xref: /freebsd/sys/compat/linux/linux_event.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * Copyright (c) 2007 Roman Divacky
3  * Copyright (c) 2014 Dmitry Chagin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_compat.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/imgact.h>
36 #include <sys/kernel.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/callout.h>
41 #include <sys/capsicum.h>
42 #include <sys/types.h>
43 #include <sys/user.h>
44 #include <sys/file.h>
45 #include <sys/filedesc.h>
46 #include <sys/filio.h>
47 #include <sys/errno.h>
48 #include <sys/event.h>
49 #include <sys/poll.h>
50 #include <sys/proc.h>
51 #include <sys/selinfo.h>
52 #include <sys/sx.h>
53 #include <sys/syscallsubr.h>
54 #include <sys/timespec.h>
55 
56 #ifdef COMPAT_LINUX32
57 #include <machine/../linux32/linux.h>
58 #include <machine/../linux32/linux32_proto.h>
59 #else
60 #include <machine/../linux/linux.h>
61 #include <machine/../linux/linux_proto.h>
62 #endif
63 
64 #include <compat/linux/linux_emul.h>
65 #include <compat/linux/linux_event.h>
66 #include <compat/linux/linux_file.h>
67 #include <compat/linux/linux_timer.h>
68 #include <compat/linux/linux_util.h>
69 
70 /*
71  * epoll defines 'struct epoll_event' with the field 'data' as 64 bits
72  * on all architectures. But on 32 bit architectures BSD 'struct kevent' only
73  * has 32 bit opaque pointer as 'udata' field. So we can't pass epoll supplied
74  * data verbatuim. Therefore we allocate 64-bit memory block to pass
75  * user supplied data for every file descriptor.
76  */
77 
78 typedef uint64_t	epoll_udata_t;
79 
80 struct epoll_emuldata {
81 	uint32_t	fdc;		/* epoll udata max index */
82 	epoll_udata_t	udata[1];	/* epoll user data vector */
83 };
84 
85 #define	EPOLL_DEF_SZ		16
86 #define	EPOLL_SIZE(fdn)			\
87 	(sizeof(struct epoll_emuldata)+(fdn) * sizeof(epoll_udata_t))
88 
89 struct epoll_event {
90 	uint32_t	events;
91 	epoll_udata_t	data;
92 }
93 #if defined(__amd64__)
94 __attribute__((packed))
95 #endif
96 ;
97 
98 #define	LINUX_MAX_EVENTS	(INT_MAX / sizeof(struct epoll_event))
99 
100 static void	epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata);
101 static int	epoll_to_kevent(struct thread *td, struct file *epfp,
102 		    int fd, struct epoll_event *l_event, int *kev_flags,
103 		    struct kevent *kevent, int *nkevents);
104 static void	kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event);
105 static int	epoll_kev_copyout(void *arg, struct kevent *kevp, int count);
106 static int	epoll_kev_copyin(void *arg, struct kevent *kevp, int count);
107 static int	epoll_delete_event(struct thread *td, struct file *epfp,
108 		    int fd, int filter);
109 static int	epoll_delete_all_events(struct thread *td, struct file *epfp,
110 		    int fd);
111 
112 struct epoll_copyin_args {
113 	struct kevent	*changelist;
114 };
115 
116 struct epoll_copyout_args {
117 	struct epoll_event	*leventlist;
118 	struct proc		*p;
119 	uint32_t		count;
120 	int			error;
121 };
122 
123 /* eventfd */
124 typedef uint64_t	eventfd_t;
125 
126 static fo_rdwr_t	eventfd_read;
127 static fo_rdwr_t	eventfd_write;
128 static fo_ioctl_t	eventfd_ioctl;
129 static fo_poll_t	eventfd_poll;
130 static fo_kqfilter_t	eventfd_kqfilter;
131 static fo_stat_t	eventfd_stat;
132 static fo_close_t	eventfd_close;
133 static fo_fill_kinfo_t	eventfd_fill_kinfo;
134 
135 static struct fileops eventfdops = {
136 	.fo_read = eventfd_read,
137 	.fo_write = eventfd_write,
138 	.fo_truncate = invfo_truncate,
139 	.fo_ioctl = eventfd_ioctl,
140 	.fo_poll = eventfd_poll,
141 	.fo_kqfilter = eventfd_kqfilter,
142 	.fo_stat = eventfd_stat,
143 	.fo_close = eventfd_close,
144 	.fo_chmod = invfo_chmod,
145 	.fo_chown = invfo_chown,
146 	.fo_sendfile = invfo_sendfile,
147 	.fo_fill_kinfo = eventfd_fill_kinfo,
148 	.fo_flags = DFLAG_PASSABLE
149 };
150 
151 static void	filt_eventfddetach(struct knote *kn);
152 static int	filt_eventfdread(struct knote *kn, long hint);
153 static int	filt_eventfdwrite(struct knote *kn, long hint);
154 
155 static struct filterops eventfd_rfiltops = {
156 	.f_isfd = 1,
157 	.f_detach = filt_eventfddetach,
158 	.f_event = filt_eventfdread
159 };
160 static struct filterops eventfd_wfiltops = {
161 	.f_isfd = 1,
162 	.f_detach = filt_eventfddetach,
163 	.f_event = filt_eventfdwrite
164 };
165 
166 /* timerfd */
167 typedef uint64_t	timerfd_t;
168 
169 static fo_rdwr_t	timerfd_read;
170 static fo_poll_t	timerfd_poll;
171 static fo_kqfilter_t	timerfd_kqfilter;
172 static fo_stat_t	timerfd_stat;
173 static fo_close_t	timerfd_close;
174 static fo_fill_kinfo_t	timerfd_fill_kinfo;
175 
176 static struct fileops timerfdops = {
177 	.fo_read = timerfd_read,
178 	.fo_write = invfo_rdwr,
