN_EXEC;
463 		vm_map_unlock(map);
464 		textset = false;
465 	}
466 
467 	if (bss_size != 0) {
468 		/* Calculate BSS start address */
469 		vmaddr = trunc_page(a_out->a_entry) + a_out->a_text +
470 		    a_out->a_data;
471 
472 		/* allocate some 'anon' space */
473 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
474 		    &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL,
475 		    VM_PROT_ALL, 0);
476 		if (error)
477 			goto cleanup;
478 	}
479 
480 cleanup:
481 	if (opened) {
482 		if (locked)
483 			VOP_UNLOCK(vp);
484 		locked = false;
485 		VOP_CLOSE(vp, FREAD, td->td_ucred, td);
486 	}
487 	if (textset) {
488 		if (!locked) {
489 			locked = true;
490 			VOP_LOCK(vp, LK_SHARED | LK_RETRY);
491 		}
492 		VOP_UNSET_TEXT_CHECKED(vp);
493 	}
494 	if (locked)
495 		VOP_UNLOCK(vp);
496 
497 	/* Release the temporary mapping. */
498 	if (a_out)
499 		kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE);
500 
501 	return (error);
502 }
503 
504 #endif	/* __i386__ */
505 
506 #ifdef LINUX_LEGACY_SYSCALLS
507 int
508 linux_select(struct thread *td, struct linux_select_args *args)
509 {
510 	l_timeval ltv;
511 	struct timeval tv0, tv1, utv, *tvp;
512 	int error;
513 
514 	/*
515 	 * Store current time for computation of the amount of
516 	 * time left.
517 	 */
518 	if (args->timeout) {
519 		if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
520 			goto select_out;
521 		utv.tv_sec = ltv.tv_sec;
522 		utv.tv_usec = ltv.tv_usec;
523 
524 		if (itimerfix(&utv)) {
525 			/*
526 			 * The timeval was invalid.  Convert it to something
527 			 * valid that will act as it does under Linux.
528 			 */
529 			utv.tv_sec += utv.tv_usec / 1000000;
530 			utv.tv_usec %= 1000000;
531 			if (utv.tv_usec < 0) {
532 				utv.tv_sec -= 1;
533 				utv.tv_usec += 1000000;
534 			}
535 			if (utv.tv_sec < 0)
536 				timevalclear(&utv);
537 		}
538 		microtime(&tv0);
539 		tvp = &utv;
540 	} else
541 		tvp = NULL;
542 
543 	error = kern_select(td, args->nfds, args->readfds, args->writefds,
544 	    args->exceptfds, tvp, LINUX_NFDBITS);
545 	if (error)
546 		goto select_out;
547 
548 	if (args->timeout) {
549 		if (td->td_retval[0]) {
550 			/*
551 			 * Compute how much time was left of the timeout,
552 			 * by subtracting the current time and the time
553 			 * before we started the call, and subtracting
554 			 * that result from the user-supplied value.
555 			 */
556 			microtime(&tv1);
557 			timevalsub(&tv1, &tv0);
558 			timevalsub(&utv, &tv1);
559 			if (utv.tv_sec < 0)
560 				timevalclear(&utv);
561 		} else
562 			timevalclear(&utv);
563 		ltv.tv_sec = utv.tv_sec;
564 		ltv.tv_usec = utv.tv_usec;
565 		if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
566 			goto select_out;
567 	}
568 
569 select_out:
570 	return (error);
571 }
572 #endif
573 
574 int
575 linux_mremap(struct thread *td, struct linux_mremap_args *args)
576 {
577 	uintptr_t addr;
578 	size_t len;
579 	int error = 0;
580 
581 	if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
582 		td->td_retval[0] = 0;
583 		return (EINVAL);
584 	}
585 
586 	/*
587 	 * Check for the page alignment.
588 	 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
589 	 */
590 	if (args->addr & PAGE_MASK) {
591 		td->td_retval[0] = 0;
592 		return (EINVAL);
593 	}
594 
595 	args->new_len = round_page(args->new_len);
596 	args->old_len = round_page(args->old_len);
597 
598 	if (args->new_len > args->old_len) {
599 		td->td_retval[0] = 0;
600 		return (ENOMEM);
601 	}
602 
603 	if (args->new_len < args->old_len) {
604 		addr = args->addr + args->new_len;
605 		len = args->old_len - args->new_len;
606 		error = kern_munmap(td, addr, len);
607 	}
608 
609 	td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
610 	return (error);
611 }
612 
613 #define LINUX_MS_ASYNC       0x0001
614 #define LINUX_MS_INVALIDATE  0x0002
615 #define LINUX_MS_SYNC        0x0004
616 
617 int
618 linux_msync(struct thread *td, struct linux_msync_args *args)
619 {
620 
621 	return (kern_msync(td, args->addr, args->len,
622 	    args->fl & ~LINUX_MS_SYNC));
623 }
624 
625 #ifdef LINUX_LEGACY_SYSCALLS
626 int
627 linux_time(struct thread *td, struct linux_time_args *args)
628 {
629 	struct timeval tv;
630 	l_time_t tm;
631 	int error;
632 
633 	microtime(&tv);
634 	tm = tv.tv_sec;
635 	if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
636 		return (error);
637 	td->td_retval[0] = tm;
638 	return (0);
639 }
640 #endif
641 
642 struct l_times_argv {
643 	l_clock_t	tms_utime;
644 	l_clock_t	tms_stime;
645 	l_clock_t	tms_cutime;
646 	l_clock_t	tms_cstime;
647 };
648 
649 /*
650  * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
651  * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
652  * auxiliary vector entry.
653  */
654 #define	CLK_TCK		100
655 
656 #define	CONVOTCK(r)	(r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
657 #define	CONVNTCK(r)	(r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
658 
659 #define	CONVTCK(r)	(linux_kernver(td) >= LINUX_KERNVER_2004000 ?		\
660 			    CONVNTCK(r) : CONVOTCK(r))
661 
662 int
663 linux_times(struct thread *td, struct linux_times_args *args)
664 {
665 	struct timeval tv, utime, stime, cutime, cstime;
666 	struct l_times_argv tms;
667 	struct proc *p;
668 	int error;
669 
670 	if (args->buf != NULL) {
671 		p = td->td_proc;
672 		PROC_LOCK(p);
673 		PROC_STATLOCK(p);
674 		calcru(p, &utime, &stime);
675 		PROC_STATUNLOCK(p);
676 		calccru(p, &cutime, &cstime);
677 		PROC_UNLOCK(p);
678 
679 		tms.tms_utime = CONVTCK(utime);
680 		tms.tms_stime = CONVTCK(stime);
681 
682 		tms.tms_cutime = CONVTCK(cutime);
683 		tms.tms_cstime = CONVTCK(cstime);
684 
685 		if ((error = copyout(&tms, args->buf, sizeof(tms))))
686 			return (error);
687 	}
688 
689 	microuptime(&tv);
690 	td->td_retval[0] = (int)CONVTCK(tv);
691 	return (0);
692 }
693 
694 int
695 linux_newuname(struct thread *td, struct linux_newuname_args *args)
696 {
697 	struct l_new_utsname utsname;
698 	char osname[LINUX_MAX_UTSNAME];
699 	char osrelease[LINUX_MAX_UTSNAME];
700 	char *p;
701 
702 	linux_get_osname(td, osname);
703 	linux_get_osrelease(td, osrelease);
704 
705 	bzero(&utsname, sizeof(utsname));
706 	strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
707 	getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
708 	getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
709 	strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
710 	strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
711 	for (p = utsname.version; *p != '\0'; ++p)
712 		if (*p == '\n') {
713 			*p = '\0';
714 			break;
715 		}
716 #if defined(__amd64__)
717 	/*
718 	 * On amd64, Linux uname(2) needs to return "x86_64"
719 	 * for both 64-bit and 32-bit applications.  On 32-bit,
720 	 * the string returned by getauxval(AT_PLATFORM) needs
721 	 * to remain "i686", though.
