xref: /freebsd/sys/compat/linux/linux_event.c (revision b3512b30dbec579da28028e29d8b33ec7242af68)
1 /*-
2  * Copyright (c) 2007 Roman Divacky
3  * Copyright (c) 2014 Dmitry Chagin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_compat.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/imgact.h>
36 #include <sys/kernel.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/callout.h>
41 #include <sys/capsicum.h>
42 #include <sys/types.h>
43 #include <sys/user.h>
44 #include <sys/file.h>
45 #include <sys/filedesc.h>
46 #include <sys/filio.h>
47 #include <sys/errno.h>
48 #include <sys/event.h>
49 #include <sys/poll.h>
50 #include <sys/proc.h>
51 #include <sys/selinfo.h>
52 #include <sys/sx.h>
53 #include <sys/syscallsubr.h>
54 #include <sys/timespec.h>
55 
56 #ifdef COMPAT_LINUX32
57 #include <machine/../linux32/linux.h>
58 #include <machine/../linux32/linux32_proto.h>
59 #else
60 #include <machine/../linux/linux.h>
61 #include <machine/../linux/linux_proto.h>
62 #endif
63 
64 #include <compat/linux/linux_emul.h>
65 #include <compat/linux/linux_event.h>
66 #include <compat/linux/linux_file.h>
67 #include <compat/linux/linux_timer.h>
68 #include <compat/linux/linux_util.h>
69 
70 /*
71  * epoll defines 'struct epoll_event' with the field 'data' as 64 bits
72  * on all architectures. But on 32 bit architectures BSD 'struct kevent' only
73  * has 32 bit opaque pointer as 'udata' field. So we can't pass epoll supplied
74  * data verbatuim. Therefore we allocate 64-bit memory block to pass
75  * user supplied data for every file descriptor.
76  */
77 
78 typedef uint64_t	epoll_udata_t;
79 
80 struct epoll_emuldata {
81 	uint32_t	fdc;		/* epoll udata max index */
82 	epoll_udata_t	udata[1];	/* epoll user data vector */
83 };
84 
85 #define	EPOLL_DEF_SZ		16
86 #define	EPOLL_SIZE(fdn)			\
87 	(sizeof(struct epoll_emuldata)+(fdn) * sizeof(epoll_udata_t))
88 
89 struct epoll_event {
90 	uint32_t	events;
91 	epoll_udata_t	data;
92 }
93 #if defined(__amd64__)
94 __attribute__((packed))
95 #endif
96 ;
97 
98 #define	LINUX_MAX_EVENTS	(INT_MAX / sizeof(struct epoll_event))
99 
100 static void	epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata);
101 static int	epoll_to_kevent(struct thread *td, int fd,
102 		    struct epoll_event *l_event, struct kevent *kevent,
103 		    int *nkevents);
104 static void	kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event);
105 static int	epoll_kev_copyout(void *arg, struct kevent *kevp, int count);
106 static int	epoll_kev_copyin(void *arg, struct kevent *kevp, int count);
107 static int	epoll_register_kevent(struct thread *td, struct file *epfp,
108 		    int fd, int filter, unsigned int flags);
109 static int	epoll_fd_registered(struct thread *td, struct file *epfp,
110 		    int fd);
111 static int	epoll_delete_all_events(struct thread *td, struct file *epfp,
112 		    int fd);
113 
114 struct epoll_copyin_args {
115 	struct kevent	*changelist;
116 };
117 
118 struct epoll_copyout_args {
119 	struct epoll_event	*leventlist;
120 	struct proc		*p;
121 	uint32_t		count;
122 	int			error;
123 };
124 
125 /* eventfd */
126 typedef uint64_t	eventfd_t;
127 
128 static fo_rdwr_t	eventfd_read;
129 static fo_rdwr_t	eventfd_write;
130 static fo_ioctl_t	eventfd_ioctl;
131 static fo_poll_t	eventfd_poll;
132 static fo_kqfilter_t	eventfd_kqfilter;
133 static fo_stat_t	eventfd_stat;
134 static fo_close_t	eventfd_close;
135 static fo_fill_kinfo_t	eventfd_fill_kinfo;
136 
137 static struct fileops eventfdops = {
138 	.fo_read = eventfd_read,
139 	.fo_write = eventfd_write,
140 	.fo_truncate = invfo_truncate,
141 	.fo_ioctl = eventfd_ioctl,
142 	.fo_poll = eventfd_poll,
143 	.fo_kqfilter = eventfd_kqfilter,
144 	.fo_stat = eventfd_stat,
145 	.fo_close = eventfd_close,
146 	.fo_chmod = invfo_chmod,
147 	.fo_chown = invfo_chown,
148 	.fo_sendfile = invfo_sendfile,
149 	.fo_fill_kinfo = eventfd_fill_kinfo,
150 	.fo_flags = DFLAG_PASSABLE
151 };
152 
153 static void	filt_eventfddetach(struct knote *kn);
154 static int	filt_eventfdread(struct knote *kn, long hint);
155 static int	filt_eventfdwrite(struct knote *kn, long hint);
156 
157 static struct filterops eventfd_rfiltops = {
158 	.f_isfd = 1,
159 	.f_detach = filt_eventfddetach,
160 	.f_event = filt_eventfdread
161 };
162 static struct filterops eventfd_wfiltops = {
163 	.f_isfd = 1,
164 	.f_detach = filt_eventfddetach,
165 	.f_event = filt_eventfdwrite
166 };
167 
168 /* timerfd */
169 typedef uint64_t	timerfd_t;
170 
171 static fo_rdwr_t	timerfd_read;
172 static fo_poll_t	timerfd_poll;
173 static fo_kqfilter_t	timerfd_kqfilter;
174 static fo_stat_t	timerfd_stat;
175 static fo_close_t	timerfd_close;
176 static fo_fill_kinfo_t	timerfd_fill_kinfo;
177 
178 static struct fileops timerfdops = {
179 	.fo_read = timerfd_read,
180 	.fo_write = invfo_rdwr,
181 	.fo_truncate = invfo_truncate,
182 	.fo_ioctl = eventfd_ioctl,