179 	.fo_truncate = invfo_truncate,
180 	.fo_ioctl = eventfd_ioctl,
181 	.fo_poll = timerfd_poll,
182 	.fo_kqfilter = timerfd_kqfilter,
183 	.fo_stat = timerfd_stat,
184 	.fo_close = timerfd_close,
185 	.fo_chmod = invfo_chmod,
186 	.fo_chown = invfo_chown,
187 	.fo_sendfile = invfo_sendfile,
188 	.fo_fill_kinfo = timerfd_fill_kinfo,
189 	.fo_flags = DFLAG_PASSABLE
190 };
191 
192 static void	filt_timerfddetach(struct knote *kn);
193 static int	filt_timerfdread(struct knote *kn, long hint);
194 
195 static struct filterops timerfd_rfiltops = {
196 	.f_isfd = 1,
197 	.f_detach = filt_timerfddetach,
198 	.f_event = filt_timerfdread
199 };
200 
201 struct eventfd {
202 	eventfd_t	efd_count;
203 	uint32_t	efd_flags;
204 	struct selinfo	efd_sel;
205 	struct mtx	efd_lock;
206 };
207 
208 struct timerfd {
209 	clockid_t	tfd_clockid;
210 	struct itimerspec tfd_time;
211 	struct callout	tfd_callout;
212 	timerfd_t	tfd_count;
213 	bool		tfd_canceled;
214 	struct selinfo	tfd_sel;
215 	struct mtx	tfd_lock;
216 };
217 
218 static int	eventfd_create(struct thread *td, uint32_t initval, int flags);
219 static void	linux_timerfd_expire(void *);
220 static void	linux_timerfd_curval(struct timerfd *, struct itimerspec *);
221 
222 
223 static void
224 epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata)
225 {
226 	struct linux_pemuldata *pem;
227 	struct epoll_emuldata *emd;
228 	struct proc *p;
229 
230 	p = td->td_proc;
231 
232 	pem = pem_find(p);
233 	KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
234 
235 	LINUX_PEM_XLOCK(pem);
236 	if (pem->epoll == NULL) {
237 		emd = malloc(EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
238 		emd->fdc = fd;
239 		pem->epoll = emd;
240 	} else {
241 		emd = pem->epoll;
242 		if (fd > emd->fdc) {
243 			emd = realloc(emd, EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
244 			emd->fdc = fd;
245 			pem->epoll = emd;
246 		}
247 	}
248 	emd->udata[fd] = udata;
249 	LINUX_PEM_XUNLOCK(pem);
250 }
251 
252 static int
253 epoll_create_common(struct thread *td, int flags)
254 {
255 	int error;
256 
257 	error = kern_kqueue(td, flags, NULL);
258 	if (error != 0)
259 		return (error);
260 
261 	epoll_fd_install(td, EPOLL_DEF_SZ, 0);
262 
263 	return (0);
264 }
265 
266 int
267 linux_epoll_create(struct thread *td, struct linux_epoll_create_args *args)
268 {
269 
270 	/*
271 	 * args->size is unused. Linux just tests it
272 	 * and then forgets it as well.
273 	 */
274 	if (args->size <= 0)
275 		return (EINVAL);
276 
277 	return (epoll_create_common(td, 0));
278 }
279 
280 int
281 linux_epoll_create1(struct thread *td, struct linux_epoll_create1_args *args)
282 {
283 	int flags;
284 
285 	if ((args->flags & ~(LINUX_O_CLOEXEC)) != 0)
286 		return (EINVAL);
287 
288 	flags = 0;
289 	if ((args->flags & LINUX_O_CLOEXEC) != 0)
290 		flags |= O_CLOEXEC;
291 
292 	return (epoll_create_common(td, flags));
293 }
294 
295 /* Structure converting function from epoll to kevent. */
296 static int
297 epoll_to_kevent(struct thread *td, struct file *epfp,
298     int fd, struct epoll_event *l_event, int *kev_flags,
299     struct kevent *kevent, int *nkevents)
300 {
301 	uint32_t levents = l_event->events;
302 	struct linux_pemuldata *pem;
303 	struct proc *p;
304 
305 	/* flags related to how event is registered */
306 	if ((levents & LINUX_EPOLLONESHOT) != 0)
307 		*kev_flags |= EV_ONESHOT;
308 	if ((levents & LINUX_EPOLLET) != 0)
309 		*kev_flags |= EV_CLEAR;
310 	if ((levents & LINUX_EPOLLERR) != 0)
311 		*kev_flags |= EV_ERROR;
312 	if ((levents & LINUX_EPOLLRDHUP) != 0)
313 		*kev_flags |= EV_EOF;
314 
315 	/* flags related to what event is registered */
316 	if ((levents & LINUX_EPOLL_EVRD) != 0) {
317 		EV_SET(kevent++, fd, EVFILT_READ, *kev_flags, 0, 0, 0);
318 		++(*nkevents);
319 	}
320 	if ((levents & LINUX_EPOLL_EVWR) != 0) {
321 		EV_SET(kevent++, fd, EVFILT_WRITE, *kev_flags, 0, 0, 0);
322 		++(*nkevents);
323 	}
324 
325 	if ((levents & ~(LINUX_EPOLL_EVSUP)) != 0) {
326 		p = td->td_proc;
327 
328 		pem = pem_find(p);
329 		KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
330 		KASSERT(pem->epoll != NULL, ("epoll proc epolldata not found.\n"));
331 
332 		LINUX_PEM_XLOCK(pem);
333 		if ((pem->flags & LINUX_XUNSUP_EPOLL) == 0) {
334 			pem->flags |= LINUX_XUNSUP_EPOLL;
335 			LINUX_PEM_XUNLOCK(pem);
336 			linux_msg(td, "epoll_ctl unsupported flags: 0x%x\n",
337 			    levents);
338 		} else
339 			LINUX_PEM_XUNLOCK(pem);
340 		return (EINVAL);
341 	}
342 
343 	return (0);
344 }
345 
346 /*
347  * Structure converting function from kevent to epoll. In a case
348  * this is called on error in registration we store the error in
349  * event->data and pick it up later in linux_epoll_ctl().
