xref: /freebsd/sys/compat/linux/linux_futex.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009-2021 Dmitry Chagin <dchagin@FreeBSD.org>
5  * Copyright (c) 2008 Roman Divacky
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_compat.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/imgact.h>
37 #include <sys/imgact_elf.h>
38 #include <sys/ktr.h>
39 #include <sys/mutex.h>
40 #include <sys/priv.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/umtxvar.h>
44 
45 #ifdef COMPAT_LINUX32
46 #include <machine/../linux32/linux.h>
47 #include <machine/../linux32/linux32_proto.h>
48 #else
49 #include <machine/../linux/linux.h>
50 #include <machine/../linux/linux_proto.h>
51 #endif
52 #include <compat/linux/linux_emul.h>
53 #include <compat/linux/linux_futex.h>
54 #include <compat/linux/linux_misc.h>
55 #include <compat/linux/linux_timer.h>
56 #include <compat/linux/linux_util.h>
57 
58 #define	FUTEX_SHARED	0x8     /* shared futex */
59 #define	FUTEX_UNOWNED	0
60 
61 #define	GET_SHARED(a)	(a->flags & FUTEX_SHARED) ? AUTO_SHARE : THREAD_SHARE
62 
63 static int futex_atomic_op(struct thread *, int, uint32_t *, int *);
64 static int handle_futex_death(struct thread *td, struct linux_emuldata *,
65     uint32_t *, unsigned int, bool);
66 static int fetch_robust_entry(struct linux_robust_list **,
67     struct linux_robust_list **, unsigned int *);
68 
69 struct linux_futex_args {
70 	uint32_t	*uaddr;
71 	int32_t		op;
72 	uint32_t	flags;
73 	bool		clockrt;
74 	uint32_t	val;
75 	struct timespec	*ts;
76 	uint32_t	*uaddr2;
77 	uint32_t	val3;
78 	bool		val3_compare;
79 	struct timespec	kts;
80 };
81 
82 static inline int futex_key_get(const void *, int, int, struct umtx_key *);
83 static void linux_umtx_abs_timeout_init(struct umtx_abs_timeout *,
84 	    struct linux_futex_args *);
85 static int linux_futex(struct thread *, struct linux_futex_args *);
86 static int linux_futex_wait(struct thread *, struct linux_futex_args *);
87 static int linux_futex_wake(struct thread *, struct linux_futex_args *);
88 static int linux_futex_requeue(struct thread *, struct linux_futex_args *);
89 static int linux_futex_wakeop(struct thread *, struct linux_futex_args *);
90 static int linux_futex_lock_pi(struct thread *, bool, struct linux_futex_args *);
91 static int linux_futex_unlock_pi(struct thread *, bool,
92 	    struct linux_futex_args *);
93 static int futex_wake_pi(struct thread *, uint32_t *, bool);
94 
95 static int
96 futex_key_get(const void *uaddr, int type, int share, struct umtx_key *key)
97 {
98 
99 	/* Check that futex address is a 32bit aligned. */
100 	if (!__is_aligned(uaddr, sizeof(uint32_t)))
101 		return (EINVAL);
102 	return (umtx_key_get(uaddr, type, share, key));
103 }
104 
105 int
106 futex_wake(struct thread *td, uint32_t *uaddr, int val, bool shared)
107 {
108 	struct linux_futex_args args;
109 
110 	bzero(&args, sizeof(args));
111 	args.op = LINUX_FUTEX_WAKE;
112 	args.uaddr = uaddr;
113 	args.flags = shared == true ? FUTEX_SHARED : 0;
114 	args.val = val;
115 	args.val3 = FUTEX_BITSET_MATCH_ANY;
116 
117 	return (linux_futex_wake(td, &args));
118 }
119 
120 static int
121 futex_wake_pi(struct thread *td, uint32_t *uaddr, bool shared)
122 {
123 	struct linux_futex_args args;
124 
125 	bzero(&args, sizeof(args));
126 	args.op = LINUX_FUTEX_UNLOCK_PI;
127 	args.uaddr = uaddr;
128 	args.flags = shared == true ? FUTEX_SHARED : 0;
129 
130 	return (linux_futex_unlock_pi(td, true, &args));