183 	.fo_poll = timerfd_poll,
184 	.fo_kqfilter = timerfd_kqfilter,
185 	.fo_stat = timerfd_stat,
186 	.fo_close = timerfd_close,
187 	.fo_chmod = invfo_chmod,
188 	.fo_chown = invfo_chown,
189 	.fo_sendfile = invfo_sendfile,
190 	.fo_fill_kinfo = timerfd_fill_kinfo,
191 	.fo_flags = DFLAG_PASSABLE
192 };
193 
194 static void	filt_timerfddetach(struct knote *kn);
195 static int	filt_timerfdread(struct knote *kn, long hint);
196 
197 static struct filterops timerfd_rfiltops = {
198 	.f_isfd = 1,
199 	.f_detach = filt_timerfddetach,
200 	.f_event = filt_timerfdread
201 };
202 
203 struct eventfd {
204 	eventfd_t	efd_count;
205 	uint32_t	efd_flags;
206 	struct selinfo	efd_sel;
207 	struct mtx	efd_lock;
208 };
209 
210 struct timerfd {
211 	clockid_t	tfd_clockid;
212 	struct itimerspec tfd_time;
213 	struct callout	tfd_callout;
214 	timerfd_t	tfd_count;
215 	bool		tfd_canceled;
216 	struct selinfo	tfd_sel;
217 	struct mtx	tfd_lock;
218 };
219 
220 static int	eventfd_create(struct thread *td, uint32_t initval, int flags);
221 static void	linux_timerfd_expire(void *);
222 static void	linux_timerfd_curval(struct timerfd *, struct itimerspec *);
223 
224 static void
225 epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata)
226 {
227 	struct linux_pemuldata *pem;
228 	struct epoll_emuldata *emd;
229 	struct proc *p;
230 
231 	p = td->td_proc;
232 
233 	pem = pem_find(p);
234 	KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
235 
236 	LINUX_PEM_XLOCK(pem);
237 	if (pem->epoll == NULL) {
238 		emd = malloc(EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
239 		emd->fdc = fd;
240 		pem->epoll = emd;
241 	} else {
242 		emd = pem->epoll;
243 		if (fd > emd->fdc) {
244 			emd = realloc(emd, EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
245 			emd->fdc = fd;
246 			pem->epoll = emd;
247 		}
248 	}
249 	emd->udata[fd] = udata;
250 	LINUX_PEM_XUNLOCK(pem);
251 }
252 
253 static int
254 epoll_create_common(struct thread *td, int flags)
255 {
256 	int error;
257 
258 	error = kern_kqueue(td, flags, NULL);
259 	if (error != 0)
260 		return (error);
261 
262 	epoll_fd_install(td, EPOLL_DEF_SZ, 0);
263 
264 	return (0);
265 }
266 
267 #ifdef LINUX_LEGACY_SYSCALLS
268 int
269 linux_epoll_create(struct thread *td, struct linux_epoll_create_args *args)
270 {
271 
272 	/*
273 	 * args->size is unused. Linux just tests it
274 	 * and then forgets it as well.
275 	 */
276 	if (args->size <= 0)
277 		return (EINVAL);
278 
279 	return (epoll_create_common(td, 0));
280 }
281 #endif
282 
283 int
284 linux_epoll_create1(struct thread *td, struct linux_epoll_create1_args *args)
285 {
286 	int flags;
287 
288 	if ((args->flags & ~(LINUX_O_CLOEXEC)) != 0)
289 		return (EINVAL);
290 
291 	flags = 0;
292 	if ((args->flags & LINUX_O_CLOEXEC) != 0)
293 		flags |= O_CLOEXEC;
294 
295 	return (epoll_create_common(td, flags));
296 }
297 
298 /* Structure converting function from epoll to kevent. */
299 static int
300 epoll_to_kevent(struct thread *td, int fd, struct epoll_event *l_event,
301     struct kevent *kevent, int *nkevents)
302 {
303 	uint32_t levents = l_event->events;
304 	struct linux_pemuldata *pem;
305 	struct proc *p;
306 	unsigned short kev_flags = EV_ADD | EV_ENABLE;
307 
308 	/* flags related to how event is registered */
309 	if ((levents & LINUX_EPOLLONESHOT) != 0)
310 		kev_flags |= EV_DISPATCH;
311 	if ((levents & LINUX_EPOLLET) != 0)
312 		kev_flags |= EV_CLEAR;
313 	if ((levents & LINUX_EPOLLERR) != 0)
314 		kev_flags |= EV_ERROR;
315 	if ((levents & LINUX_EPOLLRDHUP) != 0)
316 		kev_flags |= EV_EOF;
317 
318 	/* flags related to what event is registered */
319 	if ((levents & LINUX_EPOLL_EVRD) != 0) {
320 		EV_SET(kevent++, fd, EVFILT_READ, kev_flags, 0, 0, 0);
321 		++(*nkevents);
322 	}
323 	if ((levents & LINUX_EPOLL_EVWR) != 0) {
324 		EV_SET(kevent++, fd, EVFILT_WRITE, kev_flags, 0, 0, 0);
325 		++(*nkevents);
326 	}
327 	/* zero event mask is legal */
328 	if ((levents & (LINUX_EPOLL_EVRD | LINUX_EPOLL_EVWR)) == 0) {
329 		EV_SET(kevent++, fd, EVFILT_READ, EV_ADD|EV_DISABLE, 0, 0, 0);
330 		++(*nkevents);
331 	}
332 
333 	if ((levents & ~(LINUX_EPOLL_EVSUP)) != 0) {
334 		p = td->td_proc;
335 
336 		pem = pem_find(p);
337 		KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
338 		KASSERT(pem->epoll != NULL, ("epoll proc epolldata not found.\n"));
339 
340 		LINUX_PEM_XLOCK(pem);
341 		if ((pem->flags & LINUX_XUNSUP_EPOLL) == 0) {
342 			pem->flags |= LINUX_XUNSUP_EPOLL;
343 			LINUX_PEM_XUNLOCK(pem);
344 			linux_msg(td, "epoll_ctl unsupported flags: 0x%x",
345 			    levents);
346 		} else
347 			LINUX_PEM_XUNLOCK(pem);
348 		return (EINVAL);
349 	}
350 
351 	return (0);
352 }
353 
354 /*
355  * Structure converting function from kevent to epoll. In a case
356  * this is called on error in registration we store the error in
357  * event->data and pick it up later in linux_epoll_ctl().