350  */
351 static void
352 kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event)
353 {
354 
355 	if ((kevent->flags & EV_ERROR) != 0) {
356 		l_event->events = LINUX_EPOLLERR;
357 		return;
358 	}
359 
360 	/* XXX EPOLLPRI, EPOLLHUP */
361 	switch (kevent->filter) {
362 	case EVFILT_READ:
363 		l_event->events = LINUX_EPOLLIN;
364 		if ((kevent->flags & EV_EOF) != 0)
365 			l_event->events |= LINUX_EPOLLRDHUP;
366 	break;
367 	case EVFILT_WRITE:
368 		l_event->events = LINUX_EPOLLOUT;
369 	break;
370 	}
371 }
372 
373 /*
374  * Copyout callback used by kevent. This converts kevent
375  * events to epoll events and copies them back to the
376  * userspace. This is also called on error on registering
377  * of the filter.
378  */
379 static int
380 epoll_kev_copyout(void *arg, struct kevent *kevp, int count)
381 {
382 	struct epoll_copyout_args *args;
383 	struct linux_pemuldata *pem;
384 	struct epoll_emuldata *emd;
385 	struct epoll_event *eep;
386 	int error, fd, i;
387 
388 	args = (struct epoll_copyout_args*) arg;
389 	eep = malloc(sizeof(*eep) * count, M_EPOLL, M_WAITOK | M_ZERO);
390 
391 	pem = pem_find(args->p);
392 	KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
393 	LINUX_PEM_SLOCK(pem);
394 	emd = pem->epoll;
395 	KASSERT(emd != NULL, ("epoll proc epolldata not found.\n"));
396 
397 	for (i = 0; i < count; i++) {
398 		kevent_to_epoll(&kevp[i], &eep[i]);
399 
400 		fd = kevp[i].ident;
401 		KASSERT(fd <= emd->fdc, ("epoll user data vector"
402 						    " is too small.\n"));
403 		eep[i].data = emd->udata[fd];
404 	}
405 	LINUX_PEM_SUNLOCK(pem);
406 
407 	error = copyout(eep, args->leventlist, count * sizeof(*eep));
408 	if (error == 0) {
409 		args->leventlist += count;
410 		args->count += count;
411 	} else if (args->error == 0)
412 		args->error = error;
413 
414 	free(eep, M_EPOLL);
415 	return (error);
416 }
417 
418 /*
419  * Copyin callback used by kevent. This copies already
420  * converted filters from kernel memory to the kevent
421  * internal kernel memory. Hence the memcpy instead of
422  * copyin.
423  */
424 static int
425 epoll_kev_copyin(void *arg, struct kevent *kevp, int count)
426 {
427 	struct epoll_copyin_args *args;
428 
429 	args = (struct epoll_copyin_args*) arg;
430 
431 	memcpy(kevp, args->changelist, count * sizeof(*kevp));
432 	args->changelist += count;
433 
434 	return (0);
435 }
436 
437 /*
438  * Load epoll filter, convert it to kevent filter
439  * and load it into kevent subsystem.
440  */
441 int
442 linux_epoll_ctl(struct thread *td, struct linux_epoll_ctl_args *args)
443 {
444 	struct file *epfp, *fp;
445 	struct epoll_copyin_args ciargs;
446 	struct kevent kev[2];
447 	struct kevent_copyops k_ops = { &ciargs,
448 					NULL,
449 					epoll_kev_copyin};
450 	struct epoll_event le;
451 	cap_rights_t rights;
452 	int kev_flags;
453 	int nchanges = 0;
454 	int error;
455 
456 	if (args->op != LINUX_EPOLL_CTL_DEL) {
457 		error = copyin(args->event, &le, sizeof(le));
458 		if (error != 0)
459 			return (error);
460 	}
461 
462 	error = fget(td, args->epfd,
463 	    cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &epfp);
464 	if (error != 0)
465 		return (error);
466 	if (epfp->f_type != DTYPE_KQUEUE) {
467 		error = EINVAL;
468 		goto leave1;
469 	}
470 
471 	 /* Protect user data vector from incorrectly supplied fd. */
472 	error = fget(td, args->fd, cap_rights_init(&rights, CAP_POLL_EVENT), &fp);
473 	if (error != 0)
474 		goto leave1;
475 
476 	/* Linux disallows spying on himself */
477 	if (epfp == fp) {
478 		error = EINVAL;
479 		goto leave0;
480 	}
481 
482 	ciargs.changelist = kev;
483 
484 	if (args->op != LINUX_EPOLL_CTL_DEL) {
485 		kev_flags = EV_ADD | EV_ENABLE;
486 		error = epoll_to_kevent(td, epfp, args->fd, &le,
487 		    &kev_flags, kev, &nchanges);
488 		if (error != 0)
489 			goto leave0;
490 	}
491 
492 	switch (args->op) {
493 	case LINUX_EPOLL_CTL_MOD:
494 		error = epoll_delete_all_events(td, epfp, args->fd);
495 		if (error != 0)
496 			goto leave0;
497 		break;
498 
499 	case LINUX_EPOLL_CTL_ADD:
500 		/*
501 		 * kqueue_register() return ENOENT if event does not exists
502 		 * and the EV_ADD flag is not set.