722 	 */
723 	strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
724 #elif defined(__aarch64__)
725 	strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
726 #elif defined(__i386__)
727 	strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
728 #endif
729 
730 	return (copyout(&utsname, args->buf, sizeof(utsname)));
731 }
732 
733 struct l_utimbuf {
734 	l_time_t l_actime;
735 	l_time_t l_modtime;
736 };
737 
738 #ifdef LINUX_LEGACY_SYSCALLS
739 int
740 linux_utime(struct thread *td, struct linux_utime_args *args)
741 {
742 	struct timeval tv[2], *tvp;
743 	struct l_utimbuf lut;
744 	char *fname;
745 	int error;
746 
747 	if (args->times) {
748 		if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
749 			return (error);
750 		tv[0].tv_sec = lut.l_actime;
751 		tv[0].tv_usec = 0;
752 		tv[1].tv_sec = lut.l_modtime;
753 		tv[1].tv_usec = 0;
754 		tvp = tv;
755 	} else
756 		tvp = NULL;
757 
758 	if (!LUSECONVPATH(td)) {
759 		error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
760 		    tvp, UIO_SYSSPACE);
761 	} else {
762 		LCONVPATHEXIST(args->fname, &fname);
763 		error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp,
764 		    UIO_SYSSPACE);
765 		LFREEPATH(fname);
766 	}
767 	return (error);
768 }
769 #endif
770 
771 #ifdef LINUX_LEGACY_SYSCALLS
772 int
773 linux_utimes(struct thread *td, struct linux_utimes_args *args)
774 {
775 	l_timeval ltv[2];
776 	struct timeval tv[2], *tvp = NULL;
777 	char *fname;
778 	int error;
779 
780 	if (args->tptr != NULL) {
781 		if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
782 			return (error);
783 		tv[0].tv_sec = ltv[0].tv_sec;
784 		tv[0].tv_usec = ltv[0].tv_usec;
785 		tv[1].tv_sec = ltv[1].tv_sec;
786 		tv[1].tv_usec = ltv[1].tv_usec;
787 		tvp = tv;
788 	}
789 
790 	if (!LUSECONVPATH(td)) {
791 		error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
792 		    tvp, UIO_SYSSPACE);
793 	} else {
794 		LCONVPATHEXIST(args->fname, &fname);
795 		error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE,
796 		    tvp, UIO_SYSSPACE);
797 		LFREEPATH(fname);
798 	}
799 	return (error);
800 }
801 #endif
802 
803 static int
804 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
805 {
806 
807 	if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
808 	    l_times->tv_nsec != LINUX_UTIME_NOW &&
809 	    (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
810 		return (EINVAL);
811 
812 	times->tv_sec = l_times->tv_sec;
813 	switch (l_times->tv_nsec)
814 	{
815 	case LINUX_UTIME_OMIT:
816 		times->tv_nsec = UTIME_OMIT;
817 		break;
818 	case LINUX_UTIME_NOW:
819 		times->tv_nsec = UTIME_NOW;
820 		break;
821 	default:
822 		times->tv_nsec = l_times->tv_nsec;
823 	}
824 
825 	return (0);
826 }
827 
828 static int
829 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
830     struct timespec *timesp, int lflags)
831 {
832 	char *path = NULL;
833 	int error, dfd, flags = 0;
834 
835 	dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
836 
837 	if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
838 		return (EINVAL);
839 
840 	if (timesp != NULL) {
841 		/* This breaks POSIX, but is what the Linux kernel does
842 		 * _on purpose_ (documented in the man page for utimensat(2)),
843 		 * so we must follow that behaviour. */
844 		if (timesp[0].tv_nsec == UTIME_OMIT &&
845 		    timesp[1].tv_nsec == UTIME_OMIT)
846 			return (0);
847 	}
848 
849 	if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
850 		flags |= AT_SYMLINK_NOFOLLOW;
851 	if (lflags & LINUX_AT_EMPTY_PATH)
852 		flags |= AT_EMPTY_PATH;
853 
854 	if (!LUSECONVPATH(td)) {
855 		if (pathname != NULL) {
856 			return (kern_utimensat(td, dfd, pathname,
857 			    UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
858 		}
859 	}
860 
861 	if (pathname != NULL)
862 		LCONVPATHEXIST_AT(pathname, &path, dfd);
863 	else if (lflags != 0)
864 		return (EINVAL);
865 
866 	if (path == NULL)
867 		error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE);
868 	else {
869 		error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp,
870 			UIO_SYSSPACE, flags);
871 		LFREEPATH(path);
872 	}
873 
874 	return (error);
875 }
876 
877 int
878 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
879 {
880 	struct l_timespec l_times[2];
881 	struct timespec times[2], *timesp;
882 	int error;
883 
884 	if (args->times != NULL) {
885 		error = copyin(args->times, l_times, sizeof(l_times));
886 		if (error != 0)
887 			return (error);
888 
889 		error = linux_utimensat_lts_to_ts(&l_times[0], &times[0]);
890 		if (error != 0)
891 			return (error);
892 		error = linux_utimensat_lts_to_ts(&l_times[1], &times[1]);
893 		if (error != 0)
894 			return (error);
895 		timesp = times;
896 	} else
897 		timesp = NULL;
898 
899 	return (linux_common_utimensat(td, args->dfd, args->pathname,
900 	    timesp, args->flags));
901 }
902 
903 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
904 static int
905 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
906 {
907 
908 	if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
909 	    l_times->tv_nsec != LINUX_UTIME_NOW &&
910 	    (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
911 		return (EINVAL);
912 
913 	times->tv_sec = l_times->tv_sec;
914 	switch (l_times->tv_nsec)
915 	{
916 	case LINUX_UTIME_OMIT:
917 		times->tv_nsec = UTIME_OMIT;
918 		break;
919 	case LINUX_UTIME_NOW:
920 		times->tv_nsec = UTIME_NOW;
921 		break;
922 	default:
923 		times->tv_nsec = l_times->tv_nsec;
924 	}
925 
926 	return (0);
927 }
928 
929 int
930 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
931 {
932 	struct l_timespec64 l_times[2];
933 	struct timespec times[2], *timesp;
934 	int error;
935 
936 	if (args->times64 != NULL) {
937 		error = copyin(args->times64, l_times, sizeof(l_times));
938 		if (error != 0)
939 			return (error);
940 
941 		error = linux_utimensat_lts64_to_ts(&l_times[0], &times[0]);
942 		if (error != 0)
943 			return (error);
944 		error = linux_utimensat_lts64_to_ts(&l_times[1], &times[1]);
945 		if (error != 0)
946 			return (error);
947 		timesp = times;
948 	} else
949 		timesp = NULL;
950 
951 	return (linux_common_utimensat(td, args->dfd, args->pathname,
952 	    timesp, args->flags));
953 }
954 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
955 
956 #ifdef LINUX_LEGACY_SYSCALLS
957 int
958 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
959 {
960 	l_timeval ltv[2];
961 	struct timeval tv[2], *tvp = NULL;
962 	char *fname;
963 	int error, dfd;
964 
965 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
966 
967 	if (args->utimes != NULL) {
968 		if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
969 			return (error);
970 		tv[0].tv_sec = ltv[0].tv_sec;
971 		tv[0].tv_usec = ltv[0].tv_usec;
972 		tv[1].tv_sec = ltv[1].tv_sec;
973 		tv[1].tv_usec = ltv[1].tv_usec;
974 		tvp = tv;
975 	}
976 
977 	if (!LUSECONVPATH(td)) {
978 		error = kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
979 		    tvp, UIO_SYSSPACE);
980 	} else {
981 		LCONVPATHEXIST_AT(args->filename, &fname, dfd);
982 		error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE,
983 		    tvp, UIO_SYSSPACE);
984 		LFREEPATH(fname);
985 	}
986 	return (error);
987 }
988 #endif
989 
990 static int
991 linux_common_wait(struct thread *td, int pid, int *statusp,
992     int options, struct __wrusage *wrup)
993 {
994 	siginfo_t siginfo;
995 	idtype_t idtype;
996 	id_t id;
997 	int error, status, tmpstat;
998 
999 	if (pid == WAIT_ANY) {
1000 		idtype = P_ALL;
1001 		id = 0;
1002 	} else if (pid < 0) {
1003 		idtype = P_PGID;
1004 		id = (id_t)-pid;
1005 	} else {
1006 		idtype = P_PID;
1007 		id = (id_t)pid;
1008 	}
1009 
1010 	/*
1011 	 * For backward compatibility we implicitly add flags WEXITED
1012 	 * and WTRAPPED here.