358  */
359 static void
360 kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event)
361 {
362 
363 	if ((kevent->flags & EV_ERROR) != 0) {
364 		l_event->events = LINUX_EPOLLERR;
365 		return;
366 	}
367 
368 	/* XXX EPOLLPRI, EPOLLHUP */
369 	switch (kevent->filter) {
370 	case EVFILT_READ:
371 		l_event->events = LINUX_EPOLLIN;
372 		if ((kevent->flags & EV_EOF) != 0)
373 			l_event->events |= LINUX_EPOLLRDHUP;
374 	break;
375 	case EVFILT_WRITE:
376 		l_event->events = LINUX_EPOLLOUT;
377 	break;
378 	}
379 }
380 
381 /*
382  * Copyout callback used by kevent. This converts kevent
383  * events to epoll events and copies them back to the
384  * userspace. This is also called on error on registering
385  * of the filter.
386  */
387 static int
388 epoll_kev_copyout(void *arg, struct kevent *kevp, int count)
389 {
390 	struct epoll_copyout_args *args;
391 	struct linux_pemuldata *pem;
392 	struct epoll_emuldata *emd;
393 	struct epoll_event *eep;
394 	int error, fd, i;
395 
396 	args = (struct epoll_copyout_args*) arg;
397 	eep = malloc(sizeof(*eep) * count, M_EPOLL, M_WAITOK | M_ZERO);
398 
399 	pem = pem_find(args->p);
400 	KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
401 	LINUX_PEM_SLOCK(pem);
402 	emd = pem->epoll;
403 	KASSERT(emd != NULL, ("epoll proc epolldata not found.\n"));
404 
405 	for (i = 0; i < count; i++) {
406 		kevent_to_epoll(&kevp[i], &eep[i]);
407 
408 		fd = kevp[i].ident;
409 		KASSERT(fd <= emd->fdc, ("epoll user data vector"
410 						    " is too small.\n"));
411 		eep[i].data = emd->udata[fd];
412 	}
413 	LINUX_PEM_SUNLOCK(pem);
414 
415 	error = copyout(eep, args->leventlist, count * sizeof(*eep));
416 	if (error == 0) {
417 		args->leventlist += count;
418 		args->count += count;
419 	} else if (args->error == 0)
420 		args->error = error;
421 
422 	free(eep, M_EPOLL);
423 	return (error);
424 }
425 
426 /*
427  * Copyin callback used by kevent. This copies already
428  * converted filters from kernel memory to the kevent
429  * internal kernel memory. Hence the memcpy instead of
430  * copyin.
431  */
432 static int
433 epoll_kev_copyin(void *arg, struct kevent *kevp, int count)
434 {
435 	struct epoll_copyin_args *args;
436 
437 	args = (struct epoll_copyin_args*) arg;
438 
439 	memcpy(kevp, args->changelist, count * sizeof(*kevp));
440 	args->changelist += count;
441 
442 	return (0);
443 }
444 
445 /*
446  * Load epoll filter, convert it to kevent filter
447  * and load it into kevent subsystem.
448  */
449 int
450 linux_epoll_ctl(struct thread *td, struct linux_epoll_ctl_args *args)
451 {
452 	struct file *epfp, *fp;
453 	struct epoll_copyin_args ciargs;
454 	struct kevent kev[2];
455 	struct kevent_copyops k_ops = { &ciargs,
456 					NULL,
457 					epoll_kev_copyin};
458 	struct epoll_event le;
459 	cap_rights_t rights;
460 	int nchanges = 0;
461 	int error;
462 
463 	if (args->op != LINUX_EPOLL_CTL_DEL) {
464 		error = copyin(args->event, &le, sizeof(le));
465 		if (error != 0)
466 			return (error);
467 	}
468 
469 	error = fget(td, args->epfd,
470 	    cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &epfp);
471 	if (error != 0)
472 		return (error);
473 	if (epfp->f_type != DTYPE_KQUEUE) {
474 		error = EINVAL;
475 		goto leave1;
476 	}
477 
478 	 /* Protect user data vector from incorrectly supplied fd. */
479 	error = fget(td, args->fd, cap_rights_init(&rights, CAP_POLL_EVENT), &fp);
480 	if (error != 0)
481 		goto leave1;
482 
483 	/* Linux disallows spying on himself */
484 	if (epfp == fp) {
485 		error = EINVAL;
486 		goto leave0;
487 	}
488 
489 	ciargs.changelist = kev;
490 
491 	if (args->op != LINUX_EPOLL_CTL_DEL) {
492 		error = epoll_to_kevent(td, args->fd, &le, kev, &nchanges);
493 		if (error != 0)
494 			goto leave0;
495 	}
496 
497 	switch (args->op) {
498 	case LINUX_EPOLL_CTL_MOD:
499 		error = epoll_delete_all_events(td, epfp, args->fd);
500 		if (error != 0)
501 			goto leave0;
502 		break;
503 
504 	case LINUX_EPOLL_CTL_ADD:
505 		if (epoll_fd_registered(td, epfp, args->fd)) {
506 			error = EEXIST;
507 			goto leave0;
508 		}
509 		break;
510 
511 	case LINUX_EPOLL_CTL_DEL:
512 		/* CTL_DEL means unregister this fd with this epoll */
513 		error = epoll_delete_all_events(td, epfp, args->fd);
514 		goto leave0;
515 
516 	default:
517 		error = EINVAL;
518 		goto leave0;
519 	}
520 
521 	epoll_fd_install(td, args->fd, le.data);
522 
523 	error = kern_kevent_fp(td, epfp, nchanges, 0, &k_ops, NULL);
524 
525 leave0:
526 	fdrop(fp, td);
527 
528 leave1:
529 	fdrop(epfp, td);
530 	return (error);
531 }
532 
533 /*
534  * Wait for a filter to be triggered on the epoll file descriptor.