503 		 */
504 		kev[0].flags &= ~EV_ADD;
505 		error = kqfd_register(args->epfd, &kev[0], td, 1);
506 		if (error != ENOENT) {
507 			error = EEXIST;
508 			goto leave0;
509 		}
510 		error = 0;
511 		kev[0].flags |= EV_ADD;
512 		break;
513 
514 	case LINUX_EPOLL_CTL_DEL:
515 		/* CTL_DEL means unregister this fd with this epoll */
516 		error = epoll_delete_all_events(td, epfp, args->fd);
517 		goto leave0;
518 
519 	default:
520 		error = EINVAL;
521 		goto leave0;
522 	}
523 
524 	epoll_fd_install(td, args->fd, le.data);
525 
526 	error = kern_kevent_fp(td, epfp, nchanges, 0, &k_ops, NULL);
527 
528 leave0:
529 	fdrop(fp, td);
530 
531 leave1:
532 	fdrop(epfp, td);
533 	return (error);
534 }
535 
536 /*
537  * Wait for a filter to be triggered on the epoll file descriptor.
538  */
539 static int
540 linux_epoll_wait_common(struct thread *td, int epfd, struct epoll_event *events,
541     int maxevents, int timeout, sigset_t *uset)
542 {
543 	struct epoll_copyout_args coargs;
544 	struct kevent_copyops k_ops = { &coargs,
545 					epoll_kev_copyout,
546 					NULL};
547 	struct timespec ts, *tsp;
548 	cap_rights_t rights;
549 	struct file *epfp;
550 	sigset_t omask;
551 	int error;
552 
553 	if (maxevents <= 0 || maxevents > LINUX_MAX_EVENTS)
554 		return (EINVAL);
555 
556 	error = fget(td, epfd,
557 	    cap_rights_init(&rights, CAP_KQUEUE_EVENT), &epfp);
558 	if (error != 0)
559 		return (error);
560 	if (epfp->f_type != DTYPE_KQUEUE) {
561 		error = EINVAL;
562 		goto leave1;
563 	}
564 	if (uset != NULL) {
565 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
566 		    &omask, 0);
567 		if (error != 0)
568 			goto leave1;
569 		td->td_pflags |= TDP_OLDMASK;
570 		/*
571 		 * Make sure that ast() is called on return to
572 		 * usermode and TDP_OLDMASK is cleared, restoring old
573 		 * sigmask.
574 		 */
575 		thread_lock(td);
576 		td->td_flags |= TDF_ASTPENDING;
577 		thread_unlock(td);
578 	}
579 
580 
581 	coargs.leventlist = events;
582 	coargs.p = td->td_proc;
583 	coargs.count = 0;
584 	coargs.error = 0;
585 
586 	if (timeout != -1) {
587 		if (timeout < 0) {
588 			error = EINVAL;
589 			goto leave0;
590 		}
591 		/* Convert from milliseconds to timespec. */
592 		ts.tv_sec = timeout / 1000;
593 		ts.tv_nsec = (timeout % 1000) * 1000000;
594 		tsp = &ts;
595 	} else {
596 		tsp = NULL;
597 	}
598 
599 	error = kern_kevent_fp(td, epfp, 0, maxevents, &k_ops, tsp);
600 	if (error == 0 && coargs.error != 0)
601 		error = coargs.error;
602 
603 	/*
604 	 * kern_kevent might return ENOMEM which is not expected from epoll_wait.
605 	 * Maybe we should translate that but I don't think it matters at all.
606 	 */
607 	if (error == 0)
608 		td->td_retval[0] = coargs.count;
609 
610 leave0:
611 	if (uset != NULL)
612 		error = kern_sigprocmask(td, SIG_SETMASK, &omask,
613 		    NULL, 0);
614 leave1:
615 	fdrop(epfp, td);
616 	return (error);
617 }
618 
619 int
620 linux_epoll_wait(struct thread *td, struct linux_epoll_wait_args *args)
621 {
622 
623 	return (linux_epoll_wait_common(td, args->epfd, args->events,
624 	    args->maxevents, args->timeout, NULL));
625 }
626 
627 int
628 linux_epoll_pwait(struct thread *td, struct linux_epoll_pwait_args *args)
629 {
630 	sigset_t mask, *pmask;
631 	l_sigset_t lmask;
632 	int error;
633 
634 	if (args->mask != NULL) {
635 		if (args->sigsetsize != sizeof(l_sigset_t))
636 			return (EINVAL);
637 		error = copyin(args->mask, &lmask, sizeof(l_sigset_t));
638 		if (error != 0)
639 			return (error);
640 		linux_to_bsd_sigset(&lmask, &mask);
641 		pmask = &mask;
642 	} else
643 		pmask = NULL;
644 	return (linux_epoll_wait_common(td, args->epfd, args->events,
645 	    args->maxevents, args->timeout, pmask));
646 }
647 
648 static int
649 epoll_delete_event(struct thread *td, struct file *epfp, int fd, int filter)
650 {
651 	struct epoll_copyin_args ciargs;
652 	struct kevent kev;
653 	struct kevent_copyops k_ops = { &ciargs,
654 					NULL,
655 					epoll_kev_copyin};
656 
657 	ciargs.changelist = &kev;
658 	EV_SET(&kev, fd, filter, EV_DELETE | EV_DISABLE, 0, 0, 0);
659 
660 	return (kern_kevent_fp(td, epfp, 1, 0, &k_ops, NULL));
661 }
662 
663 static int
664 epoll_delete_all_events(struct thread *td, struct file *epfp, int fd)
665 {