131 }
132 
133 static int
134 futex_atomic_op(struct thread *td, int encoded_op, uint32_t *uaddr,
135     int *res)
136 {
137 	int op = (encoded_op >> 28) & 7;
138 	int cmp = (encoded_op >> 24) & 15;
139 	int oparg = (encoded_op << 8) >> 20;
140 	int cmparg = (encoded_op << 20) >> 20;
141 	int oldval = 0, ret;
142 
143 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28))
144 		oparg = 1 << oparg;
145 
146 	switch (op) {
147 	case FUTEX_OP_SET:
148 		ret = futex_xchgl(oparg, uaddr, &oldval);
149 		break;
150 	case FUTEX_OP_ADD:
151 		ret = futex_addl(oparg, uaddr, &oldval);
152 		break;
153 	case FUTEX_OP_OR:
154 		ret = futex_orl(oparg, uaddr, &oldval);
155 		break;
156 	case FUTEX_OP_ANDN:
157 		ret = futex_andl(~oparg, uaddr, &oldval);
158 		break;
159 	case FUTEX_OP_XOR:
160 		ret = futex_xorl(oparg, uaddr, &oldval);
161 		break;
162 	default:
163 		ret = ENOSYS;
164 		break;
165 	}
166 
167 	if (ret != 0)
168 		return (ret);
169 
170 	switch (cmp) {
171 	case FUTEX_OP_CMP_EQ:
172 		*res = (oldval == cmparg);
173 		break;
174 	case FUTEX_OP_CMP_NE:
175 		*res = (oldval != cmparg);
176 		break;
177 	case FUTEX_OP_CMP_LT:
178 		*res = (oldval < cmparg);
179 		break;
180 	case FUTEX_OP_CMP_GE:
181 		*res = (oldval >= cmparg);
182 		break;
183 	case FUTEX_OP_CMP_LE:
184 		*res = (oldval <= cmparg);
185 		break;
186 	case FUTEX_OP_CMP_GT:
187 		*res = (oldval > cmparg);
188 		break;
189 	default:
190 		ret = ENOSYS;
191 	}
192 
193 	return (ret);
194 }
195 
196 static int
197 linux_futex(struct thread *td, struct linux_futex_args *args)
198 {
199 	struct linux_pemuldata *pem;
200 	struct proc *p;
201 
202 	if (args->op & LINUX_FUTEX_PRIVATE_FLAG) {
203 		args->flags = 0;
204 		args->op &= ~LINUX_FUTEX_PRIVATE_FLAG;
205 	} else
206 		args->flags = FUTEX_SHARED;
207 
208 	args->clockrt = args->op & LINUX_FUTEX_CLOCK_REALTIME;
209 	args->op = args->op & ~LINUX_FUTEX_CLOCK_REALTIME;
210 
211 	if (args->clockrt &&
212 	    args->op != LINUX_FUTEX_WAIT_BITSET &&
213 	    args->op != LINUX_FUTEX_WAIT_REQUEUE_PI &&
214 	    args->op != LINUX_FUTEX_LOCK_PI2)
215 		return (ENOSYS);
216 
217 	switch (args->op) {
218 	case LINUX_FUTEX_WAIT:
219 		args->val3 = FUTEX_BITSET_MATCH_ANY;
220 		/* FALLTHROUGH */
221 
222 	case LINUX_FUTEX_WAIT_BITSET:
223 		LINUX_CTR3(sys_futex, "WAIT uaddr %p val 0x%x bitset 0x%x",
224 		    args->uaddr, args->val, args->val3);
225 
226 		return (linux_futex_wait(td, args));
227 
228 	case LINUX_FUTEX_WAKE:
229 		args->val3 = FUTEX_BITSET_MATCH_ANY;
230 		/* FALLTHROUGH */
231 
232 	case LINUX_FUTEX_WAKE_BITSET:
233 		LINUX_CTR3(sys_futex, "WAKE uaddr %p nrwake 0x%x bitset 0x%x",
234 		    args->uaddr, args->val, args->val3);
235 
236 		return (linux_futex_wake(td, args));
237 
238 	case LINUX_FUTEX_REQUEUE:
239 		/*
240 		 * Glibc does not use this operation since version 2.3.3,
241 		 * as it is racy and replaced by FUTEX_CMP_REQUEUE operation.
242 		 * Glibc versions prior to 2.3.3 fall back to FUTEX_WAKE when
243 		 * FUTEX_REQUEUE returned EINVAL.
244 		 */
245 		pem = pem_find(td->td_proc);
246 		if ((pem->flags & LINUX_XDEPR_REQUEUEOP) == 0) {
247 			linux_msg(td, "unsupported FUTEX_REQUEUE");
248 			pem->flags |= LINUX_XDEPR_REQUEUEOP;
249 		}
250 
251 		/*
252 		 * The above is true, however musl libc does make use of the
253 		 * futex requeue operation, allow operation for brands which
254 		 * set LINUX_BI_FUTEX_REQUEUE bit of Brandinfo flags.