1013 	 */
1014 	options |= WEXITED | WTRAPPED;
1015 	error = kern_wait6(td, idtype, id, &status, options, wrup, &siginfo);
1016 	if (error)
1017 		return (error);
1018 
1019 	if (statusp) {
1020 		tmpstat = status & 0xffff;
1021 		if (WIFSIGNALED(tmpstat)) {
1022 			tmpstat = (tmpstat & 0xffffff80) |
1023 			    bsd_to_linux_signal(WTERMSIG(tmpstat));
1024 		} else if (WIFSTOPPED(tmpstat)) {
1025 			tmpstat = (tmpstat & 0xffff00ff) |
1026 			    (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
1027 #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
1028 			if (WSTOPSIG(status) == SIGTRAP) {
1029 				tmpstat = linux_ptrace_status(td,
1030 				    siginfo.si_pid, tmpstat);
1031 			}
1032 #endif
1033 		} else if (WIFCONTINUED(tmpstat)) {
1034 			tmpstat = 0xffff;
1035 		}
1036 		error = copyout(&tmpstat, statusp, sizeof(int));
1037 	}
1038 
1039 	return (error);
1040 }
1041 
1042 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1043 int
1044 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
1045 {
1046 	struct linux_wait4_args wait4_args;
1047 
1048 	wait4_args.pid = args->pid;
1049 	wait4_args.status = args->status;
1050 	wait4_args.options = args->options;
1051 	wait4_args.rusage = NULL;
1052 
1053 	return (linux_wait4(td, &wait4_args));
1054 }
1055 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1056 
1057 int
1058 linux_wait4(struct thread *td, struct linux_wait4_args *args)
1059 {
1060 	int error, options;
1061 	struct __wrusage wru, *wrup;
1062 
1063 	if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
1064 	    LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
1065 		return (EINVAL);
1066 
1067 	options = WEXITED;
1068 	linux_to_bsd_waitopts(args->options, &options);
1069 
1070 	if (args->rusage != NULL)
1071 		wrup = &wru;
1072 	else
1073 		wrup = NULL;
1074 	error = linux_common_wait(td, args->pid, args->status, options, wrup);
1075 	if (error != 0)
1076 		return (error);
1077 	if (args->rusage != NULL)
1078 		error = linux_copyout_rusage(&wru.wru_self, args->rusage);
1079 	return (error);
1080 }
1081 
1082 int
1083 linux_waitid(struct thread *td, struct linux_waitid_args *args)
1084 {
1085 	int status, options, sig;
1086 	struct __wrusage wru;
1087 	siginfo_t siginfo;
1088 	l_siginfo_t lsi;
1089 	idtype_t idtype;
1090 	int error;
1091 
1092 	options = 0;
1093 	linux_to_bsd_waitopts(args->options, &options);
1094 
1095 	if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED))
1096 		return (EINVAL);
1097 	if (!(options & (WEXITED | WUNTRACED | WCONTINUED)))
1098 		return (EINVAL);
1099 
1100 	switch (args->idtype) {
1101 	case LINUX_P_ALL:
1102 		idtype = P_ALL;
1103 		break;
1104 	case LINUX_P_PID:
1105 		if (args->id <= 0)
1106 			return (EINVAL);
1107 		idtype = P_PID;
1108 		break;
1109 	case LINUX_P_PGID:
1110 		if (args->id <= 0)
1111 			return (EINVAL);
1112 		idtype = P_PGID;
1113 		break;
1114 	default:
1115 		return (EINVAL);
1116 	}
1117 
1118 	error = kern_wait6(td, idtype, args->id, &status, options,
1119 	    &wru, &siginfo);
1120 	if (error != 0)
1121 		return (error);
1122 	if (args->rusage != NULL) {
1123 		error = linux_copyout_rusage(&wru.wru_children,
1124 		    args->rusage);
1125 		if (error != 0)
1126 			return (error);
1127 	}
1128 	if (args->info != NULL) {
1129 		bzero(&lsi, sizeof(lsi));
1130 		if (td->td_retval[0] != 0) {
1131 			sig = bsd_to_linux_signal(siginfo.si_signo);
1132 			siginfo_to_lsiginfo(&siginfo, &lsi, sig);
1133 		}
1134 		error = copyout(&lsi, args->info, sizeof(lsi));
1135 	}
1136 	td->td_retval[0] = 0;
1137 
1138 	return (error);
1139 }
1140 
1141 #ifdef LINUX_LEGACY_SYSCALLS
1142 int
1143 linux_mknod(struct thread *td, struct linux_mknod_args *args)
1144 {
1145 	char *path;
1146 	int error;
1147 	enum uio_seg seg;
1148 	bool convpath;
1149 
1150 	convpath = LUSECONVPATH(td);
1151 	if (!convpath) {
1152 		path = args->path;
1153 		seg = UIO_USERSPACE;
1154 	} else {
1155 		LCONVPATHCREAT(args->path, &path);
1156 		seg = UIO_SYSSPACE;
1157 	}
1158 
1159 	switch (args->mode & S_IFMT) {
1160 	case S_IFIFO:
1161 	case S_IFSOCK:
1162 		error = kern_mkfifoat(td, AT_FDCWD, path, seg,
1163 		    args->mode);
1164 		break;
1165 
1166 	case S_IFCHR:
1167 	case S_IFBLK:
1168 		error = kern_mknodat(td, AT_FDCWD, path, seg,
1169 		    args->mode, args->dev);
1170 		break;
1171 
1172 	case S_IFDIR:
1173 		error = EPERM;
1174 		break;
1175 
1176 	case 0:
1177 		args->mode |= S_IFREG;
1178 		/* FALLTHROUGH */
1179 	case S_IFREG:
1180 		error = kern_openat(td, AT_FDCWD, path, seg,
1181 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1182 		if (error == 0)
1183 			kern_close(td, td->td_retval[0]);
1184 		break;
1185 
1186 	default:
1187 		error = EINVAL;
1188 		break;
1189 	}
1190 	if (convpath)
1191 		LFREEPATH(path);
1192 	return (error);
1193 }
1194 #endif
1195 
1196 int
1197 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
1198 {
1199 	char *path;
1200 	int error, dfd;
1201 	enum uio_seg seg;
1202 	bool convpath;
1203 
1204 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
1205 
1206 	convpath = LUSECONVPATH(td);
1207 	if (!convpath) {
1208 		path = __DECONST(char *, args->filename);
1209 		seg = UIO_USERSPACE;
1210 	} else {
1211 		LCONVPATHCREAT_AT(args->filename, &path, dfd);
1212 		seg = UIO_SYSSPACE;
1213 	}
1214 
1215 	switch (args->mode & S_IFMT) {
1216 	case S_IFIFO:
1217 	case S_IFSOCK:
1218 		error = kern_mkfifoat(td, dfd, path, seg, args->mode);
1219 		break;
1220 
1221 	case S_IFCHR:
1222 	case S_IFBLK:
1223 		error = kern_mknodat(td, dfd, path, seg, args->mode,
1224 		    args->dev);
1225 		break;
1226 
1227 	case S_IFDIR:
1228 		error = EPERM;
1229 		break;
1230 
1231 	case 0:
1232 		args->mode |= S_IFREG;
1233 		/* FALLTHROUGH */
1234 	case S_IFREG:
1235 		error = kern_openat(td, dfd, path, seg,
1236 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1237 		if (error == 0)
1238 			kern_close(td, td->td_retval[0]);
1239 		break;
1240 
1241 	default:
1242 		error = EINVAL;
1243 		break;
1244 	}
1245 	if (convpath)
1246 		LFREEPATH(path);
1247 	return (error);
1248 }
1249 
1250 /*
1251  * UGH! This is just about the dumbest idea I've ever heard!!
1252  */
1253 int
1254 linux_personality(struct thread *td, struct linux_personality_args *args)
1255 {
1256 	struct linux_pemuldata *pem;
1257 	struct proc *p = td->td_proc;
1258 	uint32_t old;
1259 
1260 	PROC_LOCK(p);
1261 	pem = pem_find(p);
1262 	old = pem->persona;
1263 	if (args->per != 0xffffffff)
1264 		pem->persona = args->per;
1265 	PROC_UNLOCK(p);
1266 
1267 	td->td_retval[0] = old;
1268 	return (0);
1269 }
1270 
1271 struct l_itimerval {
1272 	l_timeval it_interval;
1273 	l_timeval it_value;
1274 };
1275 
1276 #define	B2L_ITIMERVAL(bip, lip)						\
1277 	(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec;		\
1278 	(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec;	\
1279 	(bip)->it_value.tv_sec = (lip)->it_value.tv_sec;		\
1280 	(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
1281 
1282 int
1283 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
1284 {
1285 	int error;
1286 	struct l_itimerval ls;
1287 	struct itimerval aitv, oitv;
1288 
1289 	if (uap->itv == NULL) {
1290 		uap->itv = uap->oitv;
1291 		return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
1292 	}
1293 
1294 	error = copyin(uap->itv, &ls, sizeof(ls));
1295 	if (error != 0)
1296 		return (error);
1297 	B2L_ITIMERVAL(&aitv, &ls);
1298 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
1299 	if (error != 0 || uap->oitv == NULL)
1300 		return (error);
1301 	B2L_ITIMERVAL(&ls, &oitv);
1302 
1303 	return (copyout(&ls, uap->oitv, sizeof(ls)));
1304 }
1305 
1306 int
1307 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1308 {
1309 	int error;
1310 	struct l_itimerval ls;
1311 	struct itimerval aitv;
1312 
1313 	error = kern_getitimer(td, uap->which, &aitv);
1314 	if (error != 0)
1315 		return (error);
1316 	B2L_ITIMERVAL(&ls, &aitv);
1317 	return (copyout(&ls, uap->itv, sizeof(ls)));
1318 }
1319 
1320 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1321 int
1322 linux_nice(struct thread *td, struct linux_nice_args *args)
1323 {
1324 
1325 	return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1326 }
1327 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1328 
1329 int
1330 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1331 {
1332 	struct ucred *newcred, *oldcred;
1333 	l_gid_t *linux_gidset;
1334 	gid_t *bsd_gidset;
1335 	int ngrp, error;
1336 	struct proc *p;
1337 
1338 	ngrp = args->gidsetsize;
1339 	if (ngrp < 0 || ngrp >= ngroups_max + 1)
1340 		return (EINVAL);
1341 	linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1342 	error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1343 	if (error)
1344 		goto out;
1345 	newcred = crget();
1346 	crextend(newcred, ngrp + 1);
1347 	p = td->td_proc;
1348 	PROC_LOCK(p);
1349 	oldcred = p->p_ucred;
1350 	crcopy(newcred, oldcred);
1351 
1352 	/*
1353 	 * cr_groups[0] holds egid. Setting the whole set from
1354 	 * the supplied set will cause egid to be changed too.
1355 	 * Keep cr_groups[0] unchanged to prevent that.
1356 	 */
1357 
1358 	if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1359 		PROC_UNLOCK(p);
1360 		crfree(newcred);
1361 		goto out;
1362 	}
1363 
1364 	if (ngrp > 0) {
1365 		newcred->cr_ngroups = ngrp + 1;
1366 
1367 		bsd_gidset = newcred->cr_groups;
1368 		ngrp--;
1369 		while (ngrp >= 0) {
1370 			bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
1371 			ngrp--;
1372 		}
1373 	} else
1374 		newcred->cr_ngroups = 1;
1375 
1376 	setsugid(p);
1377 	proc_set_cred(p, newcred);
1378 	PROC_UNLOCK(p);
1379 	crfree(oldcred);
1380 	error = 0;
1381 out:
1382 	free(linux_gidset, M_LINUX);
1383 	return (error);
1384 }
1385 
1386 int
1387 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1388 {
1389 	struct ucred *cred;
1390 	l_gid_t *linux_gidset;
1391 	gid_t *bsd_gidset;
1392 	int bsd_gidsetsz, ngrp, error;
1393 
1394 	cred = td->td_ucred;
1395 	bsd_gidset = cred->cr_groups;
1396 	bsd_gidsetsz = cred->cr_ngroups - 1;
1397 
1398 	/*
1399 	 * cr_groups[0] holds egid. Returning the whole set
1400 	 * here will cause a duplicate. Exclude cr_groups[0]
1401 	 * to prevent that.