666 	int error1, error2;
667 
668 	error1 = epoll_delete_event(td, epfp, fd, EVFILT_READ);
669 	error2 = epoll_delete_event(td, epfp, fd, EVFILT_WRITE);
670 
671 	/* return 0 if at least one result positive */
672 	return (error1 == 0 ? 0 : error2);
673 }
674 
675 static int
676 eventfd_create(struct thread *td, uint32_t initval, int flags)
677 {
678 	struct filedesc *fdp;
679 	struct eventfd *efd;
680 	struct file *fp;
681 	int fflags, fd, error;
682 
683 	fflags = 0;
684 	if ((flags & LINUX_O_CLOEXEC) != 0)
685 		fflags |= O_CLOEXEC;
686 
687 	fdp = td->td_proc->p_fd;
688 	error = falloc(td, &fp, &fd, fflags);
689 	if (error != 0)
690 		return (error);
691 
692 	efd = malloc(sizeof(*efd), M_EPOLL, M_WAITOK | M_ZERO);
693 	efd->efd_flags = flags;
694 	efd->efd_count = initval;
695 	mtx_init(&efd->efd_lock, "eventfd", NULL, MTX_DEF);
696 
697 	knlist_init_mtx(&efd->efd_sel.si_note, &efd->efd_lock);
698 
699 	fflags = FREAD | FWRITE;
700 	if ((flags & LINUX_O_NONBLOCK) != 0)
701 		fflags |= FNONBLOCK;
702 
703 	finit(fp, fflags, DTYPE_LINUXEFD, efd, &eventfdops);
704 	fdrop(fp, td);
705 
706 	td->td_retval[0] = fd;
707 	return (error);
708 }
709 
710 int
711 linux_eventfd(struct thread *td, struct linux_eventfd_args *args)
712 {
713 
714 	return (eventfd_create(td, args->initval, 0));
715 }
716 
717 int
718 linux_eventfd2(struct thread *td, struct linux_eventfd2_args *args)
719 {
720 
721 	if ((args->flags & ~(LINUX_O_CLOEXEC|LINUX_O_NONBLOCK|LINUX_EFD_SEMAPHORE)) != 0)
722 		return (EINVAL);
723 
724 	return (eventfd_create(td, args->initval, args->flags));
725 }
726 
727 static int
728 eventfd_close(struct file *fp, struct thread *td)
729 {
730 	struct eventfd *efd;
731 
732 	efd = fp->f_data;
733 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
734 		return (EINVAL);
735 
736 	seldrain(&efd->efd_sel);
737 	knlist_destroy(&efd->efd_sel.si_note);
738 
739 	fp->f_ops = &badfileops;
740 	mtx_destroy(&efd->efd_lock);
741 	free(efd, M_EPOLL);
742 
743 	return (0);
744 }
745 
746 static int
747 eventfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
748     int flags, struct thread *td)
749 {
750 	struct eventfd *efd;
751 	eventfd_t count;
752 	int error;
753 
754 	efd = fp->f_data;
755 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
756 		return (EINVAL);
757 
758 	if (uio->uio_resid < sizeof(eventfd_t))
759 		return (EINVAL);
760 
761 	error = 0;
762 	mtx_lock(&efd->efd_lock);
763 retry:
764 	if (efd->efd_count == 0) {
765 		if ((fp->f_flag & FNONBLOCK) != 0) {
766 			mtx_unlock(&efd->efd_lock);
767 			return (EAGAIN);
768 		}
769 		error = mtx_sleep(&efd->efd_count, &efd->efd_lock, PCATCH, "lefdrd", 0);
770 		if (error == 0)
771 			goto retry;
772 	}
773 	if (error == 0) {
774 		if ((efd->efd_flags & LINUX_EFD_SEMAPHORE) != 0) {
775 			count = 1;
776 			--efd->efd_count;
777 		} else {
778 			count = efd->efd_count;
779 			efd->efd_count = 0;
780 		}
781 		KNOTE_LOCKED(&efd->efd_sel.si_note, 0);
782 		selwakeup(&efd->efd_sel);
783 		wakeup(&efd->efd_count);
784 		mtx_unlock(&efd->efd_lock);
785 		error = uiomove(&count, sizeof(eventfd_t), uio);
786 	} else
787 		mtx_unlock(&efd->efd_lock);
788 
789 	return (error);
790 }
791 
792 static int
793 eventfd_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
794      int flags, struct thread *td)
795 {
796 	struct eventfd *efd;
797 	eventfd_t count;
798 	int error;
799 
800 	efd = fp->f_data;
801 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
802 		return (EINVAL);
803 
804 	if (uio->uio_resid < sizeof(eventfd_t))
805 		return (EINVAL);
806 
807 	error = uiomove(&count, sizeof(eventfd_t), uio);
808 	if (error != 0)
809 		return (error);
810 	if (count == UINT64_MAX)
811 		return (EINVAL);
812 
813 	mtx_lock(&efd->efd_lock);
814 retry:
815 	if (UINT64_MAX - efd->efd_count <= count) {
816 		if ((fp->f_flag & FNONBLOCK) != 0) {
817 			mtx_unlock(&efd->efd_lock);
818 			/* Do not not return the number of bytes written */
819 			uio->uio_resid += sizeof(eventfd_t);
820 			return (EAGAIN);
821 		}
822 		error = mtx_sleep(&efd->efd_count, &efd->efd_lock,
823 		    PCATCH, "lefdwr", 0);
824 		if (error == 0)
825 			goto retry;
826 	}
827 	if (error == 0) {
828 		efd->efd_count += count;
829 		KNOTE_LOCKED(&efd->efd_sel.si_note, 0);