535  */
536 static int
537 linux_epoll_wait_common(struct thread *td, int epfd, struct epoll_event *events,
538     int maxevents, int timeout, sigset_t *uset)
539 {
540 	struct epoll_copyout_args coargs;
541 	struct kevent_copyops k_ops = { &coargs,
542 					epoll_kev_copyout,
543 					NULL};
544 	struct timespec ts, *tsp;
545 	cap_rights_t rights;
546 	struct file *epfp;
547 	sigset_t omask;
548 	int error;
549 
550 	if (maxevents <= 0 || maxevents > LINUX_MAX_EVENTS)
551 		return (EINVAL);
552 
553 	error = fget(td, epfd,
554 	    cap_rights_init(&rights, CAP_KQUEUE_EVENT), &epfp);
555 	if (error != 0)
556 		return (error);
557 	if (epfp->f_type != DTYPE_KQUEUE) {
558 		error = EINVAL;
559 		goto leave;
560 	}
561 	if (uset != NULL) {
562 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
563 		    &omask, 0);
564 		if (error != 0)
565 			goto leave;
566 		td->td_pflags |= TDP_OLDMASK;
567 		/*
568 		 * Make sure that ast() is called on return to
569 		 * usermode and TDP_OLDMASK is cleared, restoring old
570 		 * sigmask.
571 		 */
572 		thread_lock(td);
573 		td->td_flags |= TDF_ASTPENDING;
574 		thread_unlock(td);
575 	}
576 
577 	coargs.leventlist = events;
578 	coargs.p = td->td_proc;
579 	coargs.count = 0;
580 	coargs.error = 0;
581 
582 	/*
583 	 * Linux epoll_wait(2) man page states that timeout of -1 causes caller
584 	 * to block indefinitely. Real implementation does it if any negative
585 	 * timeout value is passed.
586 	 */
587 	if (timeout >= 0) {
588 		/* Convert from milliseconds to timespec. */
589 		ts.tv_sec = timeout / 1000;
590 		ts.tv_nsec = (timeout % 1000) * 1000000;
591 		tsp = &ts;
592 	} else {
593 		tsp = NULL;
594 	}
595 
596 	error = kern_kevent_fp(td, epfp, 0, maxevents, &k_ops, tsp);
597 	if (error == 0 && coargs.error != 0)
598 		error = coargs.error;
599 
600 	/*
601 	 * kern_kevent might return ENOMEM which is not expected from epoll_wait.
602 	 * Maybe we should translate that but I don't think it matters at all.
603 	 */
604 	if (error == 0)
605 		td->td_retval[0] = coargs.count;
606 
607 	if (uset != NULL)
608 		error = kern_sigprocmask(td, SIG_SETMASK, &omask,
609 		    NULL, 0);
610 leave:
611 	fdrop(epfp, td);
612 	return (error);
613 }
614 
615 #ifdef LINUX_LEGACY_SYSCALLS
616 int
617 linux_epoll_wait(struct thread *td, struct linux_epoll_wait_args *args)
618 {
619 
620 	return (linux_epoll_wait_common(td, args->epfd, args->events,
621 	    args->maxevents, args->timeout, NULL));
622 }
623 #endif
624 
625 int
626 linux_epoll_pwait(struct thread *td, struct linux_epoll_pwait_args *args)
627 {
628 	sigset_t mask, *pmask;
629 	l_sigset_t lmask;
630 	int error;
631 
632 	if (args->mask != NULL) {
633 		if (args->sigsetsize != sizeof(l_sigset_t))
634 			return (EINVAL);
635 		error = copyin(args->mask, &lmask, sizeof(l_sigset_t));
636 		if (error != 0)
637 			return (error);
638 		linux_to_bsd_sigset(&lmask, &mask);
639 		pmask = &mask;
640 	} else
641 		pmask = NULL;
642 	return (linux_epoll_wait_common(td, args->epfd, args->events,
643 	    args->maxevents, args->timeout, pmask));
644 }
645 
646 static int
647 epoll_register_kevent(struct thread *td, struct file *epfp, int fd, int filter,
648     unsigned int flags)
649 {
650 	struct epoll_copyin_args ciargs;
651 	struct kevent kev;
652 	struct kevent_copyops k_ops = { &ciargs,
653 					NULL,
654 					epoll_kev_copyin};
655 
656 	ciargs.changelist = &kev;
657 	EV_SET(&kev, fd, filter, flags, 0, 0, 0);
658 
659 	return (kern_kevent_fp(td, epfp, 1, 0, &k_ops, NULL));
660 }
661 
662 static int
663 epoll_fd_registered(struct thread *td, struct file *epfp, int fd)
664 {
665 	/*
666 	 * Set empty filter flags to avoid accidental modification of already
667 	 * registered events. In the case of event re-registration:
668 	 * 1. If event does not exists kevent() does nothing and returns ENOENT
669 	 * 2. If event does exists, it's enabled/disabled state is preserved
670 	 *    but fflags, data and udata fields are overwritten. So we can not
671 	 *    set socket lowats and store user's context pointer in udata.