255 		 */
256 		p = td->td_proc;
257 		Elf_Brandinfo *bi = p->p_elf_brandinfo;
258 		if (bi == NULL || ((bi->flags & LINUX_BI_FUTEX_REQUEUE)) == 0)
259 			return (EINVAL);
260 		args->val3_compare = false;
261 		/* FALLTHROUGH */
262 
263 	case LINUX_FUTEX_CMP_REQUEUE:
264 		LINUX_CTR5(sys_futex, "CMP_REQUEUE uaddr %p "
265 		    "nrwake 0x%x uval 0x%x uaddr2 %p nrequeue 0x%x",
266 		    args->uaddr, args->val, args->val3, args->uaddr2,
267 		    args->ts);
268 
269 		return (linux_futex_requeue(td, args));
270 
271 	case LINUX_FUTEX_WAKE_OP:
272 		LINUX_CTR5(sys_futex, "WAKE_OP "
273 		    "uaddr %p nrwake 0x%x uaddr2 %p op 0x%x nrwake2 0x%x",
274 		    args->uaddr, args->val, args->uaddr2, args->val3,
275 		    args->ts);
276 
277 		return (linux_futex_wakeop(td, args));
278 
279 	case LINUX_FUTEX_LOCK_PI:
280 		args->clockrt = true;
281 		/* FALLTHROUGH */
282 
283 	case LINUX_FUTEX_LOCK_PI2:
284 		LINUX_CTR2(sys_futex, "LOCKPI uaddr %p val 0x%x",
285 		    args->uaddr, args->val);
286 
287 		return (linux_futex_lock_pi(td, false, args));
288 
289 	case LINUX_FUTEX_UNLOCK_PI:
290 		LINUX_CTR1(sys_futex, "UNLOCKPI uaddr %p",
291 		    args->uaddr);
292 
293 		return (linux_futex_unlock_pi(td, false, args));
294 
295 	case LINUX_FUTEX_TRYLOCK_PI:
296 		LINUX_CTR1(sys_futex, "TRYLOCKPI uaddr %p",
297 		    args->uaddr);
298 
299 		return (linux_futex_lock_pi(td, true, args));
300 
301 	/*
302 	 * Current implementation of FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI
303 	 * can't be used anymore to implement conditional variables.
304 	 * A detailed explanation can be found here:
305 	 *
306 	 * https://sourceware.org/bugzilla/show_bug.cgi?id=13165
307 	 * and here http://austingroupbugs.net/view.php?id=609
308 	 *
309 	 * And since commit
310 	 * https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=ed19993b5b0d05d62cc883571519a67dae481a14
311 	 * glibc does not use them.
312 	 */
313 	case LINUX_FUTEX_WAIT_REQUEUE_PI:
314 		/* not yet implemented */
315 		pem = pem_find(td->td_proc);
316 		if ((pem->flags & LINUX_XUNSUP_FUTEXPIOP) == 0) {
317 			linux_msg(td, "unsupported FUTEX_WAIT_REQUEUE_PI");
318 			pem->flags |= LINUX_XUNSUP_FUTEXPIOP;
319 		}
320 		return (ENOSYS);
321 
322 	case LINUX_FUTEX_CMP_REQUEUE_PI:
323 		/* not yet implemented */
324 		pem = pem_find(td->td_proc);
325 		if ((pem->flags & LINUX_XUNSUP_FUTEXPIOP) == 0) {
326 			linux_msg(td, "unsupported FUTEX_CMP_REQUEUE_PI");
327 			pem->flags |= LINUX_XUNSUP_FUTEXPIOP;
328 		}
329 		return (ENOSYS);
330 
331 	default:
332 		linux_msg(td, "unsupported futex op %d", args->op);
333 		return (ENOSYS);
334 	}
335 }
336 
337 /*
338  * pi protocol:
339  * - 0 futex word value means unlocked.
340  * - TID futex word value means locked.
341  * Userspace uses atomic ops to lock/unlock these futexes without entering the
342  * kernel. If the lock-acquire fastpath fails, (transition from 0 to TID fails),
343  * then FUTEX_LOCK_PI is called.
344  * The kernel atomically set FUTEX_WAITERS bit in the futex word value, if no
345  * other waiters exists looks up the thread that owns the futex (it has put its
346  * own TID into the futex value) and made this thread the owner of the internal
347  * pi-aware lock object (mutex). Then the kernel tries to lock the internal lock
348  * object, on which it blocks. Once it returns, it has the mutex acquired, and it
349  * sets the futex value to its own TID and returns (futex value contains
350  * FUTEX_WAITERS|TID).
351  * The unlock fastpath would fail (because the FUTEX_WAITERS bit is set) and
352  * FUTEX_UNLOCK_PI will be called.
353  * If a futex is found to be held at exit time, the kernel sets the OWNER_DIED
354  * bit of the futex word and wakes up the next futex waiter (if any), WAITERS
355  * bit is preserved (if any).
356  * If OWNER_DIED bit is set the kernel sanity checks the futex word value against
357  * the internal futex state and if correct, acquire futex.