1402 	 */
1403 
1404 	if ((ngrp = args->gidsetsize) == 0) {
1405 		td->td_retval[0] = bsd_gidsetsz;
1406 		return (0);
1407 	}
1408 
1409 	if (ngrp < bsd_gidsetsz)
1410 		return (EINVAL);
1411 
1412 	ngrp = 0;
1413 	linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
1414 	    M_LINUX, M_WAITOK);
1415 	while (ngrp < bsd_gidsetsz) {
1416 		linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
1417 		ngrp++;
1418 	}
1419 
1420 	error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1421 	free(linux_gidset, M_LINUX);
1422 	if (error)
1423 		return (error);
1424 
1425 	td->td_retval[0] = ngrp;
1426 	return (0);
1427 }
1428 
1429 static bool
1430 linux_get_dummy_limit(l_uint resource, struct rlimit *rlim)
1431 {
1432 
1433 	if (linux_dummy_rlimits == 0)
1434 		return (false);
1435 
1436 	switch (resource) {
1437 	case LINUX_RLIMIT_LOCKS:
1438 	case LINUX_RLIMIT_SIGPENDING:
1439 	case LINUX_RLIMIT_MSGQUEUE:
1440 	case LINUX_RLIMIT_RTTIME:
1441 		rlim->rlim_cur = LINUX_RLIM_INFINITY;
1442 		rlim->rlim_max = LINUX_RLIM_INFINITY;
1443 		return (true);
1444 	case LINUX_RLIMIT_NICE:
1445 	case LINUX_RLIMIT_RTPRIO:
1446 		rlim->rlim_cur = 0;
1447 		rlim->rlim_max = 0;
1448 		return (true);
1449 	default:
1450 		return (false);
1451 	}
1452 }
1453 
1454 int
1455 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1456 {
1457 	struct rlimit bsd_rlim;
1458 	struct l_rlimit rlim;
1459 	u_int which;
1460 	int error;
1461 
1462 	if (args->resource >= LINUX_RLIM_NLIMITS)
1463 		return (EINVAL);
1464 
1465 	which = linux_to_bsd_resource[args->resource];
1466 	if (which == -1)
1467 		return (EINVAL);
1468 
1469 	error = copyin(args->rlim, &rlim, sizeof(rlim));
1470 	if (error)
1471 		return (error);
1472 
1473 	bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1474 	bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1475 	return (kern_setrlimit(td, which, &bsd_rlim));
1476 }
1477 
1478 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1479 int
1480 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1481 {
1482 	struct l_rlimit rlim;
1483 	struct rlimit bsd_rlim;
1484 	u_int which;
1485 
1486 	if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1487 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1488 		rlim.rlim_max = bsd_rlim.rlim_max;
1489 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1490 	}
1491 
1492 	if (args->resource >= LINUX_RLIM_NLIMITS)
1493 		return (EINVAL);
1494 
1495 	which = linux_to_bsd_resource[args->resource];
1496 	if (which == -1)
1497 		return (EINVAL);
1498 
1499 	lim_rlimit(td, which, &bsd_rlim);
1500 
1501 #ifdef COMPAT_LINUX32
1502 	rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1503 	if (rlim.rlim_cur == UINT_MAX)
1504 		rlim.rlim_cur = INT_MAX;
1505 	rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1506 	if (rlim.rlim_max == UINT_MAX)
1507 		rlim.rlim_max = INT_MAX;
1508 #else
1509 	rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1510 	if (rlim.rlim_cur == ULONG_MAX)
1511 		rlim.rlim_cur = LONG_MAX;
1512 	rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1513 	if (rlim.rlim_max == ULONG_MAX)
1514 		rlim.rlim_max = LONG_MAX;
1515 #endif
1516 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1517 }
1518 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1519 
1520 int
1521 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1522 {
1523 	struct l_rlimit rlim;
1524 	struct rlimit bsd_rlim;
1525 	u_int which;
1526 
1527 	if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1528 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1529 		rlim.rlim_max = bsd_rlim.rlim_max;
1530 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1531 	}
1532 
1533 	if (args->resource >= LINUX_RLIM_NLIMITS)
1534 		return (EINVAL);
1535 
1536 	which = linux_to_bsd_resource[args->resource];
1537 	if (which == -1)
1538 		return (EINVAL);
1539 
1540 	lim_rlimit(td, which, &bsd_rlim);
1541 
1542 	rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1543 	rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1544 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1545 }
1546 
1547 int
1548 linux_sched_setscheduler(struct thread *td,
1549     struct linux_sched_setscheduler_args *args)
1550 {
1551 	struct sched_param sched_param;
1552 	struct thread *tdt;
1553 	int error, policy;
1554 
1555 	switch (args->policy) {
1556 	case LINUX_SCHED_OTHER:
1557 		policy = SCHED_OTHER;
1558 		break;
1559 	case LINUX_SCHED_FIFO:
1560 		policy = SCHED_FIFO;
1561 		break;
1562 	case LINUX_SCHED_RR:
1563 		policy = SCHED_RR;
1564 		break;
1565 	default:
1566 		return (EINVAL);
1567 	}
1568 
1569 	error = copyin(args->param, &sched_param, sizeof(sched_param));
1570 	if (error)
1571 		return (error);
1572 
1573 	if (linux_map_sched_prio) {
1574 		switch (policy) {
1575 		case SCHED_OTHER:
1576 			if (sched_param.sched_priority != 0)
1577 				return (EINVAL);
1578 
1579 			sched_param.sched_priority =
1580 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1581 			break;
1582 		case SCHED_FIFO:
1583 		case SCHED_RR:
1584 			if (sched_param.sched_priority < 1 ||
1585 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1586 				return (EINVAL);
1587 
1588 			/*
1589 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1590 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1591 			 */
1592 			sched_param.sched_priority =
1593 			    (sched_param.sched_priority - 1) *
1594 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1595 			    (LINUX_MAX_RT_PRIO - 1);
1596 			break;
1597 		}
1598 	}
1599 
1600 	tdt = linux_tdfind(td, args->pid, -1);
1601 	if (tdt == NULL)
1602 		return (ESRCH);
1603 
1604 	error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1605 	PROC_UNLOCK(tdt->td_proc);
1606 	return (error);
1607 }
1608 
1609 int
1610 linux_sched_getscheduler(struct thread *td,
1611     struct linux_sched_getscheduler_args *args)
1612 {
1613 	struct thread *tdt;
1614 	int error, policy;
1615 
1616 	tdt = linux_tdfind(td, args->pid, -1);
1617 	if (tdt == NULL)
1618 		return (ESRCH);
1619 
1620 	error = kern_sched_getscheduler(td, tdt, &policy);
1621 	PROC_UNLOCK(tdt->td_proc);
1622 
1623 	switch (policy) {
1624 	case SCHED_OTHER:
1625 		td->td_retval[0] = LINUX_SCHED_OTHER;
1626 		break;
1627 	case SCHED_FIFO:
1628 		td->td_retval[0] = LINUX_SCHED_FIFO;
1629 		break;
1630 	case SCHED_RR:
1631 		td->td_retval[0] = LINUX_SCHED_RR;
1632 		break;
1633 	}
1634 	return (error);
1635 }
1636 
1637 int
1638 linux_sched_get_priority_max(struct thread *td,
1639     struct linux_sched_get_priority_max_args *args)
1640 {
1641 	struct sched_get_priority_max_args bsd;
1642 
1643 	if (linux_map_sched_prio) {
1644 		switch (args->policy) {
1645 		case LINUX_SCHED_OTHER:
1646 			td->td_retval[0] = 0;
1647 			return (0);
1648 		case LINUX_SCHED_FIFO:
1649 		case LINUX_SCHED_RR:
1650 			td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1651 			return (0);
1652 		default:
1653 			return (EINVAL);
1654 		}
1655 	}
1656 
1657 	switch (args->policy) {
1658 	case LINUX_SCHED_OTHER:
1659 		bsd.policy = SCHED_OTHER;
1660 		break;
1661 	case LINUX_SCHED_FIFO:
1662 		bsd.policy = SCHED_FIFO;
1663 		break;
1664 	case LINUX_SCHED_RR:
1665 		bsd.policy = SCHED_RR;
1666 		break;
1667 	default:
1668 		return (EINVAL);
1669 	}
1670 	return (sys_sched_get_priority_max(td, &bsd));
1671 }
1672 
1673 int
1674 linux_sched_get_priority_min(struct thread *td,
1675     struct linux_sched_get_priority_min_args *args)
1676 {
1677 	struct sched_get_priority_min_args bsd;
1678 
1679 	if (linux_map_sched_prio) {
1680 		switch (args->policy) {
1681 		case LINUX_SCHED_OTHER:
1682 			td->td_retval[0] = 0;
1683 			return (0);
1684 		case LINUX_SCHED_FIFO:
1685 		case LINUX_SCHED_RR:
1686 			td->td_retval[0] = 1;
1687 			return (0);
1688 		default:
1689 			return (EINVAL);
1690 		}
1691 	}
1692 
1693 	switch (args->policy) {
1694 	case LINUX_SCHED_OTHER:
1695 		bsd.policy = SCHED_OTHER;
1696 		break;
1697 	case LINUX_SCHED_FIFO:
1698 		bsd.policy = SCHED_FIFO;
1699 		break;
1700 	case LINUX_SCHED_RR:
1701 		bsd.policy = SCHED_RR;
1702 		break;
1703 	default:
1704 		return (EINVAL);
1705 	}
1706 	return (sys_sched_get_priority_min(td, &bsd));
1707 }
1708 
1709 #define REBOOT_CAD_ON	0x89abcdef