672 	 */
673 	if (epoll_register_kevent(td, epfp, fd, EVFILT_READ, 0) != ENOENT ||
674 	    epoll_register_kevent(td, epfp, fd, EVFILT_WRITE, 0) != ENOENT)
675 		return (1);
676 
677 	return (0);
678 }
679 
680 static int
681 epoll_delete_all_events(struct thread *td, struct file *epfp, int fd)
682 {
683 	int error1, error2;
684 
685 	error1 = epoll_register_kevent(td, epfp, fd, EVFILT_READ, EV_DELETE);
686 	error2 = epoll_register_kevent(td, epfp, fd, EVFILT_WRITE, EV_DELETE);
687 
688 	/* return 0 if at least one result positive */
689 	return (error1 == 0 ? 0 : error2);
690 }
691 
692 static int
693 eventfd_create(struct thread *td, uint32_t initval, int flags)
694 {
695 	struct filedesc *fdp;
696 	struct eventfd *efd;
697 	struct file *fp;
698 	int fflags, fd, error;
699 
700 	fflags = 0;
701 	if ((flags & LINUX_O_CLOEXEC) != 0)
702 		fflags |= O_CLOEXEC;
703 
704 	fdp = td->td_proc->p_fd;
705 	error = falloc(td, &fp, &fd, fflags);
706 	if (error != 0)
707 		return (error);
708 
709 	efd = malloc(sizeof(*efd), M_EPOLL, M_WAITOK | M_ZERO);
710 	efd->efd_flags = flags;
711 	efd->efd_count = initval;
712 	mtx_init(&efd->efd_lock, "eventfd", NULL, MTX_DEF);
713 
714 	knlist_init_mtx(&efd->efd_sel.si_note, &efd->efd_lock);
715 
716 	fflags = FREAD | FWRITE;
717 	if ((flags & LINUX_O_NONBLOCK) != 0)
718 		fflags |= FNONBLOCK;
719 
720 	finit(fp, fflags, DTYPE_LINUXEFD, efd, &eventfdops);
721 	fdrop(fp, td);
722 
723 	td->td_retval[0] = fd;
724 	return (error);
725 }
726 
727 #ifdef LINUX_LEGACY_SYSCALLS
728 int
729 linux_eventfd(struct thread *td, struct linux_eventfd_args *args)
730 {
731 
732 	return (eventfd_create(td, args->initval, 0));
733 }
734 #endif
735 
736 int
737 linux_eventfd2(struct thread *td, struct linux_eventfd2_args *args)
738 {
739 
740 	if ((args->flags & ~(LINUX_O_CLOEXEC|LINUX_O_NONBLOCK|LINUX_EFD_SEMAPHORE)) != 0)
741 		return (EINVAL);
742 
743 	return (eventfd_create(td, args->initval, args->flags));
744 }
745 
746 static int
747 eventfd_close(struct file *fp, struct thread *td)
748 {
749 	struct eventfd *efd;
750 
751 	efd = fp->f_data;
752 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
753 		return (EINVAL);
754 
755 	seldrain(&efd->efd_sel);
756 	knlist_destroy(&efd->efd_sel.si_note);
757 
758 	fp->f_ops = &badfileops;
759 	mtx_destroy(&efd->efd_lock);
760 	free(efd, M_EPOLL);
761 
762 	return (0);
763 }
764 
765 static int
766 eventfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
767     int flags, struct thread *td)
768 {
769 	struct eventfd *efd;
770 	eventfd_t count;
771 	int error;
772 
773 	efd = fp->f_data;
774 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
775 		return (EINVAL);
776 
777 	if (uio->uio_resid < sizeof(eventfd_t))
778 		return (EINVAL);
779 
780 	error = 0;
781 	mtx_lock(&efd->efd_lock);
782 retry:
783 	if (efd->efd_count == 0) {
784 		if ((fp->f_flag & FNONBLOCK) != 0) {
785 			mtx_unlock(&efd->efd_lock);
786 			return (EAGAIN);
787 		}
788 		error = mtx_sleep(&efd->efd_count, &efd->efd_lock, PCATCH, "lefdrd", 0);
789 		if (error == 0)
790 			goto retry;
791 	}
792 	if (error == 0) {
793 		if ((efd->efd_flags & LINUX_EFD_SEMAPHORE) != 0) {
794 			count = 1;
795 			--efd->efd_count;
796 		} else {
797 			count = efd->efd_count;
798 			efd->efd_count = 0;
799 		}
800 		KNOTE_LOCKED(&efd->efd_sel.si_note, 0);
801 		selwakeup(&efd->efd_sel);
802 		wakeup(&efd->efd_count);
803 		mtx_unlock(&efd->efd_lock);
804 		error = uiomove(&count, sizeof(eventfd_t), uio);
805 	} else
806 		mtx_unlock(&efd->efd_lock);
807 
808 	return (error);
809 }
810 
811 static int
812 eventfd_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
813      int flags, struct thread *td)
814 {
815 	struct eventfd *efd;
816 	eventfd_t count;
817 	int error;
818 
819 	efd = fp->f_data;
820 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
821 		return (EINVAL);
822 
823 	if (uio->uio_resid < sizeof(eventfd_t))
824 		return (EINVAL);
825 
826 	error = uiomove(&count, sizeof(eventfd_t), uio);
827 	if (error != 0)
828 		return (error);
829 	if (count == UINT64_MAX)
830 		return (EINVAL);
831 
832 	mtx_lock(&efd->efd_lock);
833 retry:
834 	if (UINT64_MAX - efd->efd_count <= count) {
835 		if ((fp->f_flag & FNONBLOCK) != 0) {
836 			mtx_unlock(&efd->efd_lock);
837 			/* Do not not return the number of bytes written */
838 			uio->uio_resid += sizeof(eventfd_t);