358  */
359 static int
360 linux_futex_lock_pi(struct thread *td, bool try, struct linux_futex_args *args)
361 {
362 	struct umtx_abs_timeout timo;
363 	struct linux_emuldata *em;
364 	struct umtx_pi *pi, *new_pi;
365 	struct thread *td1;
366 	struct umtx_q *uq;
367 	int error, rv;
368 	uint32_t owner, old_owner;
369 
370 	em = em_find(td);
371 	uq = td->td_umtxq;
372 	error = futex_key_get(args->uaddr, TYPE_PI_FUTEX, GET_SHARED(args),
373 	    &uq->uq_key);
374 	if (error != 0)
375 		return (error);
376 	if (args->ts != NULL)
377 		linux_umtx_abs_timeout_init(&timo, args);
378 
379 	umtxq_lock(&uq->uq_key);
380 	pi = umtx_pi_lookup(&uq->uq_key);
381 	if (pi == NULL) {
382 		new_pi = umtx_pi_alloc(M_NOWAIT);
383 		if (new_pi == NULL) {
384 			umtxq_unlock(&uq->uq_key);
385 			new_pi = umtx_pi_alloc(M_WAITOK);
386 			umtxq_lock(&uq->uq_key);
387 			pi = umtx_pi_lookup(&uq->uq_key);
388 			if (pi != NULL) {
389 				umtx_pi_free(new_pi);
390 				new_pi = NULL;
391 			}
392 		}
393 		if (new_pi != NULL) {
394 			new_pi->pi_key = uq->uq_key;
395 			umtx_pi_insert(new_pi);
396 			pi = new_pi;
397 		}
398 	}
399 	umtx_pi_ref(pi);
400 	umtxq_unlock(&uq->uq_key);
401 	for (;;) {
402 		/* Try uncontested case first. */
403 		rv = casueword32(args->uaddr, FUTEX_UNOWNED, &owner, em->em_tid);
404 		/* The acquire succeeded. */
405 		if (rv == 0) {
406 			error = 0;
407 			break;
408 		}
409 		if (rv == -1) {
410 			error = EFAULT;
411 			break;
412 		}
413 
414 		/*
415 		 * Nobody owns it, but the acquire failed. This can happen
416 		 * with ll/sc atomic.
417 		 */
418 		if (owner == FUTEX_UNOWNED) {
419 			error = thread_check_susp(td, true);
420 			if (error != 0)
421 				break;
422 			continue;
423 		}
424 
425 		/*
426 		 * Avoid overwriting a possible error from sleep due
427 		 * to the pending signal with suspension check result.
428 		 */
429 		if (error == 0) {
430 			error = thread_check_susp(td, true);
431 			if (error != 0)
432 				break;
433 		}
434 
435 		/* The futex word at *uaddr is already locked by the caller. */
436 		if ((owner & FUTEX_TID_MASK) == em->em_tid) {
437 			error = EDEADLK;
438 			break;
439 		}
440 
441 		/*
442 		 * Futex owner died, handle_futex_death() set the OWNER_DIED bit
443 		 * and clear tid. Try to acquire it.
444 		 */
445 		if ((owner & FUTEX_TID_MASK) == FUTEX_UNOWNED) {
446 			old_owner = owner;
447 			owner = owner & (FUTEX_WAITERS | FUTEX_OWNER_DIED);
448 			owner |= em->em_tid;
449 			rv = casueword32(args->uaddr, old_owner, &owner, owner);
450 			if (rv == -1) {
451 				error = EFAULT;
452 				break;
453 			}
454 			if (rv == 1) {
455 				if (error == 0) {
456 					error = thread_check_susp(td, true);
457 					if (error != 0)
458 						break;
459 				}
460 
461 				/*
462 				 * If this failed the lock could
463 				 * changed, restart.
464 				 */
465 				continue;
466 			}
467 
468 			umtxq_lock(&uq->uq_key);
469 			umtxq_busy(&uq->uq_key);
470 			error = umtx_pi_claim(pi, td);
471 			umtxq_unbusy(&uq->uq_key);
472 			umtxq_unlock(&uq->uq_key);
473 			if (error != 0) {
474 				/*
475 				 * Since we're going to return an
476 				 * error, restore the futex to its
477 				 * previous, unowned state to avoid
478 				 * compounding the problem.
479 				 */
480 				(void)casuword32(args->uaddr, owner, old_owner);
481 			}
482 			break;
483 		}
484 
485 		/*
486 		 * Inconsistent state: OWNER_DIED is set and tid is not 0.
487 		 * Linux does some checks of futex state, we return EINVAL,
488 		 * as the user space can take care of this.
489 		 */
490 		if ((owner & FUTEX_OWNER_DIED) != FUTEX_UNOWNED) {
491 			error = EINVAL;
492 			break;
493 		}
494 
495 		if (try != 0) {
496 			error = EBUSY;
497 			break;
498 		}
499 
500 		/*
501 		 * If we caught a signal, we have retried and now
502 		 * exit immediately.
503 		 */
504 		if (error != 0)
505 			break;
506 
507 		umtxq_lock(&uq->uq_key);
508 		umtxq_busy(&uq->uq_key);
509 		umtxq_unlock(&uq->uq_key);
510 
511 		/*
512 		 * Set the contested bit so that a release in user space knows
513 		 * to use the system call for unlock. If this fails either some
514 		 * one else has acquired the lock or it has been released.
515 		 */
516 		rv = casueword32(args->uaddr, owner, &owner,
517 		    owner | FUTEX_WAITERS);
518 		if (rv == -1) {
519 			umtxq_unbusy_unlocked(&uq->uq_key);
520 			error = EFAULT;
521 			break;
522 		}
523 		if (rv == 1) {
524 			umtxq_unbusy_unlocked(&uq->uq_key);
525 			error = thread_check_susp(td, true);
526 			if (error != 0)
527 				break;
528 
529 			/*
530 			 * The lock changed and we need to retry or we
531 			 * lost a race to the thread unlocking the umtx.