1710 #define REBOOT_CAD_OFF	0
1711 #define REBOOT_HALT	0xcdef0123
1712 #define REBOOT_RESTART	0x01234567
1713 #define REBOOT_RESTART2	0xA1B2C3D4
1714 #define REBOOT_POWEROFF	0x4321FEDC
1715 #define REBOOT_MAGIC1	0xfee1dead
1716 #define REBOOT_MAGIC2	0x28121969
1717 #define REBOOT_MAGIC2A	0x05121996
1718 #define REBOOT_MAGIC2B	0x16041998
1719 
1720 int
1721 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1722 {
1723 	struct reboot_args bsd_args;
1724 
1725 	if (args->magic1 != REBOOT_MAGIC1)
1726 		return (EINVAL);
1727 
1728 	switch (args->magic2) {
1729 	case REBOOT_MAGIC2:
1730 	case REBOOT_MAGIC2A:
1731 	case REBOOT_MAGIC2B:
1732 		break;
1733 	default:
1734 		return (EINVAL);
1735 	}
1736 
1737 	switch (args->cmd) {
1738 	case REBOOT_CAD_ON:
1739 	case REBOOT_CAD_OFF:
1740 		return (priv_check(td, PRIV_REBOOT));
1741 	case REBOOT_HALT:
1742 		bsd_args.opt = RB_HALT;
1743 		break;
1744 	case REBOOT_RESTART:
1745 	case REBOOT_RESTART2:
1746 		bsd_args.opt = 0;
1747 		break;
1748 	case REBOOT_POWEROFF:
1749 		bsd_args.opt = RB_POWEROFF;
1750 		break;
1751 	default:
1752 		return (EINVAL);
1753 	}
1754 	return (sys_reboot(td, &bsd_args));
1755 }
1756 
1757 int
1758 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1759 {
1760 
1761 	td->td_retval[0] = td->td_proc->p_pid;
1762 
1763 	return (0);
1764 }
1765 
1766 int
1767 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1768 {
1769 	struct linux_emuldata *em;
1770 
1771 	em = em_find(td);
1772 	KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1773 
1774 	td->td_retval[0] = em->em_tid;
1775 
1776 	return (0);
1777 }
1778 
1779 int
1780 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1781 {
1782 
1783 	td->td_retval[0] = kern_getppid(td);
1784 	return (0);
1785 }
1786 
1787 int
1788 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1789 {
1790 
1791 	td->td_retval[0] = td->td_ucred->cr_rgid;
1792 	return (0);
1793 }
1794 
1795 int
1796 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1797 {
1798 
1799 	td->td_retval[0] = td->td_ucred->cr_ruid;
1800 	return (0);
1801 }
1802 
1803 int
1804 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1805 {
1806 
1807 	return (kern_getsid(td, args->pid));
1808 }
1809 
1810 int
1811 linux_nosys(struct thread *td, struct nosys_args *ignore)
1812 {
1813 
1814 	return (ENOSYS);
1815 }
1816 
1817 int
1818 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1819 {
1820 	int error;
1821 
1822 	error = kern_getpriority(td, args->which, args->who);
1823 	td->td_retval[0] = 20 - td->td_retval[0];
1824 	return (error);
1825 }
1826 
1827 int
1828 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1829 {
1830 	int name[2];
1831 
1832 	name[0] = CTL_KERN;
1833 	name[1] = KERN_HOSTNAME;
1834 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1835 	    args->len, 0, 0));
1836 }
1837 
1838 int
1839 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1840 {
1841 	int name[2];
1842 
1843 	name[0] = CTL_KERN;
1844 	name[1] = KERN_NISDOMAINNAME;
1845 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1846 	    args->len, 0, 0));
1847 }
1848 
1849 int
1850 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1851 {
1852 
1853 	LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1854 	    args->error_code);
1855 
1856 	/*
1857 	 * XXX: we should send a signal to the parent if
1858 	 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1859 	 * as it doesnt occur often.
1860 	 */
1861 	exit1(td, args->error_code, 0);
1862 		/* NOTREACHED */
1863 }
1864 
1865 #define _LINUX_CAPABILITY_VERSION_1  0x19980330
1866 #define _LINUX_CAPABILITY_VERSION_2  0x20071026
1867 #define _LINUX_CAPABILITY_VERSION_3  0x20080522
1868 
1869 struct l_user_cap_header {
1870 	l_int	version;
1871 	l_int	pid;
1872 };
1873 
1874 struct l_user_cap_data {
1875 	l_int	effective;
1876 	l_int	permitted;
1877 	l_int	inheritable;
1878 };
1879 
1880 int
1881 linux_capget(struct thread *td, struct linux_capget_args *uap)
1882 {
1883 	struct l_user_cap_header luch;
1884 	struct l_user_cap_data lucd[2];
1885 	int error, u32s;
1886 
1887 	if (uap->hdrp == NULL)
1888 		return (EFAULT);
1889 
1890 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1891 	if (error != 0)
1892 		return (error);
1893 
1894 	switch (luch.version) {
1895 	case _LINUX_CAPABILITY_VERSION_1:
1896 		u32s = 1;
1897 		break;
1898 	case _LINUX_CAPABILITY_VERSION_2:
1899 	case _LINUX_CAPABILITY_VERSION_3:
1900 		u32s = 2;
1901 		break;
1902 	default:
1903 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1904 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1905 		if (error)
1906 			return (error);
1907 		return (EINVAL);
1908 	}
1909 
1910 	if (luch.pid)
1911 		return (EPERM);
1912 
1913 	if (uap->datap) {
1914 		/*
1915 		 * The current implementation doesn't support setting
1916 		 * a capability (it's essentially a stub) so indicate
1917 		 * that no capabilities are currently set or available
1918 		 * to request.
1919 		 */
1920 		memset(&lucd, 0, u32s * sizeof(lucd[0]));
1921 		error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1922 	}
1923 
1924 	return (error);
1925 }
1926 
1927 int
1928 linux_capset(struct thread *td, struct linux_capset_args *uap)
1929 {
1930 	struct l_user_cap_header luch;
1931 	struct l_user_cap_data lucd[2];
1932 	int error, i, u32s;
1933 
1934 	if (uap->hdrp == NULL || uap->datap == NULL)
1935 		return (EFAULT);
1936 
1937 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1938 	if (error != 0)
1939 		return (error);
1940 
1941 	switch (luch.version) {
1942 	case _LINUX_CAPABILITY_VERSION_1:
1943 		u32s = 1;
1944 		break;
1945 	case _LINUX_CAPABILITY_VERSION_2:
1946 	case _LINUX_CAPABILITY_VERSION_3:
1947 		u32s = 2;
1948 		break;
1949 	default:
1950 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1951 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1952 		if (error)
1953 			return (error);
1954 		return (EINVAL);
1955 	}
1956 
1957 	if (luch.pid)
1958 		return (EPERM);
1959 
1960 	error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1961 	if (error != 0)
1962 		return (error);
1963 
1964 	/* We currently don't support setting any capabilities. */
1965 	for (i = 0; i < u32s; i++) {
1966 		if (lucd[i].effective || lucd[i].permitted ||
1967 		    lucd[i].inheritable) {
1968 			linux_msg(td,
1969 			    "capset[%d] effective=0x%x, permitted=0x%x, "
1970 			    "inheritable=0x%x is not implemented", i,
1971 			    (int)lucd[i].effective, (int)lucd[i].permitted,
1972 			    (int)lucd[i].inheritable);
1973 			return (EPERM);
1974 		}
1975 	}
1976 
1977 	return (0);
1978 }
1979 
1980 int
1981 linux_prctl(struct thread *td, struct linux_prctl_args *args)
1982 {
1983 	int error = 0, max_size, arg;
1984 	struct proc *p = td->td_proc;
1985 	char comm[LINUX_MAX_COMM_LEN];
1986 	int pdeath_signal, trace_state;
1987 
1988 	switch (args->option) {
1989 	case LINUX_PR_SET_PDEATHSIG:
1990 		if (!LINUX_SIG_VALID(args->arg2))
1991 			return (EINVAL);
1992 		pdeath_signal = linux_to_bsd_signal(args->arg2);
1993 		return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1994 		    &pdeath_signal));
1995 	case LINUX_PR_GET_PDEATHSIG:
1996 		error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1997 		    &pdeath_signal);
1998 		if (error != 0)
1999 			return (error);
2000 		pdeath_signal = bsd_to_linux_signal(pdeath_signal);
2001 		return (copyout(&pdeath_signal,
2002 		    (void *)(register_t)args->arg2,
2003 		    sizeof(pdeath_signal)));
2004 	/*
2005 	 * In Linux, this flag controls if set[gu]id processes can coredump.
2006 	 * There are additional semantics imposed on processes that cannot
2007 	 * coredump:
2008 	 * - Such processes can not be ptraced.
2009 	 * - There are some semantics around ownership of process-related files
2010 	 *   in the /proc namespace.
2011 	 *
2012 	 * In FreeBSD, we can (and by default, do) disable setuid coredump
2013 	 * system-wide with 'sugid_coredump.'  We control tracability on a
2014 	 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
2015 	 * By happy coincidence, P2_NOTRACE also prevents coredumping.  So the
2016 	 * procctl is roughly analogous to Linux's DUMPABLE.
2017 	 *
2018 	 * So, proxy these knobs to the corresponding PROC_TRACE setting.