839 			return (EAGAIN);
840 		}
841 		error = mtx_sleep(&efd->efd_count, &efd->efd_lock,
842 		    PCATCH, "lefdwr", 0);
843 		if (error == 0)
844 			goto retry;
845 	}
846 	if (error == 0) {
847 		efd->efd_count += count;
848 		KNOTE_LOCKED(&efd->efd_sel.si_note, 0);
849 		selwakeup(&efd->efd_sel);
850 		wakeup(&efd->efd_count);
851 	}
852 	mtx_unlock(&efd->efd_lock);
853 
854 	return (error);
855 }
856 
857 static int
858 eventfd_poll(struct file *fp, int events, struct ucred *active_cred,
859     struct thread *td)
860 {
861 	struct eventfd *efd;
862 	int revents = 0;
863 
864 	efd = fp->f_data;
865 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
866 		return (POLLERR);
867 
868 	mtx_lock(&efd->efd_lock);
869 	if ((events & (POLLIN|POLLRDNORM)) && efd->efd_count > 0)
870 		revents |= events & (POLLIN|POLLRDNORM);
871 	if ((events & (POLLOUT|POLLWRNORM)) && UINT64_MAX - 1 > efd->efd_count)
872 		revents |= events & (POLLOUT|POLLWRNORM);
873 	if (revents == 0)
874 		selrecord(td, &efd->efd_sel);
875 	mtx_unlock(&efd->efd_lock);
876 
877 	return (revents);
878 }
879 
880 /*ARGSUSED*/
881 static int
882 eventfd_kqfilter(struct file *fp, struct knote *kn)
883 {
884 	struct eventfd *efd;
885 
886 	efd = fp->f_data;
887 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
888 		return (EINVAL);
889 
890 	mtx_lock(&efd->efd_lock);
891 	switch (kn->kn_filter) {
892 	case EVFILT_READ:
893 		kn->kn_fop = &eventfd_rfiltops;
894 		break;
895 	case EVFILT_WRITE:
896 		kn->kn_fop = &eventfd_wfiltops;
897 		break;
898 	default:
899 		mtx_unlock(&efd->efd_lock);
900 		return (EINVAL);
901 	}
902 
903 	kn->kn_hook = efd;
904 	knlist_add(&efd->efd_sel.si_note, kn, 1);
905 	mtx_unlock(&efd->efd_lock);
906 
907 	return (0);
908 }
909 
910 static void
911 filt_eventfddetach(struct knote *kn)
912 {
913 	struct eventfd *efd = kn->kn_hook;
914 
915 	mtx_lock(&efd->efd_lock);
916 	knlist_remove(&efd->efd_sel.si_note, kn, 1);
917 	mtx_unlock(&efd->efd_lock);
918 }
919 
920 /*ARGSUSED*/
921 static int
922 filt_eventfdread(struct knote *kn, long hint)
923 {
924 	struct eventfd *efd = kn->kn_hook;
925 	int ret;
926 
927 	mtx_assert(&efd->efd_lock, MA_OWNED);
928 	ret = (efd->efd_count > 0);
929 
930 	return (ret);
931 }
932 
933 /*ARGSUSED*/
934 static int
935 filt_eventfdwrite(struct knote *kn, long hint)
936 {
937 	struct eventfd *efd = kn->kn_hook;
938 	int ret;
939 
940 	mtx_assert(&efd->efd_lock, MA_OWNED);
941 	ret = (UINT64_MAX - 1 > efd->efd_count);
942 
943 	return (ret);
944 }
945 
946 /*ARGSUSED*/
947 static int
948 eventfd_ioctl(struct file *fp, u_long cmd, void *data,
949     struct ucred *active_cred, struct thread *td)
950 {
951 
952 	if (fp->f_data == NULL || (fp->f_type != DTYPE_LINUXEFD &&
953 	    fp->f_type != DTYPE_LINUXTFD))
954 		return (EINVAL);
955 
956 	switch (cmd)
957 	{
958 	case FIONBIO:
959 		if ((*(int *)data))
960 			atomic_set_int(&fp->f_flag, FNONBLOCK);
961 		else
962 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
963 	case FIOASYNC:
964 		return (0);
965 	default:
966 		return (ENXIO);
967 	}
968 }
969 
970 /*ARGSUSED*/
971 static int
972 eventfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
973     struct thread *td)
974 {
975 
976 	return (ENXIO);
977 }
978 
979 /*ARGSUSED*/
980 static int
981 eventfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
982 {
983 
984 	kif->kf_type = KF_TYPE_UNKNOWN;
985 	return (0);
986 }
987 
988 int
989 linux_timerfd_create(struct thread *td, struct linux_timerfd_create_args *args)
990 {
991 	struct filedesc *fdp;
992 	struct timerfd *tfd;
993 	struct file *fp;
994 	clockid_t clockid;
995 	int fflags, fd, error;
996 
997 	if ((args->flags & ~LINUX_TFD_CREATE_FLAGS) != 0)
998 		return (EINVAL);
999 
1000 	error = linux_to_native_clockid(&clockid, args->clockid);
1001 	if (error != 0)
1002 		return (error);
1003 	if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC)
1004 		return (EINVAL);
1005 
1006 	fflags = 0;
1007 	if ((args->flags & LINUX_TFD_CLOEXEC) != 0)
1008 		fflags |= O_CLOEXEC;
1009 
1010 	fdp = td->td_proc->p_fd;
1011 	error = falloc(td, &fp, &fd, fflags);
1012 	if (error != 0)
1013 		return (error);
1014 
1015 	tfd = malloc(sizeof(*tfd), M_EPOLL, M_WAITOK | M_ZERO);
1016 	tfd->tfd_clockid = clockid;
1017 	mtx_init(&tfd->tfd_lock, "timerfd", NULL, MTX_DEF);
1018 
1019 	callout_init_mtx(&tfd->tfd_callout, &tfd->tfd_lock, 0);