532 			 */
533 			continue;
534 		}
535 
536 		/*
537 		 * Substitute Linux thread id by native thread id to
538 		 * avoid refactoring code of umtxq_sleep_pi().
539 		 */
540 		td1 = linux_tdfind(td, owner & FUTEX_TID_MASK, -1);
541 		if (td1 != NULL) {
542 			owner = td1->td_tid;
543 			PROC_UNLOCK(td1->td_proc);
544 		} else {
545 			umtxq_unbusy_unlocked(&uq->uq_key);
546 			error = EINVAL;
547 			break;
548 		}
549 
550 		umtxq_lock(&uq->uq_key);
551 
552 		/* We set the contested bit, sleep. */
553 		error = umtxq_sleep_pi(uq, pi, owner, "futexp",
554 		    args->ts == NULL ? NULL : &timo,
555 		    (args->flags & FUTEX_SHARED) != 0);
556 		if (error != 0)
557 			continue;
558 
559 		error = thread_check_susp(td, false);
560 		if (error != 0)
561 			break;
562 	}
563 
564 	umtxq_lock(&uq->uq_key);
565 	umtx_pi_unref(pi);
566 	umtxq_unlock(&uq->uq_key);
567 	umtx_key_release(&uq->uq_key);
568 	return (error);
569 }
570 
571 static int
572 linux_futex_unlock_pi(struct thread *td, bool rb, struct linux_futex_args *args)
573 {
574 	struct linux_emuldata *em;
575 	struct umtx_key key;
576 	uint32_t old, owner, new_owner;
577 	int count, error;
578 
579 	em = em_find(td);
580 
581 	/*
582 	 * Make sure we own this mtx.
583 	 */
584 	error = fueword32(args->uaddr, &owner);
585 	if (error == -1)
586 		return (EFAULT);
587 	if (!rb && (owner & FUTEX_TID_MASK) != em->em_tid)
588 		return (EPERM);
589 
590 	error = futex_key_get(args->uaddr, TYPE_PI_FUTEX, GET_SHARED(args), &key);
591 	if (error != 0)
592 		return (error);
593 	umtxq_lock(&key);
594 	umtxq_busy(&key);
595 	error = umtx_pi_drop(td, &key, rb, &count);
596 	if (error != 0 || rb) {
597 		umtxq_unbusy(&key);
598 		umtxq_unlock(&key);
599 		umtx_key_release(&key);
600 		return (error);
601 	}
602 	umtxq_unlock(&key);
603 
604 	/*
605 	 * When unlocking the futex, it must be marked as unowned if
606 	 * there is zero or one thread only waiting for it.
607 	 * Otherwise, it must be marked as contested.
608 	 */
609 	if (count > 1)
610 		new_owner = FUTEX_WAITERS;
611 	else
612 		new_owner = FUTEX_UNOWNED;
613 
614 again:
615 	error = casueword32(args->uaddr, owner, &old, new_owner);
616 	if (error == 1) {
617 		error = thread_check_susp(td, false);
618 		if (error == 0)
619 			goto again;
620 	}
621 	umtxq_unbusy_unlocked(&key);
622 	umtx_key_release(&key);
623 	if (error == -1)
624 		return (EFAULT);
625 	if (error == 0 && old != owner)
626 		return (EINVAL);
627 	return (error);
628 }
629 
630 static int
631 linux_futex_wakeop(struct thread *td, struct linux_futex_args *args)
632 {
633 	struct umtx_key key, key2;
634 	int nrwake, op_ret, ret;
635 	int error, count;
636 
637 	if (args->uaddr == args->uaddr2)
638 		return (EINVAL);
639 
640 	error = futex_key_get(args->uaddr, TYPE_FUTEX, GET_SHARED(args), &key);
641 	if (error != 0)
642 		return (error);
643 	error = futex_key_get(args->uaddr2, TYPE_FUTEX, GET_SHARED(args), &key2);
644 	if (error != 0) {
645 		umtx_key_release(&key);
646 		return (error);
647 	}
648 	umtxq_lock(&key);
649 	umtxq_busy(&key);
650 	umtxq_unlock(&key);
651 	error = futex_atomic_op(td, args->val3, args->uaddr2, &op_ret);
652 	umtxq_lock(&key);
653 	umtxq_unbusy(&key);
654 	if (error != 0)
655 		goto out;
656 	ret = umtxq_signal_mask(&key, args->val, args->val3);
657 	if (op_ret > 0) {
658 		nrwake = (int)(unsigned long)args->ts;
659 		umtxq_lock(&key2);
660 		count = umtxq_count(&key2);
661 		if (count > 0)
662 			ret += umtxq_signal_mask(&key2, nrwake, args->val3);
663 		else
664 			ret += umtxq_signal_mask(&key, nrwake, args->val3);
665 		umtxq_unlock(&key2);
666 	}
667 	td->td_retval[0] = ret;
668 out:
669 	umtxq_unlock(&key);
670 	umtx_key_release(&key2);
671 	umtx_key_release(&key);
672 	return (error);
673 }
674 
675 static int
676 linux_futex_requeue(struct thread *td, struct linux_futex_args *args)
677 {
678 	int nrwake, nrrequeue;
679 	struct umtx_key key, key2;
680 	int error;
681 	uint32_t uval;
682 
683 	/*
684 	 * Linux allows this, we would not, it is an incorrect
685 	 * usage of declared ABI, so return EINVAL.