2019 	 */
2020 	case LINUX_PR_GET_DUMPABLE:
2021 		error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
2022 		    &trace_state);
2023 		if (error != 0)
2024 			return (error);
2025 		td->td_retval[0] = (trace_state != -1);
2026 		return (0);
2027 	case LINUX_PR_SET_DUMPABLE:
2028 		/*
2029 		 * It is only valid for userspace to set one of these two
2030 		 * flags, and only one at a time.
2031 		 */
2032 		switch (args->arg2) {
2033 		case LINUX_SUID_DUMP_DISABLE:
2034 			trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
2035 			break;
2036 		case LINUX_SUID_DUMP_USER:
2037 			trace_state = PROC_TRACE_CTL_ENABLE;
2038 			break;
2039 		default:
2040 			return (EINVAL);
2041 		}
2042 		return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
2043 		    &trace_state));
2044 	case LINUX_PR_GET_KEEPCAPS:
2045 		/*
2046 		 * Indicate that we always clear the effective and
2047 		 * permitted capability sets when the user id becomes
2048 		 * non-zero (actually the capability sets are simply
2049 		 * always zero in the current implementation).
2050 		 */
2051 		td->td_retval[0] = 0;
2052 		break;
2053 	case LINUX_PR_SET_KEEPCAPS:
2054 		/*
2055 		 * Ignore requests to keep the effective and permitted
2056 		 * capability sets when the user id becomes non-zero.
2057 		 */
2058 		break;
2059 	case LINUX_PR_SET_NAME:
2060 		/*
2061 		 * To be on the safe side we need to make sure to not
2062 		 * overflow the size a Linux program expects. We already
2063 		 * do this here in the copyin, so that we don't need to
2064 		 * check on copyout.
2065 		 */
2066 		max_size = MIN(sizeof(comm), sizeof(p->p_comm));
2067 		error = copyinstr((void *)(register_t)args->arg2, comm,
2068 		    max_size, NULL);
2069 
2070 		/* Linux silently truncates the name if it is too long. */
2071 		if (error == ENAMETOOLONG) {
2072 			/*
2073 			 * XXX: copyinstr() isn't documented to populate the
2074 			 * array completely, so do a copyin() to be on the
2075 			 * safe side. This should be changed in case
2076 			 * copyinstr() is changed to guarantee this.
2077 			 */
2078 			error = copyin((void *)(register_t)args->arg2, comm,
2079 			    max_size - 1);
2080 			comm[max_size - 1] = '\0';
2081 		}
2082 		if (error)
2083 			return (error);
2084 
2085 		PROC_LOCK(p);
2086 		strlcpy(p->p_comm, comm, sizeof(p->p_comm));
2087 		PROC_UNLOCK(p);
2088 		break;
2089 	case LINUX_PR_GET_NAME:
2090 		PROC_LOCK(p);
2091 		strlcpy(comm, p->p_comm, sizeof(comm));
2092 		PROC_UNLOCK(p);
2093 		error = copyout(comm, (void *)(register_t)args->arg2,
2094 		    strlen(comm) + 1);
2095 		break;
2096 	case LINUX_PR_GET_SECCOMP:
2097 	case LINUX_PR_SET_SECCOMP:
2098 		/*
2099 		 * Same as returned by Linux without CONFIG_SECCOMP enabled.
2100 		 */
2101 		error = EINVAL;
2102 		break;
2103 	case LINUX_PR_CAPBSET_READ:
2104 #if 0
2105 		/*
2106 		 * This makes too much noise with Ubuntu Focal.
2107 		 */
2108 		linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
2109 		    (int)args->arg2);
2110 #endif
2111 		error = EINVAL;
2112 		break;
2113 	case LINUX_PR_SET_NO_NEW_PRIVS:
2114 		arg = args->arg2 == 1 ?
2115 		    PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
2116 		error = kern_procctl(td, P_PID, p->p_pid,
2117 		    PROC_NO_NEW_PRIVS_CTL, &arg);
2118 		break;
2119 	case LINUX_PR_SET_PTRACER:
2120 		linux_msg(td, "unsupported prctl PR_SET_PTRACER");
2121 		error = EINVAL;
2122 		break;
2123 	default:
2124 		linux_msg(td, "unsupported prctl option %d", args->option);
2125 		error = EINVAL;
2126 		break;
2127 	}
2128 
2129 	return (error);
2130 }
2131 
2132 int
2133 linux_sched_setparam(struct thread *td,
2134     struct linux_sched_setparam_args *uap)
2135 {
2136 	struct sched_param sched_param;
2137 	struct thread *tdt;
2138 	int error, policy;
2139 
2140 	error = copyin(uap->param, &sched_param, sizeof(sched_param));
2141 	if (error)
2142 		return (error);
2143 
2144 	tdt = linux_tdfind(td, uap->pid, -1);
2145 	if (tdt == NULL)
2146 		return (ESRCH);
2147 
2148 	if (linux_map_sched_prio) {
2149 		error = kern_sched_getscheduler(td, tdt, &policy);
2150 		if (error)
2151 			goto out;
2152 
2153 		switch (policy) {
2154 		case SCHED_OTHER:
2155 			if (sched_param.sched_priority != 0) {
2156 				error = EINVAL;
2157 				goto out;
2158 			}
2159 			sched_param.sched_priority =
2160 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
2161 			break;
2162 		case SCHED_FIFO:
2163 		case SCHED_RR:
2164 			if (sched_param.sched_priority < 1 ||
2165 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
2166 				error = EINVAL;
2167 				goto out;
2168 			}
2169 			/*
2170 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
2171 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
2172 			 */
2173 			sched_param.sched_priority =
2174 			    (sched_param.sched_priority - 1) *
2175 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
2176 			    (LINUX_MAX_RT_PRIO - 1);
2177 			break;
2178 		}
2179 	}
2180 
2181 	error = kern_sched_setparam(td, tdt, &sched_param);
2182 out:	PROC_UNLOCK(tdt->td_proc);
2183 	return (error);
2184 }
2185 
2186 int
2187 linux_sched_getparam(struct thread *td,
2188     struct linux_sched_getparam_args *uap)
2189 {
2190 	struct sched_param sched_param;
2191 	struct thread *tdt;
2192 	int error, policy;
2193 
2194 	tdt = linux_tdfind(td, uap->pid, -1);
2195 	if (tdt == NULL)
2196 		return (ESRCH);
2197 
2198 	error = kern_sched_getparam(td, tdt, &sched_param);
2199 	if (error) {
2200 		PROC_UNLOCK(tdt->td_proc);
2201 		return (error);
2202 	}
2203 
2204 	if (linux_map_sched_prio) {
2205 		error = kern_sched_getscheduler(td, tdt, &policy);
2206 		PROC_UNLOCK(tdt->td_proc);
2207 		if (error)
2208 			return (error);
2209 
2210 		switch (policy) {
2211 		case SCHED_OTHER:
2212 			sched_param.sched_priority = 0;
2213 			break;
2214 		case SCHED_FIFO:
2215 		case SCHED_RR:
2216 			/*
2217 			 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
2218 			 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
2219 			 */
2220 			sched_param.sched_priority =
2221 			    (sched_param.sched_priority *
2222 			    (LINUX_MAX_RT_PRIO - 1) +
2223 			    (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
2224 			    (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
2225 			break;
2226 		}
2227 	} else
2228 		PROC_UNLOCK(tdt->td_proc);
2229 
2230 	error = copyout(&sched_param, uap->param, sizeof(sched_param));
2231 	return (error);
2232 }
2233 
2234 /*
2235  * Get affinity of a process.
2236  */
2237 int
2238 linux_sched_getaffinity(struct thread *td,
2239     struct linux_sched_getaffinity_args *args)
2240 {
2241 	int error;
2242 	struct thread *tdt;
2243 
2244 	if (args->len < sizeof(cpuset_t))
2245 		return (EINVAL);
2246 
2247 	tdt = linux_tdfind(td, args->pid, -1);
2248 	if (tdt == NULL)
2249 		return (ESRCH);
2250 
2251 	PROC_UNLOCK(tdt->td_proc);
2252 
2253 	error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2254 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr);
2255 	if (error == 0)
2256 		td->td_retval[0] = sizeof(cpuset_t);
2257 
2258 	return (error);
2259 }
2260 
2261 /*
2262  *  Set affinity of a process.
2263  */
2264 int
2265 linux_sched_setaffinity(struct thread *td,
2266     struct linux_sched_setaffinity_args *args)
2267 {
2268 	struct thread *tdt;
2269 
2270 	if (args->len < sizeof(cpuset_t))
2271 		return (EINVAL);
2272 
2273 	tdt = linux_tdfind(td, args->pid, -1);
2274 	if (tdt == NULL)
2275 		return (ESRCH);
2276 
2277 	PROC_UNLOCK(tdt->td_proc);
2278 
2279 	return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2280 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr));
2281 }
2282 
2283 struct linux_rlimit64 {
2284 	uint64_t	rlim_cur;
2285 	uint64_t	rlim_max;
2286 };
2287 
2288 int
2289 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2290 {
2291 	struct rlimit rlim, nrlim;
2292 	struct linux_rlimit64 lrlim;
2293 	struct proc *p;
2294 	u_int which;
2295 	int flags;
2296 	int error;
2297 
2298 	if (args->new == NULL && args->old != NULL) {
2299 		if (linux_get_dummy_limit(args->resource, &rlim)) {
2300 			lrlim.rlim_cur = rlim.rlim_cur;
2301 			lrlim.rlim_max = rlim.rlim_max;
2302 			return (copyout(&lrlim, args->old, sizeof(lrlim)));
2303 		}
2304 	}
2305 
2306 	if (args->resource >= LINUX_RLIM_NLIMITS)
2307 		return (EINVAL);
2308 
2309 	which = linux_to_bsd_resource[args->resource];
2310 	if (which == -1)
2311 		return (EINVAL);
2312 
2313 	if (args->new != NULL) {
2314 		/*
2315 		 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2316 		 * rlim is unsigned 64-bit. FreeBSD treats negative limits
2317 		 * as INFINITY so we do not need a conversion even.