1020 	knlist_init_mtx(&tfd->tfd_sel.si_note, &tfd->tfd_lock);
1021 
1022 	fflags = FREAD;
1023 	if ((args->flags & LINUX_O_NONBLOCK) != 0)
1024 		fflags |= FNONBLOCK;
1025 
1026 	finit(fp, fflags, DTYPE_LINUXTFD, tfd, &timerfdops);
1027 	fdrop(fp, td);
1028 
1029 	td->td_retval[0] = fd;
1030 	return (error);
1031 }
1032 
1033 static int
1034 timerfd_close(struct file *fp, struct thread *td)
1035 {
1036 	struct timerfd *tfd;
1037 
1038 	tfd = fp->f_data;
1039 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1040 		return (EINVAL);
1041 
1042 	timespecclear(&tfd->tfd_time.it_value);
1043 	timespecclear(&tfd->tfd_time.it_interval);
1044 
1045 	mtx_lock(&tfd->tfd_lock);
1046 	callout_drain(&tfd->tfd_callout);
1047 	mtx_unlock(&tfd->tfd_lock);
1048 
1049 	seldrain(&tfd->tfd_sel);
1050 	knlist_destroy(&tfd->tfd_sel.si_note);
1051 
1052 	fp->f_ops = &badfileops;
1053 	mtx_destroy(&tfd->tfd_lock);
1054 	free(tfd, M_EPOLL);
1055 
1056 	return (0);
1057 }
1058 
1059 static int
1060 timerfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1061     int flags, struct thread *td)
1062 {
1063 	struct timerfd *tfd;
1064 	timerfd_t count;
1065 	int error;
1066 
1067 	tfd = fp->f_data;
1068 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1069 		return (EINVAL);
1070 
1071 	if (uio->uio_resid < sizeof(timerfd_t))
1072 		return (EINVAL);
1073 
1074 	error = 0;
1075 	mtx_lock(&tfd->tfd_lock);
1076 retry:
1077 	if (tfd->tfd_canceled) {
1078 		tfd->tfd_count = 0;
1079 		mtx_unlock(&tfd->tfd_lock);
1080 		return (ECANCELED);
1081 	}
1082 	if (tfd->tfd_count == 0) {
1083 		if ((fp->f_flag & FNONBLOCK) != 0) {
1084 			mtx_unlock(&tfd->tfd_lock);
1085 			return (EAGAIN);
1086 		}
1087 		error = mtx_sleep(&tfd->tfd_count, &tfd->tfd_lock, PCATCH, "ltfdrd", 0);
1088 		if (error == 0)
1089 			goto retry;
1090 	}
1091 	if (error == 0) {
1092 		count = tfd->tfd_count;
1093 		tfd->tfd_count = 0;
1094 		mtx_unlock(&tfd->tfd_lock);
1095 		error = uiomove(&count, sizeof(timerfd_t), uio);
1096 	} else
1097 		mtx_unlock(&tfd->tfd_lock);
1098 
1099 	return (error);
1100 }
1101 
1102 static int
1103 timerfd_poll(struct file *fp, int events, struct ucred *active_cred,
1104     struct thread *td)
1105 {
1106 	struct timerfd *tfd;
1107 	int revents = 0;
1108 
1109 	tfd = fp->f_data;
1110 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1111 		return (POLLERR);
1112 
1113 	mtx_lock(&tfd->tfd_lock);
1114 	if ((events & (POLLIN|POLLRDNORM)) && tfd->tfd_count > 0)
1115 		revents |= events & (POLLIN|POLLRDNORM);
1116 	if (revents == 0)
1117 		selrecord(td, &tfd->tfd_sel);
1118 	mtx_unlock(&tfd->tfd_lock);
1119 
1120 	return (revents);
1121 }
1122 
1123 /*ARGSUSED*/
1124 static int
1125 timerfd_kqfilter(struct file *fp, struct knote *kn)
1126 {
1127 	struct timerfd *tfd;
1128 
1129 	tfd = fp->f_data;
1130 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1131 		return (EINVAL);
1132 
1133 	if (kn->kn_filter == EVFILT_READ)
1134 		kn->kn_fop = &timerfd_rfiltops;
1135 	else
1136 		return (EINVAL);
1137 
1138 	kn->kn_hook = tfd;
1139 	knlist_add(&tfd->tfd_sel.si_note, kn, 0);
1140 
1141 	return (0);
1142 }
1143 
1144 static void
1145 filt_timerfddetach(struct knote *kn)
1146 {
1147 	struct timerfd *tfd = kn->kn_hook;
1148 
1149 	mtx_lock(&tfd->tfd_lock);
1150 	knlist_remove(&tfd->tfd_sel.si_note, kn, 1);
1151 	mtx_unlock(&tfd->tfd_lock);
1152 }
1153 
1154 /*ARGSUSED*/
1155 static int
1156 filt_timerfdread(struct knote *kn, long hint)
1157 {
1158 	struct timerfd *tfd = kn->kn_hook;
1159 
1160 	return (tfd->tfd_count > 0);
1161 }
1162 
1163 /*ARGSUSED*/
1164 static int
1165 timerfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1166     struct thread *td)
1167 {
1168 
1169 	return (ENXIO);
1170 }
1171 
1172 /*ARGSUSED*/
1173 static int
1174 timerfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1175 {
1176 
1177 	kif->kf_type = KF_TYPE_UNKNOWN;
1178 	return (0);
1179 }
1180 
1181 static void
1182 linux_timerfd_clocktime(struct timerfd *tfd, struct timespec *ts)
1183 {
1184 
1185 	if (tfd->tfd_clockid == CLOCK_REALTIME)
1186 		getnanotime(ts);
1187 	else	/* CLOCK_MONOTONIC */
1188 		getnanouptime(ts);
1189 }
1190 
1191 static void
1192 linux_timerfd_curval(struct timerfd *tfd, struct itimerspec *ots)
1193 {
1194 	struct timespec cts;
1195 
1196 	linux_timerfd_clocktime(tfd, &cts);
1197 	*ots = tfd->tfd_time;