686 	 */
687 	if (args->uaddr == args->uaddr2)
688 		return (EINVAL);
689 
690 	nrrequeue = (int)(unsigned long)args->ts;
691 	nrwake = args->val;
692 	/*
693 	 * Sanity check to prevent signed integer overflow,
694 	 * see Linux CVE-2018-6927
695 	 */
696 	if (nrwake < 0 || nrrequeue < 0)
697 		return (EINVAL);
698 
699 	error = futex_key_get(args->uaddr, TYPE_FUTEX, GET_SHARED(args), &key);
700 	if (error != 0)
701 		return (error);
702 	error = futex_key_get(args->uaddr2, TYPE_FUTEX, GET_SHARED(args), &key2);
703 	if (error != 0) {
704 		umtx_key_release(&key);
705 		return (error);
706 	}
707 	umtxq_lock(&key);
708 	umtxq_busy(&key);
709 	umtxq_unlock(&key);
710 	error = fueword32(args->uaddr, &uval);
711 	if (error != 0)
712 		error = EFAULT;
713 	else if (args->val3_compare == true && uval != args->val3)
714 		error = EWOULDBLOCK;
715 	umtxq_lock(&key);
716 	umtxq_unbusy(&key);
717 	if (error == 0) {
718 		umtxq_lock(&key2);
719 		td->td_retval[0] = umtxq_requeue(&key, nrwake, &key2, nrrequeue);
720 		umtxq_unlock(&key2);
721 	}
722 	umtxq_unlock(&key);
723 	umtx_key_release(&key2);
724 	umtx_key_release(&key);
725 	return (error);
726 }
727 
728 static int
729 linux_futex_wake(struct thread *td, struct linux_futex_args *args)
730 {
731 	struct umtx_key key;
732 	int error;
733 
734 	if (args->val3 == 0)
735 		return (EINVAL);
736 
737 	error = futex_key_get(args->uaddr, TYPE_FUTEX, GET_SHARED(args), &key);
738 	if (error != 0)
739 		return (error);
740 	umtxq_lock(&key);
741 	td->td_retval[0] = umtxq_signal_mask(&key, args->val, args->val3);
742 	umtxq_unlock(&key);
743 	umtx_key_release(&key);
744 	return (0);
745 }
746 
747 static int
748 linux_futex_wait(struct thread *td, struct linux_futex_args *args)
749 {
750 	struct umtx_abs_timeout timo;
751 	struct umtx_q *uq;
752 	uint32_t uval;
753 	int error;
754 
755 	if (args->val3 == 0)
756 		error = EINVAL;
757 
758 	uq = td->td_umtxq;
759 	error = futex_key_get(args->uaddr, TYPE_FUTEX, GET_SHARED(args),
760 	    &uq->uq_key);
761 	if (error != 0)
762 		return (error);
763 	if (args->ts != NULL)
764 		linux_umtx_abs_timeout_init(&timo, args);
765 	umtxq_lock(&uq->uq_key);
766 	umtxq_busy(&uq->uq_key);
767 	uq->uq_bitset = args->val3;
768 	umtxq_insert(uq);
769 	umtxq_unlock(&uq->uq_key);
770 	error = fueword32(args->uaddr, &uval);
771 	if (error != 0)
772 		error = EFAULT;
773 	else if (uval != args->val)
774 		error = EWOULDBLOCK;
775 	umtxq_lock(&uq->uq_key);
776 	umtxq_unbusy(&uq->uq_key);
777 	if (error == 0) {
778 		error = umtxq_sleep(uq, "futex",
779 		    args->ts == NULL ? NULL : &timo);
780 		if ((uq->uq_flags & UQF_UMTXQ) == 0)
781 			error = 0;
782 		else
783 			umtxq_remove(uq);
784 	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
785 		umtxq_remove(uq);
786 	}
787 	umtxq_unlock(&uq->uq_key);
788 	umtx_key_release(&uq->uq_key);
789 	return (error);
790 }
791 
792 static void
793 linux_umtx_abs_timeout_init(struct umtx_abs_timeout *timo,
794     struct linux_futex_args *args)
795 {
796 	int clockid, absolute;
797 
798 	/*
799 	 * The FUTEX_CLOCK_REALTIME option bit can be employed only with the
800 	 * FUTEX_WAIT_BITSET, FUTEX_WAIT_REQUEUE_PI, FUTEX_LOCK_PI2.