2318 		 */
2319 		error = copyin(args->new, &nrlim, sizeof(nrlim));
2320 		if (error != 0)
2321 			return (error);
2322 	}
2323 
2324 	flags = PGET_HOLD | PGET_NOTWEXIT;
2325 	if (args->new != NULL)
2326 		flags |= PGET_CANDEBUG;
2327 	else
2328 		flags |= PGET_CANSEE;
2329 	if (args->pid == 0) {
2330 		p = td->td_proc;
2331 		PHOLD(p);
2332 	} else {
2333 		error = pget(args->pid, flags, &p);
2334 		if (error != 0)
2335 			return (error);
2336 	}
2337 	if (args->old != NULL) {
2338 		PROC_LOCK(p);
2339 		lim_rlimit_proc(p, which, &rlim);
2340 		PROC_UNLOCK(p);
2341 		if (rlim.rlim_cur == RLIM_INFINITY)
2342 			lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2343 		else
2344 			lrlim.rlim_cur = rlim.rlim_cur;
2345 		if (rlim.rlim_max == RLIM_INFINITY)
2346 			lrlim.rlim_max = LINUX_RLIM_INFINITY;
2347 		else
2348 			lrlim.rlim_max = rlim.rlim_max;
2349 		error = copyout(&lrlim, args->old, sizeof(lrlim));
2350 		if (error != 0)
2351 			goto out;
2352 	}
2353 
2354 	if (args->new != NULL)
2355 		error = kern_proc_setrlimit(td, p, which, &nrlim);
2356 
2357  out:
2358 	PRELE(p);
2359 	return (error);
2360 }
2361 
2362 int
2363 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2364 {
2365 	struct l_timespec lts;
2366 	struct timespec ts, *tsp;
2367 	int error;
2368 
2369 	if (args->tsp != NULL) {
2370 		error = copyin(args->tsp, &lts, sizeof(lts));
2371 		if (error != 0)
2372 			return (error);
2373 		error = linux_to_native_timespec(&ts, &lts);
2374 		if (error != 0)
2375 			return (error);
2376 		tsp = &ts;
2377 	} else
2378 		tsp = NULL;
2379 
2380 	error = linux_common_pselect6(td, args->nfds, args->readfds,
2381 	    args->writefds, args->exceptfds, tsp, args->sig);
2382 	if (error != 0)
2383 		return (error);
2384 
2385 	if (args->tsp != NULL) {
2386 		error = native_to_linux_timespec(&lts, tsp);
2387 		if (error == 0)
2388 			error = copyout(&lts, args->tsp, sizeof(lts));
2389 	}
2390 	return (error);
2391 }
2392 
2393 static int
2394 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
2395     l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
2396     l_uintptr_t *sig)
2397 {
2398 	struct timeval utv, tv0, tv1, *tvp;
2399 	struct l_pselect6arg lpse6;
2400 	l_sigset_t l_ss;
2401 	sigset_t *ssp;
2402 	sigset_t ss;
2403 	int error;
2404 
2405 	ssp = NULL;
2406 	if (sig != NULL) {
2407 		error = copyin(sig, &lpse6, sizeof(lpse6));
2408 		if (error != 0)
2409 			return (error);
2410 		if (lpse6.ss_len != sizeof(l_ss))
2411 			return (EINVAL);
2412 		if (lpse6.ss != 0) {
2413 			error = copyin(PTRIN(lpse6.ss), &l_ss,
2414 			    sizeof(l_ss));
2415 			if (error != 0)
2416 				return (error);
2417 			linux_to_bsd_sigset(&l_ss, &ss);
2418 			ssp = &ss;
2419 		}
2420 	} else
2421 		ssp = NULL;
2422 
2423 	/*
2424 	 * Currently glibc changes nanosecond number to microsecond.
2425 	 * This mean losing precision but for now it is hardly seen.
2426 	 */
2427 	if (tsp != NULL) {
2428 		TIMESPEC_TO_TIMEVAL(&utv, tsp);
2429 		if (itimerfix(&utv))
2430 			return (EINVAL);
2431 
2432 		microtime(&tv0);
2433 		tvp = &utv;
2434 	} else
2435 		tvp = NULL;
2436 
2437 	error = kern_pselect(td, nfds, readfds, writefds,
2438 	    exceptfds, tvp, ssp, LINUX_NFDBITS);
2439 
2440 	if (error == 0 && tsp != NULL) {
2441 		if (td->td_retval[0] != 0) {
2442 			/*
2443 			 * Compute how much time was left of the timeout,
2444 			 * by subtracting the current time and the time
2445 			 * before we started the call, and subtracting
2446 			 * that result from the user-supplied value.
2447 			 */
2448 
2449 			microtime(&tv1);
2450 			timevalsub(&tv1, &tv0);
2451 			timevalsub(&utv, &tv1);
2452 			if (utv.tv_sec < 0)
2453 				timevalclear(&utv);
2454 		} else
2455 			timevalclear(&utv);
2456 		TIMEVAL_TO_TIMESPEC(&utv, tsp);
2457 	}
2458 	return (error);
2459 }
2460 
2461 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2462 int
2463 linux_pselect6_time64(struct thread *td,
2464     struct linux_pselect6_time64_args *args)
2465 {
2466 	struct l_timespec64 lts;
2467 	struct timespec ts, *tsp;
2468 	int error;
2469 
2470 	if (args->tsp != NULL) {
2471 		error = copyin(args->tsp, &lts, sizeof(lts));
2472 		if (error != 0)
2473 			return (error);
2474 		error = linux_to_native_timespec64(&ts, &lts);
2475 		if (error != 0)
2476 			return (error);
2477 		tsp = &ts;
2478 	} else
2479 		tsp = NULL;
2480 
2481 	error = linux_common_pselect6(td, args->nfds, args->readfds,
2482 	    args->writefds, args->exceptfds, tsp, args->sig);
2483 	if (error != 0)
2484 		return (error);
2485 
2486 	if (args->tsp != NULL) {
2487 		error = native_to_linux_timespec64(&lts, tsp);
2488 		if (error == 0)
2489 			error = copyout(&lts, args->tsp, sizeof(lts));
2490 	}
2491 	return (error);
2492 }
2493 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2494 
2495 int
2496 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2497 {
2498 	struct timespec uts, *tsp;
2499 	struct l_timespec lts;
2500 	int error;
2501 
2502 	if (args->tsp != NULL) {
2503 		error = copyin(args->tsp, &lts, sizeof(lts));
2504 		if (error)
2505 			return (error);
2506 		error = linux_to_native_timespec(&uts, &lts);
2507 		if (error != 0)
2508 			return (error);
2509 		tsp = &uts;
2510 	} else
2511 		tsp = NULL;
2512 
2513 	error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2514 	    args->sset, args->ssize);
2515 	if (error != 0)
2516 		return (error);
2517 	if (tsp != NULL) {
2518 		error = native_to_linux_timespec(&lts, tsp);
2519 		if (error == 0)
2520 			error = copyout(&lts, args->tsp, sizeof(lts));
2521 	}
2522 	return (error);
2523 }
2524 
2525 static int
2526 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
2527     struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
2528 {
2529 	struct timespec ts0, ts1;
2530 	struct pollfd stackfds[32];
2531 	struct pollfd *kfds;
2532  	l_sigset_t l_ss;
2533  	sigset_t *ssp;
2534  	sigset_t ss;
2535  	int error;
2536 
2537 	if (kern_poll_maxfds(nfds))
2538 		return (EINVAL);
2539 	if (sset != NULL) {
2540 		if (ssize != sizeof(l_ss))
2541 			return (EINVAL);
2542 		error = copyin(sset, &l_ss, sizeof(l_ss));
2543 		if (error)
2544 			return (error);
2545 		linux_to_bsd_sigset(&l_ss, &ss);
2546 		ssp = &ss;
2547 	} else
2548 		ssp = NULL;
2549 	if (tsp != NULL)
2550 		nanotime(&ts0);
2551 
2552 	if (nfds > nitems(stackfds))
2553 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
2554 	else
2555 		kfds = stackfds;
2556 	error = linux_pollin(td, kfds, fds, nfds);
2557 	if (error != 0)
2558 		goto out;
2559 
2560 	error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
2561 	if (error == 0)
2562 		error = linux_pollout(td, kfds, fds, nfds);
2563 
2564 	if (error == 0 && tsp != NULL) {
2565 		if (td->td_retval[0]) {
2566 			nanotime(&ts1);
2567 			timespecsub(&ts1, &ts0, &ts1);
2568 			timespecsub(tsp, &ts1, tsp);
2569 			if (tsp->tv_sec < 0)
2570 				timespecclear(tsp);
2571 		} else
2572 			timespecclear(tsp);
2573 	}
2574 
2575 out:
2576 	if (nfds > nitems(stackfds))
2577 		free(kfds, M_TEMP);
2578 	return (error);
2579 }
2580 
2581 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2582 int
2583 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
2584 {
2585 	struct timespec uts, *tsp;
2586 	struct l_timespec64 lts;
2587 	int error;
2588 
2589 	if (args->tsp != NULL) {
2590 		error = copyin(args->tsp, &lts, sizeof(lts));
2591 		if (error != 0)
2592 			return (error);
2593 		error = linux_to_native_timespec64(&uts, &lts);
2594 		if (error != 0)
2595 			return (error);
2596 		tsp = &uts;
2597 	} else
2598  		tsp = NULL;
2599 	error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2600 	    args->sset, args->ssize);
2601 	if (error != 0)
2602 		return (error);
2603 	if (tsp != NULL) {
2604 		error = native_to_linux_timespec64(&lts, tsp);
2605 		if (error == 0)
2606 			error = copyout(&lts, args->tsp, sizeof(lts));
2607 	}
2608 	return (error);
2609 }
2610 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2611 
2612 static int
2613 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2614 {
2615 	int error;
2616 	u_int i;
2617 
2618 	error = copyin(ufds, fds, nfd * sizeof(*fds));
2619 	if (error != 0)
2620 		return (error);
2621 
2622 	for (i = 0; i < nfd; i++) {
2623 		if (fds->events != 0)
2624 			linux_to_bsd_poll_events(td, fds->fd,
2625 			    fds->events, &fds->events);
2626 		fds++;
2627 	}
2628 	return (0);
2629 }
2630 
2631 static int
2632 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2633 {
2634 	int error = 0;
2635 	u_int i, n = 0;
2636 
2637 	for (i = 0; i < nfd; i++) {
2638 		if (fds->revents != 0) {
2639 			bsd_to_linux_poll_events(fds->revents,
2640 			    &fds->revents);
2641 			n++;
2642 		}
2643 		error = copyout(&fds->revents, &ufds->revents,
2644 		    sizeof(ufds->revents));
2645 		if (error)
2646 			return (error);
2647 		fds++;
2648 		ufds++;
2649 	}
2650 	td->td_retval[0] = n;
2651 	return (0);
2652 }
2653 
2654 int
2655 linux_sched_rr_get_interval(struct thread *td,
2656     struct linux_sched_rr_get_interval_args *uap)
2657 {
2658 	struct timespec ts;
2659 	struct l_timespec lts;
2660 	struct thread *tdt;
2661 	int error;
2662 
2663 	/*
2664 	 * According to man in case the invalid pid specified
2665 	 * EINVAL should be returned.