830 		selwakeup(&efd->efd_sel);
831 		wakeup(&efd->efd_count);
832 	}
833 	mtx_unlock(&efd->efd_lock);
834 
835 	return (error);
836 }
837 
838 static int
839 eventfd_poll(struct file *fp, int events, struct ucred *active_cred,
840     struct thread *td)
841 {
842 	struct eventfd *efd;
843 	int revents = 0;
844 
845 	efd = fp->f_data;
846 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
847 		return (POLLERR);
848 
849 	mtx_lock(&efd->efd_lock);
850 	if ((events & (POLLIN|POLLRDNORM)) && efd->efd_count > 0)
851 		revents |= events & (POLLIN|POLLRDNORM);
852 	if ((events & (POLLOUT|POLLWRNORM)) && UINT64_MAX - 1 > efd->efd_count)
853 		revents |= events & (POLLOUT|POLLWRNORM);
854 	if (revents == 0)
855 		selrecord(td, &efd->efd_sel);
856 	mtx_unlock(&efd->efd_lock);
857 
858 	return (revents);
859 }
860 
861 /*ARGSUSED*/
862 static int
863 eventfd_kqfilter(struct file *fp, struct knote *kn)
864 {
865 	struct eventfd *efd;
866 
867 	efd = fp->f_data;
868 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
869 		return (EINVAL);
870 
871 	mtx_lock(&efd->efd_lock);
872 	switch (kn->kn_filter) {
873 	case EVFILT_READ:
874 		kn->kn_fop = &eventfd_rfiltops;
875 		break;
876 	case EVFILT_WRITE:
877 		kn->kn_fop = &eventfd_wfiltops;
878 		break;
879 	default:
880 		mtx_unlock(&efd->efd_lock);
881 		return (EINVAL);
882 	}
883 
884 	kn->kn_hook = efd;
885 	knlist_add(&efd->efd_sel.si_note, kn, 1);
886 	mtx_unlock(&efd->efd_lock);
887 
888 	return (0);
889 }
890 
891 static void
892 filt_eventfddetach(struct knote *kn)
893 {
894 	struct eventfd *efd = kn->kn_hook;
895 
896 	mtx_lock(&efd->efd_lock);
897 	knlist_remove(&efd->efd_sel.si_note, kn, 1);
898 	mtx_unlock(&efd->efd_lock);
899 }
900 
901 /*ARGSUSED*/
902 static int
903 filt_eventfdread(struct knote *kn, long hint)
904 {
905 	struct eventfd *efd = kn->kn_hook;
906 	int ret;
907 
908 	mtx_assert(&efd->efd_lock, MA_OWNED);
909 	ret = (efd->efd_count > 0);
910 
911 	return (ret);
912 }
913 
914 /*ARGSUSED*/
915 static int
916 filt_eventfdwrite(struct knote *kn, long hint)
917 {
918 	struct eventfd *efd = kn->kn_hook;
919 	int ret;
920 
921 	mtx_assert(&efd->efd_lock, MA_OWNED);
922 	ret = (UINT64_MAX - 1 > efd->efd_count);
923 
924 	return (ret);
925 }
926 
927 /*ARGSUSED*/
928 static int
929 eventfd_ioctl(struct file *fp, u_long cmd, void *data,
930     struct ucred *active_cred, struct thread *td)
931 {
932 
933 	if (fp->f_data == NULL || (fp->f_type != DTYPE_LINUXEFD &&
934 	    fp->f_type != DTYPE_LINUXTFD))
935 		return (EINVAL);
936 
937 	switch (cmd)
938 	{
939 	case FIONBIO:
940 		if ((*(int *)data))
941 			atomic_set_int(&fp->f_flag, FNONBLOCK);
942 		else
943 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
944 	case FIOASYNC:
945 		return (0);
946 	default:
947 		return (ENXIO);
948 	}
949 }
950 
951 /*ARGSUSED*/
952 static int
953 eventfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
954     struct thread *td)
955 {
956 
957 	return (ENXIO);
958 }
959 
960 /*ARGSUSED*/
961 static int
962 eventfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
963 {
964 
965 	kif->kf_type = KF_TYPE_UNKNOWN;
966 	return (0);
967 }
968 
969 int
970 linux_timerfd_create(struct thread *td, struct linux_timerfd_create_args *args)
971 {
972 	struct filedesc *fdp;
973 	struct timerfd *tfd;
974 	struct file *fp;
975 	clockid_t clockid;
976 	int fflags, fd, error;
977 
978 	if ((args->flags & ~LINUX_TFD_CREATE_FLAGS) != 0)
979 		return (EINVAL);
980 
981 	error = linux_to_native_clockid(&clockid, args->clockid);
982 	if (error != 0)
983 		return (error);
984 	if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC)
985 		return (EINVAL);
986 
987 	fflags = 0;
988 	if ((args->flags & LINUX_TFD_CLOEXEC) != 0)
989 		fflags |= O_CLOEXEC;
990 
991 	fdp = td->td_proc->p_fd;
992 	error = falloc(td, &fp, &fd, fflags);
993 	if (error != 0)
994 		return (error);
995 
996 	tfd = malloc(sizeof(*tfd), M_EPOLL, M_WAITOK | M_ZERO);
997 	tfd->tfd_clockid = clockid;
998 	mtx_init(&tfd->tfd_lock, "timerfd", NULL, MTX_DEF);
999 
1000 	callout_init_mtx(&tfd->tfd_callout, &tfd->tfd_lock, 0);
1001 	knlist_init_mtx(&tfd->tfd_sel.si_note, &tfd->tfd_lock);
1002 
1003 	fflags = FREAD;
1004 	if ((args->flags & LINUX_O_NONBLOCK) != 0)
1005 		fflags |= FNONBLOCK;