801 	 * For FUTEX_WAIT, timeout is interpreted as a relative value, for other
802 	 * futex operations timeout is interpreted as an absolute value.
803 	 * If FUTEX_CLOCK_REALTIME option bit is set, the Linux kernel measures
804 	 * the timeout against the CLOCK_REALTIME clock, otherwise the kernel
805 	 * measures the timeout against the CLOCK_MONOTONIC clock.
806 	 */
807 	clockid = args->clockrt ? CLOCK_REALTIME : CLOCK_MONOTONIC;
808 	absolute = args->op == LINUX_FUTEX_WAIT ? false : true;
809 	umtx_abs_timeout_init(timo, clockid, absolute, args->ts);
810 }
811 
812 int
813 linux_sys_futex(struct thread *td, struct linux_sys_futex_args *args)
814 {
815 	struct linux_futex_args fargs = {
816 		.uaddr = args->uaddr,
817 		.op = args->op,
818 		.val = args->val,
819 		.ts = NULL,
820 		.uaddr2 = args->uaddr2,
821 		.val3 = args->val3,
822 		.val3_compare = true,
823 	};
824 	int error;
825 
826 	switch (args->op & LINUX_FUTEX_CMD_MASK) {
827 	case LINUX_FUTEX_WAIT:
828 	case LINUX_FUTEX_WAIT_BITSET:
829 	case LINUX_FUTEX_LOCK_PI:
830 	case LINUX_FUTEX_LOCK_PI2:
831 		if (args->timeout != NULL) {
832 			error = linux_get_timespec(&fargs.kts, args->timeout);
833 			if (error != 0)
834 				return (error);
835 			fargs.ts = &fargs.kts;
836 		}
837 		break;
838 	default:
839 		fargs.ts = PTRIN(args->timeout);
840 	}
841 	return (linux_futex(td, &fargs));
842 }
843 
844 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
845 int
846 linux_sys_futex_time64(struct thread *td,
847     struct linux_sys_futex_time64_args *args)
848 {
849 	struct linux_futex_args fargs = {
850 		.uaddr = args->uaddr,
851 		.op = args->op,
852 		.val = args->val,
853 		.ts = NULL,
854 		.uaddr2 = args->uaddr2,
855 		.val3 = args->val3,
856 		.val3_compare = true,
857 	};
858 	int error;
859 
860 	switch (args->op & LINUX_FUTEX_CMD_MASK) {
861 	case LINUX_FUTEX_WAIT:
862 	case LINUX_FUTEX_WAIT_BITSET:
863 	case LINUX_FUTEX_LOCK_PI:
864 	case LINUX_FUTEX_LOCK_PI2:
865 		if (args->timeout != NULL) {
866 			error = linux_get_timespec64(&fargs.kts, args->timeout);
867 			if (error != 0)
868 				return (error);
869 			fargs.ts = &fargs.kts;
870 		}
871 		break;
872 	default:
873 		fargs.ts = PTRIN(args->timeout);
874 	}
875 	return (linux_futex(td, &fargs));
876 }
877 #endif
878 
879 int
880 linux_set_robust_list(struct thread *td, struct linux_set_robust_list_args *args)
881 {
882 	struct linux_emuldata *em;
883 
884 	if (args->len != sizeof(struct linux_robust_list_head))
885 		return (EINVAL);
886 
887 	em = em_find(td);
888 	em->robust_futexes = args->head;
889 
890 	return (0);
891 }
892 
893 int
894 linux_get_robust_list(struct thread *td, struct linux_get_robust_list_args *args)
895 {
896 	struct linux_emuldata *em;
897 	struct linux_robust_list_head *head;
898 	l_size_t len;
899 	struct thread *td2;
900 	int error;
901 
902 	if (!args->pid) {
903 		em = em_find(td);
904 		KASSERT(em != NULL, ("get_robust_list: emuldata notfound.\n"));
905 		head = em->robust_futexes;
906 	} else {
907 		td2 = linux_tdfind(td, args->pid, -1);
908 		if (td2 == NULL)
909 			return (ESRCH);
910 		if (SV_PROC_ABI(td2->td_proc) != SV_ABI_LINUX) {
911 			PROC_UNLOCK(td2->td_proc);
912 			return (EPERM);
913 		}
914 
915 		em = em_find(td2);
916 		KASSERT(em != NULL, ("get_robust_list: emuldata notfound.\n"));
917 		/* XXX: ptrace? */
918 		if (priv_check(td, PRIV_CRED_SETUID) ||
919 		    priv_check(td, PRIV_CRED_SETEUID) ||
920 		    p_candebug(td, td2->td_proc)) {
921 			PROC_UNLOCK(td2->td_proc);
922 			return (EPERM);
923 		}
924 		head = em->robust_futexes;
925 
926 		PROC_UNLOCK(td2->td_proc);
927 	}
928 
929 	len = sizeof(struct linux_robust_list_head);
930 	error = copyout(&len, args->len, sizeof(l_size_t));
931 	if (error != 0)
932 		return (EFAULT);
933 
934 	return (copyout(&head, args->head, sizeof(l_uintptr_t)));
935 }
936 
937 static int
938 handle_futex_death(struct thread *td, struct linux_emuldata *em, uint32_t *uaddr,
939     unsigned int pi, bool pending_op)
940 {
941 	uint32_t uval, nval, mval;
942 	int error;
943 
944 retry:
945 	error = fueword32(uaddr, &uval);
946 	if (error != 0)
947 		return (EFAULT);
948 
949 	/*
950 	 * Special case for regular (non PI) futexes. The unlock path in
951 	 * user space has two race scenarios:
952 	 *
953 	 * 1. The unlock path releases the user space futex value and
954 	 *    before it can execute the futex() syscall to wake up
955 	 *    waiters it is killed.