2666 	 */
2667 	if (uap->pid < 0)
2668 		return (EINVAL);
2669 
2670 	tdt = linux_tdfind(td, uap->pid, -1);
2671 	if (tdt == NULL)
2672 		return (ESRCH);
2673 
2674 	error = kern_sched_rr_get_interval_td(td, tdt, &ts);
2675 	PROC_UNLOCK(tdt->td_proc);
2676 	if (error != 0)
2677 		return (error);
2678 	error = native_to_linux_timespec(&lts, &ts);
2679 	if (error != 0)
2680 		return (error);
2681 	return (copyout(&lts, uap->interval, sizeof(lts)));
2682 }
2683 
2684 /*
2685  * In case when the Linux thread is the initial thread in
2686  * the thread group thread id is equal to the process id.
2687  * Glibc depends on this magic (assert in pthread_getattr_np.c).
2688  */
2689 struct thread *
2690 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2691 {
2692 	struct linux_emuldata *em;
2693 	struct thread *tdt;
2694 	struct proc *p;
2695 
2696 	tdt = NULL;
2697 	if (tid == 0 || tid == td->td_tid) {
2698 		tdt = td;
2699 		PROC_LOCK(tdt->td_proc);
2700 	} else if (tid > PID_MAX)
2701 		tdt = tdfind(tid, pid);
2702 	else {
2703 		/*
2704 		 * Initial thread where the tid equal to the pid.
2705 		 */
2706 		p = pfind(tid);
2707 		if (p != NULL) {
2708 			if (SV_PROC_ABI(p) != SV_ABI_LINUX) {
2709 				/*
2710 				 * p is not a Linuxulator process.
2711 				 */
2712 				PROC_UNLOCK(p);
2713 				return (NULL);
2714 			}
2715 			FOREACH_THREAD_IN_PROC(p, tdt) {
2716 				em = em_find(tdt);
2717 				if (tid == em->em_tid)
2718 					return (tdt);
2719 			}
2720 			PROC_UNLOCK(p);
2721 		}
2722 		return (NULL);
2723 	}
2724 
2725 	return (tdt);
2726 }
2727 
2728 void
2729 linux_to_bsd_waitopts(int options, int *bsdopts)
2730 {
2731 
2732 	if (options & LINUX_WNOHANG)
2733 		*bsdopts |= WNOHANG;
2734 	if (options & LINUX_WUNTRACED)
2735 		*bsdopts |= WUNTRACED;
2736 	if (options & LINUX_WEXITED)
2737 		*bsdopts |= WEXITED;
2738 	if (options & LINUX_WCONTINUED)
2739 		*bsdopts |= WCONTINUED;
2740 	if (options & LINUX_WNOWAIT)
2741 		*bsdopts |= WNOWAIT;
2742 
2743 	if (options & __WCLONE)
2744 		*bsdopts |= WLINUXCLONE;
2745 }
2746 
2747 int
2748 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2749 {
2750 	struct uio uio;
2751 	struct iovec iov;
2752 	int error;
2753 
2754 	if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2755 		return (EINVAL);
2756 	if (args->count > INT_MAX)
2757 		args->count = INT_MAX;
2758 
2759 	iov.iov_base = args->buf;
2760 	iov.iov_len = args->count;
2761 
2762 	uio.uio_iov = &iov;
2763 	uio.uio_iovcnt = 1;
2764 	uio.uio_resid = iov.iov_len;
2765 	uio.uio_segflg = UIO_USERSPACE;
2766 	uio.uio_rw = UIO_READ;
2767 	uio.uio_td = td;
2768 
2769 	error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2770 	if (error == 0)
2771 		td->td_retval[0] = args->count - uio.uio_resid;
2772 	return (error);
2773 }
2774 
2775 int
2776 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2777 {
2778 
2779 	/* Needs to be page-aligned */
2780 	if (args->start & PAGE_MASK)
2781 		return (EINVAL);
2782 	return (kern_mincore(td, args->start, args->len, args->vec));
2783 }
2784 
2785 #define	SYSLOG_TAG	"<6>"
2786 
2787 int
2788 linux_syslog(struct thread *td, struct linux_syslog_args *args)
2789 {
2790 	char buf[128], *src, *dst;
2791 	u_int seq;
2792 	int buflen, error;
2793 
2794 	if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2795 		linux_msg(td, "syslog unsupported type 0x%x", args->type);
2796 		return (EINVAL);
2797 	}
2798 
2799 	if (args->len < 6) {
2800 		td->td_retval[0] = 0;
2801 		return (0);
2802 	}
2803 
2804 	error = priv_check(td, PRIV_MSGBUF);
2805 	if (error)
2806 		return (error);
2807 
2808 	mtx_lock(&msgbuf_lock);
2809 	msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2810 	mtx_unlock(&msgbuf_lock);
2811 
2812 	dst = args->buf;
2813 	error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2814 	/* The -1 is to skip the trailing '\0'. */
2815 	dst += sizeof(SYSLOG_TAG) - 1;
2816 
2817 	while (error == 0) {
2818 		mtx_lock(&msgbuf_lock);
2819 		buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2820 		mtx_unlock(&msgbuf_lock);
2821 
2822 		if (buflen == 0)
2823 			break;
2824 
2825 		for (src = buf; src < buf + buflen && error == 0; src++) {
2826 			if (*src == '\0')
2827 				continue;
2828 
2829 			if (dst >= args->buf + args->len)
2830 				goto out;
2831 
2832 			error = copyout(src, dst, 1);
2833 			dst++;
2834 
2835 			if (*src == '\n' && *(src + 1) != '<' &&
2836 			    dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2837 				error = copyout(&SYSLOG_TAG,
2838 				    dst, sizeof(SYSLOG_TAG));
2839 				dst += sizeof(SYSLOG_TAG) - 1;
2840 			}
2841 		}
2842 	}
2843 out:
2844 	td->td_retval[0] = dst - args->buf;
2845 	return (error);
2846 }
2847 
2848 int
2849 linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2850 {
2851 	int cpu, error, node;
2852 
2853 	cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2854 	error = 0;
2855 	node = cpuid_to_pcpu[cpu]->pc_domain;
2856 
2857 	if (args->cpu != NULL)
2858 		error = copyout(&cpu, args->cpu, sizeof(l_int));
2859 	if (args->node != NULL)
2860 		error = copyout(&node, args->node, sizeof(l_int));
2861 	return (error);
2862 }
2863 
2864 #if defined(__i386__) || defined(__amd64__)
2865 int
2866 linux_poll(struct thread *td, struct linux_poll_args *args)
2867 {
2868 	struct timespec ts, *tsp;
2869 
2870 	if (args->timeout != INFTIM) {
2871 		if (args->timeout < 0)
2872 			return (EINVAL);
2873 		ts.tv_sec = args->timeout / 1000;
2874 		ts.tv_nsec = (args->timeout % 1000) * 1000000;
2875 		tsp = &ts;
2876 	} else
2877 		tsp = NULL;
2878 
2879 	return (linux_common_ppoll(td, args->fds, args->nfds,
2880 	    tsp, NULL, 0));
2881 }
2882 #endif /* __i386__ || __amd64__ */
2883 
2884 int
2885 linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
2886 {
2887 
2888 	switch (args->op) {
2889 	case LINUX_SECCOMP_GET_ACTION_AVAIL:
2890 		return (EOPNOTSUPP);
2891 	default:
2892 		/*
2893 		 * Ignore unknown operations, just like Linux kernel built
2894 		 * without CONFIG_SECCOMP.
2895 		 */
2896 		return (EINVAL);
2897 	}
2898 }
2899