1006 
1007 	finit(fp, fflags, DTYPE_LINUXTFD, tfd, &timerfdops);
1008 	fdrop(fp, td);
1009 
1010 	td->td_retval[0] = fd;
1011 	return (error);
1012 }
1013 
1014 static int
1015 timerfd_close(struct file *fp, struct thread *td)
1016 {
1017 	struct timerfd *tfd;
1018 
1019 	tfd = fp->f_data;
1020 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1021 		return (EINVAL);
1022 
1023 	timespecclear(&tfd->tfd_time.it_value);
1024 	timespecclear(&tfd->tfd_time.it_interval);
1025 
1026 	mtx_lock(&tfd->tfd_lock);
1027 	callout_drain(&tfd->tfd_callout);
1028 	mtx_unlock(&tfd->tfd_lock);
1029 
1030 	seldrain(&tfd->tfd_sel);
1031 	knlist_destroy(&tfd->tfd_sel.si_note);
1032 
1033 	fp->f_ops = &badfileops;
1034 	mtx_destroy(&tfd->tfd_lock);
1035 	free(tfd, M_EPOLL);
1036 
1037 	return (0);
1038 }
1039 
1040 static int
1041 timerfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1042     int flags, struct thread *td)
1043 {
1044 	struct timerfd *tfd;
1045 	timerfd_t count;
1046 	int error;
1047 
1048 	tfd = fp->f_data;
1049 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1050 		return (EINVAL);
1051 
1052 	if (uio->uio_resid < sizeof(timerfd_t))
1053 		return (EINVAL);
1054 
1055 	error = 0;
1056 	mtx_lock(&tfd->tfd_lock);
1057 retry:
1058 	if (tfd->tfd_canceled) {
1059 		tfd->tfd_count = 0;
1060 		mtx_unlock(&tfd->tfd_lock);
1061 		return (ECANCELED);
1062 	}
1063 	if (tfd->tfd_count == 0) {
1064 		if ((fp->f_flag & FNONBLOCK) != 0) {
1065 			mtx_unlock(&tfd->tfd_lock);
1066 			return (EAGAIN);
1067 		}
1068 		error = mtx_sleep(&tfd->tfd_count, &tfd->tfd_lock, PCATCH, "ltfdrd", 0);
1069 		if (error == 0)
1070 			goto retry;
1071 	}
1072 	if (error == 0) {
1073 		count = tfd->tfd_count;
1074 		tfd->tfd_count = 0;
1075 		mtx_unlock(&tfd->tfd_lock);
1076 		error = uiomove(&count, sizeof(timerfd_t), uio);
1077 	} else
1078 		mtx_unlock(&tfd->tfd_lock);
1079 
1080 	return (error);
1081 }
1082 
1083 static int
1084 timerfd_poll(struct file *fp, int events, struct ucred *active_cred,
1085     struct thread *td)
1086 {
1087 	struct timerfd *tfd;
1088 	int revents = 0;
1089 
1090 	tfd = fp->f_data;
1091 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1092 		return (POLLERR);
1093 
1094 	mtx_lock(&tfd->tfd_lock);
1095 	if ((events & (POLLIN|POLLRDNORM)) && tfd->tfd_count > 0)
1096 		revents |= events & (POLLIN|POLLRDNORM);
1097 	if (revents == 0)
1098 		selrecord(td, &tfd->tfd_sel);
1099 	mtx_unlock(&tfd->tfd_lock);
1100 
1101 	return (revents);
1102 }
1103 
1104 /*ARGSUSED*/
1105 static int
1106 timerfd_kqfilter(struct file *fp, struct knote *kn)
1107 {
1108 	struct timerfd *tfd;
1109 
1110 	tfd = fp->f_data;
1111 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1112 		return (EINVAL);
1113 
1114 	if (kn->kn_filter == EVFILT_READ)
1115 		kn->kn_fop = &timerfd_rfiltops;
1116 	else
1117 		return (EINVAL);
1118 
1119 	kn->kn_hook = tfd;
1120 	knlist_add(&tfd->tfd_sel.si_note, kn, 0);
1121 
1122 	return (0);
1123 }
1124 
1125 static void
1126 filt_timerfddetach(struct knote *kn)
1127 {
1128 	struct timerfd *tfd = kn->kn_hook;
1129 
1130 	mtx_lock(&tfd->tfd_lock);
1131 	knlist_remove(&tfd->tfd_sel.si_note, kn, 1);
1132 	mtx_unlock(&tfd->tfd_lock);
1133 }
1134 
1135 /*ARGSUSED*/
1136 static int
1137 filt_timerfdread(struct knote *kn, long hint)
1138 {
1139 	struct timerfd *tfd = kn->kn_hook;
1140 
1141 	return (tfd->tfd_count > 0);
1142 }
1143 
1144 /*ARGSUSED*/
1145 static int
1146 timerfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1147     struct thread *td)
1148 {
1149 
1150 	return (ENXIO);
1151 }
1152 
1153 /*ARGSUSED*/
1154 static int
1155 timerfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1156 {
1157 
1158 	kif->kf_type = KF_TYPE_UNKNOWN;
1159 	return (0);
1160 }
1161 
1162 static void
1163 linux_timerfd_clocktime(struct timerfd *tfd, struct timespec *ts)
1164 {
1165 
1166 	if (tfd->tfd_clockid == CLOCK_REALTIME)
1167 		getnanotime(ts);
1168 	else	/* CLOCK_MONOTONIC */
1169 		getnanouptime(ts);
1170 }
1171 
1172 static void
1173 linux_timerfd_curval(struct timerfd *tfd, struct itimerspec *ots)
1174 {
1175 	struct timespec cts;
1176 
1177 	linux_timerfd_clocktime(tfd, &cts);
1178 	*ots = tfd->tfd_time;
1179 	if (ots->it_value.tv_sec != 0 || ots->it_value.tv_nsec != 0) {