1198 	if (ots->it_value.tv_sec != 0 || ots->it_value.tv_nsec != 0) {
1199 		timespecsub(&ots->it_value, &cts, &ots->it_value);
1200 		if (ots->it_value.tv_sec < 0 ||
1201 		    (ots->it_value.tv_sec == 0 &&
1202 		     ots->it_value.tv_nsec == 0)) {
1203 			ots->it_value.tv_sec  = 0;
1204 			ots->it_value.tv_nsec = 1;
1205 		}
1206 	}
1207 }
1208 
1209 int
1210 linux_timerfd_gettime(struct thread *td, struct linux_timerfd_gettime_args *args)
1211 {
1212 	struct l_itimerspec lots;
1213 	struct itimerspec ots;
1214 	struct timerfd *tfd;
1215 	struct file *fp;
1216 	int error;
1217 
1218 	error = fget(td, args->fd, &cap_read_rights, &fp);
1219 	if (error != 0)
1220 		return (error);
1221 	tfd = fp->f_data;
1222 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
1223 		error = EINVAL;
1224 		goto out;
1225 	}
1226 
1227 	mtx_lock(&tfd->tfd_lock);
1228 	linux_timerfd_curval(tfd, &ots);
1229 	mtx_unlock(&tfd->tfd_lock);
1230 
1231 	error = native_to_linux_itimerspec(&lots, &ots);
1232 	if (error == 0)
1233 		error = copyout(&lots, args->old_value, sizeof(lots));
1234 
1235 out:
1236 	fdrop(fp, td);
1237 	return (error);
1238 }
1239 
1240 int
1241 linux_timerfd_settime(struct thread *td, struct linux_timerfd_settime_args *args)
1242 {
1243 	struct l_itimerspec lots;
1244 	struct itimerspec nts, ots;
1245 	struct timespec cts, ts;
1246 	struct timerfd *tfd;
1247 	struct timeval tv;
1248 	struct file *fp;
1249 	int error;
1250 
1251 	if ((args->flags & ~LINUX_TFD_SETTIME_FLAGS) != 0)
1252 		return (EINVAL);
1253 
1254 	error = copyin(args->new_value, &lots, sizeof(lots));
1255 	if (error != 0)
1256 		return (error);
1257 	error = linux_to_native_itimerspec(&nts, &lots);
1258 	if (error != 0)
1259 		return (error);
1260 
1261 	error = fget(td, args->fd, &cap_write_rights, &fp);
1262 	if (error != 0)
1263 		return (error);
1264 	tfd = fp->f_data;
1265 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
1266 		error = EINVAL;
1267 		goto out;
1268 	}
1269 
1270 	mtx_lock(&tfd->tfd_lock);
1271 	if (!timespecisset(&nts.it_value))
1272 		timespecclear(&nts.it_interval);
1273 	if (args->old_value != NULL)
1274 		linux_timerfd_curval(tfd, &ots);
1275 
1276 	tfd->tfd_time = nts;
1277 	if (timespecisset(&nts.it_value)) {
1278 		linux_timerfd_clocktime(tfd, &cts);
1279 		ts = nts.it_value;
1280 		if ((args->flags & LINUX_TFD_TIMER_ABSTIME) == 0) {
1281 			timespecadd(&tfd->tfd_time.it_value, &cts,
1282 				&tfd->tfd_time.it_value);
1283 		} else {
1284 			timespecsub(&ts, &cts, &ts);
1285 		}
1286 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1287 		callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1288 			linux_timerfd_expire, tfd);
1289 		tfd->tfd_canceled = false;
1290 	} else {
1291 		tfd->tfd_canceled = true;
1292 		callout_stop(&tfd->tfd_callout);
1293 	}
1294 	mtx_unlock(&tfd->tfd_lock);
1295 
1296 	if (args->old_value != NULL) {
1297 		error = native_to_linux_itimerspec(&lots, &ots);
1298 		if (error == 0)
1299 			error = copyout(&lots, args->old_value, sizeof(lots));
1300 	}
1301 
1302 out:
1303 	fdrop(fp, td);
1304 	return (error);
1305 }
1306 
1307 static void
1308 linux_timerfd_expire(void *arg)
1309 {
1310 	struct timespec cts, ts;
1311 	struct timeval tv;
1312 	struct timerfd *tfd;
1313 
1314 	tfd = (struct timerfd *)arg;
1315 
1316 	linux_timerfd_clocktime(tfd, &cts);
1317 	if (timespeccmp(&cts, &tfd->tfd_time.it_value, >=)) {
1318 		if (timespecisset(&tfd->tfd_time.it_interval))
1319 			timespecadd(&tfd->tfd_time.it_value,
1320 				    &tfd->tfd_time.it_interval,
1321 				    &tfd->tfd_time.it_value);
1322 		else
1323 			/* single shot timer */
1324 			timespecclear(&tfd->tfd_time.it_value);
1325 		if (timespecisset(&tfd->tfd_time.it_value)) {
1326 			timespecsub(&tfd->tfd_time.it_value, &cts, &ts);
1327 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1328 			callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1329 				linux_timerfd_expire, tfd);
1330 		}
1331 		tfd->tfd_count++;
1332 		KNOTE_LOCKED(&tfd->tfd_sel.si_note, 0);
1333 		selwakeup(&tfd->tfd_sel);
1334 		wakeup(&tfd->tfd_count);
1335 	} else if (timespecisset(&tfd->tfd_time.it_value)) {
1336 		timespecsub(&tfd->tfd_time.it_value, &cts, &ts);
1337 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1338 		callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1339 		    linux_timerfd_expire, tfd);
1340 	}
1341 }
1342