956 	 *
957 	 * 2. A woken up waiter is killed before it can acquire the
958 	 *    futex in user space.
959 	 *
960 	 * In both cases the TID validation below prevents a wakeup of
961 	 * potential waiters which can cause these waiters to block
962 	 * forever.
963 	 *
964 	 * In both cases it is safe to attempt waking up a potential
965 	 * waiter without touching the user space futex value and trying
966 	 * to set the OWNER_DIED bit.
967 	 */
968 	if (pending_op && !pi && !uval) {
969 		(void)futex_wake(td, uaddr, 1, true);
970 		return (0);
971 	}
972 
973 	if ((uval & FUTEX_TID_MASK) == em->em_tid) {
974 		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
975 		error = casueword32(uaddr, uval, &nval, mval);
976 		if (error == -1)
977 			return (EFAULT);
978 		if (error == 1) {
979 			error = thread_check_susp(td, false);
980 			if (error != 0)
981 				return (error);
982 			goto retry;
983 		}
984 
985 		if (!pi && (uval & FUTEX_WAITERS)) {
986 			error = futex_wake(td, uaddr, 1, true);
987 			if (error != 0)
988 				return (error);
989 		} else if (pi && (uval & FUTEX_WAITERS)) {
990 			error = futex_wake_pi(td, uaddr, true);
991 			if (error != 0)
992 				return (error);
993 		}
994 	}
995 
996 	return (0);
997 }
998 
999 static int
1000 fetch_robust_entry(struct linux_robust_list **entry,
1001     struct linux_robust_list **head, unsigned int *pi)
1002 {
1003 	l_ulong uentry;
1004 	int error;
1005 
1006 	error = copyin((const void *)head, &uentry, sizeof(uentry));
1007 	if (error != 0)
1008 		return (EFAULT);
1009 
1010 	*entry = (void *)(uentry & ~1UL);
1011 	*pi = uentry & 1;
1012 
1013 	return (0);
1014 }
1015 
1016 #define	LINUX_HANDLE_DEATH_PENDING	true
1017 #define	LINUX_HANDLE_DEATH_LIST		false
1018 
1019 /* This walks the list of robust futexes releasing them. */
1020 void
1021 release_futexes(struct thread *td, struct linux_emuldata *em)
1022 {
1023 	struct linux_robust_list_head *head;
1024 	struct linux_robust_list *entry, *next_entry, *pending;
1025 	unsigned int limit = 2048, pi, next_pi, pip;
1026 	uint32_t *uaddr;
1027 	l_long futex_offset;
1028 	int error;
1029 
1030 	head = em->robust_futexes;
1031 	if (head == NULL)
1032 		return;
1033 
1034 	if (fetch_robust_entry(&entry, PTRIN(&head->list.next), &pi))
1035 		return;
1036 
1037 	error = copyin(&head->futex_offset, &futex_offset,
1038 	    sizeof(futex_offset));
1039 	if (error != 0)
1040 		return;
1041 
1042 	if (fetch_robust_entry(&pending, PTRIN(&head->pending_list), &pip))
1043 		return;
1044 
1045 	while (entry != &head->list) {
1046 		error = fetch_robust_entry(&next_entry, PTRIN(&entry->next),
1047 		    &next_pi);
1048 
1049 		/*
1050 		 * A pending lock might already be on the list, so
1051 		 * don't process it twice.
1052 		 */
1053 		if (entry != pending) {
1054 			uaddr = (uint32_t *)((caddr_t)entry + futex_offset);
1055 			if (handle_futex_death(td, em, uaddr, pi,
1056 			    LINUX_HANDLE_DEATH_LIST))
1057 				return;
1058 		}
1059 		if (error != 0)
1060 			return;
1061 
1062 		entry = next_entry;
1063 		pi = next_pi;
1064 
1065 		if (!--limit)
1066 			break;
1067 
1068 		sched_relinquish(curthread);
1069 	}
1070 
1071 	if (pending) {
1072 		uaddr = (uint32_t *)((caddr_t)pending + futex_offset);
1073 		(void)handle_futex_death(td, em, uaddr, pip,
1074 		    LINUX_HANDLE_DEATH_PENDING);
1075 	}
1076 }
1077