1180 		timespecsub(&ots->it_value, &cts);
1181 		if (ots->it_value.tv_sec < 0 ||
1182 		    (ots->it_value.tv_sec == 0 &&
1183 		     ots->it_value.tv_nsec == 0)) {
1184 			ots->it_value.tv_sec  = 0;
1185 			ots->it_value.tv_nsec = 1;
1186 		}
1187 	}
1188 }
1189 
1190 int
1191 linux_timerfd_gettime(struct thread *td, struct linux_timerfd_gettime_args *args)
1192 {
1193 	struct l_itimerspec lots;
1194 	struct itimerspec ots;
1195 	struct timerfd *tfd;
1196 	struct file *fp;
1197 	int error;
1198 
1199 	error = fget(td, args->fd, &cap_read_rights, &fp);
1200 	if (error != 0)
1201 		return (error);
1202 	tfd = fp->f_data;
1203 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
1204 		error = EINVAL;
1205 		goto out;
1206 	}
1207 
1208 	mtx_lock(&tfd->tfd_lock);
1209 	linux_timerfd_curval(tfd, &ots);
1210 	mtx_unlock(&tfd->tfd_lock);
1211 
1212 	error = native_to_linux_itimerspec(&lots, &ots);
1213 	if (error == 0)
1214 		error = copyout(&lots, args->old_value, sizeof(lots));
1215 
1216 out:
1217 	fdrop(fp, td);
1218 	return (error);
1219 }
1220 
1221 int
1222 linux_timerfd_settime(struct thread *td, struct linux_timerfd_settime_args *args)
1223 {
1224 	struct l_itimerspec lots;
1225 	struct itimerspec nts, ots;
1226 	struct timespec cts, ts;
1227 	struct timerfd *tfd;
1228 	struct timeval tv;
1229 	struct file *fp;
1230 	int error;
1231 
1232 	if ((args->flags & ~LINUX_TFD_SETTIME_FLAGS) != 0)
1233 		return (EINVAL);
1234 
1235 	error = copyin(args->new_value, &lots, sizeof(lots));
1236 	if (error != 0)
1237 		return (error);
1238 	error = linux_to_native_itimerspec(&nts, &lots);
1239 	if (error != 0)
1240 		return (error);
1241 
1242 	error = fget(td, args->fd, &cap_write_rights, &fp);
1243 	if (error != 0)
1244 		return (error);
1245 	tfd = fp->f_data;
1246 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
1247 		error = EINVAL;
1248 		goto out;
1249 	}
1250 
1251 	mtx_lock(&tfd->tfd_lock);
1252 	if (!timespecisset(&nts.it_value))
1253 		timespecclear(&nts.it_interval);
1254 	if (args->old_value != NULL)
1255 		linux_timerfd_curval(tfd, &ots);
1256 
1257 	tfd->tfd_time = nts;
1258 	if (timespecisset(&nts.it_value)) {
1259 		linux_timerfd_clocktime(tfd, &cts);
1260 		ts = nts.it_value;
1261 		if ((args->flags & LINUX_TFD_TIMER_ABSTIME) == 0) {
1262 			timespecadd(&tfd->tfd_time.it_value, &cts);
1263 		} else {
1264 			timespecsub(&ts, &cts);
1265 		}
1266 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1267 		callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1268 			linux_timerfd_expire, tfd);
1269 		tfd->tfd_canceled = false;
1270 	} else {
1271 		tfd->tfd_canceled = true;
1272 		callout_stop(&tfd->tfd_callout);
1273 	}
1274 	mtx_unlock(&tfd->tfd_lock);
1275 
1276 	if (args->old_value != NULL) {
1277 		error = native_to_linux_itimerspec(&lots, &ots);
1278 		if (error == 0)
1279 			error = copyout(&lots, args->old_value, sizeof(lots));
1280 	}
1281 
1282 out:
1283 	fdrop(fp, td);
1284 	return (error);
1285 }
1286 
1287 static void
1288 linux_timerfd_expire(void *arg)
1289 {
1290 	struct timespec cts, ts;
1291 	struct timeval tv;
1292 	struct timerfd *tfd;
1293 
1294 	tfd = (struct timerfd *)arg;
1295 
1296 	linux_timerfd_clocktime(tfd, &cts);
1297 	if (timespeccmp(&cts, &tfd->tfd_time.it_value, >=)) {
1298 		if (timespecisset(&tfd->tfd_time.it_interval))
1299 			timespecadd(&tfd->tfd_time.it_value,
1300 				    &tfd->tfd_time.it_interval);
1301 		else
1302 			/* single shot timer */
1303 			timespecclear(&tfd->tfd_time.it_value);
1304 		if (timespecisset(&tfd->tfd_time.it_value)) {
1305 			ts = tfd->tfd_time.it_value;
1306 			timespecsub(&ts, &cts);
1307 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1308 			callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1309 				linux_timerfd_expire, tfd);
1310 		}
1311 		tfd->tfd_count++;
1312 		KNOTE_LOCKED(&tfd->tfd_sel.si_note, 0);
1313 		selwakeup(&tfd->tfd_sel);
1314 		wakeup(&tfd->tfd_count);
1315 	} else if (timespecisset(&tfd->tfd_time.it_value)) {
1316 		ts = tfd->tfd_time.it_value;
1317 		timespecsub(&ts, &cts);
1318 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1319 		callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1320 		    linux_timerfd_expire, tfd);
1321 	}
1322 }
1323